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Abstract

Network theory is a powerful tool that allows scientists to mathematically model complex organisational
structures as a collection of distinct components interacting in some manner. I examined four analytical
network metrics; degree, eigenvector centrality, betweenness centrality and local clustering coefficient, as
a method of revealing specific network features and structural elements. Modelling terrorist organisations
using simple, unweighted, undirected networks, I have examined real terrorist cell data for; September
11th 2001 World Trade Centre attack, March 11th 2004 Madrid train bombing, Francs-Tireurs Partisans
WWII résistance group and 7th July 2005 London Underground bombing. Using normalised metric
distributions, I identified the graphically important terrorist members and compared my findings to
the known cell leaders. Using simple mathematical rules for the recruitment, removal and desertion
of terrorists, I developed four generative models. The dynamics of each generative mechanism were
examined using two different initial networks, and simulation metric distributions were calculated and
compared to those obtained from the real terrorist networks. My examination of real terrorist cells
suggests degree centrality as a good indicator of the leaders, and other valuable cell members. The use
of a network percolation mechanism to model a systematic head-hunting tactic for disbanding terrorist
cells, is examined and found to have varying success depending on the terrorist cell construction. Finally,
I evaluated each generative mechanism, evaluated the systematic percolation attack and outlined aspects
for further investigation.
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Chapter 1

Network Theory

1.1 Introduction to Networks

The world consists of thousands of highly complex organisational networks and processes, which are
best described and understood as a collection of distinct components interacting with each other in
some manner. Network theory allows us to investigate such networks by mathematically representing a
system of interest as a collection of points (called vertices or nodes) connected together by a set of lines
(called edges or links). We call this collection of vertices and edges a network, or graph [34].

For any finite network G of n vertices, we denote the sets of vertices and edges by V (G) and E(G)
respectively [12]:

V (G) = {vi | i = 1 . . . n}, |V (G)| = Size of network G = n,

E(G) = {eij | i, j = 1 . . . n}, e(G) = |E(G)| = Number of network edges.

The Adjacency matrix, A ∈ Mn×n(R), of network G is defined such that each matrix element, aij ,
indicates if G contains an edge eij connecting vertex vj to vi [34]:

aij =

{
1 if there is an edge connecting vj to vi,

0 otherwise.

Network G is said to be a simple network if the adjacency matrix elements satisfy:

aij ∈ {0, 1} for all 1 ≤ i, j ≤ n, aii = 0 for all 1 ≤ i ≤ n.

Thus, G is a simple network if there are at most one edge connecting each pair of vertices vi, vj ∈ G,
and no vertex is connected to itself by a single edge eii.

We define the neighbourhood of a vertex vi, denoted Γ(vi), to be the set of vertices vk connected to
vi:

Γ(vi) = {vk ∈ G | aik = 1}.

Network theory allows scientists to model a range of different network structures by adjusting the
properties of vertices and edges contained within the network [34], as shown in Appendix A.1.

Drawing and visually examining a network is a simplistic, yet robust, tool for comprehending network
patterns and structural elements. However, while this technique is useful for networks of small size, the
sheer volume and variety of information means a different approach is required to easily gain insight into
the structure of larger networks.

1
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1.2 Network Centrality Measures and Metrics

There are many commonly used analytical techniques, called network metrics, which reveal specific
network features by considering vertex and edges properties. My investigation will focus on a class of
network metrics called centrality measures. A centrality measure of a vertex or edge gives a numerical
qualification of that element’s relative network importance [34].

By comparing a selection of network metrics, it is possible to gain an insight into the key network
vertices. If vertex vi ∈ G has comparatively large network metrics, I will say that vi is a graphically
important vertex, reflecting the fact that the quantified metric importance obtained is a result of the
network topology, and may not indicate the true importance of a vertex within a real network application.

I defined a network metric measure as dynamically stable if the graphical importance of each vertex
vi ∈ G remain constant, or experiences a small variation, when a network vertex, or edge, is removed
from G.

1.2.1 Degree Centrality

Degree centrality (or degree) is the most commonly used network centrality. Degree centrality measures
the number of edges incident (i.e. connected) to a vertex [34].

Degree Centrality: The degree of vertex vi, denoted ki, is equal to the number of
network edges incident to vi.

If a vertex vα is removed from network G, the degree of each previously connected neighbourhood
vertex, vβ ∈ Γ(vα), decreases by one. If G has large mean degree, removing vα affects a large number of
degree centralities kβ , however decreasing kβ by one has little effect on the relative importance of each
vertex vβ . If instead G has small mean degree, removing vα produces a more significant change in vertex
importance, but affects fewer vertices. Hence, the dynamic stability depends on mean degree of G.

1.2.2 Eigenvector Centrality

Eigenvector centrality is a recursive vertex centrality measure that calculates the relative importance of
network vertices by considering any connections the vertex has to other recursively important network
vertices.

Eigenvector Centrality: Consider a network G with size n and adjacency matrix
A ∈Mn×n(R).

Let xi denote the eigenvector centrality value of vertex vi, and define xi to be proportional
to the sum of eigenvector centrality values of all neighbouring vertices vj ∈ Γ(vi). Thus:

xi =
1

λ

∑
vj∈Γ(vi)

xj

=
1

λ

n∑
j=1

Aijxj

where Γ(vi) is the neighbourhood of vertex vi and λ is the constant of proportionally.

Using vector notation, x =
(
xi
)

1≤i≤n, we obtain the characteristic equation for

eigenvector x with eigenvalue λ:

x =
1

λ
Ax,

⇒ Ax = λx.

2
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In general, the solution eigenvector is non-unique, but using the Perron-Frobenius theorem
[Appendix A.2], we have that the eigenvector x corresponding to the largest eigenvalue λ,
has non-negative entries. Because we require each eigenvector centrality to be non-negative,
the eigenvector with largest eigenvalue defines the network eigenvector centrality values [34].

As with degree centrality, removing a vertex vα alters the eigenvector centralities for each vertex
vβ ∈ Γ(vα), however the recursive construction means that removing vα causes a small variation in xβ
values, making eigenvector centrality dynamically stable.

1.2.3 Betweenness Centrality

A path is a set of vertices and edges connecting two network vertices together, and the path length is
equal to the number of edges traversed by the path. We define a geodesic path, between vertices vr and
vs, as a path of shortest length between these vertices. Geodesic length is denoted drs [34].

Betweenness centrality measures vertex importance by examining which vertices lie on the geodesic
paths between each pair of network vertices vr, vs [34].

Betweenness Centrality: To calculate the betweenness centrality, we first require:

1. The number of geodesic paths, σrs, between each pair of vertices vr and vs (r 6= s).

2. The number of geodesic paths between vr and vs (r 6= s), that contain vertex vi, σrs(vi).

The betweenness centrality, CB(vi), of vertex vi is then:

CB(vi) =
∑

r,s∈{1...n}\{i}
r 6=s

(
σrs(vi)

σrs

)
.

Given that removing a single network vertex can drastically alter the length and existence of geodesic
paths, we find that betweenness is an unstable centrality measure.

1.2.4 Clustering Coefficient

The (local) clustering coefficient Ci of vertex vi, measures the proportion of connections within the
neighbourhood Γ(vi) [34].

Clustering Coefficient Metric: Considering a simple undirected networkG, containing
vi, the total number of possible connected pairs of vertices vr, vs ∈ Γ(vi) (r 6= s) is equal to
1
2ki(ki − 1).

The local clustering coefficient Ci, is calculated as:

Ci =

(
number of connected pairs of vertices vr, vs ∈ Γ(vi) (r 6= s)

1
2ki(ki − 1)

)
.

Since clustering coefficient Ci is undefined for ki ∈ {0, 1}, I will define Ci = 0 for any
vertex vi with degree ki = 0 or 1.

Removing a network vertex vα decreases the degree of each neighbour vβ ∈ Γ(vα) by one, and may
decrease the number of connected pairs in each neighbourhood Γ(vβ). Since Ci is a fractional function
of these decreasing values, and that typically more than one vertex vβ is affected by the removal, the
clustering coefficient values Cβ vary proportionally to each other and the network vertices experience a
small change in graphical importance. Thus clustering coefficient is a dynamically stable metric measure.

3
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1.3 Metric Distributions

Let G be a network of size n. Considering a network metric θ (where θi represents ki, xi, CB(vi) or Ci),
the probability distribution function is calculated for θi so that the structure and properties of G can
be compared to those of other networks.

The metric distribution of the metric θ is defined as:

ρθ(x) =

(
number of vertices, vi ∈ G, with centrality measure θi = x

n

)
,

and plotting ρθ(x) against x, gives the probability distribution curve of metric values θi attained in G.

A network metric θ is said to have a power law distribution if ρθ(x) can be written in the form:

ρθ(x) = αx−β

for positive constants α, β ∈ R>0 [34].

1.4 Hubs and Cliques

Finally, by considering a scatter plot of degree distribution versus clustering coefficient distribution,
structural network characteristics can be revealed [42].

Reference [34] describes a highly connected vertex vi ∈ G, where vi is a common vertex of disconnected
network components, as a hub. Thus, vertices with large degree ki, relative to clustering coefficient Ci,
are described as hubs, and a network containing hubs is characterised by a negative correlation between
degree and clustering coefficient distributions.

A clique is a maximal subset of vertices vi ∈ G, that produces a network consisting only of vertices
connected to every other vertex. Network G contains a clique of size n provided the complete graph Kn

is a subgraph of G. Vertices with clustering coefficient Ci = 1 are members of some network clique.

4



Chapter 2

Investigating Organised Terrorism

2.1 Epidemic Model Application

My initial investigation into terrorist dynamics examined the construction of terrorist cells using an
epidemic model. Postulating that terrorist ideologies and influences are spread between individuals in
a similar manner to how infections spread through biological populations, it is possible to investigate
terrorist dynamics using a modified susceptible-infectious-recovered (SIR) model [22].

Modelling terrorism using dynamical systems has previously been studied in [14, 18]. Reference [18]
splits an experiment population into three distinct categories; Terrorists x(τ), Susceptibles y(τ), and
Non-susceptibles z(τ), and examined a 3-dimensional system of non-linear ordinary differential equations
(ODEs) modelling the interactions and movement of individuals between categories:

Terrorist Population, x(τ):

Using x(τ) = Number of terrorist members in population (at time τ), ODE (2.1) is created
using the terms described in Table 2.1.

dx(τ)

dτ
= αxy − βx2 + (γ1 − γ2)x. (2.1)

Variable Description
αxy Direct recruitment of new terrorist members from the susceptible population.
−βx2 Counter-terrorists rapidly decrease terrorist population by capturing or killing

individuals.
γ1x Population increases as a result of appeals for support to terrorist organisations

in other geographical locations.
−γ2x Terrorists are removed due to death by natural causes, violent action or suicide

attacks.

Table 2.1: Motivation of terrorist population ODE, (2.1)

Susceptible Population y(τ):

Using y(τ) =Number of individuals susceptible to both terrorist propaganda and counter-
terrorist influences (at time τ), equation (2.2) is created using Table 2.2.

dy(τ)

dτ
= −αxy − εx2y + (δ1 + δ2)x+ λy. (2.2)

5
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Variable Description
−αxy Direct recruitment from susceptible population into terrorist population.
−εx2y Depletion of susceptible population by counter-terrorist influences convincing

individuals to join the non-susceptible population.
δ1x Notorious terrorist attacks increases susceptible population by convincing non-

susceptible individuals to adopt susceptible values.
δ2x Susceptible population increases when individuals, keen to join the terrorist

population, relocate from other geographical regions.
λy Population increases proportionally to its size as offspring are brought up to

share same personal beliefs as parents.

Table 2.2: Motivation of susceptible population ODE, (2.2)

Non-susceptible Population, z(τ):

Using z(τ) =Number of individuals not susceptible to terrorist propaganda (at time τ),
equation (2.3) is created using Table 2.3.

dz(τ)

dτ
= εx2y − δ1x+ µz. (2.3)

Variable Description
εx2y Counter-terrorist influences persuade susceptible individuals to join the non-

susceptible population.
−δ1x Non-susceptible individuals are swayed to join the susceptible population by

the notoriety of successful high profile terrorist attacks.
µz Population increases proportionally to its size as offspring are brought up to

share same personal beliefs as parents.

Table 2.3: Motivation of non-susceptible population ODE, (2.3)

Reference [18] assumed that z � x, y , which represents terrorists and susceptible individuals as a
minority within the experiment population.

Using the substitution t = γ2τ ,we non-dimensionalise the 3-dimensional system (2.1), (2.2), and
(2.3) to obtain:

dx(t)
dt = axy − bx2 + (c− 1)x (2.4a)

dy(t)
dt = −axy − ex2y + fx+ gy (2.4b)

dy(t)
dt = ex2y − hx+ lz (2.4c)

Noticing that equation (2.4c) uncouples from the remaining 2-dimensional system (2.4a) and (2.4b),
we can obtain z(t) by direct integration once expressions for x(t), and y(t) have been found. Furthermore,
as x(t) and y(t) represent population numbers, the 2-dimensional phase-plane analysis of (2.4a) and
(2.4b) is performed in the upper right quadrant only.

Using the derived ODEs, (2.4a) and (2.4b), Reference [18] investigated the stability of this system’s
steady states and, by adjusting the values of constants {a, b, c, e, f, g, h, l}, examined the effects of non-
violent and military/police interventions on the terrorist population [18].

While this differential equation model highlights many general properties which suggest practical
strategies for disrupting terrorist populations through different types of interventions, the usefulness
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of any results obtained heavily depend on the extent that an epidemic model simulates terrorist cell
construction. Investigating the spread of ideas and information between individuals requires both
an understanding of how a population is inter-connected, and of the mechanisms used to decide how
information is shared [32].

Using a SIR model requires adopting several assumptions which do not realistically translate to
individuals wishing to spread terrorist ideologies. Noticeably, the ODE terms x2, xy, x2y, etc. are
chosen using arbitrary modelling assumptions, and the system (2.4a), (2.4b) assumes each population
member is able to contact all other individuals. In reality, even taking into account that on average most
individuals are connected together by “6 Degrees of Separation” [24,45], this is an over simplification.

2.2 Modelling Terrorist Cells using Network Theory

Since the invasion of Iraq, 20th March 2003, British and United States forces in the theatre of war have
sustained heavy losses from improvised explosive devices (IEDs) detonated against coalition patrols and
supply convoys. Planning and preparation of a roadside IED attack is rarely completed by a single
individual, and is typically the result of the combined efforts of an organised group; each member
responsible for, and skilled in, completing one aspect of the ambush.

As of December 2010, nearly 90% of all U.S. military deaths in Iraq have been attributed to IED
attacks, prompting investigation into network theory as a means to accurately and efficiently identify
individuals responsible for planning such attacks [50].

Although there is no universally agreed criminal law definition of terrorism [47], organised terrorism
typically uses threats and violence as a means of coercion. Organisational structures have been found
in terrorist cells where members work together, each specialising and overseeing different aspects of
operations, to achieve a shared goal. It is this organisational structure that makes network theory a
useful tool with which to model and analyse complex terrorist cells.

Using network theory, I represent terrorists as vertices and any direct communication between cell
members by network edges. To date, network theory has been used to investigate a range of terrorist cell
features [1,2,4,19,36]. References [27,28] considered terrorist cells as simple networks, and investigated
the mean number of vertices that need to be removed before a terrorist cell is split into disbanded
partitions.

Reference [30] examines changes in terrorist cell leadership following removal of terrorist members.
Considering “cognitive demand” (i.e. the demand on an individual’s time; communicating or participat-
ing in specialised tasks), and degree of each cell member, Reference [30] models shifts in organisational
hierarchy after removing the leaders of the terrorist organisations al-Qaeda and Hamas. Reference [30]
speculates that removing al-Qaeda figurehead, Osama bin Laden, would produce relatively little change
in network structure, whilst noting the removal of Hamas leader, Sheik Ahmed Yassin, resulted in a
number of competing faction leaders emerging.

While motivations for, and methodologies of constructing terrorist cells vary greatly [40], the most
successful organisational structures will include contingency measures so that if a terrorist member is
compromised, the cell can remain operational and largely undetected by counter-terrorists. Reference [3]
examines the construction of terrorist cells that protect against catastrophic cascades (i.e. a systematic
counter-terrorist attack removing cell members), while still supporting efficient communications.

2.3 Terrorist Cell Data Sets

The violent, covert nature of terrorist organisations makes collecting social and operational information
incredibly difficult. Additionally, counter-information and misdirection tactics used to protect the
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identities of terrorists mean, that any collected data must be closely scrutinised before being acted
upon. Table 2.4 shows three possible sources of terrorist information.

Data Source Description
Media Coverage Newspaper articles, news websites and television broadcasts provide sources of

data. However, media coverage can be politically skewed, reporting the official
details complied and released by law enforcement agencies.

Terrorist Interviews Firsthand information obtained from captured terrorists and co-conspirators
will be typically strictly classified and censored by counter-terrorist
organisations. Interviews are only released, if at all, once active investigations
have been completed. Furthermore, any intelligence obtained may be
incomplete, inaccurate, intentionally misleading or irrelevant.

Intelligence Agencies Counter-terrorist agencies will likely possess the most comprehensive data on
active and disbanded terrorist cells. However, the tactical value of such data
means that information is closely guarded and not publically available.

Table 2.4: Sources of terrorist information

For my investigation I had access to three network data sets:

1. September 11th 2001 Attack on the World Trade Centre (denoted S11)

2. March 11th 2004 Madrid Train Bombing (M11)

3. Francs-Tireurs Partisans WWII Résistance Group (FTP).

In addition, I researched website and newspaper articles collecting information on members of the 7th

July 2005 London Underground Bombing terrorist cell (LUn) and their interactions. However, limited
available information and small LUn network size, meant I did not fully examine the structure.

Each data set was received as a raw database of names and connections from which I generated and
validated each network’s adjacency matrix, ready for analysis in MATLAB. Using network visualisation
MATLAB procedures, described in [5], I visualised the network for each data set.

Degree, betweenness centrality, eigenvector centrality and local clustering coefficient were calculated
for each network vertex, and the corresponding metric distributions plotted. Using these network
distributions, I identified individuals who seemed the most important and compared my findings to
the corresponding cell leaders.

2.3.1 September 11th 2001 World Trade Centre Attack

On the morning of September 11th 2001, the militant Islamist extremist organisation al-Qaeda, executed
co-ordinated terrorist attacks against the U.S. Described as “American’s Worst Terrorist Attack” [37],
nearly 3,000 victims were killed in attacks that destroyed the World Trade Centre in New York, and
severely damaged The Pentagon in Virginia.

Utilising an extensive support network, nineteen suicide terrorists hijacked four commercial airliners,
three of which were purposely crashed into the WTC North (flight number AA11) and South (UA175)
towers, and the Pentagon building (AA77). The fourth flight (UA93), on route to the U.S. Capitol
Building, crashed in Pennsylvania after a passenger-led revolt attempted to regain control.

I was given access to a comprehensive S11 data set based on Reference [52], with inputs from a wide
selection of sources. I generated a simple, undirected, unweighted S11 network:

Size: |S11| = 62, Number of edges: e(S11) = 152.

Figure 2.1 visualises the S11 network.
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Figure 2.1: S11 terrorist network visualisation

2.3.1.1 S11 Centrality Measures and Metrics

Figure 2.2 shows the metric distributions for each vertex vi ∈ S11.

Figure 2.3 shows a scatter plot of degree distribution versus clustering coefficient distribution.
Plotting a linear line of best fit:

y = −0.17x+ 0.52,

we find S11 has a slight negative correlation between degree and clustering coefficient distributions,
suggesting the existence of network hubs described in Section 1.4.

Figure 2.4 compares the S11 degree distribution with the two power-law curves:

y1 =
( 1

x

)
, (shown in black),

y2 = 0.42x−1.07, (shown in orange).

However, there are insufficient degree distribution data points to conclude concretely that S11 has a
degree power-law distribution.

2.3.1.2 Identifying Key Cell Members

Calculating the mean metric distribution ρ̄i, [Appendix B.1], Figure 2.5 shows that v32, v38 and v51 are
the most graphically important vertices.

The S11 data set records vertices v32, v38 and v51 as al-Qaeda terrorists:

v32: Mohamed Atta Considered one of the masterminds behind the September 11th

attacks, he led the team of four terrorists hijacking flight AA11, and was the suicide pilot
crashing into the WTC North tower [61].

v38: Marwan Al-Shehhi Hijacker-pilot of flight UA175. Travelled with Mohamed Atta
to Afghani terrorist training camps in 1999, where they discussed the recruitment for the
September 11th attacks with Osama bin Laden [60].

v51; Hani Hanjour Hijacker-pilot of flight AA77. Rented a one-bedroom apartment in
Paterson, New Jersey, where he was visited by Mohamed Atta in May 2001 [59].

Thus, I found that the mean metric distribution gives a good indication of the actual real world S11
cell leaders.
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Figure 2.2: Summary of the S11 metric distributions

Figure 2.3: S11 degree distribution versus clustering coefficient distribution
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Figure 2.4: S11 degree centrality distribution

Figure 2.5: S11 mean metric distribution
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2.3.2 March 11th 2004 Madrid Train Bombing

Between 07:37 am and 07:40 am March 11th 2004, ten IEDs detonated on four trains departing Alcalá
de Henares station, Madrid. This al-Qaeda inspired coordinated terrorist attack [38], killed 191 and
wounded at least 600 people travelling on the Spanish Cercańıas train network. [10].

Following a lengthy investigation, four men were convicted of orchestrating the attacks. However, the
suspected mastermind, Rabei Osman Sayed Ahmed, was acquitted of any involvement after translations
of recorded Arabic conversations were contested in court [17].

Reference [29] divides the terrorists responsible into four component networks, each representing a
different cell aspect:

1. Friendship: Long-held friendships in existence before joining the terrorist cell.

2. Kinship: Family relationships between cell members.

3. Reliability: Links to, and involvements with, other terrorist organisations enhanced the
reputation and reliability of cell members.

4. Shop: Cell members cohabitated in Jamal Zougam’s mobile phone shop.

Because each component assigns edge weightings using different methods, and since no component
contains all terrorist members, I disregarded the network weightings and combined the four component
networks to obtain a single, simple, undirected and unweighted M11 terrorist network:

Size: |M11| = 70, Number of edges: e(M11) = 240.

Figure 2.6 visualises the M11 network (6 isolated vertices not shown).

Figure 2.6: M11 terrorist network visualisation

2.3.2.1 M11 Centrality Measures and Metrics

Figure 2.7 summaries the metric distributions for each vertex vi ∈ M11.

Figure 2.8 shows that degree versus clustering distribution has a line of best fit:

y = 0.49x+ 0.42,

with positive gradient, suggesting the vertices vi ∈ M11 with large degree will tend to have a highly
inter-connected neighbourhood Γ(vi).
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Figure 2.9 shows the M11 degree distribution, however the limited number of data points means we
cannot conclude if the degree distribution is linear, or follows a power-law curve:

y1 = −0.003x+ 0.084, (linear distribution, shown in black),

y2 = 0.19x−0.69, (power-law distribution, shown in orange).

2.3.2.2 Identifying Key Cell Members

The mean metric distribution ρ̄i , Figure 2.10, shows v1, v3 and v7 to be the most graphically important
vertices.

Reference [29] records v1, v3 and v7 as:

v1: Jamal Zougam Owner of the mobile phone shop where some cell members lived.
Suspected of having links to September 11th 2001 and Casablanca 2003 terror attacks [49].

v3: Mohamed Chaoui Associated with Jamal Zougam through family connections [48].
Purchased the thirteen mobile phone SIM cards [9] used to detonate the planted IEDs.

v7: Imad Eddin Barakat (Abu Dahdah) Imprisoned for twenty-seven years for his
involvement in the September 11th terror attacks. Spanish intelligence officer Rafael Gomez
Menor speculated that Abu Dahdah oversaw the planning of the train bombings [54].

Thus, the mean metric distribution seems to have correctly identified the cell members most influential
in the planning and, with the exception of Abu Dahdah, in the execution of the attack.

2.3.3 Francs-Tireurs Partisans WWII Résistance Group

Francs-Tireurs, literally “Free Shooters”, was the name adopted by two World War II (WWII) résistance
groups in German occupied France. The Francs-Tireurs Partisans, “Partisan irregular riflemen”, was
established by members of the French Communist Party after Germany invaded the Soviet Union in
1941 [57].

The Francs-Tireurs Partisans (FTP) network’s operation was primarily sabotage and ambush, and
it was the first French resistance group to deliberately kill a German soldier [57]. It eventually merged
with the Forces Françaises de l’Intórieur, “ French Forces of the Interior”, led by Charles de Gaulle [58,62].

Using the received FTP data set, researched from reference [15], I generated a simple, undirected,
unweighted FTP network:

Size: |FTP| = 174, Number of edges: e(FTP) = 264.

Figure 2.11 shows a visualisation of the FTP network.

2.3.3.1 FTP Centrality Measures and Metrics

The FTP network metric distributions are summarised in Figure 2.12.

Examining the scatter plot of degree distribution versus clustering distribution, the FTP network
produces five distinct data points, summarised in Table 2.5. This small number of observed data points,
relative to network size, indicates that the FTP network vertices are arranged in a strongly repeating
structure, as seen in the network visualisation in Figure 2.11.
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Figure 2.7: Summary of the M11 metric distributions

Figure 2.8: M11 degree distribution versus clustering coefficient distribution
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Figure 2.9: M11 degree distribution

Figure 2.10: M11 mean metric distribution
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Figure 2.11: FTP terrorist network visualisation

Degree versus clustering coefficient
ki 0.3333 0.5 0.8333 1 1
Ci 1 0.3333 0.4 0.2667 0.4

Table 2.5: FTP degree distribution versus clustering coefficient distribution data points

2.3.3.2 Identifying Key Cell Members

The mean metric distribution ρ̄i, Figure 2.13, shows that the central FTP vertices v1, v2 and v3, are the
most graphically important vertices and can be speculated to represent the cell commanders.

Few historical sources detailing the organisational structure and leaders of the FTP cell exist,
and descriptions in [15] are ambiguous as to the numbers of individuals in different saboteur teams.
Hence, despite the obvious organisational characteristics of the FTP network, without further historical
information I am unable to confirm if the central vertices, v1, v2 and v3, are the FTP cell leaders.

2.3.4 7th July 2005 London Underground Bombing

On the morning of July 7th 2005, four suicide bombers detonated homemade IEDs on three London
Underground trains and a double-decker bus. These blasts killed 56 people, including the bombers, and
injured over 700 others [8].

The term “Home-Grown” terrorist cell [31], refers to a group of terrorist individuals who have not
received any combat training, have few contacts with organised terrorism, or have not received any illegal
financial funding. These typically small terrorist cells are formed with a single planned objective; the
intention of attacking targets and individuals, within the terrorists’ home nation. It is suggested that
the cell’s small size and “home-grown” nature was one reason why it remained undetected by counter-
terrorist organisations [31].

Using newspaper reports of the terror attack and following investigation [41,53], I found profiles for
the close-knit group of friends who executed the attack. Little information is available on any known
interactions between them and other terrorists, so I constructed a LUn network consisting of only the
four suicide bombers. Figure 2.14 shows a complete four-vertex network, K4, representing the LUn cell.
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Figure 2.12: Summary of the FTP metric distributions

Figure 2.13: FTP mean metric distribution values
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Figure 2.14: LUn terrorist network visualisation

2.3.4.1 LUn Centrality Measures and Metrics

Since the LUn network is a complete four-vertex graph, K4, each vertex has identical network properties
and metric values. Table 2.6 shows the identical metric distributions.

Degree, ρk Eigenvector, ρx Betweenness, ρCB
Clustering Coefficient, ρC

1 1 0 1

Table 2.6: Summary of identical LUn metric distributions

2.3.4.2 Identifying Key Cell Members

From Section 2.3.4.1, each LUn vertex has identical metric distributions, and are thus equally graphically
important. Since the cell members were close friends, identical metric distributions suggests that the
cell operated under a communal command structure.

Profiles for the four LUn suicide bombers are obtained from References [41,53]:

v1: Mohammad Sidique Khan Detonated his suicide bomb on the London Under-
ground, just after leaving Edware Road at 8:50am, killing 6 victims.

v2: Shehzad Tanweer At 8:50 a.m, on a Tube train travelling between Liverpool Street
and Aldgate, his suicide bomb killed 8 people (including himself). Of Pakistani descent,
Shehzad had been in contact with al-Qaeda trainers and propagandists after travelling to
Pakistan and Afghanistan in the months prior to the attack.

v3: Germaine Lindsay Known as Jamal following his conversion to Islam, he detonated
a rucksack bomb on the Tube travelling between Kings Cross-St. Pancras and Russell Square,
killing 26 victims.

v4: Hasib Hussain The youngest cell member, aged 18, Hasib completed a pilgrimage
to Mecca where it is believed he adopted his radical Islamic views. Detonated his bomb on
the No. 30 bus travelling through Tavistock Square, killing 14 victims (including himself).

2.4 Degree Centrality as a Strong Indicator of Importance

Examination of S11 and M11 terrorist cell data shows that the identified terrorist leaders are also the
individuals with largest network degree values. Additionally, the leaders of the FTP network attain the
second largest degree centralities, and the equally important LUn vertices share identical degree values.

The similarity between degree centrality and the importance of network vertices has been observed
in the spread of infections within social networks. Reference [39] investigated the usefulness of degree

18



Modelling Terrorist Networks: CD Dissertation (Whole Unit) Candidate Number: 564456

centrality as an indication of individuals at high-risk of infection, concluding that degree centrality is at
least as good an indication as other network centrality measures.

While I have adopted degree as an indication of valuable terrorist members and cell leaders, it should
be noted that the number of connections with other terrorist cell members is unlikely to be the only
factor considered when forming the command structure of real terrorist organisations.
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Chapter 3

Modelling Terrorist Cell Dynamics

3.1 Key Elements of Terrorist Cell Construction

To investigate possible terrorist cell construction mechanisms, I developed several sets of simplified
mathematical rules to simulate the recruitment of individuals into, and the removal of existing members
from, terrorist cells. The generative mechanisms examined incorporate three basic elements shown in
Table 3.1.

Element Comment
Recruitment The hierarchical structure of a terrorist cell determines which cell members are

involved, and to what extent, in the recruitment of new terrorist members.
Removal The effects of removing terrorist cell members are determined by the cell’s

topological and social structures.
Desertion Terrorists who become isolated from all other cell members can either choose

to desert terrorist activities or recruit new terrorists to form a splinter cell.

Table 3.1: Key elements of terrorist cell construction

3.2 Outline of Derived Terrorist Cell Models and Analysis

I developed and programmed generative mechanisms to model four possible terrorist cell constructions,
outlined in Table 3.2. Each model aimed to describe and investigate different characteristic of real
terrorist networks.

I considered two initial terrorist cells for each generative mechanism, and investigated if the starting
network affects the structural properties of the generated simulations. Since it is difficult to obtain
information on real terrorist cells, each initial network is chosen to mimic key characteristics of the
generative mechanism, and to consist of vertices with similar metric values.

Each generative mechanism was observed for a set number of discrete time steps, chosen to alleviate
data processing limitations and to construct simulations of mean sizes comparable to the motivating real
terrorist cells [Appendix C.1].

I generated 1,000 distinct simulations for each generative mechanism (500 for each initial terrorist
cell), and examined the dynamics of each model using the network metrics, and corresponding
distributions, discussed in Section 1.2.
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Model Comment Motivation
“Guerrilla Terrorists” Simple two-level “Captain” and “Foot

soldier” hierarchical model, typically
observed in guerrilla warfare. Each
“Foot soldier” participates in the re-
cruitment of new cell members, earning
a promotion to “Captain” once a
specified number of new recruitments
are made.

This generative mechanism is moti-
vated by Reference [29], which inves-
tigates the recruitment of terrorists
into the Movimiento 19 de Abril
guerrilla army, and by the FTP network
examined in Section 2.3.3.

“Friends and Family” Models recruitment by assuming new
recruits have existing connections to
terrorists and terrorism sympathisers.
Considers two different terrorist types,
“Active” and “Passive”, who vary in
risk of discovery, and in operational
involvement within the cell.

Discussed in Section 2.3.2, M11 con-
tained sub-networks of long-held friend-
ships and family relationships, which
[29] investigated as separate cell com-
ponents. Additionally, the graphically
important cell members Jamal Zougam
and Mohamed Chaoui were related
[Section 2.3.2.2].

“Multiple References” Recruitment of a new cell members
is modelled as a communal decision;
where two or more existing terrorists
select and invite potential new members
to join the cell.

Since its formation in late 1989, the
Islamic terrorist organisation al-Qaeda
has carried out numerous attacks. This
established organisation uses many re-
cruitment methods [43] and is assumed
to have a rigorous recruitment process
that utilises the opinions of more than
one recruiter, to prevent infiltration by
counter-terrorists.

“Group of Friends” Small, closely connected and highly
trusted group of friends are modelled
with each member playing an equal role
in the command of the cell.

The communal command structure
modelled has been observed in “home-
grown” terrorist cells [31], such as the
7th July 2005 London Underground
bombings examined in Section 2.3.4.

Table 3.2: Outline of derived terrorist cell models

3.3 “Guerrilla Terrorists” Construction Model

Guerrilla organisations aim to achieve political change and are often formed in response to; government
or social changes, instability caused by war or environmental disaster, uncertainty due to inconclusive or
corrupt elections, or with the aim of overthrowing occupying forces. Guerrilla groups traditionally attack
defined military targets with ambush, sabotage and raiding tactics [33] in pursuit of their objectives.

The “Guerrilla Terrorists” generative mechanism mimics the formation and operation of a guerrilla
military wing.

3.3.1 Terrorist Recruitment

The “Guerrilla Terrorists” generative mechanism investigates the construction of terrorist cells within a
population controlled by a well-developed government, which opposes terrorist activities and wishes to
disband terrorist networks by capturing or killing cell members. In developed countries, the population
majority willingly accepts and upholds this stance. Conversely, populations in some developing countries
will likely be sympathetic to the guerrilla organisation’s objectives, however threat of harsh punishments
often deters potential recruits.

Reference [35] investigated the different influences for joining the Movimiento 19 de Abril (19th
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April Movement, M-19) guerrilla army. Interviewing captured cell members, Reference [35] found
family influences were one motivation, however, a majority admitted fabricating “University study trips”
and “work placements” to keep family and friends unaware of their involvment. While [35] does not
investigate mechanisms for constructing terrorist cells, I have used this research to develop my “Guerrilla
Terrorists” model.

A guerrilla military wing typically adopts an organisational structure similar to traditional armies,
with a strict command structure, of higher ranked individuals passing tactical orders down a command
chain to foot soldiers.

To encourage recruitment, promotion is offered to individuals who successfully recruit a specified
number of new guerrilla soldiers.

3.3.1.1 Recruitment Mechanism

Using a two-level “Captain” and “Foot soldier” command structure, the “Guerrilla Terrorist” mechanism
assumes “Captain” cell members are no longer involved in recruitment, since there is no further promotion
incentive. The model promotes “Foot soldier” terrorists once they recruit ten or more new members.

Each “Foot soldier” participates in the recruitment process by randomly recruiting YGT ∈ {0, 1, . . . , 5}
new terrorist members. Modelling that a recruiter is most likely to recruit zero new terrorists,
and has smaller (decreasing) probabilities of recruiting YGT ∈ {1, . . . , 5}, the generative mechanism
distributes YGT using a discrete approximation to the exponential distribution [Appendix C.2]. My
preliminary analysis suggested that Ŷ ∼ Exp(λ = 2) produces a suitable approximate discrete probability
distribution, Table 3.3, shows the PDF values for YGT.

y 0 1 2 3 4 5 ≥6
P(YGT = y) 0.6321 0.3181 0.0430 0.0058 0.0007 0.0001 0

Table 3.3: “Guerrilla Terrorists” recruitment PDF values

The generative mechanism assumes recruited individuals will not reveal their terrorist involvement to
family and friends, for fear of betrayal, or exposing them to the risk of detention by known association.
Thus, cell members are recruited singly, with no connections except with their original recruiter.

Appendix C.6 shows the pseudocode for this recruitment mechanism.

3.3.2 Terrorist Removal

Guerrilla organisations are typically far smaller than the target military organisations, so it is assumed
that all terrorist members participate in the cell’s tactical operations. Hence “Foot soldiers” and
“Captains” are exposed to the same combat risks and are equally likely to be removed from the cell.

Tactical information available to “Foot Soldiers” is limited to orders obtained from “Captains”.
Terrorists promoted to “Captain” will be highly loyal to the cell’s objectives and existence.

3.3.2.1 Removal Mechanism

My preliminary analysis suggests the following time independent probability to model the removal of
existing terrorist members:

P(Vertex vi is removed at time step t) = 0.05.

“Captain” loyalty, and the limited information possessed by “Foot Soldiers”, allows me to model that
any detained terrorist will either not possess actionable information, or will be resistive to interrogation.
Thus removed terrorist members will not jeopardise the identities or locations of the remaining network.
Appendix C.7 shows the removal pseudocode.
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3.3.3 Terrorist Desertion

A terrorist, isolated due to the removal of other cell members, can either desert terrorist activities or
form a new splinter cell.

While terrorists sometimes surrender to counter-terrorist organisations while still part of active cell
[13,16], the threat of retaliation from the remaining members will deter voluntary removal. Only isolated
cell members have the option to safely and secretly integrate back into the general population.

3.3.3.1 Desertion Mechanism

At each time step, isolated terrorists (vertices with degree ki = 0) are eligible to desert the cell.
Considering the population environment and attitudes in Reference [35], the generative mechanism
adopts the probability:

P(Vertex vi deserts the terrorist cause at time step t | ki = 0) = 0.60.

Appendix C.8 shows the desertion pseudocode.

3.3.4 Initial Terrorist Cells

I considered two initial terrorist cells to investigate if the starting network affects the structural properties
of the generated simulations. Table 3.4 shows the initial cells, GT1 and GT2, used.

Initial Cell Comment
GT1 The initial network, Figure 3.1(a), was chosen so a single “Foot soldier”, central

vertex v1, has almost fulfilled the criterion for promotion and requires at least
two new recruits for exemption from further terrorist recruitment. Table 3.1(c)
shows the GT1 metric values.

GT2 The initial network, Figure 3.1(b), is more evenly spread with no obvious
potential “Captain”. Table 3.1(d) shows the GT2 metric values.

Table 3.4: Initial terrorist cells used in the “Guerrilla Terrorist” model

3.3.5 “Guerrilla Terrorists” Simulation Properties

I generated 1,000 simulations, considering the “Guerrilla Terrorists” mechanism for ten discrete time
steps. The investigation generated eleven “dead” simulations, of zero size and trivially zero metric
distributions, which I disregarded and replaced.

The resultant simulation properties are summarised in Table 3.5.

3.3.6 Comparison to Real Terrorist Data

From Section 2.3.3, the Francs-Tireurs Partisans (FTP) were a French résistance group who fought the
occupying German army during WWII, and therefore their objectives would have mimicked those of
a guerrilla army, making the FTP network a sensible data set with which to evaluate the “Guerrilla
Terrorists” model.

Considering the strong similarities between the metric distributions of simulations generated by GT1

and GT2 , it is safe to conclude that the differences between the chosen initial cells do not significantly
affect the structure of the generated simulations. However, as I have only investigated two initial
cells, and not investigated the asymptotic simulation properties, as simulation size n → +∞, I cannot
draw any conclusions on the relationship between generated “Guerrilla Terrorists” simulations and the
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Metric Distribution Comment
Simulation Size Figures 3.2(a) and 3.2(b) show the observed simulation sizes, and the number

of times each network size was generated. Table 3.2(c) summaries the mean
size and standard deviation for each initial cell.

Degree Centrality Figures 3.3(a) and 3.3(b) show the degree distributions for GT1 and GT2. The
mean degree distribution curves are calculated and plotted, including standard
deviation error bars.
They show that on average the “Guerrilla Terrorists” model produces a
simulation with a degree distribution split into two tiers, and is more likely
to have vertices of degree ki ∈ {8, 9, 10, 11}, than smaller degree ki ∈
{0, 1, 2, 3, 4, 5}.

Eigenvector Centrality Figures 3.4(a) and 3.4(b), show that the model produces simulations containing
vertices with evenly spread eigenvalue distributions, slightly favouring zero
eigenvector values xi = 0.

Betweenness Centrality Calculating the betweenness distribution values for the 1,000 generated
simulations, I obtained betweenness distribution plots consisting of data points
densely clustered near the origin. Considering a restricted range of vertex
betweenness centralities, Figures 3.5(a) and 3.5(b) show the mean betweenness
distribution curve represents a large standard deviation of data points, before
rapidly decreasing to an approximately constant value for the remaining range
of betweenness values.

Clustering Coefficient Examining the generative mechanism, we find that all simulations generated
are tree networks which do not contain closed loops between network vertices
vi. Thus there are no connected pairs of neighbourhood vertices vr, vs ∈ Γ(vi)
and the clustering coefficients Ci are trivially zero.

Table 3.5: “Guerrilla Terrorists” simulation properties

mechanism’s initial cell.

While the size of the real world FTP network (|FTP| = 174) is comparable to the mean
“Guerrilla Terrorists” simulation size, and lies within the standard deviation error bars, the FTP metric
distributions vary greatly to those seen in Section 3.3.5.

The significant differences between FTP and “Guerrilla Terrorists” simulation properties stems from
the relatively small range of centrality values observed within the FTP network. For example, the
FTP betweenness centrality distribution (omitted from Section 3.3.5) shows that every vertex vi ∈ FTP
has a betweenness distribution value ρCB

(vi) ∈ {0, 0.0517, 0.1279, 0.4220, 1}, whereas the generated
simulations attain 2,840 different betweenness values.

Given that the “Guerrilla Terrorists” generative mechanism produces tree networks (Table 3.5), the
existence of connected groups and loops within the FTP network (Figure 2.11) further suggests that the
construction model does not share many structural features with the FTP network.

3.4 “Friends and Family” Construction Model

Threat of capture and punishment deter terrorist involvement in many countries. Individuals joining a
terrorist organisation risk losing their liberty, and often their lives, so they must possess a strong belief
in the group’s objectives. Motivations for joining terrorist cells include religious (the Islamic group
al-Qaeda), political (the IRA sort reunification of North and South Ireland) or specific personal beliefs
(the Oxford Arson Squad is a violent Animal Liberation Front group).

The “Guerrilla Terrorist” model, Section 3.3, assumes threat of detention and persecution deters
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members from disclosing their involvement to others. However, strongly held beliefs are rarely kept
secret, and are often shared by family and close friends.

3.4.1 Terrorist Recruitment

The “Friends and Family” generative mechanism models a newly recruited terrorist member as likely
having existing connections with individuals (friends and family) either sympathetic to, or actively keen
to join the cell. Whilst families may share the same attitudes towards terrorism the roles they perform
within the cell will likely differ, and so “Friends and Family” terrorists are modelled as “Active” or
“Passive” members.

Level of involvement in cell objectives, will depend on terrorist type and thus “Active” and “Passive”
terrorists will have different credibility when recruiting new cell members. The generative mechanism
assumes only “Active” cell members participate in recruitment.

3.4.1.1 Recruitment Mechanism

Modelling that at each time step, the number of new terrorists each “Active” cell member recruits,
YFF, is selected using the PDF values in Table 3.6. “Active” terrorists are not likely to recruit new
cell members because the population majority is against terrorism, and when they do, the PDF values
chosen during preliminary analysis favour the recruitment of small family groups (e.g. two “Active”
parents with one “Passive” child):

y 0 1 2 3 4 5 6 7 8 9 ≥10
P(YFF = y) 0.60 0.04 0.05 0.10 0.06 0.05 0.04 0.03 0.02 0.01 0

Table 3.6: “Friends and Family” recruitment PDF values

Each recruitment group consists of one “Active” terrorist (connected directly to the recruiter) and
(YFF − 1) terrorist members of unassigned type (connected to the “Active” terrorist and each other).
The unassigned cell members are then defined as “Active” or “Passive” using equal probabilities:

P(“Friends and Family” vertex vi is an “Active” member) = 0.50,

P(“Friends and Family” vertex vi is a “Passive” member) = 0.50.

Thus, the “Friends and Family” generative mechanism constructs terrorist cells by adding complete
graphs, KYFF

, to the existing network. Appendix C.9 shows the recruitment pseudocode.

3.4.2 Terrorist Removal

Counter-terrorism organisations have a variety of resources, information and techniques that can
identify terrorists within a population. The “Friends and Family” generative model adopts a simplified
mechanism to represent how terrorists are revealed and removed.

At each time step, counter-terrorists perform a terrorist search inspecting all cell members. Each
member is either discovered and detained, or evades detection and remains in the network. Because
“Passive” terrorists play significantly smaller roles, primarily supporting their “Active” neighbours, the
model assumes they are more difficult to detect than “Active” members.

If a cell member is detected, counter-terrorist information on family relationships, and known
associates, immediately puts their friends and family at risk of discovery. The generative mechanism
assumes “Active” terrorists are the best trained and able to adopt steps to remain hidden whilst “Passive”
terrorists are easily detained if a neighbouring vertex is removed.
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3.4.2.1 Removal Mechanism

At each time step, the “Friends and Family” model decides if a selected cell member is removed using
probabilities that reflect the relative difficulties of detecting “Active” and “Passive” terrorists. I have
set the probabilities of discovering each terrorist type as:

P(“Passive” vertex vi is removed at time step t) = 0.025

P(“Active” vertex vi is removed at time step t) = 0.05

Because “Passive” members do not possess the same training as “Active” terrorists, when a network
terrorist is successfully removed, any neighbouring “Passive” members are also removed, however
neighbouring “Active” terrorists have skills to evade capture and remain in the cell.

Appendix C.10 shows the removal mechanism pseudocode.

3.4.3 Desertion Mechanism

Using the same desertion mechanism as the “Guerrilla Terrorists” model, if a terrorist becomes
disconnected from all other cell members, this isolated vertex can either desert organised terrorism
or form a splinter cell.

Appendix C.11 shows the desertion pseudocode.

3.4.4 Initial Terrorist Cells

My two initial cells, FF1 and FF2, for the “Friends and Family” generated simulations are shown in
Table 3.7.

Initial Cell Comment
FF1 Initial network, Figure 3.6(a), is generated by combining four small terrorist

groups. A central group of three “Active” members, considered the cell’s
architects, and three family groups (e.g. two “Active” parents and two
“Passive” children) are connected. Table 3.6(c) summaries the FF1 metric
values.

FF2 Initial network, Figure 3.6(b), is constructed using a complete graph, K6, of
“Active” terrorists with three smaller, passive terrorist groups branching from
it. Table 3.6(d) summaries the FF2 metrics values.

Table 3.7: Initial terrorist cells used in the “Friends and Family” model

3.4.5 “Friends and Family” Simulation Properties

As for “Guerrilla Terrorists”, I have run 500 distinct simulations for each initial cell. Because of
computing limitations [Appendix C.1] and the rate at which simulation size increases, I programmed the
generative mechanism to run for 5 discrete time steps.

The resultant simulation properties are summarised in Table 3.8.

3.4.6 Comparison to Real Terrorist Data

Comparing the metric distribution curves for FF1 and FF2, the strong similarities observed show that
the chosen initial networks both generate simulations with similar structures.

I compared my generated simulations to the September 11th2001 terrorist cell (S11 discussed in
Section 2.3.1), and the March 11th 2004 Madrid bombing cell (M11, Section 2.3.2). The eigenvector and
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Metric Distribution Comment
Simulation Size Figures 3.7(a) and 3.7(b) show the frequency at which each generated

simulation size occurs, producing curves that mimic the shape of a positively
skewed normal distribution. Table 3.7(c) summaries the simulation size
statistics.

Degree Centrality The degree centrality distributions, Figures 3.8(a) and 3.8(b), show an
approximately linearly dependent mean degree distribution for both initial cells.

Eigenvector Centrality As for “Guerrilla Terrorists” model the eigenvector distribution plots, Figures
3.9(a) and 3.9(b), show an evenly distributed set of eigenvector distribution
values.

Betweenness Centrality The betweenness distributions are generated for FF1 and FF2. Examining a
restricted range of betweenness values close to the origin, Figures 3.10(a) and
3.10(b) show a similarly decreasing mean betweenness distribution curve, also
seen in the “Guerrilla Terrorists” betweenness distributions (Figures 3.5(a) and
3.5(b)).

Clustering Coefficient Figures 3.11(a) and 3.11(b), show the clustering coefficient distributions for
FF1 and FF2. In contrast to the wide range of distinct network eigenvector
and betweenness centrality values, the generated simulations contain far fewer
different clustering coefficient values. Figures 3.11(a) and 3.11(b) show the
most likely clustering coefficient is Ci = 0 followed by Ci = 1, Ci = 0.3333 and
Ci = 0.5.

Table 3.8: “Friends and Family” simulation properties

betweenness centrality distributions of the “Friends and Family” mechanism consist of tightly clustered
data points near the origin, as do the distributions for S11 and M11 (omitted from Sections 2.3.1 and
2.3.2). Furthermore, the S11 and M11 clustering coefficient distributions have peaks that match the
simulation peaks observed at Ci = 0, Ci = 1 and Ci = 0.3333, in Figures 3.11(a) and 3.11(b).

The “Friends and Family” generative mechanism produces simulations, with mean size 68.80, which
is of comparable size to the S11 (size 62) and M11 (size 70) networks.

However, the model’s distinctive linear degree distributions, Figures 3.8(a) and 3.8(b), differ to the
S11 and M11 degree distributions (Figures 2.4 and 2.9). Given degree value is a good indicator of
network importance, Section 2.4, this discrepancy leads me to doubt if S11 and M11 terrorist cells can
be generated from the “Friends and Family” construction model.

3.5 “Multiple References” Construction Model

Membership of certain exclusive social clubs and societies is subject to a vote of approval by existing
members [55]. During a probationary period, potential new members are often required to meet existing
members, before the entire club, or elected committee, decides if full society membership should be
granted. This system of prior majority approval results in the preservation of the club’s ethos as approved
candidates will share similar outlooks and values with existing members.

3.5.1 Terrorist Recruitment

Unlike the “Guerrilla Terrorists” (Section 3.3) and “Friends and Family” (Section 3.4) generative models,
which allow existing cell members to recruit new terrorists without the approval of other cell members,
the “Multiple References” model mimics a social club membership system.

This mechanism may increase the time needed to completely integrate new terrorists into a cell, but
provides increased protection against counter-terrorist infiltration. By pooling different opinions, existing
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“Multiple References” cell members can judge the operational value, commitment and trustworthiness
of new recruits.

Because of the secretive nature of terrorism, it can be assumed not all cell members participate in
each recruitment, and those that do, experience the recruitment challenges modelled in the “Guerrilla
Terrorists” mechanism, see Section 3.3.1.1.

3.5.1.1 Recruitment Mechanism

As with the “Guerrilla Terrorists” mechanism, a cell is most likely to recruit zero new terrorists, and
has smaller (decreasing) probabilities of recruiting {1, 2 . . . , 5} individuals.

At each time step, the “Multiple References” construction model randomly selects the number YMR

of new recruits, using the same discrete exponential distribution approximation used for the “Guerrilla
Terrorists” model. Table 3.9 repeats the recruitment PDF values motivated in Section 3.3.1.1.

y 0 1 2 3 4 5 ≥6
P(YMR = y) 0.6321 0.3181 0.0430 0.0058 0.0007 0.0001 0

Table 3.9: “Multiple References” recruitment PDF values

Each new recruit is assigned a number of existing cell references required to join the network, ZMR.
Modelling ZMR ∈ {2, 3, 4, 5} to favour admitting new recruits with two or three references, preliminary
analysis suggests ZMR is randomly distributed using the PDF values shown in Table 3.10.

z 0 1 2 3 4 5 ≥ 6
P(ZMR = z) 0 0 0.50 0.25 0.15 0.10 0

Table 3.10: Number of existing cell references required by new recruits PDF

Finally, the generative mechanism connects the new recruit to ZMR randomly selected vertices, using
the degree preferential probability distribution, [Appendix C.4]. The model also ensures that distinct
members are chosen, so that a new cell recruit is not accidentally recruited by a single terrorist member
multiple times. Appendix C.12 shows the “Multiple References” recruitment pseudocode.

3.5.2 Terrorist Removal

As for the “Guerrilla Terrorists” and “Friends and Family” construction models, the “Multiple
References” generative mechanism is modelled in a population that condemns terrorist ideologies and
activities.

The self-perpetuating nature of the recruitment method ensures new recruits are firm believers in
the terrorist cause, and if captured, will not willingly reveal actionable information to counter-terrorists.

3.5.2.1 Removal Mechanism

Using the same removal mechanism adopted by the “Guerrilla Terrorists” generative mechanism, Section
3.3.2.1, each terrorist member is modelled as having the same chance of removal by counter-terrorist
organisations:

P(Vertex vi is removed at time step t) = 0.05.

Appendix C.13 shows the removal pseudocode.
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3.5.3 Desertion Mechanism

The “Multiple References” construction model simulates the actions of isolated terrorist members using
the same terrorist desertion mechanism discussed in the “Guerrilla Terrorists” generative mechanism,
Section 3.3.3.

Appendix C.14 shows the “Multiple References” desertion pseudocode.

3.5.4 Initial Terrorist Cells

My two initial cells, MR1 and MR2, are shown in Table 3.11.

Initial Cell Comment
MR1 Initial cell, Figure 3.12(a), consists of vertices of degree ki = 2 or 3 only,

reflecting that the generative mechanism favours new recruits requiring two or
three recruitment references. Table 3.12(c) shows the MR1 metric values.

MR2 In contrast to MR1, the initial cell MR2 was chosen to contain an obvious
leader, vertex v10, see Figure 3.12(b). Table 3.12(d) shows the MR2 metric
values.

Table 3.11: Initial terrorist cells used in the “Multiple References” model

3.5.5 “Multiple References” Simulation Properties

The “Multiple References” generative mechanism generates 1,000 simulation networks, considering 100
discrete times steps for MR1 and MR2.

The resultant simulation properties are summarised in Table 3.12.

3.5.6 Comparison to Real Terrorist Data

As for “Guerrilla Terrorists” and “Friends and Family”, comparison of metric distributions, for each
initial cell MR1 and MR2, show the generative method does not appear to be affected by the choice of
initial network.

Similarly to the “Friends and Family” model, the generated “Multiple References” betweenness
and eignvector centrality distributions show clustered data points similar to those observed in the
S11 and M11 distributions. Additionally Figures 3.15(a) and 3.15(b) show clustering coefficient peaks
at Ci = 0, Ci = 0.333 and Ci = 1 matching those seen in the S11 and M11 clustering coefficient
distributions.

Figures 3.14(a) and 3.14(b) show that the generative mechanism produces simulations with degree
distributions vastly different to the M11 and S11 distributions, suggesting that these real terrorist
networks were formed using different construction mechanisms.

Reference [43] suggests al-Qaeda uses many different recruitment mechanisms. The range of
recruitment techniques discussed indicates that the differences between “Multiple References” and S11
degree distributions, may be because more than one construction process was employed during the
formation of the S11 network.

3.6 “Group of Friends” Construction Model

Finally, I investigated the formation of “home-grown” [31] terrorist cells, similar to that responsible for
the July 7th 2005 London Underground bombings. The term “home-grown” can describe individuals
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Metric Distribution Comment
Simulation Size Figures 3.13(a) and 3.13(b) show the frequency at which each generated

simulation size occurs. Each curve resembles a slightly positively skewed normal
curve. Table 3.13(c) summaries the simulation size statistics.

Degree Centrality Similarly to “Friends and Family”, the degree centrality distributions, shown in
Figures 3.14(a) and 3.14(b), initially show an approximately linearly dependent
mean degree distribution for both initial starting cells. However, as degree
increases, the degree distribution moves above and below the linear trajectory.

Eigenvector and Be-
tweenness Centrality

The eigenvector distribution plots show an evenly spread set of data points with
an approximately constant mean eigenvector curve. Additionally, the “Multiple
References” model betweenness distribution plot, depicts a densely clustered
collection of data points near to the origin.
Since the betweenness and eigenvector distributions are very similar to those
generated by the “Guerrilla Terrorists” and “Friends and Family” mechanisms,
they provide no insight into any unique “Multiple References” structural
features and I have omitted these plots.

Clustering Coefficient Figures 3.15(a) and 3.15(b), show the clustering coefficient distributions for
initial cells MR1 and MR2. As in “Friends and Family” generative mechanisms,
the clustering coefficient distributions show network vertices attain a small
range of clustering coefficients, opposed to the wide range of observed network
eigenvector and betweenness centrality values.
The “Friends and Family” clustering coefficient distributions, Figures 3.11(a)
and 3.11(b), show that Ci = 0, Ci = 1 or Ci = 0.333 are the most likely
clustering coefficient values. However Figures 3.15(a) and 3.15(b)do not show
a peak in distribution values for Ci = 0.5.

Table 3.12: “Multiple References” simulation properties

participating in terror activities against their home nation, using skills and knowledge primarily self-
researched and without tactical help or funding from established terrorist organisations. Because such
individuals have no strong links to known terrorist cells, they are difficult to detect.

Home-grown terrorists are likely to operate as a network of highly trusted individuals, formed from
long-term friendships or from contacts made while attending training camps [31]. This construction
produces a terrorist cell that adopts an informal communal command structure, with each “Group of
Friends” cell member having equal say in plans and decisions.

3.6.1 Terrorist Recruitment

One disadvantage of a small terrorist cell is that individuals need to possess a wide range of skills to
complete the cell’s objectives. While terrorist instructional manuals exist [51,63], these publications are
closely monitored by security forces. Therefore, if a cell has a task for which current members are not
qualified, new cell members with the required specialised skills must be recruited.

As when the cell initially formed, the new recruit must be trusted and known by existing members
before admittance. If an existing cell member is unable to approve a new member before recruitment,
the level of trust, and shared command structure within the group, means that any missing “friendships”
will quickly form following acceptance.

3.6.1.1 Recruitment Mechanism

At each time step, the construction model randomly selects the number of new recruits, YGF. My
preliminary analysis suggests the PDF values, shown in Table 3.13, can be used to mimic the rarity of

30



Modelling Terrorist Networks: CD Dissertation (Whole Unit) Candidate Number: 564456

recruiting new cell members:

y 0 1 2 3 4 5 ≥6
P(YGF = y) 0.85 0.05 0.04 0.03 0.02 0.01 0

Table 3.13: “Group of Friends” recruitment PDF values

Consider a network of size n. Each existing cell member vi, for i = 1 . . . n, is connected to the new
recruits v̂j , for j = 1 . . . YGF, using the probability:

P(New vertex v̂j is connected to existing vertex vi) = 0.90.

The large probability for adding “missing” edges was chosen to reflect the speed at which friendships
are made within the cell.

Furthermore, because the cell members work closely together, if the cell has any missing edge
connections at time t, the construction model adds them with probability:

P(Add missing edge eij at time step t) = 0.90.

Appendix C.15 shows the recruitment pseudocode.

3.6.2 Terrorist Removal

As in the previous three generative mechanisms, the surrounding population is modelled to actively
oppose terrorist activities. Furthermore, the trust between cell members means if a terrorist is captured
by counter-terrorist forces, the detained individual will not endanger the cell’s operations.

3.6.2.1 Removal Mechanism

Using the same removal mechanism as “Guerrilla Terrorists” and “Multiple References”, the “Group of
Friends” model considers the removal of members detected by concentrated efforts of counter-terrorist
organisations. My preliminary analysis suggests the time independent probability

P(Vertex vi is removed at time step t) = 0.05,

sensibly models the difficulties in detecting cell members.

Appendix C.16 shows the removal pseudocode.

3.6.3 Desertion Mechanism

The “Group of Friends” generative mechanism models the desertion of isolated terrorist members as
discussed in the “Guerrilla Terrorists” generative mechanism, Section 3.3.3.

Appendix C.17 shows the desertion pseudocode.

3.6.4 Initial Terrorist Cells

My two initial cells, GF1 and GF2, are shown in Table 3.14.

3.6.5 “Group of Friends” Simulation Properties

Using GF1 and GF2, I generated 1,000 simulations by running the generative mechanism for 100 discrete
time steps. Examining the generated networks G, I found that they are either complete networks,
G = K|G|, or highly connected, G ≈ K|G|.
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Initial Cell Comment
GF1 The five-vertex complete network, K5 was chosen as the initial cell GF1, see

Figure 3.16(a), because of its similarities to K4, the network structure of the
7th July 2005 London Underground bombings and K6, the network structure
of the failed 21st July 2005 London terror cell [11]. Table 3.16(c) shows the
GF1 metric measures which all vertices share.

GF2 Initial cell, Figure 3.16(b), was chosen so each vertex initially has one “missing”
edge. Table 3.16(d) shows the GF2 metric measures which all vertices share.

Table 3.14: Initial terrorist cells used in the “Group of Friends” model

Since complete networks have identical metric distributions, and given that a very large proportion
of the generated simulations are complete, I have omitted my metric distributions analysis.

The resultant simulation size properties are summarised in Table 3.15.

Metric Distribution Comment
Simulation Size During my investigation, the generative mechanism produced 39 “dead”

simulations, which were disregarded and replaced. Figures 3.17(a) and 3.17(b)
show the frequencies of each generated simulation size.
They show that simulation sizes have a roughly positively-skewed normal
distribution, or follow an approximate Wiebull distribution curve [Appendix
C.5]. Finally, Table 3.17(c) summaries the size statistics for each initial cell.

Table 3.15: “Group of Friends” simulation size properties

3.6.6 Comparison to Real Data

Having developed the “Group of Friends” generative mechanism to construct “home-grown” terrorist

cells, the 7th July 2005 London Underground bombing and failed 21st July 2005 London attack networks
are used to evaluate the model.

Considering the similarities between the metric distributions generated using GF1 and GF2, I find
that these choices of initial cell have little effect on the generated simulations.

Discussed in Section 3.6.5, the generative mechanism favours generating completely connected
networks. The resulting approximately identical network metrics suggest that the simulations produced
consist of equally graphically important vertices, as observed in the LUn terrorist cell 2.3.4.

The calculated mean size, 7.22, of generated simulations is approximately twice the size of the
LUn cell. However, despite generating terrorist cells of larger size, the “Group of Friends” generative
mechanism accurately and consistently produces terrorist cells which show the characteristics of “home-
grown, clean skin” terrorist organisations.
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(a) Initial cell GT1 (b) Initial cell GT2

Vertex Number, i Degree, ki Eigenvector, xi Betweenness, CB(vi) Clustering, Ci
1 8 1 1 0

2, 3, 4, 5, 6, 7, 8, 9 1 0.3536 0 0
(c) GT1 Cell metric values

Vertex Number, i Degree, ki Eigenvector, xi Betweenness, CB(vi) Clustering, Ci
1 3 1 1 0

2, 3, 4 3 0.7453 0.5556 0
5, 6, 7, 8, 9, 10 1 0.3334 0 0

(d) GT2 Cell metric values

Figure 3.1: Network visualisation and metric values for initial cells GT1 and GT2
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(a) GT1 Simulation sizes

(b) GT2 Simulation sizes

Initial Cell Mode Size Mean Size Standard Deviation Minimum Maximum
GT1 159 146.86 57.99 7 381
GT2 142 161.22 56.56 18 366

(c) “Guerrilla Terrorists” Simulation size statistics

Figure 3.2: “Guerrilla Terrorists” model size properties

34



Modelling Terrorist Networks: CD Dissertation (Whole Unit) Candidate Number: 564456

(a) GT1 Degree centrality distribution

(b) GT2 Degree centrality distribution

Figure 3.3: “Guerrilla Terrorists” degree centrality distributions

35



Modelling Terrorist Networks: CD Dissertation (Whole Unit) Candidate Number: 564456

(a) GT1 Eigenvector centrality distribution

(b) GT2 Eigenvector centrality distribution

Figure 3.4: “Guerrilla Terrorists” eigenvector centrality distributions
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(a) GT1 Betweenness centrality distribution (restricted range)

(b) GT2 Betweenness centrality distribution (restricted range)

Figure 3.5: “Guerrilla Terrorists” betweenness centrality distributions

37



Modelling Terrorist Networks: CD Dissertation (Whole Unit) Candidate Number: 564456

(a) Initial cell FF1 (b) Initial cell FF2

Vertex Number, i Degree, ki Eigenvector, xi Betweenness, CB(vi) Clustering, Ci
1, 2, 3 3 0.8092 1 0.3333
4, 5, 6 4 1 0.825 0.5

(7, 8, 9, 10, 11, 12
3 0.8092 0 1

and 13, 14, 15)
(c) FF1 Cell metric values

Vertex Number, i Degree, ki Eigenvector, xi Betweenness, CB(vi) Clustering, Ci
1, 3, 5 6 1 1 0.6667
2, 4, 6 5 0.9646 0 1

7, 10, 13 3 0.2163 0.7273 0.3333
8, 9, 11, 12, 14, 15 2 0.0527 0 1

(d) FF2 Cell metric values

Figure 3.6: Network visualisation and metric values for initial networks FF1 and FF2
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(a) FF1 Simulation sizes

(b) FF2 Simulation sizes

Initial Cell Mode Size Mean Size Standard Deviation Minimum Maximum
FF1 60 66.79 28.20 8 168
FF2 79 70.81 29.42 16 190

(c) “Friends and Family” Simulation size statistics

Figure 3.7: “Friends and Family” model size properties

39



Modelling Terrorist Networks: CD Dissertation (Whole Unit) Candidate Number: 564456

(a) FF1 Degree centrality distribution

(b) FF2 Degree centrality distribution

Figure 3.8: “Friends and Family” degree centrality distributions
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(a) FF1 Eigenvector centrality distribution

(b) FF2 Eigenvector centrality distribution

Figure 3.9: “Friends and Family” eigenvector centrality distributions
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(a) FF1 Betweenness centrality distribution (restricted range)

(b) FF2 Betweenness centrality distribution (restricted range)

Figure 3.10: Betweenness distributions (restricted range) of “Friends and Family” model
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(a) FF1 Clustering coefficient distribution

(b) FF2 Clustering coefficient distribution

Figure 3.11: “Friends and Family” clustering coefficient distribution
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(a) Initial cell MR1 (b) Initial cell MR2

Vertex Number, i Degree, ki Eigenvector, xi Betweenness, CB(vi) Clustering, Ci
1, 3, 5 3 0.7616 1 0
2, 4, 6 2 0.5515 0.4 0
7, 8, 9 3 1 0.6 0.3333

(c) MR1 Cell metric values

Vertex Number, i Degree, ki Eigenvector, xi Betweenness, CB(vi) Clustering, Ci
1, 4, 7 2 0.3333 0 1

2, 3, 5, 6, 8, 9 4 0.6667 0.4333 0.5
10 6 1 1 0.4

(d) MR2 Cell metric values

Figure 3.12: Network visualisation and metric values for initial networks MR1 and MR2
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(a) MR1 Simulation sizes

(b) MR2 Simulation sizes

Initial Cell Mode Size Mean Size Standard Deviation Minimum Maximum
MR2 27 28.73 5.25 11 50
MR2 30 28.66 5.42 14 47

(c) “Multiple References” Simulation size statistics

Figure 3.13: “Multiple References” model size properties
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(a) MR1 Degree centrality distribution

(b) MR2 Degree centrality distribution

Figure 3.14: “Multiple References” degree centrality distributions
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(a) MR1 Clustering coefficient distribution

(b) MR2 Clustering coefficient distribution

Figure 3.15: “Multiple References” clustering coefficient distribution
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(a) Initial cell GF1 (b) Initial cell GF2

Vertex Number, i Degree, ki Betweenness, CB(vi) Eigenvector, xi Clustering, Ci
1,2,3,4,5 4 0 1 1

(c) GF1 Cell metric values

Vertex Number, i Degree, ki Betweenness, CB(vi) Eigenvector, xi Clustering, Ci
1,2,3,4,5,6 4 1 1 0.6667

(d) GT2 Cell metric values

Figure 3.16: Network visualisation and metric values for initial cells GF1 and GF2
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(a) GF1 Simulation sizes

(b) GF2 Simulation sizes

Initial Cell Mode Size Mean Size Standard Deviation Minimum Maximum
GF1 5 7.27 3.49 1 21
GF2 6 7.61 3.27 1 20

(c) “Group of Friends” Simulation size statistics

Figure 3.17: “Group of Friends” model size properties
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Chapter 4

Dynamics of Attacking Terrorist
Cells

4.1 Introduction to “Dark Networks”

The term “dark network” has been used to describe any group of individuals acting together to pursue an
illegal goal; such as drug trafficking, gun running or organised terrorism [26]. Regardless of objectives,
the group will wish to adopt a network topology that minimises members’ risk of exposure to law
enforcement agencies, whilst allowing efficient and reliable communication between individuals [3].
Networks specifically constructed to prevent infiltration by an opposing organisation are described as
clandestine cells [56].

Many connections can exist between a “dark network” and its opposing law enforcement agency (e.g.
infiltration by double agents, collected counter-intelligence), however it is unlikely either organisation
knows the complete structure of the other. While counter-terrorists may hold information on prominent
terrorist cell leaders, intelligence gathered on the remaining cell members’ identities and interactions
may be limited. Thus, when working towards disrupting “dark networks”, strategies seek to reveal as
many unknown members as possible.

4.1.1 High-Value Targets

Despite typically large national defence budgets, counter-terrorist organisations inevitably face funding
and manpower limitations, mainly because the logistics required to combat terrorist cells differ from
traditional military intelligence gathering. Therefore, efficient tactics to neutralise terrorist cells are sort.

Since September 11th 2001, the U.S. government has focused on the capture of high-value targets
(HVTs) to combat terrorisms [26]. A terrorist is described as a HVT for reasons including:

1. Rank within terrorist organisation (e.g. captain, foot soldier),

2. Operational role (e.g. recruiter, bomb maker, hacker),

3. Specialised skills and connections (e.g. multilingual, knowledge of intended target),

4. Links to other HVTs (e.g. shared geographical locations, frequent communication).

4.1.2 HVT Evasion Strategies

HVTs can employ many evasion techniques [26], however collected evidence indicates three basic
strategies shown in Table 4.1.
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Strategy Description
Masking Individuals deny participation in terrorism, hiding their involvement to conceal

their true identity, location or support network.
Disengagement HVTs relocate to, and operate in environments where counter-terrorists are

unable to search due to political, economic, military or geographical conditions.
Mobility HVTs continually change location in an erratic and unpredictable manner,

forcing counter-terrorist organisations to continually revise their search
locations.

Table 4.1: HVT Evasion strategies

HVTs can also utilise a support network within their terrorist cell, which provides assistance and
plays an important role in ensuring they evade capture and remain active within the cell.

4.1.3 Head-Hunting and Interrogation

Controversially, the U.S. Central Intelligence Agency (CIA) has used waterboarding to extract tactical
information from captured terrorists [7, 44]. While extreme interrogation methods are rarely employed,
bargaining techniques are used to obtain actionable information by testing the loyalty and resolve of
detained terrorists.

The ability of HVTs to evade capture, means gathering information directly on a suspect is difficult
and time consuming. With interrogation methods in mind, one stratagem is to question known cell
members and extract viable information on the intended HVT [21]. This method of head-hunting provides
a systematic approach to locating and detaining HVTs, and provides valuable information on the overall
terrorist cell structure.

4.1.4 Percolation Analysis

Percolation is a mathematical tool that can be used to analyse the dynamic structure of networks by
removing some fraction of vertices (site percolation) and edges (bond percolation) [34]. The criterion
for removing network elements can either use a specified set of rules, or be a random attack [34]. A
network’s resilience to targeted and random percolation attacks, is an important consideration when
developing organisational infrastructure.

For example, the World Wide Web (WWW) network structure remains largely operational when
subjected to a random percolation attack removing web pages. However, a targeted attack (e.g.
removal of Google.com, Bing.com) quickly splits the WWW into disconnected partitions. Reference [25]
investigates this phenomena, describing the WWW as “robust yet fragile”.

Combining site and bond percolation, I modelled a HVT head-hunting attack on a terrorist cell, and
investigated the success of this strategy by comparing generated percolation networks to their original
terrorist cell.

4.1.4.1 Modelling Head-Hunting of HVTs

Counter-terrorist organisations typically maintain “watch lists” of individuals; suspected of having
terrorist connections, participated in illegal activities, or been exposed to radical extremist views.
Individuals are closely monitored until there is sufficient evidence to detain them and/or other suspects.

Discussed in Section 2.4, degree centrality can be a good indicator of the relative importance of
terrorist cell members. Thus, my percolation mechanism defines any network vertex with maximal
degree to be a terrorist cell HVT:
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Terrorist Cell HVTs: Consider a network, G, with size n. Vertex vi ∈ G is defined as
a HVT of G if it has degree ki such that:

ki = maxj=1...n{kj}.

Because HVTs are actively pursued, and likely to be prominent cell members, it is modelled that
HVTs are more likely than non-HVTs to be captured during the initial stage of a systematic percolation
attack. The percolation mechanism uses a degree preferential probability distribution [Appendix C.4]
when capturing initial terrorists.

Terrorist head-hunting is likely to be performed under a range of restrictive factors and timescales,
however, my percolation mechanism is modelled under conditions conducive to full interrogation of
detained terrorists.

Assuming that actionable information obtained from interrogations is used in subsequent terrorist
interrogations, the compounded effects of omitted and incorrect terrorist information decreases the
reliability of information obtained as cell members are systematically captured.

4.1.4.2 Head-Hunting Percolation Mechanism

Consider a network G, size n. My percolation mechanism first selects the number of initial captured
cell members, m ∈ {1, 2, 3, 4, 5} (uniformly distributed) and uses a degree preferential probabilistic
distribution [Appendix C.4] to randomly select m vertices {v̂1 . . . v̂m} ∈ G, called “Round 1” terrorist
members.

Given satisfactory conditions and time to conduct thorough interrogations, the percolation mecha-
nism models that the quality of any information obtained from captured vertex v̂i, gives an 80% chance
of detaining each of neighbouring cell member ŵi ∈ Γ(v̂i). Then, examining the neighbourhood Γ(v̂i) of
each “Round 1”terrorist, we add a neighbouring vertex ŵj ∈ Γ(v̂i), and corresponding edge e(v̂i, ŵj), to

the percolation network Ĝ with probability:

P(Vertex ŵj ∈ Γ(v̂i) is added to the percolation network Ĝ) = 0.80.

If vertex v̂i has a neighbour ŵk ∈ Ĝ, already contained within the percolation network, the above
probability is simply used only to decide if the edge e(v̂i, ŵk) is added to E(Ĝ). Any newly added
vertices ŵj ∈ Ĝ are called “Round 2” terrorists.

My percolation mechanism also models how interrogation information becomes less reliable as the
systematic percolation attack progresses. Thus, for a “Round 2” terrorist ŵi ∈ Ĝ, it is modelled that
the “Round 3” terrorist ûj ∈ Γ(ŵi) is added to Ĝ with probability:

P(Vertex ûj ∈ Γ(ŵi) is added to the percolation network Ĝ) = (0.80)2.

This percolation mechanism continues by adding “Round (k + 1)” terrorists, selected from the
neighbourhoods of each “Round k” terrorist, to the percolation network Ĝ with probability:

P(“Round (k + 1)” vertex v̂i ∈ Γ(“Round k” vertex) is added to Ĝ) = (0.80)k−1,

and iterates until no new percolation vertices are added, or until all members of the original network G
are added to the percolation network Ĝ.

4.1.5 Comparing Percolation Networks with Original Terrorist Cells

Using the above percolation mechanism, I generated a single percolation network for each simulation
constructed by the three generative models; “Guerrilla Terrorists” (Section 3.3), “Friends and Family”
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(Section 3.4) and “Multiple References” (Sections 3.5).

I calculated the network size, degree centrality distribution and the number of HVTs contained
within each generative mechanism simulation, and found the network size and degree distribution for
each percolation network. Additionally, to quantify the success of the percolation attacks, I calculated
the number of HVTs present within each percolation network as a fraction of possible simulation HVTs.

1. “Guerrilla Terrorists”
Identifying the HVTs in each simulation G, and noting the number of HVTs contained within the
corresponding percolation network Ĝ, I found the mean fraction of HVTs successfully captured by
the percolation mechanism is 0.1561.

Sorting data values by increasing “Guerrilla Terrorists” simulation size, Figure 4.1 compares the
size of each simulation G with the size the corresponding percolation network Ĝ. Figure 4.1 shows
that generated percolation networks appear to have sizes limited to less than 70.

Figures 4.2(a) and 4.2(b) compare the degree distributions of the simulations with the correspond-
ing percolation networks distributions, for the two initial networks GT1 and GT2.

This analysis shows that the percolation mechanism generates networks with very different
characteristics to their original simulations, which on average contain 15% of the simulation HVTs.
Hence, the “Guerrilla Terrorists” model generates simulations that are particularly effective at
protecting HVTs, and the overall cell structure, from the modelled percolation attack.

2. “Friends and Family”
The mean fraction of “Friends and Family” HVTs successfully captured by the percolation
mechanism, is approximately 63.6% of all HVT terrorists.

Sorting data values by increasing simulation size, Figure 4.3 , shows a similar limited range of
percolation size values as in Figure 4.1.

Figures 4.4(a) and 4.4(b) show the simulation degree distributions for initial cells FF1 and FF2,
and the corresponding generated percolation networks.

Hence we see the percolation method is more successful at locating “Friends and Family” simulation
HVTs, but produces percolation networks of limited size. This suggests that the percolation
mechanism is effective at locating HVTs, but leaves a significant number of unknown cell members
undetected. Depending on the changes in hierarchical structure once a HVT is removed, the
percolation mechanism may successfully disband the cell, or simply shift the leadership to another
terrorist member.

3. “Multiple References”
Percolation networks generated on “Multiple References” simulations successfully capture a mean
fraction 0.9741 of HVTs. Hence, HVTs in “Multiple References” simulations appear particularly
vulnerable to capture by this systematic percolation attack.

Figure 4.5 compares the sizes of “Multiple References” simulations with the corresponding
percolation networks. In contrast to Figures 4.1 and 4.3, the percolation size does not take a
limited range of values, and we see that there are several simulations completely captured by the
percolation method.

Figures 4.6(a) and 4.6(b) compare degree distributions of the simulations with percolation
networks, for initial networks MR1 and MR2. Differences in degree distribution curves suggest
a significant difference in the network structures.

We find that the systematic percolation mechanism is highly effective at capturing HVTs within
“Multiple References” simulations, and is observed to occasionally reveal every simulation terrorist.
Differences in simulation and percolation degree distributions suggest the percolation networks
contain few original simulation edges, meaning that the terrorist interactions are not fully
uncovered.

53



Modelling Terrorist Networks: CD Dissertation (Whole Unit) Candidate Number: 564456

Figure 4.1: Comparison of “Guerrilla Terrorists” simulation and percolation sizes

(a) Initial cell GT1

(b) Initial cell GT2

Figure 4.2: “Guerrilla Terrorists” simulation and percolation network degree distributions

54



Modelling Terrorist Networks: CD Dissertation (Whole Unit) Candidate Number: 564456

Figure 4.3: Comparison of “Friends and Family” simulation and percolation sizes

(a) Initial cell FF1

(b) Initial cell FF2

Figure 4.4: “Friends and Family” simulation and percolation network degree distributions
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Figure 4.5: Comparison of “Multiple References” simulation and percolation sizes

(a) Initial cell MR1

(b) Initial cell MR2

Figure 4.6: “Multiple References” simulation and percolation network degree distributions
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Chapter 5

Conclusions

5.1 Evaluation of Generative Mechanisms

My investigation into terrorist networks primarily aimed to examine and develop generative mechanisms
that simulate the formation of different terrorist cells. Considering a range of possible recruitment
motivations and methodologies, I programmed and evaluated four different terrorist cell construction
methods. These models were motivated by using real terrorist network data, whose network properties
I had previously investigated.

Considering two different initial networks, I generated 1,000 distinct simulations for each of the
four generative mechanisms, and calculated the mean network metric distributions. Comparing the
simulation’s mean metric distribution curves with those calculated from the real terrorist networks, I
have found that certain terrorist cell characteristics were simulated better than others.

This suggests that select aspects of terrorist recruitment can be successfully modelled using network
theory. The “Friends and Family” and “Multiple References” mechanisms generate networks that display
similar eigenvector centrality, betweenness centrality and clustering coefficient distributions to those
produced by the S11 and M11 terrorist networks. However, differences in degree distributions suggest
the generated simulations have network structures that vary to those of the real terrorist cell.

The extent to which I am able to evaluate my generative models is limited by the amount and quality
of real terrorist data available to me, and I have only been able to make comparisons with terrorist data
used to motive each model.

5.2 Percolation Analysis Evaluation

Examining descriptions of real counter-terrorist head hunting tactics [21, 26], I developed a percolation
mechanism to simulate a selective systematic attack on terrorist networks.

I generated percolation networks for each simulation constructed using my “Guerrilla Terrorists”,
“Friends and Family” and “Multiple References” generative mechanisms, however due to time
constraints, I could only perform one percolation analysis on each simulation and therefore was unable
to calculate mean percolation properties for each network.

My investigation showed that the percolation mechanism was more successful at uncovering the
simulation networks of some generative mechanisms than others. Given the huge range of possibilities
for terrorist network structures, this is not a surprising result. If similar percolation attacks are employed
to disband real terrorist networks, information on the structure of the target terrorist cell will need to
be gathered so that percolation parameters can be chosen to optimise the attack results. Additionally,
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a specific criterion used to define HVTs should be chosen to ensure the percolation removes terrorists
whose removal is most likely to result in the cell being disbanded.

5.3 Improvements and Alterations

Generative Mechanism Development
During the preliminary analysis and development of each generative mechanism, I selected
modelling constants and event probabilities without quantitative input from previous
construction model research. For example, the number of terrorists recruited by each
“Guerrilla Terrorists” active recruiter follows a discrete approximation of the exponential
distribution, chosen to favour the recruitment of zero new terrorist members, with a
decreasing probability of recruiting {1, 2 . . . 5} new members.

Given chance to investigate my generative mechanism using different probability density
functions and modelling constants, I would investigate the effects these constants have on
the final simulation network structures.

Using an optimisation method, for example HillClimbing or Simulated Annealing tech-
niques [6], it may be possible to adjust my generative mechanisms to produce simulation
networks that better mimic the organisational structures of the real terrorist networks.

Initial Cell Choice
Each generative mechanism is considered for two different initial networks. As with the
development of the generative mechanisms, there was little information available suggesting
initial suitable networks to consider, and the cells I chose were motivated by my preliminary
analysis.

Considering a sample of two initial cells provided little variation in generated simulation
structure, and I could not conclude if the generated simulations depended on their initial
conditions. By investigating a greater number of different initial cells, it may highlight any
varying effects an initial network has on the resultant generated simulations.

Furthermore, my choices of initial cell displayed symmetrical features, so investigating
asymmetrical and random initial cells should be considered.

5.4 Further Investigations

M11 Weighted Network Analysis
My investigation examined the structural properties of the simple, unweighted, undirected
M11 terrorist network. Using the weightings assigned in Reference [29], and a selection of
network metric measures redefined to evaluate weighted networks, an enhanced investigation
could be undertaken.

Interactions Between Fragmented Terrorist Cells
My generative models each incorporate mechanisms that allow terrorists to become isolated
from all members of a terrorist cell, and allow terrorist networks to be split into disconnected
subgraphs. In order to simplify computation of simulations networks, I assumed that once
individuals become isolated they lost faith in the security of their original terrorist cell and
do not try to rejoin it.

Whilst this is a reasonable assumption to make under certain circumstances, including a
mechanism which allows disconnected cell members to reconnect with terrorist cells would
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enhance my generative mechanisms.

The following example mechanism would allow isolated vertices to reattach to a terrorist
cell using a degree preferential probability distribution. Considering an isolated vertex v and
terrorist network G of size n:

1. At each time step, an isolated vertex v decides to reattach to the terrorist cell G with
probability:

P(Vertex v reattaches to network G) = α

for some positive constant 0 < α ≤ 1.

2. Using a preferential degree probability distribution, a single cell vertex wi ∈ G with
degree = ki, is chosen by v to reconnect to:

P(v reattaches to vertex wi ∈ G ) =
ki( n∑

j=1

kj

) .

Combinations of Generative Mechanisms
Extending the ideas above, the a reattachment mechanism could also allow the interactions
between multiple initial terrorist cells, each cell consisting of vertices controlled by a different
generative mechanism, to be modelled.

By examining the resultant network of interconnected initial terrorist cells, the structural
features could give an insight into the relative dominance of each generative mechanism.

HVT Definitions
As discussed is Section 5.2, the effectiveness of systematic percolation attacks are likely to
depend on the criterion used to define terrorist cell members as a HVT. My investigation
uses network degree to define HVT cell members, Section 4.1.4.1.

Further investigation into systematic percolation attacks could examine the effects of
using different network metrics to define HVTs.
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Appendix A

A.1 Additional Network Types

As discussed in Section 1.1, network theory is a powerful analytical tool that allows a range of different
network structures to be mathematically modelled. Adjusting the properties of vertices and edges
contained within a network, the following structural types can be examined [34]:

Complex Network
If two vertices are connected by α ∈ N>0 distinct edges, we say that there is a multi-edge of
order α between these two points. If an edge connects a vertex to itself, we say the vertex
has a self-edge. Any network that contains either a multi-edge or self-edge is said to be a
complex network.

Weighted Network
If we can numerically evaluate the strength of interactions between network vertices, we
can assign weights to the corresponding edges to highlight the more important network
interactions. This is achieved using a modified adjacency matrix:

A = (aij)1≤i,j≤n where aij ∈ R≥0.

Directed Network
Interactions between vertices can be restricted to occur in one direction only. By assigning
a direction of travel to each network edge, we can simulate directional interactions within a
network using an asymmetrical adjacency matrix.

Multiple Vertices/Edges
Organisational structures containing two or more types of components (e.g. customers,
products, and employees within a business) can be modelled by a network containing more
than one set of vertices. Similarly if a network contains multiple types of vertex connections,
more than one type of edge is used.

A.2 Perron-Frobenius Theorem

The matrix A ∈Mn×n(R) is said to be regular if there exists an integer k ∈ N>0 such that:(
Ak
)
ij
> 0, for all 1 ≤ i, j ≤ n.

Equivalently, A is a regular matrix if A has a corresponding digraph G, such that there exists a directed
path between every pair of graph vertices vi, vj ∈ G.

Let A ∈Mn×n(R), be a regular, non-negative matrix with entries aij ≥ 0, for all 1 ≤ i, j ≤ n. There
then exists an eigenvalue λPF of A, called the Perron-Frobenius eigenvalue [46], such that:

1. λPF ∈ R and λPF > 0.
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2. The corresponding right, xPF, and left, yPF, eigenvectors of λPF are strictly positive:

xPF = (xi)1≤i≤n, with xi > 0 for all 1 ≤ i ≤ n,
yPF = (yj)1≤j≤n, with yj > 0 for all 1 ≤ j ≤ n.

3. All other eigenvalues λ, of matrix A, satisfy the inequality:

|λ| < λPF.

The Perron-Frobenius can be extended to the non-negative case for irreducible matrices. The matrix
B ∈ Mn×n(R) is said to be irreducible if there is no permutation that transforms B into block upper-
triangular form [23]: (

β11 β12

0 β22

)
.

Equivalently, B is irreducible if B forms a corresponding digraph which is non-strongly connected.

Let B ∈ Mn×n(R), be a irreducible, non-negative matrix with entries bij ≥ 0, for all 1 ≤ i, j ≤ n.
The Perron-Frobenius eigenvalue, λPF , satisfies:

1. λPF ∈ R and λPF ≥ 0.

2. The corresponding right, xPF, and left, yPF, eigenvectors of λPF are strictly positive:

xPF = (xi)1≤i≤n, with xi ≥ 0 for all 1 ≤ i ≤ n,
yPF = (yj)1≤j≤n, with yj ≥ 0 for all 1 ≤ j ≤ n.

3. All other eigenvalues λ, of matrix B, satisfy the inequality:

|λ| ≤ λPF.
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Appendix B

B.1 Mean Metric Distribution Calculation

Consider a network G of size n. Suppose we have the degree centrality, ki, eigenvector centrality, xi,
betweenness centrality, CB(vi), and clustering coefficient, Ci, values for each vertex vi ∈ G. Calculating
the corresponding non-dimensionalised metric distributions, I obtain ρk(vi), ρx(vi), ρCB

(vi) and ρC(vi),
for each vertex vi.

I have defined the mean metric distribution, ρ̄(vi), to be the mean value of the above four metric
distributions:

ρ̄(vi) =

(
ρk(vi) + ρx(vi) + ρCB

(vi) + ρC(vi)

4

)
.
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Appendix C

C.1 Programming Limitations

During my investigation I have made extensive use of MATLAB, to calculate network metric measures,
plot metric distribution graphs and create network visualisations using procedures written for Reference
[5]. I also programmed my generative models with Microsoft Visual Basic for Applications (VBA), in
conjunction with Microsoft Excel.

Using Excel and VBA code to produce generative simulations, allowed me to record the step-by-step
simulation construction, as I was able to store the generative adjacency matrix, for each distinct time
step, using separate Excel worksheet.

While my adopted programming method produced data rich simulation files, the time required to
run each simulation limited the number of time steps I could feasibly study, and the complexity of
my programming. Hence, I have run my generative mechanisms for different numbers of time steps to
alleviate data processing limitations.

C.2 Exponential Probability Distribution

The Exponential probability distribution describes a family of continuous random probability distribu-
tions, denoted X ∼ Exp(λ), for a positive parameter λ > 0.

The exponential probability density function (PDF) of a random variable X ∼ Exp(λ) is defined
as [20,64]:

f(x;λ) =

{
λe−λx x ≥ 0,

0 otherwise.

Figure C.1 shows the exponential PDF for three values of λ.

C.3 Number of Edges–Degree Relationship

Consider a network G with size n and vertices V (G) = {vi | i = 1 . . . n}. The number of edges in G,
e(G), satisfies the relationship [12]:

n∑
j=1

kj = 2e(G)

where ki is the degree of vertex vi ∈ G.
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Figure C.1: Exponential probability density function

C.4 Degree Preferential Probability Distribution

As discussed in Reference [34], there are many common generative mechanisms used to construct random
networks. One such generative method is called degree preferential attachment that constructs a network
by randomly attaching a new vertex v̂ to an existing network vertex vi ∈ G, using a probability
distribution that favours selecting vi with large degree ki.

Consider a network G, size n, and vertices V (G) = {vi | i = 1 . . . n} with degrees ki. The degree
preferential probability distribution selects a vertex vi ∈ G, to attach v̂ to, with probability:

P(Vertex v̂ is attached to vi ∈ G) =
ki( n∑

j=1

kj

)
=

(
ki

2e(G)

)
where the final equation form is obtained using Appendix C.3.

C.5 Weibull Probability Distribution

The Weibull distribution is a continuous probability distribution characterised by tow positive parame-
ters; shape parameter k > 0 and scale parameter λ > 0.

The Weibull PDF for a random variable X ∼Weibull(k, λ) is defined as [65]:

f(x; k, λ) =

{
k
λ

(
x
λ

)k−1
e−(x/λ)k x ≥ 0,

0 otherwise.

Figure C.2 shows the Weibull PDF for four different combinations of k > 0, λ > 0 values.
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Figure C.2: Weibull probability density function

C.6 “Guerrilla Terrorists” Recruitment Pseudocode

The following pseudocode is performed on a network G, of size n, using the probability distribution XGT

from Section 3.3.1.1.

{Iterate through all “Foot Solider” network vertices}
for i = 1 to i = n and vi = “Foot Solider” do
{Select number of new recruits to be added to selected vertex vi}
NumberOfNewRecruits = RandomNumber(Distributed by XGT)
for j = 1 to j = NumberOfNewRecruits do
{Attach new recruit vj to selected vertex vi}
vi ← vj

end for
end for

C.7 “Guerrilla Terrorists” Removal Pseudocode

The following pseudocode is performed on a network G, of size n.

{Iterate through all network vertices}
for i = 1 to i = n do
{Check the probability that selected vertex vi is removed}
if vertex vi is removed from G (Probability = 0.05) then

Remove vertex vi
end if

end for

C.8 “Guerrilla Terrorists” Desertion Pseudocode

The following pseudocode is performed on a network G, of size n.

{Iterate through all network vertices}
for i = 1 to i = n do
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{Check the degree value of vertex vi}
if ki = 0 then
{Check the probability that selected vertex vi deserts}
if vertex vi deserts G (Probability = 0.60) then

Remove vertex vi
end if

end if
end for

C.9 “Friends and Family” Recruitment Pseudocode

The following pseudocode is performed on a network G, of size n, using the probability distribution XFF

from Section 3.4.1.1.

{Iterate through all “Active” network vertices}
for i = 1 to i = n and vi = “Active” do
{Select number of new recruits to be added to selected vertex vi}
NumberOfNewRecruits = RandomNumber(Distributed by XFF)
{Add complete graph KNumberOfNewRecruits (with v̂1 ∈ KNumberOfNewRecruits) to G}
G← KNumberOfNewRecruits

{Connect new “Active” vertex v̂1 ∈ KNumberOfNewRecruits to selected vertex vi}
vi ← v̂1

{Assign each member {v̂2 . . . v̂NumberOfNewRecruits} to be “Active” or “Passive”}
for j = 2 to j = NumberOfNewRecruits do
v̂j = “Active” with probability 0.5 or vj = “Passive” with probability 0.5

end for
end for

C.10 “Friends and Family” Removal Pseudocode

The following pseudocode is performed on a network G, of size n.

{Iterate through all network vertices}
for i = 1 to i = n do
{Check the probability that selected vertex vi is removed}
if vertex vi is removed from G (Probability = 0.05 for “Active”, Probability = 0.025 for “Passive”)
then
{Remove “Passive” vertices wj , connected to vi}
for j = 1 to j = n do

if wi ← vi and vertex wj = “Passive” then
Remove vertex wi

end if
end for
Remove vertex vi

end if
end for

C.11 “Friends and Family” Desertion Pseudocode

The following pseudocode is performed on a network G, of size n.

{Iterate through all network vertices}
for i = 1 to i = n do
{Check the degree value of vertex vi}
if ki = 0 then
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{Check the probability that selected vertex vi deserts}
if vertex vi deserts G (Probability = 0.60) then

Remove vertex vi
end if

end if
end for

C.12 “Multiple References” Recruitment Pseudocode

The following pseudocode is performed on a network G, of size n, using the probability distribution XMR

from Section 3.5.1.1.

{Select number of new recruits to be added to G}
NumberOfNewRecruits = RandomNumber(Distributed by XMR)
{Iterate through each of the vNew new recruits}
for i = 1 to i = NumberOfNewRecruits do
{Assign number of references required by the selected vNew}
NumberOfReferencesNeeded(i) = RandomNumber(Distributed by Z)
{Select NumberOfReferencesNeeded(i) distinct vertices to connect to the vertex vNew}
for j = 1 to j = NumberOfReferencesNeeded(i) do

Select wj (Preferential Degree Attachment Distribution), such that we
obtain a set W = {wk | k = 1 . . .NumberOfReferencesNeeded(i), wk vertices are distinct}

end for
end for

C.13 “Multiple References” Removal Pseudocode

The following pseudocode is performed on a network G, of size n.

{Iterate through all network vertices}
for i = 1 to i = n do
{Check the probability that selected vertex vi is removed}
if vertex vi is removed from G (Probability = 0.05) then

Remove vertex vi
end if

end for

C.14 “Multiple References” Desertion Pseudocode

The following pseudocode is performed on a network G, of size n.

{Iterate through all network vertices}
for i = 1 to i = n do
{Check the degree value of vertex vi}
if ki = 0 then
{Check the probability that selected vertex vi deserts}
if vertex vi deserts G (Probability = 0.60) then

Remove vertex vi
end if

end if
end for
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C.15 “Group of Friends” Recruitment Pseudocode

The following pseudocode is performed on a network G, of size n, using the probability distribution XGF

from Section 3.6.1.1.

{Select number of new recruits to be added to G}
NumberOfNewRecruits = RandomNumber(Distributed by XGF)
{Iterate through each vi new terrorist cell recruit}
for i = 1 to i = NumberOfNewRecruits do
{Iterate through each vj existing terrorist cell member}
for j = 1 to j = n do
{Check the probability that vi is connected to the existing cell member vj}
if New vertex vi is connected to existing vertex vj (Probability = 0.90) then
vj ← vi

end if
end for

end for

C.16 “Group of Friends” Removal Pseudocode

The following pseudocode is performed on a network G, of size n.

{Iterate through all network vertices}
for i = 1 to i = n do
{Check the probability that selected vertex vi is removed}
if vertex vi is removed from G (Probability = 0.05) then

Remove vertex vi
end if

end for

C.17 “Group of Friends” Desertion Pseudocode

The following pseudocode is performed on a network G, of size n.

{Iterate through all network vertices}
for i = 1 to i = n do
{Check the degree value of vertex vi}
if ki = 0 then
{Check the probability that selected vertex vi deserts}
if vertex vi deserts G (Probability = 0.60) then

Remove vertex vi
end if

end if
end for
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