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Abstract

This dissertation studies solitary waves in collisionally inhomogeneous Bose-

Einstein condensates in a magnetic trap using a quasi-1D mean-field model.

We introduce a model for Bose-Einstein condensate with spatially and tem-

porally modulated nonlinearity. In terms of the spatially periodic nonlinear

lattice, we study BECs in a lattice one of which minimum in a period ei-

ther overlap with the minimum of magnetic trap (termed ‘aligned’) or is

displaced by π
2
(termed ‘misaligned’). In BECs in an aligned and misaligned

lattice, both bright solitons and dark solitons are identified. Stability anal-

ysis using the BdG equations shows that bright solitons with this spatial

modulation are always stable, whereas dark solitons can be either stable or

unstable. A further investigation of how their stability depends on physical

parameters reveals that the aligned and misaligned lattices introduce differ-

ent behaviours. Unstable dark solitons can have both real eigenvalues and

a quadruplet of four eigenvalues in an aligned lattice. In contrast, unstable

dark solitons in BECs in a misaligned lattice can have only real eigenvalues.

We also investigate the temporal evolution of both bright solitons and dark

solitons in a dynamical nonlinear lattice. After studying the response of

bright solitons and dark solitons to the turning on of a nonlinear lattice,

we can expect a stable transition if the turning on is slow. If the lattice is

abruptly turned on, instability occurs.



Contents

1 Introduction 1

2 Preliminaries 5

2.1 Quasi-1D Gross-Pitaevskii (GP) mean-field model . . . . . . . . . . . 5

2.1.1 3D GP mean-field model . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Reduction to quasi-1D GP model . . . . . . . . . . . . . . . . 7

2.2 Analysis of GP operator in the linear limit . . . . . . . . . . . . . . . 9

2.2.1 Spectrum of linear Schrödinger operator . . . . . . . . . . . . 9

2.2.2 Nonlinear waves bifurcating from the linear limit . . . . . . . 10

2.3 Model of a Bose-Einstein condensate with spatially and temporally

modulated nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Solitary waves in BECs and their linear stability 14

3.1 Solitary waves: a brief introduction . . . . . . . . . . . . . . . . . . . 14

3.2 Solitary waves in BECs . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Bright Solitons: attractive interaction . . . . . . . . . . . . . . 15

3.2.2 Dark Solitons: repulsive interactions . . . . . . . . . . . . . . 16

3.3 Linear stability - BdG equation . . . . . . . . . . . . . . . . . . . . . 17

3.4 Stationary solitary waves . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Stationary bright solitons . . . . . . . . . . . . . . . . . . . . 19

3.4.2 Stationary dark solitons . . . . . . . . . . . . . . . . . . . . . 20

3.4.2.1 Stationary dark solitons in an aligned lattice . . . . . 20

3.4.2.2 Stationary dark solitons in a misaligned lattice . . . 22

3.5 Temporal evolution of solitary waves with a static nonlinear lattice . 23

3.5.1 Temporal evolution of bright solitons . . . . . . . . . . . . . . 23

3.5.2 Temporal evolution of dark solitons . . . . . . . . . . . . . . . 24

3.5.2.1 Temporal evolution of dark solitons under an aligned

lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



3.5.2.2 Temporal evolution of dark solitons under a misaligned

lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Stability of solitary waves 27

4.1 Stability of a Hamiltonian flow . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Effect of the nonlinear lattice on stability: computational results . . . 29

4.2.1 Stability of solitons in an aligned nonlinear lattice . . . . . . . 29

4.2.2 Stability of solitons under an misaligned nonlinear lattice . . . 33

5 Solitary waves in a temporally modulated nonlinear lattice 36

5.1 Dynamics of travelling solitary waves . . . . . . . . . . . . . . . . . . 36

5.1.1 Bright Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.2 Dark Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Evolution of solitary waves in a dynamical nonlinear lattice . . . . . . 37

5.2.1 Bright solitons . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.2 Dark solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusions 42

A Appendix 44

A.1 Numerical Solution stationary GP equation . . . . . . . . . . . . . . . 44

A.2 Time-dependent GP equation . . . . . . . . . . . . . . . . . . . . . . 46

A.3 Intrinsic frequency obtained from BdG equation . . . . . . . . . . . . 46

Bibliography 47

ii



List of Figures

2.1 A model of spatially and temporally controlled g(z, t). . . . . . . . . . 13

3.1 Stationary bright solitons in a BEC with a magnetic trap and g = −1. 16

3.2 Stationary dark solitons in a BEC with a magnetic trap and g = 1. . 17

3.3 Stable bright solitons and their stability eigenvalues. . . . . . . . . . . 20

3.4 Dark solitons and their stability eigenvalues in an aligned lattice. . . 21

3.5 Dark solitons and their stability eigenvalues in a misaligned lattice. . 22

3.6 Temporal evolution of a stable bright soliton in an aligned lattice. . . 23

3.7 Evolution of a stable dark soliton in an aligned lattice. . . . . . . . . 24

3.8 Temporal evolution of an unstable dark soliton in an aligned lattice. . 25

3.9 Evolution of an unstable dark soliton in a misaligned lattice. . . . . . 26

4.1 Stability eigenvalues of dark solitons with aligned lattice. . . . . . . . 30

4.2 Stability eigenvalues of dark solitons with fixed V1. . . . . . . . . . . 31

4.3 Stability eigenvalues of dark solitons with small V2. . . . . . . . . . . 32

4.4 Stability eigenvalues of dark solitons in an aligned lattice. . . . . . . . 33

4.5 Stability eigenvalues of dark solitons in an aligned lattice. . . . . . . . 34

4.6 Cut-off values of k to determine stability with a misaligned lattice. . . 35

5.1 Temporal evolution of a bright soliton in a nonlinear lattice that is

turn on quickly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Evolution of a bright soliton in a lattice turned on in medium to slow

speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Temporal evolution of a dark soliton in a nonlinear lattice with three

different speeds in turning on. . . . . . . . . . . . . . . . . . . . . . . 41

iii



Chapter 1

Introduction

In this dissertation, we study the existence, stability, and dynamics of solitary waves

in Bose-Einstein condensates with collisionally inhomogeneous nonlinearity.

A BEC is a gas of weakly interacting bosons (identical subatomic particles that

obey Bose-Einstein statistics) trapped by external potential that condensate into

the same quantum (ground) state when temperature is below a critical point Tc =

3.31n2/3~2/(mkB), where ~ is the reduced Planck constant, n is the particle density, m

is the mass of the boson, and kB is the Boltzmann constant. The critical temperature

Tc is very close to absolute zero and is of the magnitude of several kelvins [5]. For

instance, Tc is 3.13 kelvin for liquid 4He at saturated vapour pressure [18]. Current

techniques allow a few thousands to several million particles condensating in a BEC

[4] and temperature as low as 100 picokelvin have been reached [3].

Since its prediction by Bose and Einstein from quantum statistics in the 1920s,

BECs have been investigated actively and were created in laboratory for the first

time in 1995. The experimental realisation was delayed due to extreme difficulty

in creating ultra-low temperature required to condensate enough bosons into the

same state. Since then, laboratory techniques of controlling and monitoring BEC

has progressed greatly and now key properties of a BEC can be accurately adjusted

experimentally [5]. As a result BEC offers a wide variety of phenomena for physicists

and applied mathematicians.

A BEC is a many-body Hamiltonian system. Due to the dilute nature of most

BECs, as typically, the mean spacing between bosons is ten times greater than the

range of inter-atomic forces, the interaction can be simplified by a mean-field approx-

imation to obtain the Gross-Pitaevskii (GP) equation [2]:

i~
∂

∂t
Ψ(r, t) =

(
− ~2

2m
∇2 + V (r) + g |Ψ(r, t)|2

)
Ψ(r, t), (1.1)
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where Ψ(r, t) is the macroscopic wave function of the condensate and normalised to

the number of bosons N in the condensate (
∫
|ψ(r, t)|2dr = N), V (r) is the external

confining potential, and g is a coefficient that describes the effective interaction and

relates to the s-wave scattering length a through g = (4π~2a/m) [4], (s-wave scatter-

ing is the isotropic low energy scattering when interaction potential decays sufficiently

fast at infinity, and is on the order of the Borh radius (0.053 nm) [14]). The GP equa-

tion is a cubic NLS equation as the atom-atom interactions are represented by the

cubic term g|Ψ|2Ψ. It is widely used for the theoretical study of BEC [19].

In a BEC, the scattering length a (or nonlinear constant g) can take either positive

or negative values and its sign and magnitude is of major importance, as it has a huge

effect on the dynamics of Equation (1.1) [2]. A BEC with negative a is composed

of atoms with attractive interactions and supports a kind of wave solution called a

‘bright soliton’, which is a localised nonlinear wave against a zero background. A

BEC with positive a is repulsive and supports a different wave solution called a ‘dark

soliton’. A dark soliton is also a localised nonlinear wave, but it is termed ‘dark’

because its magnitude denotes a deficiency of the density with respect to a non-zero

bulk value [19]. The scattering length depends on the atom species, but both the

sign and magnitude are subject to change with Feshbach Resonance [5]. By tuning

an external magnetic (or optical and electric) field in the vicinity of a Feshbach

resonance, experimentalists are able to manipulate atomic collisions and change the

sign and strength of atomic interactions [2]. A BEC under such manipulation is

said to be collisionally inhomogeneous if different point in space experiences different

scattering monitoring. In the context of this dissertation, one may think of collisional

inhomogeneity as a spatial modulation of the scattering length.

Another essential experimental technique in studying BEC is control of the ex-

ternal potential. A variety of different potentials have been implemented in labo-

ratories, including magnetic traps (MT), optical lattices (OL), optical superlattices

(OSL), double-well traps, and superpositions of lattices or superlattices with mag-

netic traps [20]. Magnetic traps create a harmonic (parabolic) potential [3]. Optical

lattices are implemented by the interference of two or multiple laser beams and are

of periodic potentials. Optical superlattices are realised by the sequential creation of

two optical lattices and provides a periodic or quasi-periodic potential that features

two different periods [17]. The shape and time variation of the external potential can

be tuned accurately and flexibly, which enables different nonlinear waves and have

been demonstrated in both experimental and theoretical studies [2].
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BECs support a variety of types of solutions, including plane waves [21], solitary

waves, and in higher dimensions, vortices [13]. Moreover, the macroscopic wave func-

tion |Ψ(r, t)| (also called the condensate wave function) in the GP Equation (1.1)

is normalised to the number of atoms, so its magnitude |Ψ(r, t)|2 represents atom

density instead of probability. As a result, these solutions are observable macroscopi-

cally and are termed solitary matter-waves. In this dissertation, we focus on solitary

matter-waves. In BECs the three most common types of solitary waves are bright

solitons, dark solitons, and gap solitons. There is a wealth of theoretical work in

studying the existence and stability of different solitary waves under various settings,

among which the most comprehensive summary is given by Carretero-González et al.

in the paper [2]. This paper is a great resource for relevant BEC background theory

and mathematical techniques, from which we have adopted the basic concepts and

methodology in our investigation.

This dissertation focuses on solitary waves in BECs in one-dimension in a magnetic

trap and with spatially varying scattering length through Feshbach resonance. In the

rest of the thesis, we will refer to it as a ‘nonlinear lattice’. BECs with a nonlinear

lattice have been studied theoretically in various papers. For instance, in [9] the

authors studied ‘long’ solitary waves that span a large number of lattice periods with

a general periodic nonlinear lattice and zero confining potential, using multiple-scale

perturbation theory. In [6] and [22], the authors examine of ‘short’ solitary waves,

the width of which is of similar magnitude to the lattice period in symmetric periodic

nonlinear lattices with zero confining potential. In these papers, bright soliton and

dark soliton solutions are identified, respectively, at the maximum and minimum

within a lattice period.

Despite these theoretical predictions of phenomena in collisionally inhomogeneous

BECs, so far no experimental implementations have been carried out. Our work

specifically uses a model of the nonlinear lattice that is close to reality. It was proposed

by an experimental physicist, Ian Spielman of University of Maryland and NIST, who

confirmed in correspondence that such a model is experimentally feasible. In addition

to the spatial modulation, it includes a temporal factor to simulate the dynamical of

turning on a Feshbach resonance. We aim to examine the existence, stability, and

dynamics of both bright and dark solitary waves using a spatially periodic nonlinearity

introduced by Feshbach resonance. We will also inspect the response of the BEC to a

sudden change or a gradual change of the atomic interactions. By providing a realistic

picture, we hope that experimental physicists will check our results experimentally.
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This thesis is organised as follows: In Chapter 2, we present the derivation of the

GP equation from the many-body Hamiltonian describing the BEC and reduce the full

3D equation to a quasi-1D one with a highly anisotropic magnetic trap. We then study

its ground-state properties and introduce the Thomas-Fermi approximation. We also

discuss properties of the GP equation, emphasising its linear limit and nonlinear

waves that bifurcate from the limit. In the last section, we introduce our model of

the nonlinearity coefficient.

We give a detailed introduction to solitary waves in BECs in Chapter 3. We

briefly explain solitary waves and their properties and then obtain closed-form solu-

tions for bright and dark soliton solutions in BECs under the simplest setting, for

which g is constant and the confining potential is zero. We also introduce a criterion

for determining the linear stability of a soliton solution and derive the well-known

Bogoliubov-de Gennes (BdG) equation. We have carried out numerical results, in

which we have identified several soliton solutions using the stationary GP equation.

We have studied its stability through BdG equation and examined its temporal evo-

lution with the time-dependant GP equation to corroborate our stability analysis.

In Chapter 4, we present numerically obtained figures illustrating stability within a

large range of parameters. We also present relevant theories of perturbed Hamiltonian

systems and Hamiltonian flows in an attempt to explain some of the features that we

have observed.

In Chapter 5, we examine the dynamical behaviour when the Feshbach resonance is

turned on after stationary soliton solutions have already been built up. We investigate

both fast and slow turning-on.

In Chapter 6, we conclude and discuss our results.

We discuss the numerical implementation in Appendix.
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Chapter 2

Preliminaries

In this chapter, we introduce the fundamental equation in the theoretical study of

BEC, the Gross-Pitaevskii (GP) equation, and the reduction to its quasi-1D equation.

To examine the existence of nonlinear-wave solutions to the GP equation, we present

the discrete spectrum of the linear part of the NLS operator, and then use Lyapunov-

Schmit theory to establish nonlinear waves bifurcating from this linear limit under a

small disturbance and with constant nonlinearity coefficient. We also introduce our

basic setting for this dissertation: the model of the collisionally inhomogeneous BEC.

2.1 Quasi-1D Gross-Pitaevskii (GP) mean-field model

2.1.1 3D GP mean-field model

A BEC is a N -body Hamiltonian system composed of up to several million atoms [4],

and a direct solution of theN -body problem is impossible. Instead, one introduces the

GP mean-field model to study BECs theoretically. Starting from the fundamental N -

body Hamiltonian system governed by Heisenberg equation, there are several ways to

derive the mean field model. A rigorous derivation with a variational method can be

found in [5]. Here we follow a much simpler but intuitive method from a review article

of available mathematical methods in analysing nonlinear waves in BECs [2]. Taking

into account the atom-atom interaction, the Hamiltonian of the BEC is written as

Ĥ =

∫
R3

drΨ̂†(r, t)Ĥ0Ψ̂(r, t) +
1

2

∫
R3

drdr′Ψ̂†(r, t)Ψ̂†(r′, t)VI(r− r′)Ψ̂(r′, t)Ψ̂(r, t),

(2.1)

where Ψ̂(r, t) (Ψ̂†(r, t)) is the field operator creating(annihilating) a particle at the

point r, Ĥ0 = −(h2/2m)∇2+V (r) is the single-particle Hamiltonian, V is the external
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potential to confine the BEC, and VI(r − r′) is the two-body interaction potential.

Ψ̂(r, t) and Ψ̂†(r, t) satisfy commutation relations [19][
Ψ̂(r, t), Ψ̂†(r′, t)

]
= δ(r− r′),

[
Ψ̂(r, t), Ψ̂(r′, t)

]
= 0. (2.2)

Substituting the Hamiltonian into Heisenberg equation i~
(
∂Ψ̂/∂t

)
= [Ψ̂, Ĥ], we

have

i~
∂

∂t
Ψ̂(r, t) =

(
Ĥ0 +

∫
R3

dr′Ψ̂†(r′, t)VI(r
′ − r)Ψ̂(r′, t)

)
Ψ̂(r, t). (2.3)

The next step is to apply the Bogoliubov approximation, which states that to the

lowest-order approximation and at very low temperature (considerably lower than

the critical temperature Tc), one can replace the boson field operator Ψ̂(r, t) with

a classical field operator Ψ(r, t). Ψ(r, t) is the macroscopic wave function of the

condensate and is defined as the expectation value of the field operator (Ψ(r, t) ≡
〈Ψ̂(r, t)〉). [19]

We shall further simplify the interaction potential to a delta function, assuming

the temperature is well below Tc and that the interaction is weak [2]:

VI(r− r′) = gδ(r− r′), (2.4)

where g is the effective interaction constant related to the s-wave scattering length a

through g = 4π~2a/m.

Adopting the delta function interaction potential and the macroscopic wave func-

tion approximation and utilising the commutation relations, we reach a compact

so-called mean-field description of the system in terms of the 3D GP equation:

i~
∂

∂t
Ψ(r, t) =

(
− ~2

2m
∇2 + V (r) + g |Ψ(r, t)|2

)
Ψ(r, t). (2.5)

where V (r) is the external potential.

Compared to the ordinary Schrödinger equation, we now have an extra cubic

term g |Ψ(r, t)|2 Ψ(r, t) to describe the interaction between bosons. If g = 0, the

equation reduces to an ordinary Schrödinger equation. As will be discussed later, the

magnitude of g determines the strength of the nonlinearity and the sign of g plays a

huge role in determining the dynamics of the condensate.

We also note that with static external potentials [5], the above macroscopic wave

function Ψ(r, t) is normalised to the number of atoms and thus is interpreted as the

particle density

N =

∫
R3

|Ψ(r, t)|2 dr. (2.6)
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The Gross-Pitaevskii energy obtained from 2.5 is written as

E =

∫
R3

dr

(
~2

2m
|∇Ψ|2 + V |Ψ|2 + 1

2
g |Ψ|4

)
. (2.7)

By simplifying the complex N -body problem into an elegant NLS equation with a

cubic nonlinearity term, the GP equation has become the most powerful instrument

in the theoretical analysis of BEC.

2.1.2 Reduction to quasi-1D GP model

Consider a BEC in a magnetic trap, which is usually approximated as a harmonic

potential:

V (r) =
m

2

(
Ω2

xx
2 + Ω2

yy
2 + Ω2

zz
2
)
, (2.8)

where Ωx, Ωy, and Ωz are the trap frequencies along each direction. The characteristic

oscillator length with the magnetic trap is defined as li =
√

~/(mΩi), i = x, y, z,

which sets the length scale for the spatial size of the condensate and is generally

several microns [14]. Another important characteristic length scale of a BEC is the

healing length ξ = (8πρa)−1/2, where ρ is the BEC gas density and a is the scattering

length. Here ξ is the distance over which atom-atom iteration balances with the

kinetics [19]. ξ also represents the width scale of nonlinear excitations in BECs and

is often several microns, the same scale of the characteristic oscillator length [2].

To consider a ground state under the harmonic potential, we write the condensate

wave function as

Ψ(r, t) = ψ0(r)e
−iµt/~, (2.9)

where ψ0 is real and normalised to the number of atoms, and µ = ∂E/∂N is the

chemical potential of the system [5]. We then have(
− ~2

2m
∇2 + V (r) + gψ2

0(r)

)
ψ0(r) = µψ0(r). (2.10)

In the case of g = 0, the system reduces to a Hamiltonian in parabolic potential,

and the ground state is given by the Gaussian profile [5]:

Ψ0(r) =
√
N

(
mΩho

π~

)3/4

exp
(
−m

2~
(Ωxx

2 + Ωyy
2 + Ωzz

2)
)
, (2.11)

where Ωho =
√
ΩxΩyΩz is the geometric mean of the confining frequencies.
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For a repulsive BEC (g > 0), atoms are pushed towards the rims of the condensate

and resulting in a spatial variation of the density, which is given by the Thomas-Fermi

(TF) approximation [2]:

ρ(r) =

{
g−1[|µ| − V (r)], |µ| > V (r),

0, otherwise.

We are concerned with 1D nonlinear wave solutions, and shall only consider an

anisotropic trap. Hence let Ω = Ωx = Ωy and define ν = Ωz/Ω, i.e

V (r) =
mΩ2

2

(
x2 + y2 + νz2

)
. (2.12)

In the limit ν � 1, the confinement is tight in the transverse direction and weaker

in the longitudinal direction, as the transverse dimension of the BEC (on the scale

of transverse harmonic length lr ≡
√
~/(mΩ), where r2 = x2 + y2) is much smaller

than the longitudinal dimension, which is on the scale of longitudinal harmonic length

lz ≡
√

~/(mΩz). This generates a cigar-shaped BEC [5].

We separate the wave function into a longitudinal component and a transverse

component:

Ψ(r, t) = ψ(z, t)Φ(r, t), (2.13)

where Φ(r, t) = R(r)e−iγt, and γ represents the chemical potential in the transverse

direction. Substituting this into Equation (2.5), we see that R(r) and γ should satisfy

− ~2

2m
∇2

rR− 1

2
mΩ2r2R + γR = 0, (2.14)

where ∇2
r = ∂2/∂x2 + ∂2/∂y2.

Suppose the transverse function stays in its ground state under the strong confine-

ment; we can then solve for R(r) to obtain R(r) = π− 1
2 l−1

r exp(−r2/2l2r). Substituting
this into Equation (2.13), multiplying by the complex conjugate of R(r), and inte-

grating with respect to r, we reach the 1D GP equation:

i~
∂

∂t
ψ(z, t) =

(
− ~2

2m

∂2

∂z2
+ V1D(z) + g1D|ψ(z, t)|2

)
ψ(z, t), (2.15)

where the coefficients of the 1D equation are given by g1D = g/(2πl2r) and V1D(z) =

(1/2)mΩ2
zz

2. For convenience, we will denote g1D and V1D(z) as g and V (z) in the

rest of the thesis.

It is worth noting that this quasi-1D equation is obtained by averaging a 3D

equation over the transverse plane. In contrast, a genuine 1D equation is derived

8



from a 1D setting. Also, similarly techniques can be applied to get the same quasi 1D

approximation if the external potential is of a different form and get the same form

(for instance, using V (z) = V0 cos
2(kz) in case of an optical lattice). In the 1D BEC,

the harmonic oscillator length is lho =
√

~/(mΩh0), and the effective healing length

becomes ξ = ~/√n0g1Dm where n0 is the reduced 1D density [2].

By nondimensionalising z, µ, and t with ξ, g1Dn0, and ξ/c, where c is the speed

of light, we arrive at the dimensionless 1D GP equation:

i
∂

∂t
ψ(z, t) =

(
−1

2

∂2

∂z2
+ V (z) + g|ψ(z, t)|2

)
ψ(z, t). (2.16)

2.2 Analysis of GP operator in the linear limit

One of the main thrusts in theoretical studies of BECs is the investigation of the

existence and stability of certain wave solutions. A wave solution needs to persist for

a certain amount of time before experimentalists are able to observe it. There are

two major techniques in studying the stability: one is examine bifurcations from the

underlying linear Schrödinger problem and the other is to start from the nonlinear

limit and examine the system as a perturbed Hamiltonian system [2]. In this section,

we show how to examine the stability of wave solutions from the linear Schrödinger

equation. To do this, we need to review the linear limit of the GP operator, first in

the presence of a harmonic field, and then in the superposition of a harmonic field and

a periodic field. After this, we will use Lyapunov-Schmidt (LS) theory to examine

the nonlinear wave solutions bifurcating from the linear limit.

2.2.1 Spectrum of linear Schrödinger operator

Our interests in the project lie primarily in a single magnetic trap setting. However

the analysis of linear operator of the setting is quite similar to the linear operator in

the presence of both a harmonic trap and a periodic optical lattice. We thus present

the result from [10]. In such a setting, the governing GP equation is written as

iψt = −1

2
ψzz − ψ + g |ψ|2 ψ +

(
1

2
Ω2z2 + εp(z + ζ)

)
ψ, (2.17)

where 1
2
Ω2z2 is the magnetic field, and εp(z + ζ) is a periodic optical trap of small

magnitude with period L and a displacement ζ relative to the magnetic trap.

By making the transformations,

x̃ := Ω1/2x, ζ̃ := Ω1/2ζ, t̃ := Ωt, ψ̃ = Ω1/2ψ, (2.18)

9



and dropping hats, we get the dimensionless equation

iψt = −1

2
ψzz + g |ψ|2 ψ +

[
1

2
z2 +

ε

Ω
p

(
z + ζ

Ω1/2

)]
ψ. (2.19)

The underlying linear operator is

L := −1

2
∂2z +

1

2
z2 +

ε

Ω
p

(
z + ζ

Ω1/2

)
. (2.20)

It is known that L has a discrete spectrum with simple eigenvalues and associated

eigenfunctions form a complete orthonormal basis [10]. Using perturbation theory it

is shown in [10] that when |ε/Ω| � 1, the eigenvalues satisfy

Πj =
1

2
+ j +Πη

jη +O(η2), (2.21)

where

Πη
j = cos

(
2ζ

Ω1/2

)
e−1/Ω

j∑
m=0

(−1)m
2m

m!

(
j
m

)
Ω−m, j ∈ N ∪ {0}; (2.22)

In a simpler case when only the harmonic potential is considered, the underlying

linear operator is just that of a single particle in a harmonic potential,

L := −1

2
∂2z +

1

2
z2, (2.23)

whose spectrum is well-known and has closed form expression [10]

σ(L) =
{
Π0

j : Π
0
j :=

1

2
+ j, j ∈ N ∪ {0}

}
, (2.24)

with corresponding eigenfunctions

sj(z) = cjHj(z)e
−x2

2 , Hj(z) = (−1)jez
2 dj

dzj

(
e−z2

)
, cj =

(
2jj!

√
π
)− 1

2 , (2.25)

where Hj(z) are Hermite polynomials.

2.2.2 Nonlinear waves bifurcating from the linear limit

Now we include the cubic term in the GP equation and examine the stability of the

nonlinear waves bifurcating from the linear standing waves using Lyapunov-Schmidt

theory (see [7, 11] for detailed illustrations). The problem we are considering now

becomes

Lψ = gψ3, (2.26)
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and we note that so far we are only dealing with constant nonlinearity coefficient g.

Knowing that the linear operator L has a discrete eigenvalue spectrum, we consider

a bifurcation at Π = Πn, set ∆Π = Π − Πn, and with the bifurcating solution as

Ψn(z) = εψn(z) +O(ε2) for 0 < ε� 1. The so-called ‘bifurcation function’ is

b(ε,∆Π) := −εΠ− g〈ψ2
n, ψ

2
n〉ε3. (2.27)

The bifurcating nonlinear waves are determined using zeros of the bifurcating

function. To have a non-trivial solution, we need g∆Π < 0. So we can find nonlinear

waves bifurcating from the reference states of linear standing waves as long as the

relation g∆Π < 0 is satisfied.

2.3 Model of a Bose-Einstein condensate with spa-

tially and temporally modulated nonlinearity

We mentioned in Chapter 1 that in this dissertation, we consider the case when g is

modulated both spatially and temporally:

i
∂

∂t
ψ(z, t) =

(
−1

2

∂2

∂z2
+ V (z) + g(z, t)|ψ(z, t)|2

)
ψ(z, t) (2.28)

We will first study the stationary solution in a nonlinear lattice, in which g(z, t) is

periodic in z. In this case, we are only concerned with the stable stage after turning

on the Feshbach Resonance , and hence only consider a spatial variation g = g(z).

We then need to model the effect of the nonlinear lattice with a function depending

on z, denoting as ∆g(z), and the nonlinearity coefficient in studying the steady state

stationary solutions is

g(z) = g0 +∆g(z), (2.29)

where g0 = 1 for repulsive BECs and g0 = −1 for attractive BECs, and the spatially

varying part of the nonlinear lattice can be either aligned and misaligned:

∆g(z) =

{
± V1

1+V2 sin(kz+π/2)
aligned,

± V1

1+V2 sin(kz)
misaligned.

(2.30)

where + is for repulsive BECs and − for attractive BECs, V1 ∈ [0, 1] is the magnitude

of the disturbance, V2 ∈ [0, 1) modulates the shape of the lattice as it is approximately

sinusoidal when V2 � 1 and becomes spike-like as V2 increases close to 1, and k

denotes the periodicity of the lattice. We include the sign explicitly in order that
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we can keep V1 and V2 positive in studying both bright solitons and dark solitons.

Furthermore, we consider two different configurations of the spatial modulation: one

is the minimum in a lattice period overlapping the bottom of harmonic potential

(referred to as an aligned lattice), and the second is when there is a π/2 displacement

between the two minima (referred to as a misaligned lattice). The model is the most

simplified version to describe realistic nonlinear lattice in laboratory.

Previous studies of BECs in nonlinear lattice have concentrated on a pure spatial

modulation. In this dissertation we consider the realistic situation of turning on of the

Feshbach Resonance and introduce a temporal modulation T (t). In examining the

dynamics, we begin with a spatially uniform nonlinearity coefficient g0, and study

the temporal evolution of the system with the nonlinear lattice turned on. The

nonlinearity coefficient is then:

g(z, t) = g0 +∆g(z)T (t), (2.31)

with temporal model T (t) defined as

T (t) =
1

2

(
1 + tanh

(
t− t0
τ

))
, (2.32)

where t0 denotes the time when Feshbach resonance is turned on. If t0 is set to a

positive value, T (t) is 0 initially and reaches 1 when t is large enough. The transition

time is determined by τ . In this way, we model the nonlinearity coefficient chang-

ing from an initial value of g0 to a final value of g0 + ∆g(z), as ∆gs(z) represents

modulation introduced by the Feshbach resonance. A very small τ describes a fast

turning on, and a large τ describes a gradual one. Both of them can be implemented

experimentally.

The temporal model (2.32) and spatial model (2.30) are plotted in Figure 2.1. In

panel a, black curves represent the aligned lattice and red curves shows the misaligned

lattice. The displacement of the misaligned lattice from the origin (which is at the

minimum of the harmonic potential) is easily identified. One can also see that the

curve with V2 = 0.1 has different shape from that with V2 = 0.9, so V2 is called

the ‘shape- tuning’ parameter. Also note that with the same V1 = 0.1, the solid

black curve (with V2 =0.9) has a much larger peak value than the dashed black

curve (with V2 =0.1). This occurs because when V1 and V2 is fixed, ∆g(z) oscillates

between ± V1

1−V2
and ± V1

1+V2
, so the peak value also depends on V2. Panel (b) shows

the temporal modulation, revealing a transition from 0 to 1. τ = 0.1 gives almost

immediate transition from 0 to 1, and τ = 10 gives a much longer transition time.

12
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Figure 2.1: A model of spatially and temporally controlled g(z, t).

Note that though it is possible to tune the scattering length from positive to

negative using Feshbach resonance, in this dissertation we keep its sign unchanged.

Otherwise the GP equation would be insufficient to describe the mean-field dynamics

[19]. The spatial modulation ∆g(z) does not cross zero at all time that in this

dissertation, and we use V1 ∈ [0, 1], V2 ∈ [0, 1) and k ∈ [0, 20]. (In studying dark

solitons in an misaligned lattice, k only ranges between 0 and 15).
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Chapter 3

Solitary waves in BECs and their
linear stability

3.1 Solitary waves: a brief introduction

In Chapter 1, we mentioned that BECs supports the existence of various soliton so-

lutions. Strictly speaking, we should call them ‘solitary waves’, as soliton refers to

the solution of a completely integrable system, while inclusion of either external po-

tential or spatially varying nonlinear coefficient in our model makes it nonintegrable.

However, the term ‘soliton’ is used widely for all localized wave solution in BECs [23],

so in this thesis we use the terms ‘soliton’ and ‘solitary waves’ without distinction.

A solitary wave is one typical nonlinear wave that arises in systems governed

by weakly nonlinear dispersive partial differential equations. In addition to NLS

equations, there are also solitary solutions to the Korteweg-de Vries equation, the

sine-Gordon equation, and other nonlinear partial differential equations. A soliton

is a solitary wave that retains its shape when travelling at constant speed and can

interact with other solitary waves and emerge from the collision without changing

shape except for a phase shift. In this sense they behave like particles and is hence

called ‘solitons’ [24].

Recalling our knowledge of waves, two key parameters in describing a wave in-

clude wave number and angular frequency. For a simple travelling plane wave, angular

frequency does not depends on wave number, so components of different angular fre-

quency travels at the same speed and the wave shape therefore does not change during

propagation [16]. For a dispersive system, however, angular frequency is dependent

on wave number, so the wave changes its shape as it travels. When nonlinear effects

are taken into consideration, one can see intuitively that if nonlinear and dispersive
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effects balance each other, the wave might propagate without shape deformation.

Solitary wave arises when such a condition is satisfied [5].

3.2 Solitary waves in BECs

In Chapter 2 we claimed the existence of nonlinear wave solutions in a BEC. In

this section, we first return to the 1D GP equation and identify soliton solutions.

In searching for such localised waves, we suppose that we are considering a large

enough region and set the boundary condition that both the wave function and its

first derivative vanish at boundaries for bright soliton solutions. In finding a dark

soliton solution, the boundary condition is that the wave function reaches a constant

background value at boundaries while its first derivative vanishes [2].

3.2.1 Bright Solitons: attractive interaction

Here we show the basic steps in finding a closed-form soliton solution for attrac-

tive BECs (g = −1) in the absence of external potential [14]. Note that constant

nonlinearity coefficient and zero external potential is a very strong requirement and

closed-form solutions are not possible in most cases, so approaches like perturba-

tive methods, variational methods, or other methods need to be adopted in finding

analytical solutions in more complicated situations.

Starting from Equation (2.16), we search for a stationary wave solution ψ(z, t) =

u(z)e−iµt where u(z) is a real function and µ is the chemical potential of the system.

Substituting into Equation (2.16) gives

1

2
uzz + µu+ u3 = 0. (3.1)

Multiplying each term by uz, integrating, given the boundary condition of u = 0, uz =

0 as z → ±∞, and rearranging gives,∫
du

u
√

2µ+ u2
=

∫
dz. (3.2)

We let η2 = −2µ > 0, apply the transformation u = ηsech θ, and utilize properties of

hyperbolic functions to obtain

z =
θ − θ0
η

, (3.3)
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where θ0 is an arbitrary value, so the location of the soliton centre is free. By trans-

forming back to the original variable, we obtain a standard bright soliton solution:

u(z) = ηsech [η(z − z0)]e
−iµt, (3.4)

where η is the amplitude of the soliton, which is also inversely proportional to the

soliton width. Chemical potential of bright soliton satisfies µ < 0.

In the presence of a magnetic trap, bright soliton solution does not have a closed

form. In Figure (3.1), we plot two bright soliton solutions with the magnetic trap

V = 1
4
z2 in a region z ∈ [−100, 100] with µ = −10 and µ = −100, respectively.

We can see that the wave function is normalised to the number of atoms. Observe

that in the presence of the external potential, the one with larger µ (in magnitude)

extends over a wider range than the one with smaller µ (in magnitude). In contrast,

without the external trap, the one with µ = −10 should be wider. Here the solution is

obtained numerically. However, an approximate analytical expression can be sought

with similar format to Equation (3.4) with variational method [2]. We will come back

to this point in the next chapter.
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Figure 3.1: Stationary bright solitons in a BEC with a magnetic trap and g = −1.

3.2.2 Dark Solitons: repulsive interactions

Dark soliton solutions can arise in attractive BECs when the scattering length (and

hence the nonlinearity coefficient) is positive. We seek a stationary solution φ(z, t) =

u(z)e−iµt, for which u needs to satisfy

1

2
uzz + µu− u3 = 0. (3.5)

Using the same procedure as in Section 3.2.1, we find that the exact dark soliton

solution in the absence of an external confining potential is

ψ(z, t) = η tanh [η(z − z0)] e
−iµt, (3.6)
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where µ = η2. Chemical potential of dark soliton satisfies µ > 0.

Observing that the solution approaches η asymptotically as z → ±∞, one can

think of the solution as representing a deficit of condensate against a non-zero bulk

value η.

In the presence of non-zero external potential, the situation is a bit different from

that of a bright soliton in that when searching for a travelling wave solution, we need

to find the travelling soliton on top of a static background. In other words, we seek the

solution in the form of φ(z, t) = v(z) exp(−iµt)u(z, t), where v(z) is the background

wave function and the new unknown function u(z, t) represents the dark soliton [2].

In Figure 3.2 we plot two dark solitons with a magnetic trap V (z) = 1
4
z2, with

µ = 10 and µ = 100 respectively. Note that in the dissertation we compute soliton

solutions in the region z ∈ [−100, 100] but sometimes only present the figure in a

smaller region.
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Figure 3.2: Stationary dark solitons in a BEC with a magnetic trap and g = 1.

3.3 Linear stability - BdG equation

A major task in studying nonlinear waves in BECs is to examine their stability. In

this section, we introduce the Bogoliubov-de Gennes (BdG) equations as a means to

determine the linear stability of a nonlinear wave solution.

To study the stability of small-amplitude excitations around a reference state,

we linearise around the reference state and derive the BdG equation. First, we seek

solutions of the forms

ψ(z, t) = ψ0(z, t) + δψ(z, t), (3.7)

where δψ(z, t) is the small-amplitude excitation from the reference solution ψ0(z, t).

By substituting ψ(z, t) into (2.16), we obtain

i
∂

∂t
(ψ0 + δψ) =

(
−1

2

∂2

∂z2
+ V (z) + g(z, t)|ψ0 + δψ|2

)
(ψ0 + δψ) . (3.8)
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Note that |ψ(z, t)|2 = [ψ0(z, t) + δψ(z, t)] [ψ∗
0(z, t) + δψ∗(z, t)], we have at O(1) that

i
∂

∂t
ψ0 =

(
−1

2

∂2

∂z2
+ V (z) + g|ψ0|2

)
ψ0. (3.9)

At O(δψ), we obtain

i
∂

∂t
δψ =

(
−1

2

∂2

∂z2
+ V (z) + 2g|ψ0|2

)
δψ + gψ2

0δψ
∗. (3.10)

Writing out the reference state as ψ0(z, t) = u(z)e−iµt, where u(z) is the solution

of the stationary 1D GP equation, we obtain

−1

2

d2

dz2
u(z)− µu(z) + V (z)u(z) + g|u(z)|2u(z) = 0. (3.11)

Perturb with δψ(z, t) = e−iµt
∑

j[pj(z)e
−iωjt + q∗j (z)e

iωjt], where pj(z), qj(z) are small

perturbations describing the condensate’s linear response to the external perturba-

tions that oscillate at frequencies ±ωj. All pj, qj and ωj are generally complex. We

obtain the coupled equations for pj(z), qj(z):

ωjpj(z) =

(
−1

2

d2

dz2
+ V (z)− µ+ 2gu2(z)

)
pj(z) + gu2(z)qj(z), (3.12)

−ωjqj(z) =

(
−1

2

d2

dz2
+ V (z)− µ+ 2gu2(z)

)
qj(z) + gu2(z)pj(z). (3.13)

Equations (3.12) and (3.13) together constitute the Bogoliubov-de Gennes (BdG)

equations, which can also be derived using a purely quantum-mechanical approach

[19]. Its solutions provide the frequency of elementary excitations of the system and

a mens to determine the stability of the ground solution. If ωj has positive imaginary

part, then any small perturbation to the ground state solution grows exponentially.

Otherwise, the perturbation will not grow. We will examine the stability numerically,

using the reference state u(z) obtained from Newtonian iterative solution of the sta-

tionary GP equation. We then use the Matlab command eigs to find its eigenvalues,

which uses the Arnoldi method.

3.4 Stationary solitary waves

In this section we present numerical solutions to the stationary GP Equation (3.11).

I obtained this with Newton iteration. For each solution, its stability eigenvalues are
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calculated from BdG equations (3.12) and (3.13). As a reminder, here we look into

spatially varying nonlinear coefficient in the form:

g(z) = g0 +∆g(z), ∆g(z) =

{
± V1

1+V2 sin(kz+π/2)
aligned,

± V1

1+V2 sin(kz)
misaligned.

(3.14)

In attractive BECs, g0 = −1 and ∆g(z) takes the negative sign, while in repulsive

BEC g0 = 1 and ∆g(z) takes the positive sign.

3.4.1 Stationary bright solitons

We now discuss bright solitons in BECs In a magnetic trap and in both aligned and

misaligned nonlinear lattice. Recall that by ‘aligned’, we mean that the minimum

of the magnetic potential overlaps with a local minimum of the nonlinear periodic

lattice.

In Figure 3.3 we show bright solitons in the presence of a nonlinear lattice with

small magnitude and set parameters as µ = −100, V1 = 0.1, V2 = 0.5, k = 1.

The magnetic trap is V (z) = (1/4)z2. The upper row is with an aligned lattice

and lower row is with a misaligned lattice. The left panel shows atom density in

position space, the middle panel shows atom density in momentum space, and the

right panel shows the corresponding stability eigenvalues. The harmonic potential

and the nonlinear lattice are also plotted in grey in the left panel. As can be seen,

the peak value of ∆g(z) is smaller than 0.2 and appears sinusoidal. With such small

disturbance, solitons in both situations are confined in the region where |µ| > V (z).

In the aligned case, in which both the harmonic potential and nonlinearity coefficient

g(z) are symmetric, the obtained soliton is symmetric. In contrast, the soliton with

the asymmetric g(z, t) loses the symmetry. In momentum space the density displays

a sharp spike around k = 0, suggesting a large number of atoms with the same speed.

The stability eigenvalues are real in both cases, indicating that both of them are

stable. We always show results in both position space and momentum space, as this

is how BECs are observed and recorded in laboratories.
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Figure 3.3: Stable bright solitons and their stability eigenvalues.

We have calculated stability eigenvalues of the bright solitons with parameters in

the range V1 ∈ [0, 1], V2 ∈ [0, 0.95], k ∈ [0, 20] and under a harmonic potential V (z) =

(1/4)z2. We calculated the stability eigenvalue with different V1, V2, k and have not

found any eigenvalues with non-zero imaginary part. The maximum magnitude of its

contribution to the nonlinearity coefficient is V1

1−V2
, which reaches as large as 20 when

V1 = 1 and V2 = 0.95. It seems that bright solitons in BECs with our model of the

spatially modulated nonlinearity coefficient are always stable, despite the fact that

the nonlinearity coefficient can be very large.

3.4.2 Stationary dark solitons

Now we present properties of dark solitons that we have found in both aligned and

misaligned lattices. We examine the two lattices separately, as dark solitons behave

differently in the two cases.

3.4.2.1 Stationary dark solitons in an aligned lattice

Compared to the bright solitons that we discussed in Section 3.4.1 that are always

stable, dark solitons in both aligned and misaligned lattice can be either stable or

unstable depending on the lattice parameters. Furthermore, in the aligned nonlinear

lattice, unstable dark solitons have two different configuration of stability eigenvalues,

one is with purely imaginary eigenvalues, and the other with a quadruplet of four

eigenvalues with non-zero imaginary parts. We show the three different dark solitons

in Figure 3.4. In sequence, we depict stable dark solitons (top row), unstable dark
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solitons with pure imaginary stability eigenvalues (middle row), and unstable dark

solitons with a quadruplet of complex stability eigenvalues (bottom row).

As in Figure 3.3, the right, middle, and left panels show the density in spatial

space, density in momentum space, and stability eigenvalues, respectively. Parameters

in the upper row are V1 = 0.2, V2 = 0.5, and k = 1; those in the middle row are

V1 = 0.5, V2 = 0.5, and k = 1; and those in the lower row are V1 = 0.8, V2 = 0.5,

k = 2. All three dark soliton solutions are with µ = 100. Again the dark solitons

are confined in the magnetic trap when chemical potential exceeds the trap potential,

and all three dark solitons are symmetric. In both position space and momentum

space, the wave density is zero at the origin, with two symmetric maxima at each

side and close to the origin. In addition to the two largest maxima, there are several

local maxima in both position space and momentum space. When k increases, the

local maximum in momentum space is located at a larger value.
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Figure 3.4: Dark solitons and their stability eigenvalues in an aligned lattice.
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3.4.2.2 Stationary dark solitons in a misaligned lattice

In the presence of a misaligned nonlinear lattice, we find both stable and unstable

dark solitons. In contrast to the aligned case in which unstable dark solitons can have

either pure imaginary eigenvalues or a complex quadruplet of eigenvalues, in this case

we have only identified unstable solitons with pure imaginary stability eigenvalues.

This suggests a different bifurcation type from the aligned case, which we will discuss

in the next chapter.

The organisation of Figure 3.5 is the same as in Figure 3.4 and Figure 3.3. The

upper row depicts a stable dark soliton and the lower row depicts an unstable dark

soliton. The Parameters for the stable dark soliton are V1 = 0.5, V2 = 0.2, and

k = 0.5 and for the unstable dark soliton they are V1 = 0.1, V2 = 0.5, and k2 = 1. In

both the stable and unstable cases, the density always take non-zero values in either

position space or momentum space, suggesting that we will not observe a complete

‘darkness’. Furthermore, in both cases the maxima in position space are located at

x > 0 and minimum at x < 0, but still very close to the origin. The origin is neither

a maximum or a minimum, and the wave function is asymmetric. The density in

momentum space is still symmetric, as Fourier transform of a real function is always

even. However, in the upper row k = 0 is a maximum and in the lower row k = 0 is

a minimum.
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Figure 3.5: Dark solitons and their stability eigenvalues in a misaligned nonlinear
lattice.
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3.5 Temporal evolution of solitary waves with a

static nonlinear lattice

In this section, we examine the temporal evolution of solitons in a static nonlinear

lattice, so g(z) is g0 +∆g(z), with ∆g(z) defined in Equation (2.30).

3.5.1 Temporal evolution of bright solitons

In this section we present the temporal evolution of a typical stable bright soliton in a

BEC in an aligned lattice and choose the parameters as in top panel of Figure 3.3. We

show the evolution of the bright soliton up to t = 1000 in Figure 3.6. The left upper

panel shows the spatio-temporal evolution of |u(z, t)2| by a coloured contour plot, and

the lower left panel shows the spatio-temporal evolution in momentum space. The

right panels show the spatial profile of |u(z, t)|2 at four values of time (t = 0, 200,

500, and 1000). This bright soliton is stable up to t = 1000.
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Figure 3.6: Temporal evolution of a stable bright soliton in an aligned lattice.

Though evolution of the stable soliton in a misaligned lattice is not presented, we

have confirmed with computation that it is stable up to t = 1000.

23



3.5.2 Temporal evolution of dark solitons

3.5.2.1 Temporal evolution of dark solitons under an aligned lattice

In showing the temporal evolution of a stable dark soliton in an aligned lattice in

Figure 3.7, we choose the same parameters as the upper row in Figure 3.4, except

that the temporal evolution is plotted with µ = 10. Before carrying out calculation

with the new parameters, we have tested its stability eigenvalues and made sure they

are all real. Organisation of Figure 3.7 is the same as in Figure 3.6. It is confirmed

by the computation that this dark soliton is stable up to t = 1000 in both spatial

space and momentum space.
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Figure 3.7: Evolution of a stable dark soliton in an aligned lattice.

In Figure 3.8, we present the time evolution of an unstable dark soliton in an

aligned lattice with parameters V1 = 0.5, V2 = 0.5, k = 1 and µ = 10. One can

see from the spatio-temporal evolution in real space (upper left), evolution in Fourier

space (upper right), and the density profiles at t = 0, 200, 500, and 1000 that the

dark soliton breaks up around t = 300. The initially zero density at the centre of real

space and momentum space is finally lost.
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Figure 3.8: Temporal evolution of an unstable dark soliton in an aligned lattice.

3.5.2.2 Temporal evolution of dark solitons under a misaligned lattice

In Figure 3.9, parameters are V1 = 0.2, V2 = 0.5, k = 2 and µ = 10. It is observed

that instability happens at an early stage. We can see that after the lost of stability,

the centre of dark soliton begins to oscillate at around t = 25, and disappears at

around t = 250. We have confirmed in our calculations that the starting of instability

is related to the magnitude of the largest imaginary eigenvalue. The larger the largest

imaginary eigenvalue, the earlier stability is lost.

We have also confirmed that dark solitons in lower row of Figure 3.5 are dynami-

cally stable through the evolution figure but do not present the figures here.
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Figure 3.9: Evolution of an unstable dark soliton in a misaligned lattice.
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Chapter 4

Stability of solitary waves

In Section 3.4, we found various stationary soliton solutions and examined their linear

stability by computing eigenvalues through BdG equation. We also identified typical

configurations of these eigenvalues. We found that bright solitons in both aligned and

misaligned lattice are always stable within our parameter range. However, dark soli-

tons could be either stable or unstable. While all unstable dark solitons with aligned

nonlinear lattice are with imaginary stability eigenvalues, those with aligned nonlinear

lattice are with both imaginary stability eigenvalues and quadruplet eigenvalues.

In this chapter, we aim to quantify the stability of different soliton solutions in a

large range of parameter values through numerical simulation. However, correspond-

ing theory to explain what we have observed is largely undeveloped, though in some

cases there have been some perturbative analysis [9]. We present some analysis to

corroborate our numerical results under appropriate conditions [2]. Meanwhile, we

hope that our results will assist future development of the theory in this field.

4.1 Stability of a Hamiltonian flow

To better understand the several configurations of eigenvalues we have seen in Section

3.4, we present some basic theory in Hamiltonian system [15]. A Hamiltonian flow is

written as

ż = J ·DHz (4.1)

where ż denotes the derivative of z with respect to time and DHz is the Jacobian of

H at z, and

J =

(
0 I
−I 0

)
(4.2)
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so that J2 = −I.

The motion near the equilibrium z0 is then

δż = Lδz, (4.3)

where δz = z − z0, L = J · D2H is the linearisation, and D2H is the Hessian matrix

of second derivatives. D2H is symmetric, so L is Hamiltonian.

If σ is an eigenvalue of L, then −σ, σ∗, −σ∗ are all eigenvalues of the system

(though not necessarily distinct), as J · L, L∗, J · L∗ have eigenvalues −σ, σ∗, and

−σ∗ respectively [15]. As a result, eigenvalues of a Hamiltonian flow always occur

in pairs, including nonzero pure imaginary pairs, nonzero pure real pairs, nonzero

complex quadruplets, and zero (of even multiplicity).

It is also stated in [15] that if all eigenvalues of an equilibrium z0 of a Hamiltonian

system with Hamiltonian H are pure imaginary and non-zero, and [15]|Iσ is definite

for each eigenvalue σ, then z0 is linearly stable. When parameters vary, this equilib-

rium can lose spectral stability only by collision of eigenvalues for which D2H|Iσ has

opposite signature. That is, for such a such a system to be stable, every equilibrium

must have eigenvalues that are either zero or pure imaginary.

Consider a Hamiltonian that depends smoothly on a parameter so that its eigen-

values vary continuously with the parameter. Imagine a pair of pure eigenvalues

moving along the imaginary axis and meeting at the origin. If they pass each other

and continue moving along the imaginary axes, the stability of the system is pre-

served; if the two collide into each other and generate a new eigenvalue quadruplet

onto the complex plane, then the stability of the system is lost. This collision gives

rise to a Hamiltonian-Hopf bifurcation [8].

Whether or not a Hamiltonian-Hopf bifurcation happens can be determined through

the Krein signature. The Krein signature of a pure imaginary eigenvalue σn with cor-

responding eigenvector ζn is defined as:

Kn := sign(ζTk JLζk). (4.4)

Krein’s Theorem says that the when two eigenvalues with the same Krein signature

meet, they remain on the imaginary axis. If two eigenvalues with opposite Krein

signature meet, the collision might happen and the system would lose its stability.

Krein theorem is derived from ODE systems. However, in the book [15] it is

stated that an infinite-dimensional Hamiltonian system can be decomposed into finite-

dimensional blocks. The reduction explains that in our PDE system, only a small

number of eigenvalues are controlling. While there are other eigenvalues exist, they
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do not contribute. Hence the Krein’s theory is applicable to our situation. We check

our results in Section 3.4, where we have observed both pure real eigenvalues pair and

complex quadruplet. Now we have calculated corresponding Krein signatures before

and after different instability type happens, and we confirm that the results agree

with Krein’s theorem.

4.2 Effect of the nonlinear lattice on stability: com-

putational results

In Chapter 3, our numerical results suggested that bright solitons in both aligned and

misaligned nonlinear lattices are always stable, hence in this section we only discuss

the stability of dark solitons.

4.2.1 Stability of solitons in an aligned nonlinear lattice

In the aligned nonlinear lattice, we have observed both pure real unstable eigenvalues

and complex quadruplet eigenvalues. To examine the stability of dark solitons in

an aligned nonlinear lattice, we record the maximum imaginary part of stability

eigenvalues with different combinations of V1, V2, and k, where V1 ranges from 0 to 1,

V2 ranges from 0 to 0.95, and k ranges from 0 to 15. Figure 4.1 shows the dependence

of maximum imaginary eigenvalues on V1 and V2 for different k. We see that there

is no monotonic dependence of the stability eigenvalues on the three parameters. In

the medium k region (corresponding to figures 4.1(b)-4.1(f)), one can observe the

dramatic change of the stability region with varying k. When k is small i.e. below

0.6, the maximum imaginary part of stability eigenvalues never exceeds the stability

criterion 10−3 and the corresponding dark solitons are always stable. When k is

relatively large i.e. k > 7, the dependence of maximum imaginary eigenvalues does

not change dramatically. Figure 4.1(g) is plotted with k = 7 and shows that dark

solitons are stable with smaller V1 and V2 but become unstable as one increases either

V1 or V2. The trend of increased maximum imaginary part with increasing V1 and V2

suggests a stronger instability with larger ∆g.

To see a general trend of eigenvalues with respect to k, in Figure 4.2 we fix V1

and V2 and plot the maximum imaginary values with k varying between 0 and 15.

We plot each figure in upper panels using a fixed V1, and we compare the maximum

imaginary eigenvalue’s dependence on k under different V2. In the large k regime, one

can observe larger stability eigenvalues with larger V1 or V2. When k is larger than

7, dark solitons tend to be unstable unless when V2 is very small (see the V2 = 0.05

29



0

0.5

0.95 0
0.5

1

0

0.05

0.1

V
1

k=0.60

V
2

m
ax

im
um

 ω
i

(a) k = 0.6

0

0.5

0.95 0
0.5

1

0

0.1

0.2

V
1

k=0.80

V
2

m
ax

im
um

 ω
i

(b) k = 0.8

0

0.5
0.95 0

0.5

10

0.1

0.2

V
1

k=1.60

V
2

m
ax

im
um

 ω
i

(c) k = 1.6

0

0.5

0.95 0
0.5

1
0

0.1

0.2

V
1

k=1.80

V
2

m
ax

im
um

 ω
i

(d) k = 1.8

0
0.5

0.95 0

0.5

1

0

0.2

0.4

V
1

k=3.60

V
2

m
ax

im
um

 ω
i

(e) k = 3.6

0
0.5

0.95 0
0.5

1
0

0.5

1

1.5

V
1

k=7.00

V
2

m
ax

im
um

 ω
i

(f) k = 7.0

Figure 4.1: Maximum imaginary part of stability eigenvalues of dark solitons with
aligned lattice.

curves in figures 4.3(a)-4.3(c)), or with a very small V1 (0.05) and relatively small V2

(0.05−0.5), as suggested in the V2 = 0.05, 0.25, and 0.5 curves in Figure 4.2(a). Recall

that k represents the lattice periodicity, V1 represents the amplitude of the nonlinear

lattice, and V2 represents the tuning of the lattice shape, with small V2 yielding a

shape similar to a sinusoid and a V2 close to unity yielding a periodic sequence of

sharp spikes. This suggests that if an aligned nonlinear lattice with very small spatial

periodicity is created experimentally, stable dark solitons can be observed only when

the magnitude of the lattice is small or when the shape of lattice is approximately

sinusoidal.

We plot the lower panels in Figure 4.2 with a fixed V1, and we compare the

maximum imaginary eigenvalue’s dependence on k for different V2. We find similar

conclusions as in the top row of figures, except for two points. One is in figure

4.2(e) with V2 = 0.05, corresponding to an approximately sinusoidal lattice, when

dark solitons are stable with larger k but exhibit instability with smaller k when V1 is

above 0.25. This is one of few cases when dark solitons can stay stable for large k. The

other is in figure 4.2(g), where V2 = 0.95 gives a lattice with repeated shape spikes.

In such a situation, dark solitons are unstable for large k even when the magnitude
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V1 is as small as 0.05. This reveals that dark solitons in an aligned nonlinear lattice

featuring densely spaced sharp spikes (hence large k) are always unstable, regardless

of the magnitude of the spikes.
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(f) V2 = 0.95

Figure 4.2: Maximum imaginary part of stability eigenvalues of dark solitons in
aligned lattice with fixed V1.

To further investigate how Figure 4.2(e) evolves into Figure 4.2(f), we present the

dependence of eigenvalues on k with intermediate V2 values in Figure 4.3, where V2

takes 0.05, 0.15, and 0.35 each. In Figure 4.3(a), V2 is the same as in Figure 4.2(e),

but with more curves with different V1 plotted. we confirm the instability in small k

regime if V1 is beyond a certain value, as we have discussed with 4.2(e). In Figure

4.3(a) this critical value for V1 is determined to be 0.15. Dark solitons are always

stable with V2 = 0.05 and with varying k if V1 is below or equal to this critical value.

When V2 increases, the stability with V2 < 0.15 at smaller k region breaks up and

instability at larger k develops, as we can spot in Figure 4.3(b) and 4.3(c).

Now our results explains how the stability is affected by varying k with different

values of V1 and V2. However, as we have noticed from Figure 4.1 that in the smaller

k regime, the situation is very complicated. We illustrate some of our findings in this

medium k regime. To show this we plot Figure 4.4 using a constant V1 = 0.75. It
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Figure 4.3: Maximum imaginary part of stability eigenvalues of dark solitons in
aligned lattice with small V2.

shows the maximum imaginary stability eigenvalues’ dependence on V2 for different

k. The upper panels show various configurations of the stable region (with respect

to V2) for specific k. Each figure of the lower panel is complementary to the one on

top of it, with each k being 0.2 smaller than its top panel counterpart. The specific

value of k is chosen that the stability region follows different patterns between the

top panel figure and its lower panel counterpart. Hence one can see what happens

with a relatively small change of k when bifurcation happens. In Figure 4.4(a) with

k = 0.8, (and remember V1 = 0.75), the positive maximum imaginary eigenvalues

at V2 ∈ (0.1, 0.9) suggests an unstable region in this region. In comparison, Figure

4.4(e) shows that when k is 0.6 (and V1 = 0.75), black solitons are always stable,

irrespective of V2. By comparing figure 4.4(a) and 4.4(b) we see that if V2 is chosen

a value in the unstable region of Figure4.4, corresponding dark solitons are initially

unstable, but they would turn stable if k decreases from 0.8 to 0.6 (with V1 = 0.75).

We can interpret the rest figures of Figure 4.4 in the same way. Furthermore, if we

term each unstable region with respect to V2 as an instability ‘window’, the number

and location of such windows are important in understanding the stability behaviour.

By counting the number of instability windows in each figure, we see a clear change

of the structure of stable regions. For instance, in the upper panels, from left to right,

the number of instability windows is 1, 2, 3, and 2, respectively. In contrast, in the

bottom panels, we observe 0, 1, 2, and 3 windows from left to right.

We observe similar ‘window’ structures with respect to V1, when V2 and k are

fixed. We plot such windows with V2 = 0.75 in Figure 4.5. The organisation is similar

to Figure 4.4. Note that the location of the instability windows is as important in

describing the stability as the number of windows. If we compare Figure 4.5(a) and

4.5(b), we would find that although we have one instability window in both figures,
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Figure 4.4: Maximum imaginary part of stability eigenvalues of dark solitons in an
aligned lattice.

Figure 4.5(a) shows that dark solitons are stable with smaller V1 and unstable with

larger V1, and Figure 4.5(b) shows an opposite trend, as dark solitons are unstable

with smaller V1 and stable with larger V1. Another noticeable feature is that as k

increases, firstly new windows are created as from Figure 4.5 (b) with k = 1 to Figure

4.5 (c) with k = 1.8. When k keeps growing to k = 3.4 as in Figure 4.5(d), a window

disappears. If k continues growing, a new window is generated again, as in Figure 4.5

with k = 3.8. The creating and disappearing of the window structure with parameter

changing is essential in understanding the bifurcation happening in the system, and

will be further studied.

4.2.2 Stability of solitons under an misaligned nonlinear lat-
tice

In the misaligned nonlinear lattice, the global picture of the stability dependence on

the nonlinear lattice parameters is relatively straightforward. When V1 and V2 are

fixed, the maximum imaginary part of the stability eigenvalues increases monoton-

ically with k. That is, for every pair of V1 and V2, one just needs to find a cut-off

value kc. Dark solitons are stable when k is below kc, and unstable when when k is

larger than kc.

We find this critical value by varying V1 from 0 to 1 and V2 from 0 to 0.95. In
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Figure 4.5: Maximum imaginary part of stability eigenvalues of dark solitons in an
aligned lattice.

each searching, we start from k = 0 and increase k by increment of 0.2. If when k

reaches 20 and no eigenvalue with non-zero imaginary part is found, the searching

process is stopped and it is assumed that the system is always stable. In searching for

the critical value, we set the criterion that a solution is unstable when its maximum

imaginary eigenvalue (or the imaginary part of the eigenvalue) is larger than 10−3.

This value is determined empirically. Here we present the plot for the critical value

kc in Figure 4.6. The right panel is an overhead view, in which the region in dark

brown represents when our search is stopped with k = 20, and hence denotes the

stable region irrespective of k. We can see that when the nonlinear lattice magnitude

is small or the lattice takes a nearby sinusoidal shape, dark solitons in the misaligned

lattice are always stable even if the spatial periodicity of the lattice is very small.

This trend is similar to what we have observed with dark solitons with an aligned

lattice in Section 4.2.1.
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Chapter 5

Solitary waves in a temporally
modulated nonlinear lattice

In this chapter, we show numerical computations of several solitary wave solutions.

There is no theory in the literature that describes what happens when parameters

describing the nonlinear lattice changes in a range. Instead we resort to numerical

experiment as a first attempt to gain insight into the system.

5.1 Dynamics of travelling solitary waves

In this section we introduce a method called ‘collective coordinates’ to describe the

movement of travelling solitary waves.

5.1.1 Bright Solitons

We obtained a closed-form solution for stationary solitary waves with zero external

potential and constant nonlinearity coefficient. One can get travelling soliton solutions

as [2]

u(z) = ηsech [η(z − vt)]ei(kz−βt), (5.1)

where the solitary wave number is k, frequency is β, the velocity v satisfies v ≡ ∂β
∂k

= k,

and β satisfies the dispersion relation β = 1
2
(k2 − η2) [2].

To consider the presence of an external field, we have an extra term of V (z)u in

left-hand side of Equation (3.1). We now assume that the solution can be written in

the form

u(z) = η(t)sech [η(z − z0(t))]e
i(k(t)z−α(t)) (5.2)

36



where the soliton centre z0(t), phase α(t), and wavenumber k(t) are unknown func-

tions of t [2]. Suppose that the relations k = dz0/dt and β(t) = (1/2)(k(t)2 − η(t)2)

still hold. By substituting the ansatz into governing equations for the of atoms N and

momentum P , and using the assumption that the external potential varies slowly one

the scale of solitons, we can obtain the equation to describe the movement of bright

soliton centre: (see [2] for a detailed derivation)

d2z0
dt2

= −V
z0
, (5.3)

In our setting with a magnetic trap, V = 1
2
Ω2z2,

d2z0
dt2

= −Ω2z0. (5.4)

So the centre of soliton oscillates like a single harmonic oscillator with frequency Ω,

which we recall, represents the strength of the harmonic potential.

5.1.2 Dark Solitons

Travelling of dark solitary waves are more complicated than travelling bright solitons.

By adopting the same procedure in Section 5.1.1 and making the appropriate

ansatz (see [2] for detailed derivation), we obtain a equation governing the motion of

dark soliton centre as

d2z0
dt2

= −1

2

∂V

∂z0
. (5.5)

As V = 1
2
Ω2z2, the oscillating frequency of the dark soliton is 1/

√
2 of the confining

strength [2].

5.2 Evolution of solitary waves in a dynamical non-

linear lattice

In Section 2.3, we introduced a model for the nonlinearity coefficient as the super-

position of a spatial control and a temporal control in Equations (2.31) - (2.32). In

this section we use the time dependent model for g(z, t) and examine the temporal

evolution of solitons in this situation. We only examine the aligned lattice in this

section.
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5.2.1 Bright solitons

In Figure 5.1, we present the temporal evolution of a bright soliton in an aligned lattice

with V1 = 0.5, V2 = 0.5, k = 0.5. It is turned on quickly at t = 50 with τ = 0.1.

In Figure 5.1(a), we show its spatio-temporal evolution in both position space (left

panel) and momentum space (right panel) up to t = 200. The middle panel is a

magnified view with t ∈ [45, 65] and z ∈ [−40, 40]. One can see that the system is

no longer stable after t = 50, and in the position space we can observe an oscillation

happening. In momentum space, atoms are initially centred at small k (|k| < 1), and

at turning on the lattice, momentum of atoms is no longer concentrated.

Moreover, in the magnified view in the middle panel of figure 5.1(a), we can

identify oscillations of bright centres and black centres, i.e. the travelling of both a

high density of atoms and a zero density of atoms. This corresponds to travelling

solitons we explained in Section 5.1.1 and Section 5.1.2. We follow the track of one

travelling black soliton and record the time when it reaches its negative peak, crosses

zero, and reaches its positive peak, (t1, t1, t3 as labelled in the middle panel of figure

5.1(a)) and plot the spatial profile at each time t1, t1, t3 in figure 5.1(c), from left

to right. At t1 and t3, the travelling black soliton is at its peak values in space, and

correspondingly the ‘darkness’ does not contribute to the density at origin, so the

origin is a maximum. At t2, the travelling black soliton happens to be crossing zero,

and correspondingly the density at origin is a local minimum.

In Figure 5.1(b) the spatial profile at t = 51 (just after the turning on), t = 100,

and t = 200 are plotted. By comparing these three profiles one can clearly spot

oscillation in space.
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(a) Spatio-temporal plot in position space and momentum space.
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(b) Spatial profile at t = 51, t = 100, and t = 200.
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(c) Spatial profile when an emitted dark soliton travels from a negative peak to a positive peak.

Figure 5.1: Temporal evolution of a bright soliton in a nonlinear lattice that is turn
on quickly.

Figure 5.1 shows the situation when a lattice is turn on quickly. To compare how

the stability of the bright solitons in the nonlinear lattice is affected by the time

needed to establish a steady-state lattice, we show a slow turning on in Figure 5.2(b)

(τ = 10) and a turning on with intermediate speed (τ = 1) in Figure 5.2(a). In Figure

5.2(a), when it takes slightly longer time to establish the lattice than in Figure 5.1,

we observe from the left panel and the right panel that solitons become unstable

after t = 50. However, a magnified view in the middle panel suggests that there is no

travelling dark solitons or bright solitons emitted.

A even slower turning on is shown in Figure 5.2(b), with τ = 10. It can be seen

that the transition is smooth that a steady state appears to be reached.
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(b) τ = 10

Figure 5.2: Evolution of a bright soliton in a lattice turned on in medium to slow
speed.

We have also performed computations with larger k (k = 1 and 3). The trend is

similar to what happens at k = 0.5. There are oscillations of a bright centre and dark

centre when τ = 0.1, and when τ = 10 the transition is smooth and a steady state

seems to be reached.

5.2.2 Dark solitons

In the dark soliton setting, we look at a more extreme case: a spike-like lattice with

large magnitude and relatively small periodicity. Parameters for Figure 5.3 are V1 = 1,

V2 = 0.95, k = 3, and µ = 10. The organisation of the figures is the same as of Figure

5.2: the left panels correspond to the temporal evolution in position space and the

right panels correspond to temporal evolution in momentum space, and the middle

panels present evolution in position space with a magnified view. Figure 5.3(a)(b)(c)

corresponds to τ = 0.1, τ = 1, and τ = 10 respectively. It is shown similar trend

as to Figure 5.2. For instance, in Figure 5.3(a), dark solitons become unstable after

the lattice is turned on, and we can observe the emission of dark solitons and bright

solitons in the middle panel. In Figure 5.3(b) with τ = 1, dark solitons again become

unstable after the nonlinear lattice is turned on, however no travelling solitons are
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emitted. In Figure 5.3(c) when the turning on is slow, a smooth transition from the

initial steady state to a final steady state is reached. The only difference might be

in the rightmost panel in Figure 5.3(c), where we also spot a switch of the centre of

density in momentum space.
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Figure 5.3: Temporal evolution of a dark soliton in a nonlinear lattice with three
different speeds in turning on.

To summarise, in this Chapter we examine how the stability of bright solitons and

dark solitons changes in a nonlinear lattice that is turned on with different speed. We

have found that bright solitons and dark solitons tend to be stable if the lattice is

turned on gradually, and tend to be unstable otherwise. If the lattice is turned on

enough fast, we may also observe travelling bright solitons and travelling dark solitons.
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Chapter 6

Conclusions

In this report, we examined the existence, stability, and dynamics of solitary waves

in Bose-Einstein condensates in a nonlinear lattice and a magnetic trap using the

GP equation. In previous studies of solitary waves in BECs in nonlinear lattices,

the periodic nonlinear lattices were often modelled by sinusoidal functions, which did

not describe the realistic situation accurately. In this work, we adopted a close to

reality model of the nonlinear lattice as in 2.29 - 2.32. With this model, the shape

and magnitude of the nonlinear lattice are both tunable, and in extreme cases the

nonlinear lattice takes either an approximate sinusoidal shape or one with repeated

sharp spikes. In addition to the spatial modulation, we also introduced a temporal

modulation in order to study the dynamical response of solitary waves in BECs when

the modulation is turned on. We have investigated solitons in BECs in both an

aligned nonlinear lattice and a misaligned nonlinear lattice.

In the first part of the dissertation, we reviewed the basic theories of solitary waves

in Bose-Einstein condensates with a periodic nonlinearity coefficient. This included

an effort to present the derivation of the mean-field GP equation and its properties in

Chapter 2, to present the BdG equations and explain the relevance to the stability of

solitons in Chapter 3, to introduce the theory of perturbed Hamiltonian system and

Hamiltonian flow to quantify the existence of stable soliton solutions with varying

parameters in Chapter 4, and state the theory of collective coordinates to study

dynamics of travelling solitons in Chapter 5.

These theories are essential for both analytical and numerical studies. In our

computational experiments in Chapter 3, we first solved the stationary GP equation

with Newton’s method and found bright soliton solutions and dark soliton solutions.

By computing their stability eigenvalues using the BdG equations, we identified stable

bright solitons, stable dark solitons, and unstable dark solitons. No unstable bright

solitons were found. Further examination revealed that in an aligned lattice, unstable
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dark solitons in BECs could have either real eigenvalues or a quadruplet of four

complex eigenvalues. In contrast, in a misaligned lattice, unstable dark solitons in

BECs could only have real eigenvalues.

In Chapter 4 we continued with the stationary GP equation and computed the

stability eigenvalues with varying parameters V1, V2, and k in the model for the

nonlinear lattice Equations (2.29) - (2.32). We found that when k is large, i.e. the

spatial periodicity of the nonlinear lattice is small, dark solitons tend to be unstable

in both aligned and misaligned lattices. There is one exception: if the magnitude of

the nonlinear lattice is small or if the shape of the lattice is approximately sinusoidal,

dark solitons in both aligned and misaligned lattice can stay stable even if k is large.

We also found that if an aligned nonlinear lattice is composed of repeated sharp spikes

with very small spacing, dark solitons in the BEC in such lattice are always unstable

even if the magnitude of the nonlinear lattice is quite small.

In Chapter 5, we studied the response of bright and dark solitons in BECs to the

turning on of a nonlinear lattice, using the time-dependent GP equation. Numerical

experiments suggest that a stable state can to be reached if the lattice is turned

on slowly. In comparison, if the lattice is turned on abruptly, the system becomes

unstable and both travelling bright and dark solitons can be emitted. Moreover,

to observe the emission of solitons we need to turn on the lattice fast enough, as

we showed that if the speed of turning on is in an intermediate region, the system

becomes unstable but no solitons are emitted.

In this dissertation I have not examined the dynamics of bright and dark solitons

in BECs in a misaligned lattice. This is left for future work. Another possibility of

future work is to look into solitary waves in BECs with piecewise constant nonlinearity

coefficient and a piecewise constant external potential. This setting was suggested by

Professor P.G. Kevrekidis at the University of Massachusetts through correspondence,

and experimentalists in UK are hoping to realise it. A similar setting with piece-wise

constant nonlinearity and zero external potential has already been studied in [22].
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Appendix A

Appendix

A.1 Numerical Solution stationary GP equation

Here we explain how we find the stationary solution to the 1D GP equation with a

spatially varying nonilnearity. In the appendix we use a different set of notations.

The question we try to solve can be written as

iφt = F (φ), (A.1)

where F (φ) = −1
2
φxx−µφ+V (x)φ+g(x)|φ|2φ. If we write φ(x) = u(x)+ iv(x), then

we transform the problem to obtain:

i(ut + ivt) = F (u+ iv). (A.2)

By expanding the form of F , we can get the equation set for u and v :

ut = F (v),

vt = −F (u), (A.3)

and we want to solve for

F (u) = F (v) = 0. (A.4)

To discretise Equation (A.3), we choose the computational domain as x ∈ [−100, 100]

with a uniform spacing ∆x. In vector form, it is written as x = {x1, x2, · · · , xN},
where N = 200/(∆x) + 1.

We discretise u and v as u = {u1, u2, · · · , uN} and v = {v1, v2, · · · , vN}, where
uj ≈ u(xj), vj ≈ v(xj) for j = 1, 2, · · ·N . If we define a new vector w = {u,v}, then
Equations (A.3) becomes:

F (w) = 0, (A.5)
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which is solved through Newton Iteration.

Pseudo-code for Newton Iteration algorithm is:

Choose w0

Set r0 and j=1

while ‖rj‖ > ε do

Calculate the Jacobian Jij =
∂Fi

∂wj

Solve for Jδwk = −F(w)

Find wk+1 = wk + δwk

Calculate rj+1

j = j + 1

end while

By applying the specific form of our problem as F (φ) = −1
2
φxx − µφ + Ω2x2

4
φ +

g(x)|φ|2φ and using the discretisation for g(x) as g = {g1, · · · , gN}, we obtain the

Jacobian as:

Ji,i =
1

h2
− µ+

Ω2x2

4
+ gi(3u

2
i + v2i ), i ≤ n, i 6= 1, n

Ji,i−1 = Ji,i+1 = − 1

2h2
,

Ji,i =
1

h2
− µ+

Ω2x2

4
+ gi(u

2
i + 3v2i ), n+ 1 ≤ i ≤ 2n

Ji,i−1 = Ji,i+1 = − 1

2h2
,

Ji,i+n = 2giuivi, i ≤ n

Ji,i+1 = 2giuivi, n+ 1 ≤ i ≤ 2n (A.6)

By substitution of the specific Jacobian into the algorithm, we get the static

solution with a proper initial guess. In searching for bright solitons, we use an initial

guess u0 =
√
µ− Ωx2

4
in regions where µ > Ωx2

4
and 0 otherwise, and initially v0 is

set to be 0. In searching for dark solitons we use u0 = tanh(x)
√
µ− Ωx2

4
in regions

where µ > Ωx2

4
and 0. Initial value for v0 is also zero. We choose N = 210 when k < 3

and N to 212 with k > 3, as larger k implies faster oscillation, and one need more

points in a period to approximate the shape of g(x) accurately.
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A.2 Time-dependent GP equation

We use fourth-stage Runga-kutta in solving the time dependent GP equation. We

are given an initial value problem in the form:

y′ = f(t,y),y(t0) = y0 (A.7)

The algorithm to solve this is:

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4), (A.8)

where

k1 = hf(tn,yn); (A.9)

k2 = hf(tn + h/2,yn + k1/2); (A.10)

k3 = hf(tn + h/2,yn + k2/2); (A.11)

k2 = hf(tn + h,yn + k3), (A.12)

where h is the time step.

In our situation, we only have to implement

wt = −i×
(
−1

2
wxx +

Ω2

4
x2w + g(x)|w)|2w

)

A.3 Intrinsic frequency obtained from BdG equa-

tion

In section 3.3 we have the BdG Equations (3.12,BdG2), which we rewrite here:

ωp(x) =

(
−1

2

d2

dx2
+ V (x)− µ+ 2gu2(x)

)
p(x) + gu2(x)q(x),

−ωq(x) =
(
−1

2

d2

dx2
+ V (x)− µ+ 2gu2(x)

)
q(x) + gu2(x)p(x).

We take similar steps as solving the stationary GP equation, i.e discretise p(x) and

q(x) as p and q, combine p and q into a new vector y, and convert the system into

the form

Ay = ωb (A.13)

Then we can get the eigenvalue of A with Matlab function eigs.
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