
A Graphical User Interface to Simulate

Classical Billiard Systems

Steven Lansel

School of Electrical and Computer Engineering

School of Mathematics

gtg223g@mail.gatech.edu

Mason A. Porter

School of Mathematics and

Center for Nonlinear Science, School of Physics

mason@math.gatech.edu

May 2, 2004

Abstract

Classical billiards constitute an important class of dynamical systems. They

have not only been in used in mathematical disciplines such as ergodic theory,

but their properties demonstrate fundamental physical phenomena that can

be observed in laboratory settings. This document provides instructions for

1



a Matlab module that simulates classical billiard systems. It is intended

to be used as both a research and teaching tool. At present, the program

eÆciently simulates tables that are constructed entirely from line segments

and elliptical arcs. It functions less reliably for tables with more complex

boundary components. The program and documentation can be downloaded

from http://www.math.gatech.edu/�mason/research/new.html.

1 Introduction

In classical billiard systems, a point particle is con�ned to a region in con-

�guration space and collides with the boundary of the region such that the

angle of incidence equals the angle of re
ection. As the velocity of the point

particle is constant, billiard systems are Hamiltonian.4 Depending on the

geometry of a particular billiard table, there exist integrable and/or chaotic

regions in phase space.

2 Overview of the Program

The billiard simulation tool is a Matlab module with a Graphical User Inter-

face (GUI). It is run by executing 'billiards' in Matlab's command window

while the �les are in Matlab's path. Users specify billiard tables by selecting

from eight di�erent preprogrammed tables or creating their own. The initial

position and velocity (angle) of a trajectory are subsequently typed or spec-

i�ed by clicking on a point in phase space. The desired number of iterations

is also entered. After the program simulates the resulting collisions, the data

2



can be exported and analyzed. Each time the point particle collides with the

boundary, the position and direction (i.e., momentum) are calculated. The

position is described by an arclength parametrization of the table, and the

direction is described by an angle measured with respect to the horizontal

angle.

The symbolic math toolbox, which contains the Maple kernel, is required

in order to run the billiard program. This toolbox is used to take the deriva-

tive of the table boundaries with the di� command. This GUI billiard sim-

ulator works with Matlab releases 12 and 13.

3 Bunimovich Mushroom

3.1 Entering the table

In order to illustrate how to use the billiard simulator, we will demonstrate

an example step-by-step. The table we use is shaped like a mushroom;1 it

consists of a semicircular region with a rectangular region extending from

the base of the semicircle. Mushroom billiards are scienti�cally interesting,

as they constitute a generalization of the stadium billiard with a divided

phase space in which some regions are chaotic and others are integrable. The

completely integrable semicircle and the completely chaotic stadium billiards

are mushrooms with limiting values for the width of the stem.

One opens the billiard simulator by executing 'billiards' in the Matlab

command window when the folder containing the program's �les are in the

path. Because the mushroom is a preprogrammed table, it is selected from

the pop-up menu with 'Pick a table' as the default selection. A pull-down

3



bar, four labels, and edit boxes will appear. The pull-down bar is used to

select either a circular or elliptical mushroom. In this example, we will work

with a circular mushroom. Numbers are entered into the edit boxes to select

the desired dimensions of the mushroom. The 'radius' refers to the radius of

the semicircle, and the 'height' and 'width' of the stem refer to the dimensions

of the rectangular region of the mushroom. The ratio of left to right sides

enables the creation of desymmetrized mushrooms and should be set to 1

for symmetric mushrooms. After the four parameters have been entered, a

preview of the mushroom will be displayed.

3.2 Entering the initial conditions

Once the table is created, one speci�es the initial conditions and the number

of iterations. Initial conditions can be entered in two manners. Click on the

x and y button. The x and y locations give the initial position of the point

particle. The angle speci�es the initial direction of the point particle and is

measured in radians. The 'number of iterations' speci�es how many collisions

the simulator will calculate. The 'run' button begins the simulation. Figure

1 shows a screen shot of the program prior to running the simulation.

3.3 Running the simulation

When the 'run' button is pressed, Matlab begins the simulation. The pro-

gram displays the number of iterations completed out of the total number

requested. The 'stop' button discontinues the simulation. The module will

not respond to user interactions until the current iteration is completed.

4



Figure 1: Entering a mushroom table and initial conditions.

3.4 Analysis

The analysis window displayed in Figure 2 will appear after the simulation

is complete. The raw data from the simulation can be exported with the

raw data box on the left. This option enables the user to further analyze

the calculated data. The desired type of data should be selected from the

list box on the left and can either be displayed in the command window or

saved by choosing the appropriate radio button. The 'OK' button on the left

exports the data. The 'Pieces hit' option gives the symbolic dynamics of the

initial conditions; the pieces are assigned numbers based on the order of the

parametric functions in the piecewise de�nition of the table.

Speci�c plots can be generated with the list box on the right. The con�g-

uration space (see Figure 3) displays the table and the paths of any trajecto-

5



Figure 2: Analysis window for Billiards.

ries. The phase space plots display Poincar�e sections of the billiard system.

The variable t gives the location on the boundary at which the point par-

ticle collides; it is de�ned by the parametric equations describing the table.

The incident angle � gives the direction of the point particle after the colli-

sion and is measured relative to the normal of the boundary at the collision

point. The horizontal angle � gives the direction of the point particle after

the collision with respect to the horizontal. Figure 4 shows the phase space

of t vs sin(�) for the Bunimovich mushroom. The incident angles, horizontal

angles, distance between bounces, and frequency of pieces hit options display

histograms of the appropriate data, although it may be desirable to export

this data in order to perform additional analysis. The histograms are gener-

ated using the Matlab function hist. The plots are displayed by pressing the

'OK' button on the right side. The billiard table and data can be saved and

6



Figure 3: Con�guration space for the mushroom with an integrable trajectory

depicted.

opened later using the �le menu.

3.5 New initial conditions

The options in the bottom right of the window enable the user to gener-

ate additional data. The 'New Table' button clears all data and resets the

program so that a new table can be entered. The 'New Initial Conditions'

button retains all the calculated data, and the user can enter new initial

conditions for the current table. More iterations are calculated for the same

initial conditions by entering the desired number of additional iterations and

pressing the 'More Iterations' button. The program will continue where the

last simulation stopped.

7



Figure 4: Phase space for the mushroom with an integrable trajectory de-

picted.

To continue the mushroom example, click on the 'New Initial Conditions'

button. This time, we will enter the initial conditions using the arclength

variable t. With this method, one speci�es a location on the table boundary

with t and a direction by specifying the incident angle of the trajectory to the

table. One may either type in values for t and the incident angle or select

them from phase space. Clicking on the 'Select from phase space' button

will open a plot of phase space with data from all previous initial conditions.

Use the cross hairs to select an initial condition, and the corresponding co-

ordinates are entered into the billiard simulator. If more accuracy is desired

than is possible with the cross hairs, the zoom tool can be used to mag-

nify a particular portion of phase space. In this case, the coordinates from

phase space must be typed into the program. To continue with this guided

8



Figure 5: Entering new initial conditions for the mushroom.

example, enter the initial conditions shown in Figure 5.

After Matlab's computations are done, the analysis window is again dis-

played. The resulting con�guration and phase space plots are depicted in

Figure 6. Note that the �rst set of initial conditions speci�es a trajectory

that remains in the semicircular region of the mushroom. The set of all such

trajectories comprise an integrable region of phase space. On the other hand,

the second set of initial conditions corresponds to a trajectory that collides

with the stem of the mushroom. These trajectories form a chaotic region

of phase space. This example shows how circular mushrooms exhibit a di-

vided phase space that contains exactly one integrable region and exactly

one chaotic region.1

9



Figure 6: Con�guration space and phase space of a mushroom billiard with

two initial conditions depicted.

4 Composite Billiard Tables

Composite billiard tables can be constructed by combining multiple sim-

ple billiard tables. Such composite tables are necessary, for example, when

considering any table in which the boundary cannot be described by one con-

tinuous curve. (One composite table, the Sinai billiard, is preprogrammed.)

One can implement such tables with the 'Add another table' button. To

illustrate this, consider a composite table consisting of an o�-center circle

inside an ellipse. First, the ellipse is selected from the 'Pick a table' pop-up

menu. One enters parameters for the lengths of the horizontal and vertical

axes. The 'Add another table' button appears once both parameters are

entered. Figure 7 displays the entered ellipse and the 'Add another table'

10



button.

Figure 7: Entered parameters and preview of the ellipse.

The second component of the composite table can now be added. It is

entered as normal except that the previous component remains a part of the

table. In this example, the circle option is selected from the pop-up menu.

The radius is entered as normal. Now we need to move the circle so that

the circle and the ellipse are not concentric. This is accomplished by editing

the x and y coordinates under the center label. The preview is redrawn once

the center of the current component of the table has been moved to the new

coordinates. Figure 8 shows the completed composite table. The numbering

of the pieces and value of the variable t for each subsequent component of a

composite table continue where the previous components left o�.

11



Figure 8: Completed composite table.

5 Billiard Table Maker

The strength of the billiard program lies in its generality, as it can simulate

any classical planar billiard system. If one desires to analyze a table that is

not preprogrammed, it can be designed using the Billiard Table Maker, which

is opened by selecting 'Custom table...' from the 'Pick a table' pull-down

bar.

As an example, we will use the Billiard Table Maker to create a stadium

billiard modi�ed so that one of the straight segments is replaced by a sinu-

soidal function. We start by creating a vertical line that will form one side

of the modi�ed stadium. To do this, click the 'Line' button. At this point,

note that the mouse controls a pair of cross hairs that are used to select

the starting and ending points of the line. For this example, (1; 2) and then

12



(1;�2) were selected. The program then draws the line segment connecting

these two points, as shown in Figure 9.

Figure 9: Line segment drawn with the Billiard Table Maker.

We now wish to add a semicircular region to form the bottom of the

modi�ed stadium. Because we are adding a new piece where the previous one

ended, we want to use the 'Continue from last endpoint' feature on the left,

which is the default setting. The 'Start at new endpoint' feature allows one

to construct tables that cannot be described with a single boundary curve.

Click on the 'Semicircle' button. Using the cross hairs, select (�1;�2) for

the endpoint of the semicircle and select any point above the line connecting

the endpoints of the semicircle to designate the inside of the semicircle. The

resultant table is shown in Figure 10.

The next piece to add is a sinusoid for the left side of the modi�ed sta-

dium. As this is not a basic piece (line segment, quarter circle, semicircle,

13



Figure 10: Semicircle added to the endpoint of the previous piece.

or quarter ellipse), we must use the 'Parametric...' push button. With this

feature, one can add a piece by entering parametric equations of a curve.

Clicking on the push button brings up a window in which one enters x(t),

y(t), and lower and upper bounds for t. Note that the default value for the

lower bound is 0, but this can be changed to any desired value. The para-

metric equations for this example and the resultant table are shown in Figure

11. The vertical axis of the window has automatically been scaled to make

sure the last piece is shown in the grid. The axis can be edited manually by

changing the minimum and maximum values for x and y displayed on the

left.

We will now add an upper semicircle to complete the billiard table. To

illustrate this feature, select the radio button 'Type' under 'Coordinate Entry

Method.' This enables the user to accurately specify the coordinates of

14



Figure 11: Parametric equations for the sinusoidal piece of the table and the

resultant table.

the input points. Because the program rounds input points, the alternate

method of clicking on the graph to select points only allows points with

integer coordinates to be selected. Clicking on the 'Semicircle' push button

brings up a window to enter coordinates. The entered coordinates and the

�nal billiard table are shown in Figure 12. Quarter ellipses in which the

major and minor axes are parallel to the coordinate axes can also be created

in a similar manner by using the 'Quarter Ellipse' button. One can either

save the table now or return to Billiards by clicking on the 'Done' button.

6 Movies

One can create movies to view an animation of generated billiard data. Con-

trols for doing this are located at the bottom left of the analysis window.

Movies of con�guration and/or phase space can be created by checking the

15



Figure 12: Entering coordinate points for semicircle and completed billiard

table.

appropriate boxes. Such movies show one frame for each iteration and high-

light the most recently drawn iteration. The frames rate can be modi�ed

using the options menu. Movies can only be created for the most recent

initial condition and should be used only with a small number of iterations

due to memory limitations. By selecting the appropriate radio button, the

movie can be viewed in Matlab, saved as a Matlab movie, or saved as an .avi

�le. For every option, each frame of the animation is �rst displayed on the

screen. After all frames have been rendered, the movie will be displayed or

a save dialog box will appear depending on which radio button is selected.

7 Description of Tables

The program stores billiard tables in a cell array. For example, Table 1 shows

the table created in the previous section. A table is given by a piecewise func-

16



tion; each row describes a piece of the table. The �rst and second columns

are parametric equations for the x and y coordinates for each piece of the

table [x(t) and y(t)]. The equations are stored as Matlab inline functions.

The third and fourth columns give the bounds for t, which is used as the

dummy variable for the parametrization. The functions x(t) and y(t) have

been scaled to the appropriate expressions so that t also represents the arc

length from the starting point of the billiard table to the current point for a

given connected component of the billiard. For composite tables, the value

of t for each component starts at the same value of t used at the end of

the previous component. The �nal column of the table contains a 
ag that

determines the nature of the piece. For line segments, 1 is stored in the �nal

column; for circular or elliptical arcs, 2 is stored in the �nal column; if the

piece is neither a line segment nor one of arcs speci�ed above, then 0 is stored

in the �nal column. Note, however, that if a piece is entered by typing in

parametric equations, then the �nal column is automatically 0 regardless of

the actual identity of the piece. Circular and elliptical arcs that sweep out

arbitrary angles must be entered parametrically. The three di�erent types of

pieces are treated di�erently during the simulation.

Parametric equations that constitute exterior boundaries to the table

must be traced in the clockwise direction, whereas interior boundaries must

be traced in the counterclockwise sense. For example, the exterior square

of the Sinai billiard is oriented clockwise, and the interior circle is oriented

counterclockwise. If the wrong direction is used to parameterize the bound-

ary, specifying initial conditions using t and the incident angle will not work

properly, as the incident angle will be on the wrong side of the curve.

17



x(t) y(t) lower bound upper bound 
ag

1 2� t 0 4 1

cos(-t+4) -2+sin(-t+4) 4 7.1416 2

.5*sin(2*�*(t-7.1416))-1 t-9.1416 7.1416 11.1416 0

cos[(-t+11.1416)+3.1416] 2+sin[(-t+11.1416)+3.1416] 11.1416 14.2832 2

Table 1: Representation of table created in Section 5.

t horizontal angle incident angle piece

3.4205 -1.3717 -0.1150 4.0000

1.2935 0.7434 -0.5133 2.0000

4.9418 -2.6283 -0.1150 5.0000

1.6438 2.0000 0.7434 2.0000

2.6301 1.1416 1.1416 3.0000

3.2091 -0.5133 0.7434 4.0000

Table 2: Data for pentagon simulation.

8 Description of Raw Data

The billiard simulator calculates and stores information describing each col-

lision of the point particle with the boundary. For example, consider the

simulation of a regular pentagon with side length 1 and initial location (0; 0)

with an angle of 2. Figure 13 shows the con�guration space for this simula-

tion; raw data is presented in Table 2.

Each collision with the table is described by a row of data. The location

of the point on the boundary that the particle hits is given in the �rst column

as a value of t. This value can be converted into x and y coordinates by eval-

18



Figure 13: Con�guration space of pentagon simulation.

uating the appropriate expressions in the table matrix. The second column

gives the horizontal angle � 2 [��; �], which is a measure of the angle of a

vector in the direction the particle travels after colliding with the boundary.

The quantities t and � give, respectively, the position and direction of the

point particle immediately after its collision with the boundary. The third

column contains the tangential angle � 2 [��=2; �=2], which is the angle

between the normal to the position of the boundary the particle hits and

the exiting path taken by the particle. Negative angles indicate the exiting

path is clockwise from the normal, whereas positive angles indicate that the

exiting path is counterclockwise from the normal. The fourth column gives

the piece the particle hits. The sequence of such pieces encodes a symbolic

dynamics for the given trajectory. Sets of data for each initial condition are

stored by the program in a cell array called 'data.'

19



9 Calculation of iterations

The program runs iteratively in its simulation of classical billiards. Given

the position and direction of the previous collision, the program calculates

the position and direction of the point particle after its subsequent collision

with the boundary. To �nd the location of the next collision, the program

searches for an intersection between the line that describes the path of the

point particle and each of the table's parametric pieces. Given all such in-

tersections, the point with the minimum distance traveled is the next point

of intersection. To �nd the direction in which the point particle travels fol-

lowing the collision, the normal angle to the boundary is computed from the

derivatives of the equations of the table at the point of intersection. Addition

and subtraction of angles is used to calculate the exit angle from the normal

angle and the entrance angle:

�n = 2 arctan
�dy
dt

.dx

dt

����
tn

� �n�1 ;

�n = arctan
�dy
dt

.dx

dt

����
tn

� �n�1 + �=2 ; (1)

where �n represents the angle with respect to the horizontal of the nth iter-

ation, �n represents the incident angle of the nth iteration, y(t) and x(t) are

the parametric equations of the boundary, and tn is the value of t that gives

the location of the nth intersection with the boundary. In Matlab, equation

(1) is implemented using the `arctan2' function to ensure that one obtains the

correct quadrant for the angle. Additionally, note that �n�1 does not appear

in the right-hand-side of (1), as this angle is used only for phase space plots

and is not involved in the calculation of angles in subsequent iterations.

20



9.1 Corners

Special consideration must be employed if the point particle collides with a

corner of the billiard table, as such points correspond to singular points of the

billiard (Poincar�e) map obtained from examining only the collisions (and not

the straight paths between them) of the vector �eld describing the billiard

system.4 This occurs when the point particle's path reaches a point where

two pieces of the table join abruptly (with discontinuous �rst derivative with

respect to arc length). In the present numerical implementation, whenever

the point particle collides with the boundary at a point where t is within 10�8

of the beginning or end of a piece, it is considered to have hit a corner. In

order to numerically compute the angle with which the point particle leaves

the collision, the tangential angles of the two pieces of the table are averaged.

The point particle subsequently bounces o� a boundary oriented at this angle

as if the collision were normal. (When studying billiard systems using this

program, one needs to be careful if a trajectory hits the boundary too close

to a corner.)

10 Precision

Errors due to round-o� can grow quickly with our billiard simulations, as

frequently occurs for repetitive numerical approximations. The rate that

the errors compound depends fundamentally on the geometry of the billiard

table. For certain billiard tables, the error is negligible for a very large

number of iterations. For others, this is not the case.

Two examples are presented to demonstrate how the accuracy of the

21



simulation depends on the particular table. In the circular billiard with unit

radius, we examined the trajectory starting at (:5; 0) with an initial horizontal

direction. The maximum error in the incident angle after 10; 000 iterations

was only 1:1213� 10�13.

Consider, however, a billiard table consisting of two circles of unit radius

with respective centers at (1:5; 0) and (�1:5; 0). The initial conditions were

set to the origin with a horizontal angle. The point particle was then calcu-

lated to escape the two circles due to round-o� error after 10 iterations. This

extreme example of a numerically unstable periodic orbit demonstrates that

one must be cautious when using the program.

11 Known Errors

The current program is not yet reliable for tables that contain pieces that are

not line segments or elliptical arcs. The program will work properly until it

fails to �nd where a trajectory intersects a complex curve. This problem is

due to an inability of the program to reliably �nd a zero of a given function

on a given interval.

12 Additional Features to be Implemented

A useful analytical tool would entail the creation of a Markov partition of

phase space.2 For each point in phase space, the piece against which the

point particle will collide on the next iteration will be determined. This will

create a Markov partition by dividing phase space so that every point in

22



the same region will collide with the same piece on the next iteration. This

will be visually implemented by coloring phase space. The partition will

allow one to easily view the symbolic dynamics for the �rst several iterations

associated with any initial condition.

One can implement a Markov partition by �nding the critical angles that

cause the next collision of the point particle to collide with a di�erent piece.

The vertical segment of phase space that corresponds to this location can

then be colored based on which piece will next be hit. This process will then

continue for the entire boundary of the billiard table; all of these vertical

segments are then joined to form the Markov partition.

If the regions of phase space described above can be found, the Markov

partition can be used to speed up the billiard simulator considerably. For

each iteration, the program currently must check all pieces of the table to

�nd the proper intersection. This process is very costly, as a 
oating point

root �nder is used each time to �nd all possible intersections between the

point particle's path and the table. With the implementation of a Markov

partition, the program will be able to determine which segment the particle

subsequently hits instead of searching for the right piece. The progrom will

no longer spend time �nding irrelevant roots, which will improve the speed

and eÆciency of the billiard simulator substantially.

Future versions of the program can also include computations of impor-

tant quantities such as Lyapunov exponents. In the long run, we would

ultimately like to expand the program to simulate quantum billiards as well

as classical ones. Phenomena such as scarring would then be especially easy

to study. In the meantime, this GUI billiard simulator is a valuable tool for

23



the study of classical billiard systems, as indicated by the Poincar�e section,

describing the dynamics of an elliptical mushroom billiard, depicted in Figure

14.

13 Conclusions

We created a GUI Matlab module that simulates classical billiards. It pro-

vides a useful research and teaching tool for scientists interested in these dy-

namical systems. This module's simulations can be used not only to produce

accurate phase space and Poincar�e section plots for scienti�c publications

but also to gain considerable mathematical and physical insight.

Acknowledgements

We gratefully acknowledge Leonid Bunimovich for useful scienti�c discus-

sions during this research project and Peter Mucha for providing assistance

with technical Matlab issues. The REU summer program at the School of

Mathematics and the President's Undergraduate Research Award (PURA)

at the Georgia Institute of Technology provided �nancial assistance.

References

[1] Leonid A. Bunimovich. Mushrooms and other billiards with divided phase

space. Chaos, 2(4):802{808, December 2001.

24



[2] Predrag Cvitanovi�c, Roberto Artuso, Per Dahlqvist, Ronnie Mainieri,

Gregor Tanner, Gregor Tanner, G�abor Vattay, Niall Whelan, and An-

dreas Wirzba. Classical and Quantum Chaos, volume Version 10. Niels

Bohr Institute, July 2003. www.nbi.dk/ChaosBook/.

[3] Martin C. Gutzwiller. Chaos in Classical and Quantum Mechanics. Num-

ber 1 in Interdisciplinary Applied Mathematics. Springer-Verlag, New

York, NY, 1990.

[4] Anatole Katok and Boris Hasselblatt. Introduction to the Modern Theory

of Dynamical Systems. Cambridge University Press, New York, NY, 1995.

[5] H. J. Korsch and H.-J. Jodl. Chaos: A Program Collection for the PC.

Springer-Verlag, 2nd edition, 1999.

25



Figure 14: Phase space of an elliptical mushroom with horizontal radius 2,

vertical radius 1, stem width 1, stem height 2:95, and unit ratio between the

left and right sides of the mushroom's cap.

26


