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1 Abstract

The main focus of this project is modeling phytoplankton predator-prey

systems involving a resource, a prey (phytoplankton), and predators (zoo-

plankton) in order to understand the complex interactions between these con-

stituents. It is important to study these food chains, because phytoplankton

contribute to numerous biogeochemical processes in nature. They control

water quality, influence global climate by regulating carbon dioxide uptake,

and form the basis for most aquatic food chains. Because phytoplankton are

simple and small organisms with short life spans, they are relatively easy to

study. Lab and field experiments experiments can be readily combined with

theoretical analyses.

In this paper, we first investigate a food web consisting of a chain of

a single zooplankton feeding on a phytoplankton which is dependent on a

resouce. The model includes mathematically convenient approximation for

the fluctuation in resource availability and seasonal variations. We employ a

dynamical systems approach and supporting numerical simulations to study

long-term behavior. Our findings show that for long periods under forcing,

distinct regimes of species coexistence are present and can be analytically

computed. As the total nutrient content is varied, the system undergoes

several bifurcations, resulting in drastic, dynamical changes ranging from

coexistence of both species to dominance of only zooplankton to extinction

of both. A smooth seasonal transition, convenient for analytics, was also

introduced allowing for the decline of resources not to be abrupt. A food

web consisting of a resource, a phytoplankton, and two zooplankton species

competing for a single phytoplankton was also investigated. Most combina-
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tions of parameters result in the dominance of one species of the zooplankton

with total extinction of the other, which reduces to the first case examined.

Using a type II functional response and considering only a narrow parameter

subset, one is able to observe some interesting dynamics when switching of

zooplankton dominance occurs. We found that the length of the growing sea-

son is directly involved in the system dynamics. The length of the growing

season can be too short for the phytoplankton or the fast growing zooplank-

ton to emerge or it can be long enough for the good competitor zooplankton

to dominate.

2 Introduction

Phytoplankton contribute to numerous biogeochemical processes and

constitute the basis for most aquatic food chains. They play an essential role

in controlling water quality and exert a great influence on the global climate

by regulating carbon dioxide (CO2) uptake.3 Moreover, changes in phyto-

plankton population can alert scientists to alterations in the environment.

Phytoplankton can also be useful in determining where ocean currents pro-

vide nutrients for plant growth and where pollutants poison the ocean and

prevent plant growth.2 Because phytoplankton are small, elementary crea-

tures with short life spans, their dynamics are relatively easy to model. In

addition, laboratory and field experiments are feasible.4, 5

Phytoplankton require only a few things to survive: sunlight, water, and

nutrients. Chlorophyll allows phytoplankton to utilize light energy, which is

used to fix CO2 to sugars and generate ATP.6 Oxygen is then released as
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a byproduct. Essential nutrients include CO2, nitrogen, sulfur, phosphorus

compounds, Si, Fe, and other trace metals. Some species of phytoplankton

also require vitamins like thiamin or biotin to survive.4

Predator-prey models help forecast population trends and disease out-

breaks. They can also aid in the understanding of biological community

structure. The most basic kind of food chain involves a prey species feeding

off a nutrient. This can be generated to more complex models that include

species interactions. The first predator-prey model was formulated by Lotka

and Volterra. The Lotka-Volterra system consists of one predator species and

one prey species. Lotka-Volterra assumes the predator is completely depen-

dent on the prey for its food supply and that the size of the prey population

is restricted only by predation. This model shows that predators and prey

can coexist, in that both species follow stable cycle oscillations. Rosenzweig

and MacArthur expanded this model further to include consumption rates

of predators.1

Most predator-prey models do not include seasonal succession, or periodic

resetting of system dynamics, and resource variations. Seasonal forcing is

necessary to better characterize phytoplankton development, because of the

changing physical environment. In the spring, light is a limiting resource

for the phytoplankton in a lake. The water is warming and even mixing

occurs due to the lake’s wind and water currents. However, in the beginning

stages of summer, when the phytoplankton start to grow, mixing occurs

mostly in two sections: the epilimnion, or warm layer of the lake, and the

hypolimnion, or cold layer of the lake. There is also limited mixing betweeen

layers. Later in the summer, the nutrients become limited due to the now-
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large biomass of phytoplankton and – as the epilimnion and the hypolimnion

approach the same temperature – there is greater mixing between layers.

As the water temperature increases during the fall overturn, phytoplankton

get pulled to the bottom when colder water sinks and nutrients rise to the

surface. Once the phytoplankton reach the bottom (cold) layer of the lake,

it becomes almost impossible for the phytoplankton to resurface, and can

obtain enough light and nutrients to survive. Thus, most phytoplankton die

off in the fall overturn.

The main question of this research effort is how does seasonal forcing or,

more specifically, the length of the growing season affect system dynamics.

The rest of this paper is organized as follows. First, we consider a system that

includes a resource, one phytoplankton, and one zooplankton with seasonal

variation in resource availability. Subsequently, we examine a more complex

model that includes a resource, one phytoplankton, and two zooplankton.

3 Seasonal Forcing in a Phytoplankton Food

Chain with One Zooplankton Species

Periodic forcing can modeled mathematically by having one equation for

the growing season and a separate one for the dying season and assuming

that the duration of the growing season is the same each year. We nondimen-

sionalize the system so that the total season has unit period. In our model,

the growing season lasts a proportion p of the time and is governed by the
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following dynamical system:

dP

dt
= T (c1PR −mpP − fp(R)Z)

dZ

dt
= T (fz(P )P − mzZ) . (1)

During the remainder of the dying season, when t ∈ [p, 1], there are no

resources, which yields the dynamical system:

dP

dt
= T (−mpP − fp(R)Z)

dZ

dt
= T (fz(P )P −mzZ) . (2)

The functional response represents the per capita rate of prey consumed

in unit time.1 Functional responses are either linear (type I) or saturat-

ing (type II). In this model, both sets of equations incorporate a type I

functional response in which the predator consumption rate increases with

prey density until reaching a maximum consumption rate. This is written

mathematically as fP (R) = c2P for phytoplankton and fZ(P ) = c3Z for

zooplankton. The parameter R is the amount of nutrient, P is the nutri-

ent content of phytoplankton, and Z is the nutrient content of zooplankton.

The mortality rates of the phytoplankton and the zooplankton are given by

mp and mz, respectively, and T represents the period. The parameter c1

is the phytoplankton’s nutrient yield from consuming resources, c2 accounts

for losses in phytoplankton population caused by zooplankton consumption,

and c3 is the zooplankton’s nutrient yield from consuming phytoplankton.

Clearly, c3 ≤ c2; otherwise, zooplankton would receive more nutrients from

the phytoplankton than the phytoplankton are able to hold and additional

biomass would be created from nothing. Because this system is closed, the
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amount of total resources remains constant: Rtot = R + P + Z. Depending

on the parameter Rtot, various dynamical regimes are possible; the system

can either exhibit stable coexistence of both species at the end of the sea-

son (as illustrated in Fig. 1), annihilation of zooplankton and prevalence of

phytoplankton, or extinction of both species.
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Figure 1: Phase plane of Z vs. P for large Rtot. After t = t1 the system

jumps to (P̂ , 0). After t = t2 it ends up at (P̂ , Ẑ). Finally, at time t = p, it

returns to the origin.

In the long-term dying phase, (P̂ , Ẑ) = (0, 0). This is sensible biologically,

as the phytoplankton have nothing to eat and their population eventually

declines, causing the zooplankton population to die out as well. During the

time interval [0, p], the system has three equilibria for Rtot > R? + P ?, as

indicated in the bifurcation diagram in Fig. 2; these are (0, 0), (P̂ , 0), and

(P̂ , Ẑ). At (0, 0), all species are dead; this is a stable sink. The equilibrium
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at (P̂ , 0) indicates that the zooplankton have completely died off and dP
dt

= 0.

It is evident that P̂ = Rtot − R?, where R? = mp/c1. Both species coexist

at (P̂ , Ẑ). One finds that P̂ = P ? = mz/c3. Upon substitution, we obtain

Ẑ = (c1(Rtot − P ?) − mp)/(c1 + c2).
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Figure 2: Bifurcation diagram for the parameter Rtot. Three regimes are

possible: phytoplankton and zooplankton both coexist (I), phytoplankton

prevail (II), or neither lives (III).

As indicated by the numerical simulations for long periods (see Fig. 3),

there exists a time t1 such that during the time interval [0, t1], both species

are near zero. Immediately thereafter, a stable population of phytoplankton

emerges and prevails during the time interval [t1, t2]. From then until the

end of the growing season (i.e. for t ∈ [t2, p]), both species coexist. Right

after the resources are fully consumed, both populations rapidly decline to

zero; this occurs in the time period [p, 1].
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Figure 3: Long-term numerical simulation with period T = 1250, Rtot =

8, p = 0.5, c1 = 0.7, c2 = 0.79, c3 = 0.7,mp = 1.1, and mz = 1.1. The

long-dashed line indicates the resource, the dotted line respresents the phy-

toplankton, and the short-dashed line respresents zooplankton. For t ∈ [0,

t1] both species are near zero; when t ∈ [t1, t2], a stable population of phyto-

plankton emerges and prevails; t ∈ [t2, p] – both species coexist; t ∈ [p, 1] –

both populations rapidly decline to zero.

We find the two times t1 and t2 using linearization and the fact that the

per capita rate of change averaged over the whole period must vanish:

∫ 1

0
P ′

P
dτ =

∫ 1

0
Z′

Z
dτ = 0.

Each integral is then split into four distinct phases:

∫ 1

0
P ′

P
dτ =

∫ t1
0

P ′

P
dτ +

∫ t2
t1

P ′

P
dτ +

∫ p

t2

P ′

P
dτ +

∫ 1

p
P ′

P
dτ = 0
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∫ 1

0
Z′

Z
dτ =

∫ t1
0

Z′

Z
dτ +

∫ t2
t1

Z′

Z
dτ +

∫ p

t2

Z′

Z
dτ +

∫ 1

p
Z′

Z
dτ = 0.

Using linearization, these equations become

∫ t1
0

(c1Rtot − mp)dτ +
∫ t2

t1
(0)dτ +

∫ p

t2
(0)dτ +

∫ 1

p
(−mp)dτ = 0

∫ t1
0

(−mz)dτ +
∫ t2

t1
(c3(Rtot −

mp

c1
) −mz)dτ +

∫ p

t2
(0)dτ +

∫ 1

p
(−mz)dτ = 0

Performing the integrals and solving the linear system gives the times

t1 =
(1−p)mp

c1Rtot−mp
, t2 =

mz(1−p)+c3(Rtot−mp/c1)t1
c3(Rtot−mp/c1)−mz

.

Because there are no zooplankton parameters present in the expression for

t1, it follows that the emergence of the phytoplankton is independent of

the zooplankton population. This is consistent with the fact that there are

negligibly many zooplantkon initially, so their population does not play a

role in the dynamics.

If the discontinuous nature of the equations prevents analytical manipu-

lations, then one can introduce smooth approximations so that the factors

describing resources availability decreases sharply to zero immediately after

time p. Two suitable candidates are: − tan−1(1000(t−p))+π/2
π

and 1− e1000(t−p)

1+e1000(t−p) .

Numerical simulations with both of these attenuation factors yield similar

results to those we observed with the discontinuous case.

4 Seasonal Forcing in a Phytoplankton Food

Web with Two Zooplankton Species

This system differs from the one described above by an addition of a sec-

ond zooplankton species. Various system dynamics developments are sum-

marized in figure 4.
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Figure 4: Transitions diagram. The system can transition from the empty

state into the state where only P exists. From the P state, either Zi can

invade. If the fast grower emerges first, then the good competitor can still

invade the system.

The growing season (lasting proportion p of the period) is governed by

the following set of equations:

dP

dt
= T (fP (R)P − mP P −

2∑

i=1

gi(P )Zi)

dZi

dt
= T (eigi(P )Zi −mZiZi) . (3)

For the remainder of the season there are no resources present, so one can

set R = fR(R) = 0.

In the equations above, R is the amount of nutrient, P is the nutrient

content of phytoplankton, and Zi is the nutrient content of the zooplankton

species i. Here, f and gi are both type II functional responses (shown in

figure 5), in which the consumption rates increase with the prey densities

until reaching saturation values. The functions are given by the Michaelis-

Menton equation: fP (R) = vRR
R+kR

and gi(P ) = viP
P+ki

, where v is maximum

intake of resources and k is the half saturation constant. The parameter e is

dimensionless, trophic, and has a value greater than one. The mortality rates
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of phytoplankton and zooplankton i are given by mp and mzi respectively.

The period is represented by T. The system is again closed, so Rtotal =

R + P +
∑2

i=1 Zi.
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Figure 5: Type II functional responses. P ?
i represents the minimum amount

of resources needed for survival of species i. It is evident that zooplank-

ton species 2 should prevail at low phytoplankton levels in this particular

situation.

If a type I functional response was implemented for the zooplankton

species, then one zooplankton would always dominate the other and the

system dynamics would reduce to the case of the chain discussed earlier.

Because type II functional responses are used, interesting behavior can be

observed for a particular combination of parameters. Zooplankton 1 has good

competitive ability when photoplankton are abundant, whereas the other is

a good competitor when phytoplankton are scarce. The two competing zoo-

plankton species then can both establish exclusive dominance as the season
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progresses, as illustrated in the numerical simulation in figure 6.

In the abstract case, we can specify the growth of the phytoplankton and

zooplankton at a very general level. Let λj,k = dj
jdt

denote the eigenvalue

of species j in state k. In the 0 state λP,0 > 0, because P can invade a

monoculture of resource and λZi,0 < 0, because in absence of P , Zi’s are not

able to grow. The P state is characterized by: λP,P = 0, because P has

reached an equilibrium and λZi,P > 0, because P has entered the system,

so Zi has enough nutrients to grow. In the PZ1 state: both λP,PZ1 and

λZ1 ,PZ1 = 0, because P and Z1 are in equilibrium and λZ2 ,PZ1 > 0, because

Z2 can invade the system. In the PZ2 state: λP,PZ2 = λZ2 ,PZ2 = 0, because

P and Z2 are in equilibrium, whereas Z1 is dying, hence λZ1 ,PZ2 < 0. Let

λj,− also denote the dying phase for species j lasting from pT to T during a

period.

In the model presented here, we let

R̂ = R? = mP kR

vR−mp
, P̂ = Rtotal − R?, and P ?

i =
mZi

ki

eivi−mZi
.

Upon subsitution we obtain,

λP,0 = −mP + fP (Rtot), λZi,0 = −mZi

λP,P = 0, λZi,P = −mZi + eigi(P̂ )

λP,PZ1 = λZ1 ,PZ1 = 0, λZ2,PZ1 = −mZ2 + e2g2(P
?
1 )

λP,PZ2 = λZ2 ,PZ2 = 0, λZ1,PZ2 = −mZ1 + e1g1(P
?
2 )

λP,− = −mP , λZi,− = −mZi

The switching times between various regimes can be readily computed

utilizing the equilibrium stability analysis and the linearization principles.
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Figure 6: Numerical simulation with T = 2900, Rtot = 17, p= 0.65, c1 =

0.22, v1 = 1, v2 = 1, k1 = 3.9, k2 = 20, e1 = 0.3, e2 = 0.7, mp = 0.14,

mZ1 = 0.1, and mZ2 = 0.1. The smallest-dashed line resprents the resource,

the solid line indicates the phytoplankton, the largest-dashed line indicates

the first phytoplankton, and the middle-dashed line indicates the second

phytoplankton.

The time t1, when the phytoplankton first emerges gaining a stable equilib-

rium is found from the fact that the per capita rate of change averaged over

the whole period must vanish:
∫ 1

0
λP,kdτ = 0. Expanding the integral we get:

∫ t1
0

λP,0dτ +
∫ 1

p
λP,−dτ = 0. Solving for t1 we obtain the following expression:

t1 =
(−1+p)λP,−

λP,0
.

The analytical expressions for the emergence times t2 and t3 of respectively

fast growing and good competitor zooplankton species are too complex and
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will not be presented here. For t ∈ [0, t1] all species are near zero; when

t ∈ [t1, t2], a stable population of phytoplankton emerges and prevails; when

t ∈ [t2, t3], a stable population of phytoplankton and the first zooplankton

prevails; when t ∈ [t3, p] – coexistence with phytoplankton and the second

zooplankton species; when t ∈ [p, 1] – both populations rapidly decline to

zero.

The two competing zooplankton species dominate at different ranges of

parameter p, as illustrated by the diagram in figure 7. Depending on the

value of p, the system has enough time to reach the state of P equilibrium,

to take one of the branches in figure 4, or to switch between the zooplankton

competitors, provided, of course, that the parameters for the zooplankton

make one the fast grower and the other the good competitor.
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Figure 7: Bifurcation diagram of the successional dynamics within a period

under seasonal forcing with long period as a function of p.
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5 Conclusions

Regular, autonomous predator-prey food webs with just a resource and

few phytoplankton are readily examined using standard mathematical tech-

niques for systems of differential equations. Analytical results for and near

equilibria are possible. The main concern of this research is the effects of

seasonal forcing on system dynamics.

For the food chain with one zooplankton, both our analytical and nu-

merical findings reveal that for long periods under seasonal forcing distinct

regions of species coexistence are present and are similar to those without

the seasonal forcing. For shorter periods these approximations become unrea-

sonable and different methods are needed. Also, the system’s total nutrient

content plays a vital role in the its aggregate dynamics - several bifurcations

are present as this parameter is varied, causing severe changes in system’s

behavior: from coexistence of both species to extinction of phytoplankton to

disappearance of both.

For the food web with two zooplankton their functional responses con-

tribute significantly to the nature of the system dynamics. That is because

for most cases one zooplankton dominates the other and the system is re-

duced to the first type discussed above. Even if there are two zooplankton

species, one of which is a fast grower and the other one is the good com-

petitor, other parameters need to be adjusted in order to witness a sizable

presence of both during a period. One of the most influential parameters is

the length of the season’s growing period. For its intermediate values the

growing season is not too long so one can see first the phytoplankton and

then the fast grower emerge, but it is long enough for the good competi-
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tor to appear and drive out the other zooplankton species. The system’s

behavior can transition from phytoplankton existing alone to coexistance of

phytoplankton and one zooplankton species to a switching in dominance of

zooplankton species to extinction of all species.

For the future research the described model in a similar way can be ex-

tended to more than two zooplankton species. It is believed that similar

behavior will be observed and a hierchy of dominance between the various

zooplankton species can be established, each species having the best com-

petitive ability over the others for a fixed level of its resource.
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