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The study of networks is of increasing importance across a large range of scientific fields,
providing insight into the functional properties of many systems of complex interactions.
Inaccuracies in network data are, however, an ever-present concern and it is important that
we investigate means of minimising them. While good progress has been made in detecting
random errors, much less work has focused on the effects of bias, when certain types of
interactions are more likely to be misrepresented than others. In this work I address this
problem by examining how well an existing error detection method deals with this kind of
systematic error. I found that introducing a bias in the errors detrimentally affects the per-
formance and that the details of this performance can provide insight into network structure.
Inroads were also made in determining specific network properties that affect the efficacy
of the method.

I. INTRODUCTION

Networks are an extremely concise and powerful way
of representing systems of complex interactions and they
have been applied in many diverse disciplines: network
methods have been used in the study of neural structure,
food webs, online social groups, the World Wide Web
(WWW), airline transportation systems, and protein in-
teractions, to name just a handful1–6.

A network is a graph which corresponds to a real-
world system. In mathematics, a graph is a pair,
G = (V,E), where V is a set of vertices (nodes), and
E is a set of edges (links), two-element ordered sub-
sets of V . In a network, vertices and edges represent,
respectively, individual components of the system and
their interactions (see fig. 1). The structure of a network
is represented by an adjacency matrix, A, in which el-
ement Aij indicates the presence or absence of an edge
between vertices i and j. The number of adjacencies
(links) for a given node is referred to as its ‘degree’
and is a widely used property in characterising networks.
There are many different types of network, each appro-
priate in a different context7. However, in this work only
simple networks are considered: those which are con-
nected, undirected and unweighted.

The wide applicability of network methods stems
from the fact that a network is essentially a representa-
tion of an interaction matrix. To understand the dynam-
ics of the system, therefore, it is important to understand
the network structure. One of the most powerful aspects
of this approach is that it strips away field-specific com-
plications and allows useful parallels to be drawn be-
tween disparate areas. In recent years the field has de-
veloped considerably with the application of a physical
approach; current network science has much of its foun-
dation in methods from statistical physics8,9.

Of major concern in the study of networks is the reli-
ability of the empirical data used to construct them. In
many contexts there are large uncertainties in the means
of data gathering. For example, modern methods used
in constructing protein interaction networks have been
shown to be highly error-prone: in 2002 von Mering
et al. reported that “more than half of all current high-

Figure 1: The largest connected component of the network of citations
amongst network scientists10. Each node (vertex) represents an individual
working in network science, and each link (edge) represents at least one in-
stance of co-authorship between individuals. I used the Kamada-Kawai graph
visualisation method11, and colours represent structural community member-
ship. These were determined by maximising the quality function ‘modularity’
(see section III A) using a greedy method after Blondel et al. 200812.

throughput [interaction] data are spurious”4,13. In gen-
eral, sources of error can arise due to different effects,
such as incomplete network sampling (inherent in web-
crawling methods for acquiring data on the WWW14),
and biased survey responses in social network studies
(for example, two people may have different ideas of
what constitutes a ‘friend’)15. Questionable data means
that any conclusions are uncertain at best, and at worst
positively misleading.

A natural way to combat these inaccuracies in the data
is to endeavour to improve the experimental technique
used in their acquisition. This can be very difficult how-
ever, often requiring labour-intensive methods of man-
ually verifying each interaction16. Even when possi-
ble, experimental improvements can only ever apply to
a small number of network types. It is important, there-
fore, to develop ways of using currently available data
to predict which interactions are incorrectly represented:
by identifying the most likely errors in the data, ex-
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perimentalists can focus more on individually re-testing
just those links, and concentrate less on those which are
likely to be correct. This could dramatically reduce the
time it would take to obtain accurate network structures,
and improve the quality of inferences made based on
them. It is also possible that prediction methods could
shed light on the evolution of time-varying networks, in
which links between nodes are formed and broken over
time, as they might predict the changes which are likely
to occur. This could have applications ranging from the
prediction of the spread of viral epidemics to friend sug-
gestion in online social networks such as Facebook3,17.

There are many approaches to error prediction that
have been discussed in the literature, most of which are
targeted at a specific domain, such as protein-protein in-
teraction networks18 or social networks15,19. There have,
however, been recent advances in domain-independent
methods which rely on factors such as the overall net-
work topology (for a review, see ref. 20). Simple exam-
ples of topological prediction methods are the ‘common
neighbours’, ‘degree product’ and ‘shortest path’ meth-
ods21, which predict links based on joint properties of
the nodes. These methods can make useful predictions;
however, they make strong assumptions about the struc-
ture of the network, and their efficacy varies accordingly.

Two more versatile methods are those proposed re-
cently by Guimerà et al.22, and Clauset et al.23 Both of
these methods make assumptions as to a general model
which may be used to represent the network (stochas-
tic block models24 in the case of the former, and hierar-
chical random graphs, HRGs, in the latter), and predict
links based on the likelihood of a link’s existence given
that model. The two differ in their details, but both meth-
ods have shown impressive results.

Previously, work using such model-based topological
methods has concentrated mainly on prediction perfor-
mance with regards to random errors22,23. This, how-
ever, is not representative of the mechanisms that give
rise to the errors which can often have systematic ori-
gins which depend on the underlying structure of the
data. For example, web pages that are less frequently
linked to are more likely to be omitted from a web-
crawling search14, and responses to social surveys can
be systematically biased15. Other data collection meth-
ods are likely, to a greater or lesser extent, to be skewed
in unforeseen ways.

It is not clear how this kind of bias in the errors would
affect a given method’s ability to detect them. In this
work I simulate both random and systematic errors over
a range of real-world and artificially generated networks,
and investigate the performance of Clauset et al.’s HRG
method in predicting these errors. This gives insight
into the limitations of the prediction algorithm, and also
allows us to probe the structure of the networks them-
selves.

I will proceed in section II by first explaining the way
that errors were simulated, describing some of the limi-
tations encountered in the process. I will then introduce
the HRG prediction algorithm in detail in section III in
order to better understand the results presented in sec-

tion IV. Here I will look in turn at each of the network
types used, explaining the choice of each. Finally, I will
conclude in section V with a discussion of the main re-
sults and suggestions for future directions of study.

II. NETWORK ERROR SIMULATION

In order to be able to evaluate the accuracy of error de-
tection, it is necessary to compare the predictions with a
known set of errors. This can be achieved by selecting
an initial network which is taken to be the ‘true’ struc-
ture (i.e. we assume that there are no errors in this origi-
nal data), and then introducing errors to produce an ‘ob-
served’ network which is passed to the prediction algo-
rithm. The accuracy of prediction is then calculated by
scrutinising how well these known errors are identified.
Both the choice of initial network and the method of er-
ror introduction are important aspects to control. In this
section I will discuss the latter, explaining the choices
made in this study.

There are many conceivable ways in which errors can
be introduced into network data, however here I focus
exclusively on creating missing links. The reasons for
this are twofold: firstly, due to the topological nature
of the prediction algorithm, it makes sense to consider
edge-based errors, taking the observed nodes to be the
true ones; secondly, limitations in computer time made
addressing spurious links impractical. This computa-
tional intensity is because in order to add a link in a
biased way, metrics for all potential links would need
to be calculated: for a sparse network (number of edges,
m � number of possible edges, 1

2n(n − 1), where n
is the number of nodes) the computer time is approxi-
mately O(n2). Having decided to concentrate on miss-
ing links, a method of selecting links to remove from the
original network is needed.

The most obvious way to remove links is to do so uni-
formly at random, with all edges having an equal prob-
ability of removal. This method can provide insight into
the effects of stochasticity in data collection, and the
ease of detecting random network damage. This is the
method that has been used in previous studies22,23, and
I also implemented it here. Purely random errors are of
limited use, however, as they ignore the possibility of
bias in the data: the possibility that errors occur system-
atically in the data collection process. In this work, in
order to address this I also removed links according to
a set of specific metrics, each of which are discussed in
section II A below.

Once each link is labelled with a value according to
the chosen metric, we can choose to then remove them
in two ways: stochastically, with probability (inversely)
proportional to the link’s value; or in an ordered fashion,
starting with the largest (smallest) value and working
down (up). Although a stochastic method is likely to be
a better reflection of real-world processes, the speed of
the prediction algorithm made it impractical to carry out
the multiple runs which are necessary to obtain a reason-
able average when using a probabilistic method. Instead
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an ordered method was used on the basis that these re-
sults would give a ‘worst case scenario’ of the response
of the algorithm to different systematic sources of error.
If any links shared the same value, their ordering was
determined at random.

In real-world link-prediction applications it is improb-
able that we would use a topology-based approach to
predict links to nodes which are entirely unconnected to
the network, since there is no topological information
available for these nodes. In the light of this, I worked
only with connected network components, discarding
nodes (and their former links) from the system when
they became isolated by link removal. I also ceased to
remove links when the network dropped to fewer than
10% of its original number of nodes.

Discarding isolated nodes has important implications
for the prediction accuracy: since there is no topological
information available for an isolated node, any topology-
based prediction algorithm is bound to estimate all pos-
sible links to it as having a very low probability of ex-
isting. Since the truth is the reverse (there is in fact a
certainty that at least one link was originally connected
to the node), failure to discard these nodes results in an
accuracy which is lower than it should be.

While discarding isolated nodes makes little differ-
ence for random removal, it is of great importance when
targeted removal is applied. For example if links to
nodes with high degree are targeted, the network frag-
ments much faster than if links had been removed at ran-
dom25. This would result in an extremely low prediction
accuracy if isolated nodes were not ignored.

A. Targeted Removal

To simulate systematic errors in network data, links
were removed according to their value with respect to
one of four different metrics. The metrics used were
based on ones common in the literature26: betweenness,
closeness, clustering coefficient, and degree assortativ-
ity. Where relevant, I used slightly modified versions of
these so that they apply to individual edges, rather than
to vertices or the network as a whole. Several of these
metrics have been used in the study of community struc-
ture27–30(see section III A), and since the HRG method
relies to a large extent on such structure, they offer a di-
rect way of probing the response of the algorithm.

The ‘betweenness’ of an edge is a natural extension
of vertex betweenness introduced by Freeman31. It is
calculated as a weighted sum of the number of geodesic
(shortest) paths between nodes which run through the
given edge. Edge-betweenness can be viewed as a mea-
sure of how important a link is in connecting different
sections of a network, and is well known from Newman
and Girvan’s use of it in identifying community struc-
ture28.

Also based on the shortest paths through a network,
closeness has not, to the best of my knowledge, previ-
ously been applied as an edge-metric. Conventionally,
the closeness is the inverse of the harmonic mean dis-
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Figure 2: A simple network to demonstrate the metrics being used. a. All
the edges in this group have high clustering coefficients: they all take part
in the maximum number of ‘triangles’ possible. b. This edge has both high
betweenness and closeness. It also has low asymmetry. c. Similarly to b.,
the closeness for this edge is high, however its betweenness is very low since
almost all paths are shorter if they do not take this detour. d. Edges in this
group have high asymmetries: they run between nodes with very dissimilar
degrees.

tance of any given node from all of the other nodes in
the network, and is given by7

Li =
1

n− 1

∑
j 6=i

d−1
ij , (1)

where n is the number of nodes in the network, dij is
the geodesic distance from node i to node j, and Li is
the closeness of node i. In adapting this metric to apply
to links instead of nodes, I treat an edge (i, j) as if it
were simultaneously at both node i and node j, so that
the edge-closeness is given by

lij =
1

n− 2

∑
k 6=i,j

1
min(dik, djk)

. (2)

This is equivalent to using the definition in eqn. 1, if in
that equation dij is redefined as counting the minimum
number of nodes passed through between edges i and j,
instead of the minimum number of edges between nodes
i and j. The closeness measures the ease of communi-
cation between an edge and the rest of the network.

The clustering coefficient, as one might expect, gives
a measure of how tightly grouped a network is. In an
extension to a commonly used vertex-based definition32,
Radicchi et al.30 define the edge clustering coefficient as

Cij =
zij + 1

min(ki − 1, kj − 1)
(3)

in which ki is the degree of node i, and zij is the num-
ber of ‘triangles’ (fig. 2) to which edge (i, j) belongs.
The coefficient gives the fraction of triangles to which an
edge contributes out of the total number possible, given
the degree of the nodes it connects. The addition of 1
in the numerator is to remove the degeneracy that oc-
curs when zij = 0, which would give zero clustering,
irrespective of ki and kj .

The last of the metrics used in this work is based
on the degree assortativity, a widely used measure that
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quantifies how similar the degrees are likely to be on
either end of a given edge. As a global network prop-
erty, it is given by the Pearson correlation coefficient
between the degrees of nodes at either end of a link33.
This has been found to characterise the the resilience of
certain types of networks, with assortative networks be-
ing resistant to damage, and disassortative networks be-
ing vulnerable33. In adapting this measure to apply to
individual edges, I used a modification of a metric intro-
duced by Saavedra et al.34, so that the edge-asymmetry
is given by

aij =
|ki − kj |
ki + kj

. (4)

It should be noted that high average asymmetry corre-
sponds to low degree assortativity, and thus to a dis-
assortative network.

III. THE HRG PREDICTION METHOD

Having summarised how errors were introduced to
network data, I will now explain the method used to
predict them. In this study, I used the algorithm of
Clauset et al.23, which is based on a model of Hierarchi-
cal Random Graphs (HRGs). This method fits an HRG
to the observed network, and uses this to predict the
missing structure. This is done using a Markov Chain
Monte Carlo (MCMC) method35 to converge on the set
of HRGs with the highest likelihood of generating the
observed network. I will first explain the term ‘commu-
nity structure’ before describing the HRG model. An
understanding of both will be essential in the analysis of
my results. I will then discuss how predictions are made,
and how the accuracy is calculated.

A. Community Structure and Hierarchical
Random Graphs

The phrase ‘community structure’ refers to any parti-
tion of the set of nodes into subsets called ‘communi-
ties’, usually taken to be non-overlapping. This parti-
tion is normally chosen in such a way that each commu-
nity has a higher density of internal than external links.
Community determination is important in linking net-
work structure with function. However, deciding exactly
how best to partition a network is a non-trivial problem
and a more detailed definition of community structure is
necessarily algorithmic.

There are many algorithms for determining the best
partition27,29, a widely used class of which works by
maximising the quality function ‘modularity’28. The
modularity provides a measure of the extent to which
connections are within, rather than between, communi-
ties, compared to what we would expect if the communi-
ties were randomly allocated. As such it can be a useful
measure of how clear the communities are in any given
partition.

Figure 3: A network displaying hierarchical structure: each of the coloured
32-node communities is also part of a larger 128-node one. The binary den-
drogram is one of the possible HRGs representing this hierarchy. The shading
of internal junctions represents the probability of links between nodes from
either sub-branch, with black low and white high. Here I have truncated the
dendrogram so that leaves depict the smallest communities rather than indi-
vidual nodes. I based this figure on that of Clauset et al.23, using a network
structure after Lancichinetti et al. 200936.

Real network structure, however, can be more com-
plicated than the single partition found by conventional
community detection methods. For example, structures
may be overlapping, with a node best described as a
member of several communities, or hierarchical, where
communities are nested within one another on different
scales. Such features can provide important information
about the functional organisation of a network, and as
such they are important to consider in any model of net-
work structure. The HRG model deals explicitly with
the latter: it is a way of generating random networks
with hierarchical structure built-in.

An example of a network with hierarchy can be seen
in fig. 3: clusters of nodes are coloured by their com-
munities (as determined by modularity maximisation);
however, we can also see larger scale groupings, corre-
sponding to higher levels of hierarchical structure. In
general, this structure can be either assortative or dis-
assortative at each level, meaning that a set of nodes may
be grouped because they are more (assortative) or less
(disassortative) likely to have links between them. An
HRG builds in this structure using a binary dendrogram
(a tree diagram, as in fig. 3) in which each leaf corre-
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sponds to a node in the network. Each internal junction,
r, is assigned a value pr corresponding to the probabil-
ity that nodes on either side of it share a link. In this
way, random networks can be generated with a predeter-
mined hierarchy, mixing both assortative and disassort-
ative structure.

B. Link Prediction

Using MCMC, the prediction algorithm is able to
sample from the space of HRGs with probability pro-
portional to the likelihood of the HRG generating the
observed network. For each sampled HRG, every possi-
ble link, (i, j), has a probability pr of existing, where r
is the lowest common ancestor of leaves i and j in the
dendrogram. By tallying up these probabilities for each
link over a certain number of samples, a list of possible
missing links is assembled, ranked in order of their prob-
ability. In sampling across multiple dendrogram struc-
tures, this algorithm explicitly takes account of the fact
that a given network can have more than one plausible
hierarchy.

From this ranked list of possible missing links, the
prediction accuracy was calculated as the probability
that any randomly chosen actual missing link (a false
negative in the network data) is ranked higher than a
randomly chosen possible missing link (a true negative).
The accuracy is thus a value in the range [0, 1], where
prediction at random would have an accuracy of 0.5:
with possible missing links randomly ordered, there is
an equal probability that any false negative is ranked ei-
ther above or below a randomly chosen true one. This
measure of accuracy is equivalent to the area under the
ROC curve (the AUC statistic) and is the same as that
used by both Clauset et al. and Guimerà et al.22,23.

I found that a reasonable number of HRG samples to
take was 10000, since increasing the number above this
point did not significantly increase the consistency of the
accuracy. The standard deviation in the accuracy at this
number of samples was 0.006.

We can see that the link prediction algorithm is based
on the fundamental assumption that the HRG model is a
good way of describing the network structure. This then
is the main limitation of the method, as there are sev-
eral features of network structure which cannot easily be
captured by an HRG, such as overlapping communities,
or indeed structure which is non-hierarchical. On top of
this, with links missing, the observed network topology
may be misleading in the recovery of the original struc-
ture, though this is a limitation for any topology-based
method. As my results will show, these limitations can
account for much of the variation in the performance of
the algorithm on different types of networks.

IV. RESULTS

In presenting the results, I will introduce in turn each
class of network that was used, and will discuss the per-

formance of the link prediction on it. I will then discuss
some general results which apply to all network types.
It is worth noting that due to restrictions in computer
time, and the slow speed of the algorithm, the largest
network I was able to consider contained less than 400
nodes, while most of them contained 100 or less. This
heavily influenced my choice of both real and generated
networks.

Specifically, for a network of 100 nodes it took ∼40s
to take 10000 samples on a machine with an Intel Pen-
tium 4 HT 3 GHz processor and 2 GB RAM. The num-
ber of possible missing links is O(n2) for a sparse net-
work, where n is the number of nodes, so we can take
this as an estimate of the computational complexity of
the HRG prediction algorithm. With the multiple runs
required (∼180 for each network), we can see that times
quickly become impractical for networks much bigger
than those I considered.

In the interests of greater clarity in the following sec-
tions, I will here explain the way that results were taken,
and introduce a measure that I use in summarising much
of the data. For each network being studied, nine link
removal methods were applied: random removal, fol-
lowed by removal according to each of the four metrics
discussed above in both ascending and descending or-
der. Thus ‘clustering ascending’ refers to removal of
links in order, starting with those with the lowest clus-
tering coefficients. For each removal method, a specified
fraction of links was removed (where the fraction is cal-
culated ignoring links to isolated nodes, as discussed in
section II), and the prediction algorithm was run. This
enabled the construction of a profile of the accuracy at
different levels of damage according to different removal
methods across a range of networks. These profiles form
the basis of my results.

In order to simplify the data for ease of comparison
and analysis, I used a characteristic accuracy (CA) to
reduce a series of accuracies at different levels of error to
a single number. This was calculated as the normalised
area under the curve of an accuracy profile. Not all accu-
racy curves were of the same length: with isolated nodes
being discarded, the remaining connected networks be-
came too small at different levels of link removal, de-
pending on the specific removal method. For this reason,
areas were normalised by 1

N−1 , where N is the number
of data points in the curve. The baseline is shifted so
that CA = 0 corresponds to random prediction.

Unless otherwise noted, all uncertainties are given by
the sample standard deviation about the mean. Correla-
tions were calculated using the Pearson correlation co-
efficient, and p-values are computed using a Student’s t
distribution for a transformation of the correlation46.

A. Random Networks

The Erdős-Rényi random graph is one of the sim-
plest and best understood of all artificial networks struc-
tures37. It is generated, given a network size, by link-
ing any two nodes at random, with fixed probability, p.
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Figure 4: The accuracy of link prediction as links are progressively re-
moved in Erdős-Rényi random graphs (100 nodes, p = 0.2). All targeted
removals shown are carried out in descending order with regards to the given
metric. Note that almost all targeted link removal produces worse-than-
random accuracy.

This algorithm results in a network without any natu-
ral partitioning of the nodes into communities. Since
the HRG model relies on detectable community struc-
ture when fitting the observed network, random graphs
provide a useful baseline against which all other results
can be compared.

Here I consider a set of random graphs with 100
nodes, generated with p = 0.2. This value was cho-
sen in order to create networks which are almost cer-
tainly connected (this is the case when p > ln(n)/n,
where n is the number of nodes in the network)37, and
have a reasonable quantity of links available to remove.
The value of p was kept relatively low in order to avoid
saturation. Exactly how the prediction accuracy would
depend on p is unknown, and would be worth further
study. All results are averaged over three independent
instances of networks with these parameters, allowing
errors to be calculated even when links were removed in
an ordered fashion for the targeted link removal. Com-
putational costs limited the number of network instances
that could be considered.

As expected, we find that when links are removed uni-
formly at random from these networks, the accuracy is
consistent with random prediction (fig. 4). Since there
is no clear community structure in the ‘true’ network,
there is no structure to which the HRG model can be
fitted. This results in the prediction of links at random,
half of which are correct by chance.

In contrast, almost all targeted link removal methods
result in an accuracy which is considerably worse than
random. This is likely because, by preferentially remov-
ing links with specific properties, the remaining network
develops a spurious structure. For example, by remov-
ing links with high betweenness, we leave behind groups
of nodes which are more separate from the rest of the
network than from each other, thus creating clear com-
munities where there were none before. The HRGs are
then fitted to this structure and are consistently misled

by it in making predictions. The varying extent to which
the accuracy is less than 0.5, depending on the metric,
would then reflect the extent to which they create this
spurious structure; removing links with high clustering
coefficients clearly does this much less than removing
those with high asymmetry, for example.

The aggregate positive trend in the asymmetry and be-
tweenness curves can be explained if only those links
which are removed first, ones with the highest values of
these metrics, leave distinct structure behind. All links
which are removed from that point on act to degrade this
structure, thereby reducing the extent to which the algo-
rithm is misled.

We also notice that although starting out as for random
removal, accuracy in detecting links with high closeness
decreases until roughly 45% of links are removed be-
fore then increasing again. This implies that the links
with the very highest closeness are more or less ran-
domly distributed throughout the network, while those
with slightly lower values are more instrumental in leav-
ing spurious structure behind. This continues to be the
case until the point at which all further removals only act
to degrade whatever false structure has been created.

Entirely different qualitative behaviour in the accu-
racy of prediction for systematic errors, even in a net-
work with no well-defined initial structure, goes a long
way to help justify the motivation behind this study. It
helps corroborate the premise that systematic errors will
provoke a notably different response from link predic-
tion algorithms. The finding that structure is quick to ap-
pear after damage to as little as 5% of the links, suggests
perhaps that random structures are particularly fragile;
for many kinds of systematic damage, they are quick to
change their fundamental properties and develop a non-
random structure.

B. Community-Based Networks

Given the importance of community structure for the
HRG method, it is useful to study its performance when
applied to a suite of networks generated with this struc-
ture explicit. In 2008, Lancichinetti et al. proposed
a method for constructing networks with communities,
designed as a benchmark for testing community detec-
tion algorithms38. I made extensive use of these net-
works in testing the HRG prediction algorithm.

In Lancichinetti et al.’s network model, both the de-
gree distribution and the community size distribution
follow power laws (p(x) = xa, where p(x) is the dis-
tribution of x and a is a constant). Nodes are placed in-
side communities and then form links either without or
within that community at a ratio µ, the mixing parame-
ter. Thus community structure disappears at µ = 1, and
becomes indistinct for µ >∼ 0.5. Parameters which can
be adjusted are: number of nodes n, average degree 〈k〉,
maximum degree kmax, exponents for degree and com-
munity size distributions α, β, and mixing parameter, µ.

In the networks used, parameters held constant were
n = 100, kmax = 20, α = 3 and β = 2. I chose this
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Corr. between Corr. between

Removal Method µ and CA 〈k〉 and CA

(〈k〉 const.) (µ const.)

r p r p

Random -1.00 0.0003 0.49 0.32

Betweenness Descending -0.87 0.0542 -0.78 0.068

Betweenness Ascending -0.99 0.0007 0.55 0.26

Closeness Descending -0.99 0.0010 -0.97 0.0018

Closeness Ascending -0.96 0.0089 -0.58 0.23

Clustering Descending -0.96 0.0110 0.10 0.84

Clustering Ascending -0.87 0.0537 0.85 0.030

Asymmetry Descending -0.99 0.0008 -0.10 0.84

Asymmetry Ascending -0.99 0.0006 -0.95 0.0043

Table I: Correlations of mixing parameter and average degree with the CA
for each removal method. As µ is varied, 〈k〉 is held at 7; as 〈k〉 is varied,
µ is held at 0.3. Statistically significant correlations are ones with low p-
values. Mixing Parameter is strongly correlated with all removal methods,
while average degree only significantly affects accuracy for four of them,
highlighted here in bold.

value for the power law exponent of the degree distribu-
tion, α, in order to reflect real network properties; many
networks are known to have power law degree distribu-
tions with exponents between 2 and 439. I tested link
prediction across different instances of these networks,
varying first the mixing parameter, keeping 〈k〉 = 7, and
then the average degree, keeping µ = 0.3. By changing
the mixing parameter, I was able to probe the effect of
varying how distinct the communities were; in chang-
ing the average degree I looked at the effect of different
levels of connectivity.

First of all, it should be noted that, unlike with the
Erdős-Rényi networks, the algorithm performs consis-
tently well for most methods of link removal, at least for
µ <∼ 0.5, giving accuracies significantly better than ran-
dom (average CAs are above 0.1 for all removal meth-
ods apart from closeness ascending; see section IV D for
a discussion of why this method does poorly). This tells
us that the presence of even damaged community struc-
ture in the network enables much better prediction accu-
racy. Similarly to the random networks, random errors
are the easiest to predict.

There was found to be a significant correlation
(r-value ∼= −0.98, p-value ∼= 0.0023) between the mix-
ing parameter and the accuracy when all other variables
were held constant (see fig. 5). This is expected given
the reliance of the HRG method on a well-defined com-
munity structure. Accuracy was much higher for low
values of µ, when there were clearly defined communi-
ties, showing that the HRGs were able to provide a good
fit to the observed network. As the structure becomes
more washed out with increasing µ, the accuracy drops
accordingly.

When the mixing parameter was held constant at
µ = 0.3, it was found that for most link removal met-
rics, varying the average degree made very little differ-
ence (p-value > 0.2; see table I, columns 3–4 for de-
tails of correlations for individual metrics). This shows
that community structure is of greater importance than
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Figure 5: a. The negative correlation between mixing parameter and CA,
demonstrating that the HRG algorithm does better when community structure
is more defined. Here the CAs are averaged over all link removal methods.
b. Correlations between average degree, 〈k〉, and the CA for link removal
according to betweenness and closeness in descending order, and asymmetry
and clustering in ascending order.

the connectivity in determining the performance of pre-
diction. There were, however, found to be four re-
moval methods which showed strong correlations with
〈k〉: closeness and betweenness descending, and clus-
tering and asymmetry ascending. This tells us that with
increasing connectivity, errors in either highly ‘close’
links (those with short paths to the rest of the network),
highly symmetric ones (connecting nodes of similar de-
gree), or links with high betweenness (many paths run-
ning through them) are increasingly damaging to the
overall structure of the network, while the absence of
low clustering links becomes easier to detect.

While the reasons behind these patterns are not en-
tirely clear from my analysis, it is clear that they give
important information about the network structure. It is
possible that they are due to the fact that at low 〈k〉, the
networks are simply too homogeneous for the effects of
the targeted removal by these metrics to become appar-
ent. By carrying out more tests on a wider range of net-
works, we would hope to be able to probe these trends
more closely.
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Network Average CA

Net. Science 0.31(2)

Les Miserables 0.25(3)

Dolphins 0.20(1)

Karate Club 0.16(2)

Cat Brain 0.12(1)

Adj. Noun 0.06(1)

Table II: The CA in real-world networks, averaged over all removal meth-
ods. Numbers in parenthesis give the error in the last digit. We can clearly
see that link prediction performs best on the citation network, and worst on
the semantic network. See main text for discussion.

C. Real World Networks

In addition to looking at the response of the HRG pre-
diction to artificial network structures, it is of interest to
apply it to real-world networks. Real networks can vary
in size from just a few nodes in small social networks,
up to tens of millions or more in networks such as the
WWW. Being restricted to networks of no more than
400 due to computational time, therefore, was a major
limitation in the kinds of networks that could be stud-
ied — for instance, there are no reported protein-protein
interaction networks of this size. The six networks that
were used consisted of a karate club social network40,
a dolphin social network41, a semantic network of ad-
jacencies between adjectives and nouns42, a character
adjacency network from the novel Les Miserables43, a
coarse grained description of a cat brain, and the cita-
tion network of network scientists10. All of these net-
works have been well studied in the literature, and are
considered to be of high quality, in the sense that they
are as error-free as we could hope for. This makes them
good candidates for use as ‘true’ network structures in
this study.

Due to the complicated nature of real systems, the
small number of sample networks studied, and their dis-
parate properties, it is difficult to uncover many underly-
ing trends in the link prediction accuracy for these net-
works. However two patterns can be noticed. Firstly
we find that, as for the random and community-based
networks, removal of links at random allows the algo-
rithm to predict links with the highest accuracy: for sev-
eral of the networks (net. science, Les Miserables and
cat brain), this remained higher than 80% until more
than 50% of the original links had been removed from
the network. Secondly, as can be seen from table II,
there was a distinct ordering to how well links could
be predicted, on average, in each of the networks. It
was found that there is a strong positive correlation
(r-value ∼= 0.75) between the average CA and the av-
erage path length between nodes in these networks. Al-
though this correlation would not usually be consid-
ered statistically significant with a p-value of 0.083, this
relationship would make sense intuitively: with nodes
widely separated, the local neighbourhood of each one
is more clearly identifiable, and it is easier for the algo-
rithm to pick out the likely candidates for missing links.
It is plausible that this correlation would become signif-
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Figure 6: The overall prediction accuracy for several removal methods,
averaged over all networks. Random errors give the best accuracy, while
those according to closeness ascending give the worst. Also there is a clear
inverse relationship between the clustering and betweenness curves, with high
betweenness corresponding to low clustering coefficients. See main text for a
discussion of these points. Error bars are the standard error of the mean.

icant if a larger number of networks were considered.

D. Results Over All Networks

Having described the response of the HRG method
on individual networks, I will now present results av-
eraged over all networks considered here to see if there
are any features which apply more generally. These fea-
tures would be useful in providing indications of trends
we might look for when examining new networks.

The first point to extract from the results as a whole is
that targeted link removal almost always produces worse
accuracy than random removal. This is a non-trivial re-
sult, as it is plausible that the structure could be accentu-
ated by systematic removal rather than degraded, which
would have resulted in higher accuracy than for random
removal. This tells us that the type of error present in
the network data is very important in allowing us to re-
construct the ‘true’ network. In particular, errors which
give rise to misleading topologies can seriously hinder
our ability to do so.

Finding that random errors are least damaging to link
prediction is important since it tells us that this accuracy
can provide an indication of the upper limit to the possi-
ble performance of the algorithm. We can therefore ex-
pect that in most real applications, where there is likely
to be at least some systematic bias in any errors, the link
prediction will not be as reliable as it has appeared to be
in the previous studies by Guimerà et al. and Clauset et
al. It would be useful to test if this result holds in general
for other link prediction methods — if not, it would be
an important disadvantage of the HRG method.

In contrast to the result that the highest accuracy is
achieved in predicting random errors, we find that the
worst accuracy (among the quantities that I considered)
is obtained when links are removed in ascending order
based on their closeness. The average CA for this re-
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moval method was only 0.02 ± 0.02, which is only just
better than prediction at random. The reason that the
HRG method performs so badly in detecting these er-
rors must lie in the nature of the links removed: here
they are those which are furthest, on average, from the
rest of the network.

In light of this, it seems likely that this behaviour is an
artefact of the same effect which contributed to the de-
cision to disregard isolated nodes: that with no topolog-
ical information about the node, all its possible links are
given a disproportionately low probability of existing.
Although those nodes were ignored, any group of nodes
with connections remaining were retained, regardless of
whether they were disconnected from the main compo-
nent of the network or not. This was done because it
is not always clear what the ‘main’ component is, and
because a network could otherwise become fragmented
after only a few links were removed. Since ascending
closeness removal preferentially deletes links on the pe-
riphery of the network, it is likely to leave small de-
tached groups of two or three nodes which, as with com-
pletely isolated nodes, lead to poor prediction accura-
cies. This would explain the poor response to this type
of link removal.

One final overall trend can be clearly seen in fig. 6: the
inverse relationship between accuracies for betweenness
and clustering based removal. We find that the ‘between-
ness descending’ and ‘clustering ascending’ curves are
strongly correlated (r-value ∼= 0.94, p-value ∼= 2.1 ×
10−4), and there is a similar correlation between the
same two metrics’ curves when removals are oppositely
ordered. This result implies that edge-betweenness and
edge-clustering coefficient are similar metrics, picking
out links which have the same qualitative effects on the
structure of the network, though doing so in an inverse
order. Indeed, it makes intuitive sense for this to be the
case: links which take part in a small fraction of the
possible ‘triangles’ are also the ones which have a high
number of paths running through them, since there are
few alternative paths to take in the local vicinity.

The clarity of this relationship in the response of the
HRG algorithm shows that link prediction can provide
insight into network structure over and above simply re-
covering missing data. Although indirect, this could be
a useful tool for probing the interplay between the many
interdependent metrics that can be applied to networks.

V. DISCUSSION

In this work I addressed the problem of detecting sys-
tematic errors in network data. Using a leading detec-
tion method, which had previously shown promising re-
sults23, I investigated the accuracy in detecting errors in-
troduced artificially according to five informative met-
rics.

In doing this, I confirmed that the presence of system-
atically biased errors in the data results in a qualitatively
different accuracy in their detection, with consistently
worse performance for systematic errors than for ones

which were randomly introduced. In probing how net-
work properties affect link prediction, I found that com-
munity structure is a key factor in determining how well
the HRG method will work. For different metrics, error
depended in a correlated way with the clarity of structure
in the network. Finally, I found a strong inverse relation-
ship between the betweenness and clustering coefficient
metrics with regard to the ease of predicting links with
these properties. This highlights their similar relation-
ship to the network structure.

Previous work investigating the prediction of errors in
networks has found that the HRG method performs ex-
tremely well in this task when detecting random defects.
My results agree with this, often showing very high pre-
diction accuracy. In looking at errors which are system-
atically biased according to the underlying structure of
the true network however, it was found that entirely dif-
ferent behaviour was displayed (fig. 4).

The hypothesis underlying this work was that qualita-
tively different types of network errors will vary in their
ease of detection. This was indeed borne out by my re-
sults, which showed that across all network types, ran-
domly missing links were easier to predict than biased
ones, even in random networks in which there is ini-
tially no well-defined community structure on which to
base predictions (see fig. 6). Given an understanding of
the HRG prediction method which was used, this result
implies that the presence of any systematic errors in net-
work data will result in significantly misleading struc-
ture in the observed network — often prediction accu-
racy was worse by as much as 50% for biased errors rel-
ative to random ones (for an example, see closeness (red)
in fig. 4). With an increasing reliance on network meth-
ods in numerous areas of science44, my results serve to
highlight the importance of eliminating any systematic
errors from data acquisition.

With this in mind, my finding that random networks
with no community structure were quick to develop spu-
rious structure with the introduction of systematic errors
has important consequences. The implication is that the
observed data for an unstructured network with struc-
tured errors would appear to have structure. This could
lead to entirely inaccurate conclusions, and so it is im-
portant that we develop ways of distinguishing mislead-
ing from true structure. It is possible that further investi-
gation into the prediction of biased errors could uncover
ways of achieving this.

Perhaps the most important avenue of research build-
ing on this work would be to determine whether this in-
ability to predict systematic errors is shared by other link
prediction methods, such as those mentioned in the 2005
review article by Getoor et al20. If it were found that any
performed significantly better in this regard, this would
constitute a major advantage over other more affected
methods.

In order to simplify the computations, it has been as-
sumed here that the most important errors are caused by
the under-representation of interactions actually present
(false negatives). However, this is not necessarily the
case: it has been suggested that in protein-protein inter-
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action networks, as much as one in every ten reported
interactions is spurious18. It has also been found that
the HRG method is particularly bad at predicting such
spurious links, due to over-fitting of the observed net-
works22. An important line of future study would be to
investigate this further to see how this changes if links
are introduced systematically rather than at random. It
is possible that this would produce even worse accura-
cies, which would render the method effectively useless
for application in spurious link detection.

One of the restrictions in the results found here is the
limited number of types of systematic error which were
dealt with. I only considered the effect of bias based
on four properties of edges, while there are many possi-
ble methods that we can imagine using. These include,
but are not limited to, using node-, rather than edge-
metrics or introducing errors depending explicitly on
a pre-determined community structure. There are also
other edge-metrics which could have been used. The
specific effects of these other methods would be worth
further study, and it would be interesting to see whether
the underlying finding, that systematic errors are harder
to predict, would remain true.

By using artificial networks with in-built community
structure as a controlled environment, I was able to test
the ease of error detection over a range of specific pa-
rameters. By varying the mixing parameter, which con-
trols how clearly defined the communities are, I was able
to test how the presence of distinct communities affected
the accuracy. Since the HRG method relies on commu-
nity structure to make its predictions, we expect that this
would have a clear effect. This was indeed the case: a
strong correlation between the mixing parameter and the
accuracy was found, with consistently accurate error de-
tection observed when the communities were most dis-
tinct (fig. 5). Since there is a direct relationship between
the mixing parameter and the modularity, I expected to
see a similar correlation with this property across all net-
works. Interestingly, this was not the case. Indications
as to why can be found in the results of varying average
degree: despite a constant modularity, the accuracy it-
self did not remain unchanged. Instead, effects caused
by varying the connectivity complicated the results. Al-
though it is only part of the story, then, it is nevertheless
important to note that with the HRG method we expect
to be able to predict links more effectively in networks
with clearly defined communities: those with high mod-
ularity.

In building upon these results, an important factor will
be in the study of networks with a wider range of prop-
erties, and a larger number of nodes, so that statistical
methods can be more accurate. There are two require-

ments in order to do this: the ability to tune the proper-
ties of a network manually, and a means of overcoming
the computational restraints which lead to the network
size restriction. Much work has been carried out with
regards to the first of these points, with models such as
‘p∗’ able to produce networks with many desired proper-
ties45. The easiest way around the second requirement,
without simply using another prediction method, would
be to parallelise the procedure. Since it is the multiple,
independent runs of the algorithm which is time con-
suming when run sequentially, a parallel computation
would speed up the process to a great extent. The limita-
tion to this approach, naturally, is the number of proces-
sors available. As was noticed with regards to networks
constructed from real data, it is likely that examining
larger and more diverse networks would also reveal new
patterns, and help strengthen those already observed.

One final conclusion can be drawn from the results of
this work: by studying the accuracy of link prediction
in response to targeted network errors we can do more
than simply evaluate the effectiveness of an error detec-
tion method, but can in fact probe the relationships be-
tween different metrics. The correlations found here be-
tween accuracies for clustering and betweenness-based
removal when applied in opposite directions imply that
there is an inverse relationship between these two mea-
sures, at least for the networks I studied. This finding
could have implications in other applications of these
measures and it is possible that with further investiga-
tion, more relationships such as this could be discovered.

While analysis generally focusses on structure in net-
work data, I have demonstrated the importance of study-
ing the structure in the errors, showing that this can have
major effects on features that are seen. By investigating
the effects of different sources of bias in the data we can
probe the interplay between them. This process could
have the potential to deepen our understanding of how
these different sources of error affect the structure of
networks, and ultimately provide insight into the func-
tion of the systems they represent.
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Appendix A: LIST OF CODE

Here I give a brief list of the code I wrote for this project, in alphabetical
order. All code was written as functions for Matlab.

• accuracy.m: Given the ranked list of links output by the HRG algo-
rithm, and the list of actual missing links, calculates the accuracy of
link prediction.

• accuracyStats.m: Calculates the CA, average accuracy across
multiple instances of a network, and their errors.

• assortativity.m: Calculates the degree assortativity of a network.

• averagePathLength.m: Calculates the average geodesic path
length or the average vertex closeness of a network. Can also give
the network diameter.

• connectedNetworkAverage.m: Calculates average accuracies
across different runs of the HRG algorithm in which isolated nodes
have been discarded.

• edgeAsymmetry.m: Calculates the asymmetries for all edges in a
network.

• edgeCloseness.m: Calculates the edge-closeness for all edges in a
network.

• edgeClustering.m: Calculates the edge-clustering coefficient for
all edges in a network.

• edgeProb.m: Converts edge-metric values into removal probabili-
ties.

• globalProperties.m: Calculates several global properties for a
network.

• makeErrors.m: Given link removal/addition probabilities, removes
or adds links to a network in either an ordered ascending/descending
or stochastic fashion. If no link probabilities are provided, addi-
tion/removal is carried out uniformly at random.

• runExperiment.m: Brings together the other functions and runs the
whole process, including the HRG prediction algorithm’s C++ code,
from Matlab.

• structMean.m: Takes average of a field across a multi-dimensional
data structure.

www.mathworks.com/access/helpdesk/help/toolbox/stats/corr.html
www.mathworks.com/access/helpdesk/help/toolbox/stats/corr.html
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