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Abstract

We investigate excitations in one-dimensional granular crystals, i.e. chains of solid
beads with nonlinear interaction forces. These chains have attracted attention be-
cause of their relative experimental simplicity and interesting dynamics. They can
be modelled as chains of coupled oscillators in a model reminiscent of the celebrated
Fermi-Pasta-Ulam (FPU) equations. The nonlinearity of the interaction leads to com-
plex behaviour, including solitary waves and discrete breathers—periodic oscillations
that are localised in space. We review the theory of granular chains starting from the
contact law between two spheres and then consider some mathematical and numerical
aspects of discrete breathers. We try to link some features of wave scattering by dis-
crete breathers to Fano resonances, a resonant suppression of transmission observed in
several other physical systems.
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1 Introduction

This dissertation is concerned with excitations in Hamiltonian lattices. Such lattices can
be thought of as chains of interacting oscillators. An example of such a chain is the class
of Fermi-Pasta-Ulam (FPU) lattices. In these models, each oscillator un interacts with its
nearest neighbours according to the second-order differential equation

ün = W ′(un+1 − un)−W ′(un − un−1), (1.1)

where W is the interaction potential. This can be seen as a nonlinear generalisation of
systems of masses connected by springs. This model dates back to the famous FPU experi-
ment [13] and has been extensively studied for its interesting dynamics and connections to
soliton theory [35].

The discreteness of the system (1.1) means that infinitesimal waves of arbitrary spatial
frequencies cannot propagate, and there is a corresponding upper bound on the temporal
frequencies the chain supports. This property allows nonlinear oscillations to avoid reso-
nances with small-amplitude waves, and localised oscillations can persist without radiating
energy. These localised excitations are called discrete breathers (DBs) or intrinsic localised
modes (ILMs) because they arise in a spatially homogeneous system (where there are no
differences between sites), and are caused by the dynamics only and not by impurities in the
chain. Their relatively counter-intuitive character, wide applicability, and strong stability
properties make them an important subject of research in nonlinear science [16].

Such discrete breathers, first touched on in 1969 [34], were studied in greater detail in
the 1990s, both theoretically and experimentally. Recently, there have been numerical and
experimental reports of discrete breathers in chains of alternating spherical metal beads
[3, 39]. When two beads are pressed against each other, they repel and this leads to an
equation of the form (1.1), with an interaction potential dictated by the Hertz contact law

W ′(x) ∝
{
x3/2 when x > 0,

0 when x ≤ 0,
(1.2)

where x is the overlap between two adjacent spheres.
While discrete breathers have been extensively studied in certain systems, some properties

are still incompletely understood. In particular, the first step to understand the effect of
a discrete breather on its surroundings is to study the problem of wave scattering: What
happens if we send a small-amplitude wave towards the breather? If the breather is stable, the
incoming wave will not have any significant effect on the localised oscillations. However, the
interaction with the breather will generate reflected and transmitted waves, sometimes with
different frequencies. A peculiar effect where a perfect reflection (no transmitted wave) occurs
for some frequency was theoretically and numerically observed for a class of systems similar
to the granular chain. This perfect reflection was linked to Fano resonances, a phenomenon
found to play an important role in many branches of physics [29], and in particular were
introduced to study interaction of light with matter. This effect is well understood for linear
and weakly nonlinear systems, but highly nonlinear ones such that the one we are considering
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still pose a challenge because of the inapplicability of perturbation methods. An objective
of this work is to study the possibility of Fano resonances in the granular chain.

This report is organised as follows. First, we present our system of study and the equa-
tions of motions for a chain of spherical solid beads, and investigate some of the properties
of this lattice. Then, we focus on discrete breathers, beginning with a general study then
examining their existence and computational aspects in our system. After introducing at
the phenomenon of Fano resonances on progressively more complex examples, we examine
wave scattering by discrete breathers in the granular chain, recall results of Fano resonances
for discrete breathers and try to observe Fano resonances in granular chains. Our conclusion
conjectures the nonexistence of such resonances in the granular chain, and highlights issues
in their observation for systems where they are known to exist.

2 The Hertzian Chain

The main object of our study is a chain of solid spheres. These solid spheres, when pressed
against each other, deform slightly and exert a repelling force, pushing them apart. This
repelling force is responsible for interesting dynamics, due to its nonlinearity.

2.1 The Hertzian Contact

F

R

F

δ

Figure 2.1: Contact force between two grains.

We consider the situation sketched in Figure 2.1. We assume two perfectly identical spherical
bodies of radius R, pressed against each other with overlap δ. In this configuration, spheres
deform, and the resulting tendency of the materials to regain their original shape produces
a repelling force. For small deformations and sufficiently stiff materials, this is a problem in
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linear elasticity. Its exact solution is known as Hertz’s Law and is given by (derived in [23],
reproduced in Reference [8])

F = Aδ3/2, with A =
E
√

2R

3(1− ν2)
. (2.1)

Here, ν is Poisson’s ratio, and E is Young’s modulus, both characteristics of the material
used. Young’s modulus E measures the stiffness of the material to deformations (the same
way that a spring constant measures the stiffness of a simple spring) and Poisson’s ratio ν
measures the tendency of the material to expand in other directions when compressed.

Equation (2.1) simply means that the force felt by two grains with overlap δ due to their
deformation is proportional to δ3/2. The exponent in this formula depends on the contact
geometry. For instance, a contact between cubes would yield a contact force proportional to
δ, and a contact in presence of conical asperities yields a force proportional to δ2 [20].

When δ is varying in time, Hertz’s Law is still valid provided the variation is slow enough
for the material to always assume its equilibrium state. In other words, the formula is
valid as long as the speed of the waves in the chain is negligible compared to the speed
of wave propagation (speed of sound) in the material of the beads. This is a “quasistatic”
approximation, also encountered in other domains of physics (for instance, thermodynamics
or electrodynamics). This approximation is satisfactory for typical experimental setups [11],
and we will assume it is the case in our study.

2.2 The Hertzian Chain

Now, we consider a chain of grains. The setup is represented Figure 2.2. Each interior grain
may have an overlap with its two neighbours and be subjected to corresponding forces. We
will consider an infinite chain when obtaining analytical results, and we will use a finite one
for the numerical experiments, together with appropriate boundary conditions. Throughout
this report, we use the open boundary conditions u0 = u1, uN+1 = uN for a chain of N
oscillators u1 . . . uN . These boundary conditions are also called “free” because the position
of the oscillator at the end is not constrained. They correspond to Neumann boundary
conditions for a partial differential equation.

∆ ∆ ∆ ∆ ∆

Figure 2.2: Horizontal chain of grains at equilibrium.

We assume that our system is precompressed by an amount ∆: in an experimental setup,
forces are exerted at both ends so that, at equilibrium, the overlap between adjacent grains
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is ∆. We denote by un the displacement of grain n from its equilibrium position. The force
exerted by grain n+ 1 on grain n is

F = −Aδ3/2
+

= −A[∆− (un+1 − un)]
3/2
+ .

Here the + subscript denotes the positive part: when (∆−(ui+1−ui)) is negative, the grains
do not touch each other, and the force is zero.

The equation of motion for grain n of mass m, obtained by application of Newton’s law,
is then

mün = A [∆− (un − un−1)]3/2+ − A [∆− (un+1 − un)]3/2+ . (2.2)

This equation is an example of a Fermi-Pasta-Ulam (FPU) system, which is an important
class of system of coupled oscillators. These systems are extensively studied in nonlinear
science for their intriguing wave propagation behaviour and connections to solitons [35].

This system is at equilibrium when all the displacements un are zero. Disturbances around
this equilibrium will propagate. Of particular importance for the existence of breathers is
the propagation of infinitesimally small disturbances, i.e. the dynamics in the linear regime.

2.3 Linear Spectrum

When considering small disturbances around an equilibrium, it is often instructive to analyse
the linearised equations in order to gain insight about the behaviour of these disturbances.
The form of (2.2)—a second order ordinary differential equation with nearest-neighbour
coupling— is reminiscent of a wave equation, and suggests wave propagation. Indeed, when
linearising (2.2) around the equilibrium un = 0, one obtains the coupled set of linear differ-
ential equations for the perturbations en at site n

mën = K(en+1 − 2en + en−1), where (2.3)

K =
3

2
A
√

∆

is the linear stiffness.
The term en+1 − 2en + en−1 in this equation is the discrete analogue of the Laplacian

operator, and this equation forms a discrete version of the classic linear wave equation
∂2e
∂t2

= c2 ∂2e
∂x2

. Correspondingly, it should support propagating waves. To check that, we use
the plane wave ansatz

en = ei(ωt−qn)

describing a wave propagating in the positive direction with frequency ω and wavenumber
q. These linear waves are also called phonons, in reference to a similar concept in solid state
physics.
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Inserting this ansatz into the linearised equations (2.3) yields a dispersion relation which
relates the temporal and spatial frequencies ω and q

−ω2 =
K

m
(e−iq − 2 + eiq)

= 2
K

m
(1− cos q)

=⇒ ω = ±2

√
K

m
sin(q/2). (2.4)

This equation encodes the properties of linear waves in the Hertzian chain:

• The wave velocity scales with the square root of the linear stiffness, and the inverse
square root of the mass of the beads. That is not surprising and the scaling is similar
to a linear string or a spring-mass system.

• The dispersion relation is nonlinear. This means that our system is dispersive: a wave
packet cannot propagate through the chain without changing shape. A wave packet
around frequency ω propagates at the group velocity dω

dq
which is different from the

phase velocity ω
q
. This contrasts with the continuous wave equation, whose dispersion

relation is linear, and which is non-dispersive.

• For small q, i.e. large wavelengths, our equation is well approximated using a continuum

limit, and the dispersion relation can be approximated by ω =
√

K
M
q, implying that

our system is weakly dispersive for large wavelengths.

• The spectrum has finite bandwidth: ω ∈
[
0, 2
√

K
M

]
. The chain, being discrete, can-

not support arbitrarily high-frequency spatial oscillations, which are linked to high-
frequency temporal oscillations. This is due to the discreteness of the lattice: a contin-
uous wave equation such as ∂2e

∂t2
= c2 ∂2e

∂x2
has an infinite bandwidth and allows arbitrarily

fast oscillations. This feature of discrete systems will, as we shall see later, have the
consequence that intrinsic localised modes (discrete breathers) can exist in our system,
which is not generally the case in continuous ones.

2.4 Solitary Waves

Plane waves are found in the limit of small amplitudes, or high precompressions. In the
opposite limit, we find solitary waves. Solitary waves are highly nonlinear waves that travel
through the chain without changing shape [35].

Numerically, it is easy to generate an approximate solitary wave, simply by exciting
a site with a high amplitude compared to the precompression ∆. For instance, Figure 2.3
represents a solitary wave at zero precompression obtained by simply imposing u̇100(0) = 100
with all other initial condition being equal to zero.
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Figure 2.3: Solitary wave at zero precompression. The front moves to the right, leaving the
lattice behind it compressed. Secondary solitary waves of smaller amplitude propagate to
the left. We use a chain of size N = 250. The parameter values were m = A = 1 and ∆ = 0.
Site n = 100 is excited at t = 0 with a velocity of 100.

Solitary waves in granular crystals have been studied analytically, beginning with the
work of Nesterenko [32, 33], who found an approximate explicit form for solitary waves in a
continuous limit. The derivation we present here is from the presentation by Chatterjee [6].

For simplicity, let us consider the case without any external precompression, that is,
∆ = 0. This is not necessary: the solitary wave phenomenon is not specific to this case,
and can be found outside the linear range for nonzero precompression (see Reference [38]
for the use of an existence proof for solitary waves with precompression, using a theorem of
Friesecke and Wattis [19]). However, this simplified case allows for explicit calculations.

Rescaling the time as t′ =
√

A
m
t allows us to nondimensionalise our equation of motion

in the form

ün = (un−1 − un)3/2
+ − (un − un+1)3/2

+ . (2.5)

We will now look for solitary wave solutions of equation (2.5). We assume a decreasing
wave front, that is, one for which un ≥ un+1. Physically, this corresponds to having grains
being compressed. This condition allows us to only consider interacting grains, which makes
the analysis easier. We look for a travelling wave solution supported by an underlying smooth
function u

un(t) = u(ξ) = u(t− bn), (2.6)

where b is an arbitrary constant. This constant will serve as a bookkeeping parameter, which
we can scale to 1 without loss of generality (by scaling ξ and t appropriately), and is used
only to easily perform a Taylor series development of the equations of motion (2.5). The
condition un ≥ un+1 corresponds to requiring u to be nonincreasing.
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We will use the long-wavelength approximation. This consists in considering a slow
variation in the displacements : un − un+1 � un. Under this hypothesis, it is reasonable to
expand un+1 and un−1 in Taylor series

un+1(t) = u(t− bn− b)

= u(t− bn)− bdu

dt
(t− bn) +

b2

2

d2u

dt2
(t− bn) +O(b3)

un−1(t) = u(t− bn) + b
du

dt
(t− bn) +

b2

2

d2u

dt2
(t− bn) +O(b3)

Plugging these expansions into the equation of motion, and expanding in powers of b, we
get

uξξ =
3

2
b5/2√uξuξξ +

1

8
b9/2

(
√
uξuξξξξ +

uξξuξξξ√
uξ
− 1

8

u3
ξξ

u
3/2
ξ

)
+O(b13/2). (2.7)

Here we have kept only the terms necessary to get a non-trivial equation. Now, under the
long wavelength approximation, we can neglect the terms of order O(b13/2). Setting the
bookkeeping parameter b back to 1, we get

uξξ =
3

2

√
uξuξξ +

1

8

(
√
uξuξξξξ +

uξξuξξξ√
uξ
− 1

8

u3
ξξ

u
3/2
ξ

)
. (2.8)

This equation was solved by Nesterenko [33]. A localised solution is

v(ξ) =
du

dξ
(ξ) =

{
25
16

cos4
(

2ξ√
10

)
if |ξ| <

√
10π/4,

0 if |ξ| >
√

10π/4.
(2.9)

This solution qualitatively matches our numerical simulations of the solitary wave in
Figure 2.3. Our numerical solution is not a perfect solitary wave, because it leaks energy
to the left. However, the travelling wave profile still qualitatively looks like the solution
predicted by Nesterenko. This comparison was performed in greater details by Chatterjee [6].
He found that the solution of Nesterenko had the right qualitative shape but was not correct
quantitatively. He devised better approximations by considering the nonlinear system as a
perturbation of the linear one, i.e. setting the contact force as F = Aδ2+ε and expanding the
solution in powers of ε. The solution of Nesterenko has also been tested experimentally [8],
once again with a good qualitative agreement.

2.5 The Diatomic Chain

We will later see that some of the more interesting phenomena in Hertzian lattices are not
available on an homogeneous lattice of the form described above. Therefore, we will consider
a simple generalisation, a diatomic chain formed with two different types of grains (for

10



instance, alternating spheres of aluminium and stainless steel), differing by their masses and
material properties (Young’s modulus and Poisson’s ratio).

This model was introduced in recent experiments [36]. Those experiments use inter-
spersed sensors to probe the dynamics of the chain. These sensors record the forces exerted
on a few beads. The spectral content of these forces allows for the experimental detection
of breathers. We will mainly use displacements in our analytical and numerical study for
easiness of use, but the results are applicable to the force variables. The setup is represented
Figure 2.4.

  
Lever
with 

Mass 

Interspersed sensors 

4 polycarbonate holder rods 

Wall Piezoelectric 
actuator 

Steel and Aluminum alternating particles 

Bead #1 Bead #N 

 

Figure 2.4: Experimental setup used to probe the behaviour of the diatomic granular chain.
From [3] with permission.

To model this setup, one must use the full version of Hertz’s law describing the contact
two different spheres. For two spheres of type 1 and 2, this is [3]

A =

[
3

4

√
1

R1

+
1

R2

(
1− ν2

1

E1

+
1− ν2

2

E2

)]−1

with the same notation as before. The governing equation is now

mnün = A [∆− (un − un−1)]3/2+ − A [∆− (un+1 − un)]3/2+ (2.10)

and the linearised equation is

mnën = K(en+1 − 2en + en−1), (2.11)

with the same K as before.
These equations are the same as before, except that the mass is now allowed to change

between sites: mn = m1 when site number n corresponds to a sphere of type 1, mn = m2

when the sphere is of type 2. The numerical values we use are given in Table 2.1.
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Name Symbol Value for type 1 Value for type 2
Radius R 9.525 mm 9.525 mm
Mass m 9.75 g 28.84 g

Young’s modulus E 73.5 GPa 193 Gpa
Poisson’s ratio ν 0.33 0.3

Stiffness constant A 5.46 Nµm−3/2

Compression force F0 20 N
Compression at equilibrium ∆ 2.38µm

Characteristic time
√

m1

√
∆

A
0.05µs

Number of sites N 81

Table 2.1: Numerical values used in experimental studies [3]. We use these values in numer-
ical simulations.

Let us examine what the effect of this new model is on the linear spectrum, that is, the
plane waves solutions of (2.11). This time, we cannot use the simple ansatz en = ei(ωt−qn),
because the two types of beads change the profile of linear waves. To avoid that problem and
put our equations in the framework we used to guess the ansatz, we may formally rewrite the
linearised equations in the two-dimensional variables Xn = (e2n, e2n+1) and obtain a spatially
homogeneous system, to which we can apply our ansatz Xn = Xei(ωt−qn). Going back to our
system, this leads to en = Ene

i(ωt−qn), with En = X1 = x if n is even, En = X2 = y if odd.
Plugging this ansatz into the linearised system, we get the two equations{

−Aω2 = K/m1(−2x+ 2y cos q),

−Bω2 = K/m2(−2x+ 2y cos q).

This is a linear system in x and y, in the matrix form

M

(
x
y

)
= 0,

with

M =

(
ω2 − 2K/m1 2K/m1 cos q
2K/m2 cos q ω2 − 2K/m2

)
.

This has a solution with nonzero x and y if and only if M is singular. Using the condition
detM = 0 yields the equation

(ω2 − 2K/m1)(ω2 − 2K/m2)− 4K2

m1m2

cos2 q = 0

=⇒ ω4 − 2K(1/m1 + 1/m2)ω2 +
4K2

m1m2

cos2 q = 0.
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This is a quadratic in ω2, which we can solve to get

ω2 = K

[
1/m1 + 1/m2 ±

√
(1/m1 + 1/m2)2 − 4

m1m2

sin2 q

]
= K

[
1/m1 + 1/m2 ±

√
1/m2

1 + 1/m2
2 +

2

m1m2

cos(2q)

]
. (2.12)

This is the dispersion relation of the diatomic chain, generalising (2.4) to the diatomic
case. Indeed, (2.4) is found by trigonometric identities as a special case when m1 = m2.

The first thing to note in this equation is that the ± sign defines two separate regions
for ω, which are called acoustic (for − sign) and optical (for + sign) frequency bands, in
reference to similar concepts in solid state physics [24]. The acoustic band runs from ω2 = 0
to ω2 = 2K/m2 (assuming m2 > m1, as in Table 2.1), while the optical band runs from
ω2 = 2K/m1 to ω2 = 2K(1/m1 + 1/m2). Therefore, the band structure of our system is
characterised by a frequency gap between the acoustic and optical bands. It is in this gap
that breathers have been found.

The main difference between acoustic and optical band can be found by looking at the
signs of the elements of M . For q ∈ [−π/2, π/2], the signs are

M =

(
− +
+ −

)
in the acoustic band,

M =

(
+ +
+ +

)
in the optical band.

Because M

(
x
y

)
= 0, we see that x and y have the same sign in the acoustic band, and

opposite signs in the optical band: heavy and light beads move in phase in the acoustic
band, and in antiphase in the optical band.

The results are summarised in Table 2.2, which indicates the frequency range of both
bands.

Name q ω2 f (kHz)
Lower acoustic 0 0 0
Upper acoustic ±π/2 2K/m2 4.71
Lower optical ±π/2 2K/m1 8.10
Upper optical 0 2K(1/m1 + 1/m2) 9.37

Table 2.2: Band structure for the diatomic chain, and numerical values with the data of
Table 2.1.

The band gap between the acoustic and optical band allows nonlinear vibrations in this
frequency gap to avoid contact with small-amplitude waves. This gives rise to breathers.
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3 Discrete Breathers

3.1 Definition

The main object of our study is the phenomenon known as discrete breathers (DB) or intrinsic
localised modes (ILM). They are time-periodic oscillations that are localised in space, i.e.
whose amplitude decay as n→ ±∞ [16]. A typical breather in our diatomic Hertzian lattice
is represented Figure 3.1.

0 10 20 30 40
−2

−1

0

1

2

3
x 10

−6

n

u
n
(0
)

Figure 3.1: Initial conditions in position for a breather with frequency f = 7.5 kHz. Initial
conditions in velocity are u̇n(0) = 0. This breather was obtained from the numerical methods
we develop later on, in Section 3.4.

This breather oscillates by itself, without transmitting any motion to the neighbouring
sites. It is localised around about 20 sites and exhibits exponential decay, as seen Figure 3.2.
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Figure 3.2: Exponential decay of the breather to 0 on the left side. Exponential decay to
a constant on the right side can also be shown. The oscillations are due to the heavy/light
bead pattern. This numerical computation is seen to be accurate to a relative precision of
about 10−6, as chosen in our numerical method.

This localisation is a bit counterintuitive. One might expect that energy would be trans-
mitted to neighbouring sites, creating small waves that would radiate away from the breather.
Indeed, our everyday experience tells us that when we pluck a string or make a splash in
water, no motion persists without radiating energy away. What is different in our system?

3.2 An Interplay Between Nonlinearity and Discreteness

First, let us assume that such a breather exists: Let un(t) be a sequence of functions, satis-
fying our equations of motion, that is time-periodic with period Tb and spatially localised:

∀t ∈ R, un(t+ Tb) = un(t),

lim
n→±∞

sup
t∈R
|un| = c±,

where c± represents the constant deformation of the lattice at both ends. We will take c− = 0
for convenience, without loss of generality because of the shift invariance un → un + c.

Then, we expand un(t) in Fourier series:

un(t) =
∑
k∈N

ûkn e
iΩbkt, (3.1)

with Ωb = 2π
Tb

.

Because the breather is localised, un(t)− un−1(t) is small as n→ ±∞ and un(t) approx-
imately satisfies the linearised equations (2.11). Using the Fourier decomposition (3.1), by
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linearity, individual Fourier modes ûkn e
iΩbkt must also satisfy the linearised equations. This

leads to

mnk
2Ω2

b û
k
n = K(2ûkn − ûkn+1 − ûkn−1). (3.2)

Physically, this is the equation that determines the amplitudes ûkn for a sinusoidal sig-
nal with frequency kΩb. When kΩb belongs to the linear spectrum, then ûkn represents an
extended plane wave. However if ûkn is extended for some k, then un cannot be localised.
Hence, the nonresonance condition

kΩb 6= ωq (3.3)

must be satisfied for all q and k. A more rigorous version of this argument, based on
Reference [14], is given below.

First, the analysis of (3.2) is cumbersome because mn depends on n. Thus we restrict
ourselves to the case where mn = m is uniform, and just mention that the result (the
nonresonance condition) is the same for our diatomic chain.

Mathematically, (3.2) is a linear two-stage recurrence relation, of the form ûkn+1 = aûkn +
bûkn−1. It is solved by using the ansatz ûkn = ρn and solving for ρ. The result of the calculation

is that if kΩb = ωq = 2
√

K
m

sin(q/2) for some q, then the solution is

ûkn = αeiqn + βe−iqn. (3.4)

If, on the contrary, kΩb 6= ωq for all q, then the general solution is

ûkn = αρn + βρ−n (3.5)

with |ρ| > 1.
Only the second form (3.5) is compatible with a localised solution, by choosing α = 0

when n > 0, and β = 0 when n < 0. These two choices are compatible, because our analysis
is only valid far enough from the breather, and the decomposition ûkn = αρn + βρ−n is not
valid for both sides at once. Because only the second form (3.5) is possible, we must have
the nonresonance condition kΩb 6= ωq for all k and q.

This condition can be interpreted as requiring that none of the harmonics of the breather
resonate with small-amplitude waves: there must be a frequency mismatch to prevent energy
transfer from the breather to a background of linear waves. Notice that this feature is
specific to discrete systems: a continuous system (for instance, the wave equation) generally
has an infinite bandwidth, and resonances are unavoidable. We can now understand why
it is said that breathers are the result of a constructive interplay between discreteness and
nonlinearity [16]: localised oscillations need nonlinearity to have a frequency different from
the linear waves, and discreteness to limit the linear bandwidth and avoid resonances.
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3.3 Existence

The non-resonance criterion is only a necessary one, and does not by itself guarantee the
existence of breathers. Various proofs of existence have been developed in different contexts,
starting with the proof by MacKay and Aubry about breathers in Klein-Gordon lattices [26]
(a related model, with an extra on-site force), proceeding from the limit of zero coupling
(the “anti-continuous limit”). However, most of these proofs are not directly applicable to
our system.

One of the mechanisms of localisation consists in a bifurcation from a band edge mode.
In a process known as “modulational instability,” a plane wave of a frequency corresponding
to a band edge bifurcates into a localised mode [16]. A weakly nonlinear analysis can derive
analytical approximations of this localised mode, and therefore shows the existence of discrete
breathers in the limit where the frequency is close to the band edge. This is a good starting
point for existence of breathers in our chain.

The analytical study of plane-wave bifurcations from a band edge in similar lattices was
performed by Huang and Hu [22]. The authors considered the K2 −K3 −K4 model, where
the interacting potential is expanded as a Taylor series, and the three first terms are kept.
In our case:

(∆ + un−1 − un)3/2 = ∆3/2 +
3

2
∆1/2(un−1 − un) +

3

8
∆−1/2(un−1 − un)2

− 1

16
∆−3/2(un−1 − un)3 +O((un−1 − un)4),

so that the K2 −K3 −K4 model is

mnün =
3∑
i=1

Ki[(ui+1 − ui)i−1 − (ui − ui−1)i−1], where (3.6)

K2 =
3

2
A∆1/2, K3 = −3

8
A∆−1/2, K4 =

1

16
A∆−3/2.

This model allows a weakly nonlinear analysis near the band edges. A well-known result
[16] is that for a monoatomic chain (mn = m for all n), a modulational instability takes
place: if

K2
3

K2K4

<
3

4
,

localised modes bifurcate from the upper acoustic band edge. In our case, however,

K2
3

K2K4

=
3

2
>

3

4
,

so that this modulational instability does not occur, independently of the values of A and
∆. This means that no breathers are formed via this mechanism in monoatomic lattices.
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However, this conclusion does not rule out other types of discrete breathers, such as large-
amplitude breathers.

However, on diatomic lattices, the same weakly nonlinear analysis shows that, subject to
the condition

K2
3

K2K4

>
3

4
,

which is satisfied in our model, localised modes bifurcate from the lower optical mode. In this
spatially extended mode, heavy beads are stationary, and light beads oscillate in antiphase.
This is a plane wave with zero group velocity. In the weakly nonlinear analysis, this mode
bifurcates to a stable localised mode, with an amplitude proportional to the square root of
the frequency difference between the localised mode and the linear plane-wave mode [22].

Although this K2 − K3 − K4 model is just an approximation of the model with the
Hertz interaction potential, it supports the existence of breathers in our granular chain and
provides an explicit formula in the limit of frequencies close to the lower optical band edge.
This approximation will be useful when computing breathers numerically.

3.4 Numerical Computations

3.4.1 Breathers via Newton’s method

As the results from the K2 −K3 −K4 model are only approximate, we are now interested
in obtaining breathers precisely using numerical methods. The first idea is to use direct
simulation with specifically chosen boundary conditions. In recent experiments, breathers
were found by exciting the lattice with a sine wave of a frequency close to the lower optical
cutoff frequency [3]. We can use the same idea numerically, but it then becomes hard to
isolate the breather from the background oscillations created by the sine wave. Numerical
computations, in contrast to experiments, allow the possibility to use specially crafted initial
conditions to form a breather. Reference [18] had some success by using random displace-
ments inside a Gaussian envelope. After an initial phase where the envelope sites radiate
energy, one can often observe a breather. Although this does works in some situations, it is
an ad hoc method with no control on the properties of the resulting breather.

A conceptually cleaner and more precise method is to look for breathers as the solution
of an equation: we look for periodic solutions of the equations of motion. To that end, we
define by TT the Poincaré map

TT : {un(0), u̇n(0)}n∈Z → {un(T ), u̇n(T )}n∈Z
that maps initial conditions in position and velocities to position and velocities at time T .
A breather is a fixed point of this map associated with a localised profile.

This operates on an infinite-dimensional space, so we cannot find numerical fixed points
of TT directly. Rather, we will limit ourselves to a finite number N of sites. Our breathers are
exponentially localised, so we can obtain good accuracy by using a limited number of sites.
For instance, Figure 3.2 suggests that 80 sites is enough to obtain this particular breather
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to a relative accuracy of 10−6. However, breathers of different frequencies might require
more sites. In our calculations, we will mostly use N = 81, as in the largest experimental
studies [3]. Once an appropriate number of sites has been selected, we must choose boundary
conditions. As previously mentioned, we use the open boundary conditions u0 = u1 and
uN+1 = uN .

With boundary conditions, the map TTb is now restricted to a R2N → R2N map, and
we can look for fixed points numerically. The simplest possibility is to use a Banach fixed
point method, i.e. to iterate TTb from an initial guess. This amounts to direct simulation of
increasing duration. It can work provided our first guess is accurate enough and the map TTb
is contracting, i.e. the breather is linearly stable. However, we will see later that, because
of the time-reversal symmetry, our breathers can never be linearly stable in the strict sense.
Therefore, such a fixed-point method will not converge in general.

A better choice, that ignores the stability properties, is Newton’s method [37]. Newton’s
method is an algorithm to solve nonlinear systems of equations that proceeds by solving
successive linearised problems. Given a map F : RM → RM , the method to find a solution
of F (x) = 0 given an initial guess x0 is to iterate the mapping

xn+1 = xn − JF (xn)−1F (xn), (3.7)

where JF (xn) is the Jacobian (matrix of partial derivatives) of F at point xn. This method
is based on the approximation

F (x) = F (xn) + JF (xn)(x− xn) +O(||x− xn||2). (3.8)

Dropping higher order terms (i.e. linearising the map around xn), the equation F (x) = 0
is solved by selecting x = xn − JF (xn)−1F (xn). An illustration of Newton’s method in
one-dimension is provided in Figure 3.3.
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Figure 3.3: Newton’s method in one dimension. The function is linearised and the linear
problems solved until convergence to a root is achieved.

When no degeneracies are present (JF (x) is invertible at the root x∗) and the initial guess
x0 is close enough to x∗, this method can be proved to converge quadratically [37].

We use the method introduced by Maŕın and Aubry [27] and refined by Chen [7]. In
particular, we use Newton’s method on F = TTb − I. However, to guarantee convergence of
Newton’s method, one must take care to remove every degeneracy from the solution. For
instance, if {un(t), u̇n(t)}1≤n≤N is the initial condition for a breather, then so is {un(t +
τ), u̇n(t + τ)}1≤n≤N for arbitrary τ ∈ R. That is, there is a one-dimensional manifold of
solutions to F (x) = 0. This causes Newton’s method to fail, as it can only be applied to
find isolated roots. Numerically, this degeneracy means that JF (x) is singular, so that the
solution to the linear problem (3.8) is not uniquely defined.

This can be solved by only looking for time-reversible breathers, i.e. to assume u̇n(0) = 0.
This reduces F to a RN → R2N operator. This time, the dimensions of the two spaces
do not match, so we cannot apply Newton’s method. Instead, we can use the Newton-
Gauss algorithm, an optimisation algorithm that resembles Newton’s method, but solves the
linearised problem

F (xn) + JF (xn)(x− xn) = 0

in the least squares sense, instead of solving it exactly as we do in the R2N → R2N case. This
has similar properties to Newton’s method, and is numerically found to be very efficient.
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3.4.2 Continuation

The algorithm converges quadratically provided the initial guess x0 is close enough to a
root [37]. This means that we have to get an approximate breather by other means to use as
initial condition for our iterations. We will use analytical results for this. Usually, breathers
are found to be formed by a bifurcation from a simpler state, which provides an appropriate
approximation in some limit.

Here, breathers bifurcate from the lower optical mode: this mode is a good approxima-
tion to a breather in the limit where the frequency is close to the lower optical frequency.
However, the closer we get to this frequency, the more the problem becomes ill-conditioned
and the breather becomes spatially extended, requiring a larger number of sites and longer
computations. A compromise between those two effects has to be found. Another possibility
would be to use the weakly nonlinear approximation from Reference [22], which is even more
accurate than the linear optical mode.

Once we have found a breather for a particular frequency close to the optical band,
we are interested in finding breathers for lower frequencies. To that end, we will use a
continuation process. Mathematically, this amounts to finding roots of an equation when a
parameter is varied. A justification is provided by the implicit function theorem [25], which
is the mathematical basis of the continuation process. This theorem allows us to continue
a solution x0 of an equation for a particular value of a parameter α0 to other values of the
parameter, subject to a non-degeneracy condition. Here we state a finite-dimensional version
of the theorem, which admits a generalisation to the case where the solution is to be found
in an infinite-dimensional Banach space (this generalisation is used in existence proofs of
breathers [26]).

Theorem 1 (Implicit function theorem). Let n > 0 and f be a continuously differentiable
function Rn × R → Rn. If f(x0, α0) = 0 for some x0, α0 and ∂fi

∂xj
(x0, α0)—the Jacobian

of f with respect to x, a n × n matrix—is invertible, then there exists a continuously dif-
ferentiable function x = g(α) defined on a neighbourhood of α0, such that f(g(α), α) = 0.
Furthermore, this function g(α) is the only function having the property f(g(α), α) = 0 in
this neighbourhood, and it satisfies the differential equation

dg

dα
(α) = −

(
∂fi
∂xj

(g(α), α)

)−1
∂f

∂α
(g(α), α). (3.9)

In our context, x is the initial conditions for our breather, α the period Tb and f the
operator TTb − I. The theorem then means that, barring any degeneracies, a breather for
some period Tb can be continued to a family of breathers x(T ) with different periods, yielding
a branch of solutions. The process can be carried out as long as the Jacobian ∂fi

∂xj
(x0, α0)

is invertible. If this condition fails to hold, then the solution may stop to exist or become
non-unique: this generally signals a bifurcation. Notice that the condition is the same as
the non-degeneracy condition in Newton’s method, suggesting a link between the analytical
theory of continuation and the numerical process of Newton’s method.

21



Indeed, the implicit function theorem serves as a basis for a numerical process of branch
following called numerical continuation [1]. The idea is that we have a breather of initial
conditions xn with period Tn, that is, a root of TTn , and look for a breather of initial conditions
xn+1 with period Tn+1, that is, a root of TTn+1 . If Tn+1 is close to Tn, we can use iterative
algorithms to obtain xn+1 from xn. Then, proceeding by small changes in Tn, we can follow
a branch of breathers.

Elaborate algorithms can be devised to obtain xn+1, many of which use a predictor-
corrector scheme. The predictor-corrector scheme uses two steps: first, predict a value for
xn+1, and then correct this value to ensure it is a zero of TTn+1 − I. The predictor step could
be implemented using a linear approximation based on the implicit equation—for instance,
an explicit Euler method on (3.9)—or simply using xn (this is what I use for simplicity).
Then, the corrector step is implemented using the Newton-Gauss algorithm described in
Section 3.4.1. If Tn+1 is close to Tn and no bifurcation occur, xn+1 will be close to xn (by
continuity of g in Theorem 1). Therefore, our predicted value will be close to a root, and
the Gauss-Newton algorithm will converge quadratically as long as Tn+1 is close enough to
Tn.

I implemented the method in MATLAB. I used the built-in ode45 routine (an explicit
solver using a pair of Runge-Kutta methods of orders 4 and 5 to provide error control) to
numerically integrate differential equations. The Jacobian matrix JF (xn) is computed using
finite differences (see Reference [37] for accuracy considerations, most importantly the choice
of the step size, which has to be of the order of the square root of the function precision
for maximum accuracy). The Newton-Gauss process uses MATLAB’s backslash operator to
solve the least squares system by a QR factorisation of the Jacobian matrix.
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Figure 3.4: Continuation of a breather started near the lower optical band edge at f ≈ 8090
Hz (circles) down to f = 7500 Hz (squares). As seen in Table 2.2, the lower optical frequency
is f = 8094 Hz. As the frequency decreases, the amplitude increases and the spatial extent
decreases.

Figure 3.4 shows a continuation of a breather started close to the lower optical band, in
the weakly nonlinear regime, and continued into a strongly nonlinear regime. This was done
by small decrements of the frequency f using the continuation process described. Although
not shown, the continuation can be performed until one reaches the acoustic band. At
this point, an extended oscillatory tail appears and grows as the continuation approaches
the upper acoustic frequency. Thus, breathers are numerically found to exist in the whole
frequency gap.

The breathers plotted in Figure 3.4 form only one branch of breathers. Reference [39]
found another branch of breathers, but they are unstable: we will not focus on them in our
study.

3.5 Stability

An important aspect of the dynamics of breathers is their stability. If a breather is too
unstable, it is unlikely to be observed in experiments and play an important role in the
dynamics of the chain. On the contrary, if it is stable or weakly unstable, it can oscillate for
extended periods of time and be experimentally relevant. Therefore, we address the question
of the stability of the breathers we found in the previous section.

The simplest way to test their stability is to add small-amplitude noise to the breather
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and run a simulation. We find is that the breather is preserved for extended periods of time
(tens of periods), even with a small noisy background. That is, even though the extended
tail of the breather is perturbed, the core breather oscillations carry on. This effect is seen
in Figure 3.5. Therefore, we conjecture that the breather is linearly stable. However, the
breather is of course not stable to large perturbations on long timescales.
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(b) Final state after 10 periods.

Figure 3.5: Random Gaussian noise of amplitude 10−7 on a breather of frequency f = 7500
Hz, demonstrating its stability.

To better understand this stability, we linearise the flow of Equation (2.10) around a
breather solution un(t), and examine the evolution of small perturbations en, given by

mnën =
3

2
A
√

∆ + un − un+1(en+1 − en)− 3

2
A
√

∆ + un−1 − un(en − en−1). (3.10)

This is a linear equation with time-periodic coefficients. To describe the evolution of these
perturbations, it is instructive to study the Poincaré map

M : {en(0), ėn(0)}n∈Z → {en(Tb), ėn(Tb)}n∈Z,

where Tb is the breather period. This is the analogue of the previously defined TTb operator
for the linear system (3.10). Information on the behaviour of iterates of this linear map
will inform us on the stability of the periodic orbit un(t). The associated matrix, called the
Floquet matrix, is a 2N -dimensional matrix, which can be studied using its eigenvalues [16].

First, let us note two symmetries. First, because the system is real, if λ is an eigenvalue
of M, then so is λ∗. Second, the system is time-reversible: if λ is an eigenvalue, then so
is 1/λ, because if en(t) is such that en(Tb) = λen(0), then we can reverse the velocities and
run the equation backwards to obtain another sequence of functions fn such that fn(Tb) =
en(0) = 1

λ
en(Tb) = 1

λ
fn(0). This constrains the possible behaviour of eigenvalues and allows

for a detailed investigation of their behaviour, using Floquet theory.
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Although this theory is hard to apply to our particular case, it is a simple matter to
obtain the eigenvalues numerically. Indeed, one can integrate the linearised equations (3.10)
for initial conditions where all components except one are zero. This builds the Floquet
matrix M , and standard algorithms (such as MATLAB’s eig function) can then be applied
to obtain the eigenvalues.

Once this matrix is computed and its eigenvalues obtained, we can explain the behaviour
of M by analysing the eigenvalues, also known as Floquet multipliers. If a multiplier has
modulus larger than 1, then exciting the lattice with the corresponding eigenmode will have
perturbations growing by a factor of |λ| > 1 every period, in the linear regime. Conversely,
perturbations associated with a multiplier with modulus smaller than 1 will decay. We now
see that the breather cannot be linearly stable in the usual strict sense, meaning that all
its Floquet multipliers have modulus strictly smaller than 1, for if |λ| < 1, then 1

λ
is also

an eigenvalue, with | 1
λ
| > 1. This comes from the time reversibility of the equations. The

only hope for breather stability is that all the multipliers lie on the unit circle. Even then,
the breather might be unstable, and its linearisation grow polynomially in case of repeated
eigenvalues. The only guarantee that this criterion gives us is that no perturbation will grow
exponentially in the linear regime. We call breathers satisfying this criterion marginally
stable breathers.

The analysis is complicated by finite-size effects [28], causing weak instabilities (multipli-
ers only off from the unit circle by a small amount) that disappear in the limit of an infinite
system. Instabilities in the infinite chain are caused by multipliers of modulus significantly
greater than 1, associated with localised eigenmodes (which are not sensitive to size effects,
in contrast to extended eigenmodes).

The matrix M is related to the Newton’s method that we used to obtain breathers.
Indeed, the Jacobian of the nonlinear operator TTb is exactly our matrix M , for both describe
what happens to an infinitesimally small perturbation of the breather after one period. This
provides an alternative way of computing the Jacobian in Newton’s method, and integrating
(3.10) is often more accurate than using finite differences. It also allows for an inexpensive
stability check, because we do not need to recompute the matrix M , but we can reuse the
one from Newton’s method.

We perform this study on the breathers found by numerical continuation in Section 3.4.
Excluding finite-size instabilities, the breathers we are interested in (i.e. the stable branch,
not the unstable branch found in Reference [39]) are generally marginally stable, except for
a small band of frequencies between about 7900 to 8000 Hz, just below the lower optical
band. In this band, a pair of eigenvalues leaves the unit circle, causing a strong instability
(reaching |λ = 1.5|). Because a change of stability is generally linked to a bifurcation, this
result is consistent with a bifurcation into two branches of breathers (one stable and one
unstable) just below the lower optical frequency, as found in Reference [39], which analysed
the same system in a different parameter regime. Figure 3.6 demonstrates the method on
both marginally stable and unstable breathers.
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(a) Eigenvalues of a breather of frequency
f = 7500 Hz.
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(b) Eigenvalues of a breather of frequency
f = 7950 Hz.

Figure 3.6: Multipliers of both (a) marginally stable and (b) unstable breathers.

4 Fano Resonances

4.1 Definition

One of our goals in this project is to understand whether or not Fano resonances can occur in
the granular chain. Fano resonances were first introduced in spectroscopy, when studying the
absorption spectrum of light by atoms. For instance, projecting white light through Argon
gas and examining at the frequency content of the transmitted light reveals absorption of
a series of frequencies, which are directly linked to the microscopic properties of Argon
atoms [29]. A more complex effect was observed by Beutler [2], who noticed unusually sharp
asymmetric profiles in those spectra. In particular, a remarkable feature was a point of zero
transmission. A theoretical explanation was then proposed by Fano [12]. The simplicity and
applicability of this analysis made it a standard tool in many fields of physics [29].

Central to Fano’s analysis is the concept of interaction between two propagation path, and
destructive interference leading to zero transmission of an incoming wave (perfect reflection).
In the case of the absorption of light by atoms, two effects interfere with each other. First,
the well-known ionisation process, whereby an electron is detached from an atom by incident
radiation. Second, a more subtle process known as autoionisation, including the Auger effect,
where an inner shell electron is removed, and an electron from a higher energy level relaxes
into this vacant lower energy level, imparting the transition energy to an outer shell electron,
which escapes from the atom to create an ion. The quantum superposition of these two effects
generates interferences that lead to resonant suppression of transmission. This is the Fano
effect.

Fano’s analysis led to the formula [29]

σ(α) =
(α + β)2

α2 + 1
, (4.1)

where σ is the (unnormalised) transmission coefficient, α = ω−ω0

∆ω
is a normalised parameter
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representing the deviation from the resonance frequency ω0, and β is an empirical shape
parameter.

This profile possesses a minimum at σ = 0 for α = −β, and a maximum at σ = 1 + β2

for α = 1/β. Three representative regimes—for β = 0, β = 1, and β → ∞— are plotted in
Figure 4.1.
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Figure 4.1: Equation (4.1) for different values of the parameter β.

When β is large, we observe the usual resonance phenomenon, where a system displays
large amplitudes at its resonance frequency. However when β decreases, a point of zero
transmission appears at α = −β, leading to a characteristic asymmetric shape, with a sharp
transition from resonance to anti-resonance. When β goes to zero, the resonance moves to
infinity and we only observe a symmetric anti-resonance.

We will now consider progressively more complicated examples of Fano resonances, culmi-
nating in Fano resonances in the scattering of plane waves by discrete breathers in waveguide
arrays, before examining the possibility of Fano resonances in the granular chain.

4.2 A Simple Example: Coupled Oscillators

4.2.1 Resonances

First, let us recall the phenomenon of resonance in a simple driven oscillator. Consider
a mass-spring system that is excited by a driving force. The displacement x satisfies the

27



equation

ẍ+ ω2
0x = F (t).

Here ω0 is the angular frequency of the unexcited system, and F (t) is an external driving
force. Consider the case where F (t) is sinusoidal, i.e.

F (t) = F0e
iΩt.

The solution of this system is written

x(t) = XeiΩt + Aeiω0t,

where A is a free oscillation amplitude dependent on initial conditions, and X is a driven
oscillation amplitude chosen so that XeiΩt is a particular solution to the equation of motion.
The amplitude of the driven oscillationsXeiΩt will depend on Ω: this is a resonance. Inserting

x(t) = XeiΩt,

into the equation of motion yields

X =
F0

ω2
0 − Ω2

.

Thus, the amplitude of the free oscillations increases as the driving frequency Ω gets close
to the natural frequency ω0. The physical interpretation is that if Ω is close to ω0, the
frequencies agree and the driving force helps the movement, whereas if Ω and ω0 do not
match, the driving force is an obstacle to the movement. At Ω = ω0, X becomes infinite.
This unphysical result is due to the absence of friction in our model, and can be readily
addressed by incorporating a linear dissipative term αẋ in the equations of motion, yielding
a finite response when Ω = ω0. When dissipation is present, the free oscillations decay as
t→∞, so that after a transient the system undergoes forced oscillations XeiΩt.
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4.2.2 Fano resonances

x1 x2

ν12

ω1 ω2

F (t)

Figure 4.2: Visual representation of the two coupled oscillators setup. This is a schematic
representation and does not represent the equation in the text, but gives an intuitive idea of
the effects involved in the coupled two-oscillators model. Idea of the figure from Reference
[29].

To understand how the superposition of two transmission paths can lead to Fano resonances,
following [40], we will use a model consisting of two coupled oscillators, one of which is
externally driven. This model, represented schematically in Figure 4.2, is written{

ẍ1 + ω2
1x1 + ν12x2 = F0e

iΩt,

ẍ2 + ω2
2x2 + ν12x1 = 0. (4.2)

First, let us consider the case in which F0 = 0. The solutions of the system are obtained
by standard methods, and are given by(

x1(t)
x2(t)

)
=

(
A1

B1

)
eiω̃1t +

(
A2

B2

)
eiω̃2t,

where ω̃1 and ω̃2 are eigenfrequencies, satisfying the eigenvalue equation

(ω2
1 − ω̃2)(ω2

2 − ω̃2) = ν2
12, (4.3)

and the A and B coefficients are determined by the initial conditions. For small values of
the coupling ν12, ω̃1 and ω̃2 are slight detunings of the original frequencies ω1 and ω2.

Now let us consider a nonzero F0. We consider the driven oscillations given by

x1(t) = X1e
iΩt,

x2(t) = X2e
iΩt.
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Solving the resulting system in X1 and X2, we get(
X1

X2

)
=

F0

(ω2
1 − Ω2)(ω2

2 − Ω2)− ν2
12

(
ω2

2 − Ω2

−ν12

)
. (4.4)

There are two things to note. First, the denominator becomes infinite at Ω = ω̃1 or
Ω = ω̃2. This is the usual process of resonance, analogous to the one-oscillator case, whereby
a system excited at one of its natural oscillation frequencies displays large-amplitude oscil-
lations. Second, X1 = 0 when Ω = ω2. In this case, the first oscillator merely acts as a
buffer between the driving force and the second oscillator: the resonance with the second
oscillator inhibits any motion of the first one. The interaction of these two effects at very
close frequencies ω2 and ω̃2 gives rise to a very sharp asymmetric shape, as can be seen
Figure 4.3.
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Figure 4.3: Fano resonance for a coupled system of oscillators described by (4.4). The
parameters are ω1 = 1, ω2 = 1.2, and ν12 = 0.1. This choice yields ω̃1 ≈ 0.989 and
ω̃2 ≈ 1.209. The quantity X1 is infinite at these frequencies, and zero at ω2 = 1.2, creating
an asymmetric peak near ω2.

As before, the unphysical result of infinite amplitudes is explained by the lack of friction
in (4.2). A model including friction can be found in Reference [40], but the additional
complexity does not change the main features of (4.4) and obscures the main point, which
is the asymmetric shape produced by the detuning of the eigenfrequencies.

4.3 Fano-Anderson Model

We have seen how an interaction between an anti-resonance and a slightly detuned resonance
can lead to very sharp transitions in the transmission spectrum. We will now examine a more
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complicated model, the Fano-Anderson model [30]. This is a Hamiltonian lattice like our
granular chain, but simple enough that an analytical approach is possible.

This model consists of two subsystems: an infinite system of oscillators φn with nearest-
neighbour coupling C, and an oscillator ψ with frequency Ω. Instead of a second order
differential equation like before, and by analogy with quantum mechanics and the Schrödinger
equation, we use a complex first order differential equation. Thus, the two systems are

iφ̇n = C(φn−1 + φn+1)

and

iψ̇ = Ωψ.

The first system supports plane waves with dispersion relation ωq = 2C cos q, and the
second system oscillates at frequency Ω. We now link those two systems by including a
coupling term VF between the oscillator number 0 of the chain and the second subsystem:

iφ̇n = C(φn−1 + φn+1) + VFψδn0,

iψ̇ = Ωψ + VFφ0.

This is a simplified version of the Fano-Anderson model [29]. We will show that this
interaction opens the possibility of a Fano resonance. Indeed, there are now two propagation
paths: an incoming wave at n = 0 can either pass directly through the chain, or indirectly
through the second subsystem. These two propagation paths can interact destructively and
cause total reflection.

We look for periodic solutions of these equations:

φn(t) = Ane
−iωt, ψ(t) = Be−iωt,

where An and B are complex amplitudes. This leads to the coupled set of algebraic equations

ωAn = C(An−1 + An+1) + VFBδn0,

ωB = ΩB + VFA0.

Immediately, we obtain

B =
VFA0

ω − Ω
,

so

ωAn = C(An−1 + An+1) +
V 2
FA0

ω − Ω
δn0. (4.5)

This is a key point to our analysis: for ω = Ω, the quantity B becomes infinite, which
produces an infinite scattering potential at n = 0. This infinite potential acts as a barrier and
prevents transmission. This is confirmed by the derivation of the transmission coefficient,
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which is defined as the square of the ratio of the amplitude of the transmitted wave to the
incoming one. We consider the scattering problem given by

An =

{
Ieiqn + ρe−iqn, n < 0

τeiqn, n > 0

where an incoming wave of amplitude I is separated into a reflected wave of amplitude ρ and
a transmitted wave of amplitude τ . Without loss of generality, we will assume that I = 1.
The transmission coefficient is then given by T = |τ |2.

Fully solving the problem requires determining the values of three variables: ρ, τ , and
A0. Writing the amplitude equation (4.5) for |n| ≥ 2 only yields the dispersion relation,
which is satisfied by choosing ω = ωq = 2C cos q. Thus, we are left with three equations,
(4.5) for sites −1, 0, and 1. This leads to a linear system of three equations for the three
unknowns ρ, τ , and A0. Solving it leads to [30]

T =
α2
q

α2
q + 1

, (4.6)

where

αq =
2C sin q

V 2
F

(ω − Ω) (4.7)

is a normalised deviation from the resonance frequency Ω.
The transmission coefficient exactly T (ωq) matches the Fano formula (4.1) with shape

parameter β = 0, except for the sin q dependence of αq, which is only significant near band
edges. Correspondingly, and as conjectured from the scattering potential (4.5), Equation
(4.6) includes a point of zero transmission when αq = 0, i.e. ω = Ω. For an incoming wave of
that frequency, the second subsystem ψ resonates, and that leads to a resonant suppression
of transmission. This effect is the same as in the two-oscillator case, where a resonance on
the second oscillator led to a zero amplitude for the first oscillator.
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Figure 4.4: Transmission coefficient T as a function of the incoming frequency ω. The anti-
resonance is at Ω, and its width scales like V 2

F /C. The parameters for this plot are C = 2,
VF = 1, and Ω = 1. The zero transmission at endpoints is not linked to the Fano resonance
but is instead caused by the vanishing of the group velocity.

This is a particularly simple example. We now study a more complicated model for which
an analytical solution is still possible.

4.4 Waveguide Arrays

We consider the model

−iu̇n = un+1 + un−1 +

(
ε− β

1 + |un|2
)
unδn,nc . (4.8)

This model was proposed to study the propagation of light in weakly coupled waveguides
close to the first band of the band structure [31]. Here un is the light amplitude at a guide
centred around site n, and the dependent variable is a spatial coordinate. However, we
continue to refer to it by t and think about it as a time to maintain consistency with the
other models. Ignoring the third term in the right-hand side, it is the first sub-system
we studied in the Fano-Anderson model, supporting plane waves with dispersion relation
ωq = 2 cos q. The third term represents an impurity at site nc. This impurity includes both
a linear term, controlled by ε, and a nonlinear term, controlled by β. The combination of
these two terms allows breathers to form. These are not intrinsic localised modes however,
because the localisation is caused by the inhomogeneity of the lattice.

We look for a breather solution with a decaying amplitude and periodic time dependence,
centred around the impurity nc

un(t) = U0x
|n−nc|eiΩbt, (4.9)
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where Ωb is the breather frequency, and x is the localisation strength, with |x| < 1 (a small
x corresponds to a very localised breather).

Inserting this ansatz into our model, and denoting by g = β
1+U2

0
the characteristic strength

of the nonlinear impurity, we get

x =
g − ε

2
±
√

1 +

(
g − ε

2

)2

,

Ωb = ±
√

4 + (g − ε)2.

The plus or minus sign in these equations is chosen so as to impose |x| < 1 and depends on
the relative values of ε and g. If g > ε (large nonlinear impurity), the sign is minus and the
breather profile is staggered, with the sites having alternating amplitudes. If g < ε (small
nonlinear impurity), the sign is plus and the breather profile is unstaggered.

We now examine the scattering properties of our breather. The linearised equation for
small perturbations en is

−iėn = en+1 + en−1 +

[(
ε− g2

β

)
en +

g2

β
U2

0 e
2iΩbte∗n

]
δn,nc . (4.10)

We consider an incoming wave of frequency ω = 2 cos q. The term e2iΩbte∗n in (4.10) will
produce a second channel of frequency 2Ωb − ω. Therefore, we use the two-channels ansatz

en = ane
iωt + b∗ne

i(2Ωb−ω)t.

This leads to the closed coupled set of algebraic equations

ωan = an+1 + an−1 +

[(
ε− g2

β

)
an +

g2U2
0

β
bn

]
δn,nc ,

(2Ωb − ω)bn = bn+1 + bn−1 +

[(
ε− g2

β

)
bn +

g2U2
0

β
an

]
δn,nc . (4.11)

In a Fano resonance, the channel bn is fully excited and acts as an inhibitor for the propaga-
tion of the wave described by an. To examine this case, we set anc = 0 and seek a localised
channel of the form bn = y|n−nc|, with |y| < 1. Writing (4.11) for n = nc and n 6= nc leads to
two algebraic equations coupling ω and y. Solving for ω yields

ωf = 2Ωb ±
√

4 +

(
ε− g2

β

)2

, (4.12)

where the plus sign holds if ε < g2

β
, and the minus sign holds otherwise. Equation (4.12)

gives the frequency of the fully excited localised mode bn. When ω = ωf , it is reasonable to
expect a Fano resonance, for which the transmission mode an is inhibited.
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Now we come back to the general case where anc 6= 0 and compute the transmission
coefficient. This is done by considering the scattering problem.

an =

{
Ieiq(n−nc) + ρe−iq(n−nc) when n < nc

τeiq(n−nc) when n ≥ nc

bn = b0y
|n−nc|.

Here, as in the waveguide arrays, I, ρ, and τ are the (complex) amplitudes of the incoming,
reflected, and transmitted waves respectively. Without loss of generality, we take I = 1, and
compute the transmission coefficient T = |τ |2. Writing the amplitude equations (4.10) for
sites nc − 1, nc and nc + 1, we obtain three algebraic equations for our three unknowns ρ, τ
and b0. Solving the system for T yields [31]

T =
α2
q

α2
q + 1

, where (4.13)

αq =
4 sin2 q

Ω2
q

, where

Ω2
q = ε− g2

β
+

g4U4
0

g2 − βε± β
√
|(2Ωb − ωq)2 − 4|

. (4.14)

The plus sign holds for (2Ωb − ωq) > 2, and the minus sign holds otherwise.
Equation (4.13) is exactly of the form of the Fano formula (4.1) with shape parameter

equal to zero. An anti-resonance occurs when the denominator of (4.14) vanishes, which is
when ω = ωf , as predicted earlier using the decoupling ansatz anc = 0.

We now numerically validate these results. Following Reference [31], we use the numerical
values β = 10 and ε = 5. We find that ωf is contained in the linear band when 1 . U0 . 1.9.
We fix U0 = 1.4. We get ωf ≈ 0.803, corresponding to q ≈ 1.57.

Ideally, we should send a perfect plane wave of wavenumber qf towards the breather.
It is not straightforward to do so however, because we cannot simulate an infinite domain.
Therefore, to conduct the numerical experiments, we send incoming waves inside a Gaussian
envelope. This forms a localised wavepacket that travels through the chain. However, doing
so will extend the frequency content of the wave, which will contain additional frequencies
around the plane wave frequency ωq. Indeed, by the properties of the Fourier transform, if

f(x) has transform f̂(ω), then f(ax) has transform 1
|a| f̂(ω

a
): localisation in the space domain

corresponds to extension in the frequency domain. Therefore, although we need a finite-size
wave packet to run simulations, we also need the envelope to be sufficiently extended so that
it approximates the frequency content of a plane wave.

More precisely, the initial conditions we use are

wn(0) = eiqne−
(n−n0)

2

σ2 (4.15)

where σ controls the width of the envelope (we need σ � 1
q

to get a well-defined frequency

for the wave packet), and n0 is the centre of the envelope.
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These initial conditions do not define an exact right-travelling wave, but approximate
one as σ → +∞. In practise, the wave packet travels to the right without losing its shape
as long as σ is large enough.

We integrate the nonlinear equation (4.8) on a chain of size N = 500 with a defect at
nc = 250. Initial conditions consist of the breather solution (4.9) centred around nc = 250,
superposed with a small-amplitude (in our tests, we chose 10−2) wave packet defined by
(4.15), centred at n = 125 with a width σ = 30

un(0) = U0x
|n−nc| + 10−2eiqne−

(n−n0)
2

σ2 .

The result of the scattering is given Figure 4.5. The wave travels to the right and is reflected
by the breather.

0 100 200 300 400 500
−0.01

−0.005

0

0.005

0.01

n

u
n

(a) Before the scattering.
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(b) After the scattering, when the reflected wave
is back to its starting position.

Figure 4.5: Scattering of an incoming wave packet of wavenumber q ≈ 1.57, corresponding
to ω = ωf . The wave is nearly perfected reflected, demonstrating a Fano resonance. The
breather solution x|n−nc|eiΩbt has been subtracted from the plots, and we only show the real
part of un.

On the example of a model for waveguide arrays, following [31], we derived analytically
a Fano resonance and validated it numerically. We now turn to the more intricate case of
scattering by discrete breathers in FPU chains.

5 Wave Scattering by Discrete Breathers

We have examined the effect of background excitations on breathers when we discussed
stability of discrete breathers. We concluded that for stable breathers, small perturbations
do not destroy the localised oscillations. On the other hand, breathers will affect those
perturbations. To understand this effect, we consider the problem of wave scattering: how
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will a breather change the characteristics of incoming waves? By Fourier analysis, this is of
relevance not only to plane waves, but also to any infinitesimally small perturbation.

We have seen in Section 4 that the superposition of propagation paths can lead to
resonant suppression of transmission, called Fano resonances. We now investigate whether
analogous phenomena are possible in granular chains. First, we introduce the theoretical
framework that we will use to analyse wave scattering by discrete breathers.

5.1 Theoretical Framework

We start from the linearised equations (3.10) around a breather un(t) with period Tb. For a
marginally stable breather, all of the Floquet multipliers are located on the unit circle: they
are written λ = eiθ. This implies that for an eigenvector en(t), we have en(t+Tb) = eiθen(t):
the evolution of en after one period is simply a phase shift. Defining the auxiliary functions

fn(t) = e
−i θ

Tb
t
en(t), we see that these functions are periodic with period Tb. This leads to

a Fourier representation of e′n, which in turn implies a representation of en in terms of the
harmonics

en(t) =
∞∑

k=−∞

ekne
i( θ
Tb

+kΩb)t,

where Ωb = 2π
T b

is the breather angular frequency and ekn is the kth Fourier coefficient.
Now, were the breather not to exist (un(t) = 0 for all n and t), we know the spectrum

θ contains plane waves, which satisfy θ = ωqTb, where ωq is the frequency of a plane wave
of wavenumber q, as described by (2.12). The breather, being exponentially localised, will
only slightly modify those plane waves, and θ = ωqTb will still be a part of the spectrum.
Therefore,

en(t) =
∞∑

k=−∞

ekne
i(ωq+kΩb)t. (5.1)

37



...

...

ωq + 2Ωb

ωq + Ωb

ωq − Ωb

ωq

ωq
ωq

ωq − 2Ωb

Figure 5.1: Schematic representation of the one-channel scattering process. An incoming
wave can excite localised modes, leading to interferences. Idea of the figure from Reference
[17].

This is a representation of scattering states as superpositions of plane waves in a discrete
ladder of frequencies ωq+kΩb. It is represented schematically in Figure 5.1. We are interested
in the behaviour of the coefficients ekn at infinity, because this will determine the transmission
properties of incoming waves.

By linearity, the functions ei(ωq+kΩb)tekn have to satisfy the linearised equations (3.10).
This implies that, for each k, one of two things can happen: either the frequency ωq + kΩb

belongs to the linear spectrum, or it does not. If it does, then the corresponding vector ekn is
spatially extended (a plane wave propagates). If it does not, then ekn decays exponentially,
and the mode is localised. In the first case, we say that the channel k is open; in the second,
we say that it is closed. If more than one mode is open, we are dealing with multi-channel
scattering, while if only the mode k = 0 is open, it is a single-channel scattering. In the case
of single-channel scattering, a single incoming wave produces a reflected and a transmitted
wave of the same frequencies. In the case of former case however, additional transmitted
and reflected waves of frequencies ωq + kΩb are created.

Due to the limited bandwidth of our chain, only a finite number of channels can be
opened by a breather. In fact, for our parameter values (Table 2.1), only the channels −1
or +1 can be open in addition to channel 0. For instance, Figure 5.2 represents a scattering
situation where the channel k = +1 is opened.

ωq

Acoustic

0 Ωb ωq + Ωb

Optical
ω

ωq + 2Ωb

Figure 5.2: A multi-channel scattering situation with channel +1 opened. The incoming
acoustic wave at frequency ωq creates an optical wave at frequency ωq + Ωb.
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Thus, we can have three cases: a plane wave passing through the breather, an acoustic
wave giving rise to a secondary optical transmitted wave, and an optical wave giving rise to
a secondary acoustic transmitted wave.

5.2 Multi-Channel Scattering

We now focus on the breather of Figure 3.1 and illustrate the theoretical results with two
computational experiments. This is original work. We use an acoustic wave of wavenumber
π/10 and frequency 1270 Hz, and an optical wave of wavenumber π/3 and frequency 8530
Hz (recall from Table 2.2 that the acoustic band runs from 0 to 4710 Hz and the optical
band from 8100 to 9370 Hz). We chose these frequencies to observe a two-channel scattering
in both cases. In both cases we used the breather of Figure 3.1 centred at site n = 500 with
a chain of N = 1000 sites. The experiments will serve as a preliminary verification of the
validity of the theoretical framework, and as a testbed for the numerical method we will use
in Section 5.3 to probe Fano resonances.

As in the numerical simulations that we performed on the waveguide arrays, we use an
incoming wave packet localised inside a Gaussian envelope

wn(0) = Wn cos(−qn)e−
(n−n0)

2

σ2 ,

ẇn(0) = −ωqWn sin(−qn)e−
(n−n0)

2

σ2 ,

where the coefficients Wn take different values for even and odd sites, and are chosen so that

en(t) = Wn cos(ωqt− qn),

ėn(t) = −ωqWn sin(ωqt− qn)

is an exact plane wave solution to the linear equations (2.11).
We illustrate the scattering of these travelling wave packets by a breather at the centre

of the chain in Figure 5.3 for an incoming acoustic wave and in Figure 5.4 for an incoming
optical wave. These results were obtained by integration of the linearised equations (3.10)
around the breather depicted in Figure 3.1, and we checked that they hold in the weakly
nonlinear case of the nonlinear equations, with a perturbation amplitude 104 times smaller
than the amplitude of the breather. We only represent the perturbations corresponding to
the waves, not the breather itself.
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(b) After the scattering of the acoustic wave
into an acoustic and an optical wave.

Figure 5.3: Multi-channel scattering of an incoming acoustic wave packet of frequency f =
1270 Hz by a breather centred at n = 500. The plot on the left represent the incoming wave
packet, and the plot on the right represent the state of the chain after the scattering has
taken place, when the transmitted wave packet (right) has passed through the breather, and
generated a secondary optical wave packet (second from the right) and two reflected wave
packets.
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(a) Before the scattering.
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(b) After the scattering of the optical wave
into an optical and an acoustic wave.

Figure 5.4: Multi-channel scattering of incoming optical wave packet of frequency f = 8530
Hz by a breather centred at n = 500.The plot on the left represent the incoming wave packet,
and the plot on the right represent the state of the chain after the scattering has taken place,
when the transmitted wave packet (second from the right) has passed through the breather
and generated a secondary acoustic wave packet (right) and two reflected wave packets.

The observations in these figures are consistent with the theory: the breather opens
another channel (channel +1 or −1, at frequency ωq ± Ωb ), leading to the emission of an
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extra pair of transmitted and reflected wave. As a result, a superposition of an acoustic and
an optical wave propagates through the chain. For our parameter values, acoustic waves
have a higher group velocity than optical waves, so acoustic wave packets travel faster than
optical ones, and we observe a clean separation.

This interpretation can be checked using the discrete Fourier transform (computed using
the fast Fourier transform algorithm [37]) in the time domain: wave packets of a particular
frequency show up as peaks in the spectral density |ûn(f)|. This computation is performed
in Figure 5.5 for an incoming acoustic wave, and in Figure 5.6 for an incoming optical wave.
Far from the breather, only open channels are significant, while inside the breather, closed
channels are active as well.

0 0.5 1 1.5 2

x 10
4

10
−2

10
0

10
2

10
4

f

|û
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(a) Frequency content at site n = 400, far from the
breather. Channel number 0 and channel number
+1, of frequency ωq + Ωb, is open.
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(b) Frequency content at site n = 500, in the mid-
dle of the breather. In addition to open channels 0
and +1 that are seen far from the breather, closed
channels −2, −1, and +2 are visible.

Figure 5.5: Discrete Fourier transforms of the time evolution far from the breather and in
the middle of the breather for the experiment in Figure 5.3 with an incoming acoustic wave.
The notations are P for the incoming phonon (linear wave) frequency and B for breather
frequency, so that for instance B + P corresponds to channel number 1, with frequency
ωq + Ωb.
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(a) Frequency content at site n = 400, far from
the breather. Channel number −1, of frequency
ωq − Ωb, is open.
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(b) Frequency content at site n = 500, in the mid-
dle of the breather. In addition to open channels 0
and −1 that are seen far from the breather, closed
channels −3, −2, and +1 are visible here.

Figure 5.6: Discrete Fourier transforms of the time evolution far from the breather and in
the middle of the breather for the experiment in Figure 5.4 with an incoming optical wave.
The notations are the same as in Figure 5.5. See the main text for an explanation of the
peaks around 4 kHz and 11 kHz.

In this discussion, we accounted for the peaks in the Fourier transform due to the incom-
ing wave and to the interaction with the breather. However, two peaks in Figure 5.6 remain
unexplained. Those two peaks are separated by approximately one breather frequency, sug-
gesting that they are caused by the same effect and that one is due to a scattering of the
other by the breather. The first peak is located near the end of the acoustic band. In the
time series for site 400, we see that the beginning of the signal is responsible for this peak.
Although this is before the optical wave packet reaches site 400, the time series shows clear
small-amplitude oscillations at frequency 3.9 kHz. We conjecture that the propagation of the
optical wave packet gives rise to an acoustic wave packet of the same wavenumber. Indeed,
the dispersion relation for the wavenumber that we used (q = π/3) gives f = 3.87 kHz, in
good agreement with the observed peak. Although this explanation seems plausible and is
supported by close examination of the tail of the optical wave packet (in Figure 5.7), the
precise mechanism according to which this small acoustic wave is created is unknown. This
effect is independent of the size of the envelope controlled by the parameter σ.
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Figure 5.7: Magnification of the tail of the incoming optical wave packet of Figure 5.6,
showing a secondary small-amplitude acoustic wave that propagates faster than the optical
wave.

All these results confirm the validity of the theoretical approach. We now look for Fano
resonances in the single-channel case. Before considering the full problem of resonances in
our Hertzian chain, we examine available results for the monoatomic K2 −K3 −K4 model,
which we encountered as an approximation of our Hertz contact in Section 3.3 and where

breathers were found to exist when
K2

3

K2K4
< 3

4
.

5.3 Fano Resonances in the K2 −K3 −K4 Model

In 2005, Flach and Gorbach found Fano resonances in the monoatomic K2 −K3 −K4 chain
in certain parameter regimes [15]. They numerically found that the Floquet multipliers of
some breathers (see Section 3.5) include small deviations from the unit circle, associated
with eigenvectors representing extended states. Although we found in Section 3.5 that such
oscillatory instabilities were usually connected with finite-size effects and disappeared in the
limit of an infinite chain, the instabilities in this case do not depend on the size of the system.
They are the signatures of a Fano resonance: an instability connected with an eigenvalue
pair of complex angle eiωqTb is linked to a Fano resonance at frequency ωq. We plot the
breather they use in Figure 5.8.
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Figure 5.8: A breather in the K2−K3−K4 model, with frequency Ωb = 10. The parameters
are m = 1, K2 = 1, K3 = 0.5, and K4 = 1.

As shown in their paper [15], there is a Fano resonance near q = qf ≈ 2.18, where the
transmission coefficient jumps from 1 for q . qf to zero for q & qf . Correspondingly, there
is a small oscillatory instability that is independent of the system size. To obtain the values
of the transmission coefficient, they used a numerical method based on Newton’s method
to resolve a scattering state. However, I was unable to implement this method successfully.
Therefore, I tried to reproduce their results by sending a Gaussian wave packet towards
the breather, which is how we validated the Fano resonances in waveguide arrays and the
multichannel scattering in the Hertzian chain.

We find that an interesting phenomenon does take place at q ≈ 2.18, but the effect we
observe is surprising. Instead of a nearly perfect reflection or transmission as we would expect
from the transmission coefficient in Reference [15], an exponentially localised mode grows in
the middle of the breather, as depicted in Figure 5.9. This mode grows exponentially in the
linear regime, as shown here, but saturates when using the nonlinear equations.
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Figure 5.9: Scattering of an incoming packet of wavenumber q = 2.18 by the breather shown
in Figure 5.8, located at the middle of the chain at n = 300. These results are obtained with
the linearised equations (3.10) with a chain of N = 600 sites. The same experiment on the
nonlinear equations (2.2) shows that this phenomenon is only modified by a saturation of
the exponential growth due to nonlinear effects.

In an attempt to understand this effect, we inspect the frequency content of the different
sites. Far from the breather, we observe a very sharp peak at frequency ωq, which implies
that no additional frequencies were created in the scattering process. At the centre of the
breather however, we observe closed channels (Figure 5.10). Two unexplained effects appear
there: a frequency shift, and a point of surprisingly low amplitude.
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Figure 5.10: Frequency content of site n = 300. Although a superficial observation of
(a) suggests the usual structure of closed channels (see, for instance, Figure 5.5), close
examination of (b) reveals two interesting features. First, there is a frequency shift in the
breather frequency Ωb; second, there is a dip between Ωb and Ωb +ωq that is too sharp to be
a simple transition between two peaks. We do not currently have an explanation for these
effects.

Another way of testing resonances is to excite the boundary of our domain with a sine
wave at a particular frequency, as was used in the experiments [3]. We imposed

u0(t) = 10−4 sin(ωqt)

at the left boundary of the breather in Figure 5.8, and obtained the same phenomenon as
with wave packets: a localised mode grows at the centre of the breather and is saturated by
nonlinear effects.

It is tempting to dismiss all these effects as numerical artifacts, with no relevance to our
problem, but careful examination shows that this is not the case. We consider two potential
sources of errors.

First, the numerical accuracy of our integration scheme is necessarily limited. The inte-
grations are done with MATLAB’s ode45 command, which provides an error control via two
parameters RelTol and AbsTol. Performing the integration with tighter error tolerances
resulted in the same effect, strongly suggesting that what we observe is not a numerical
artifact.

Second, the localisation of the wave packet implies that it is not a perfect plane wave, but
contains a range of frequencies. If its spectral width is larger than the frequency range over
which the transition from T = 1 to T = 0 takes place, then the results will not accurately
reflect the scattering for the chosen frequency. However, the wave packets that we use are
more than ten times wider than the wavelength 2π

q
and numerical experimentation with
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different widths shows little sensitivity of the scattering process to the width of the wave
packet, suggesting that our choice is appropriate.

Finally, this effect is very robust, and we observed them using with different breather fre-
quencies and parameters (for instance, the resonance at q ≈ 0.62 for a breather of frequency
Ωb = 4.5 in Figure 12 of Reference [15]).

Although these results do not directly correspond to the expected mechanism of Fano
resonances, they do appear where Flach and Gorbach predicted Fano resonances would
take place. For instance, in the experiment of Figure 5.9, the localised mode only appears
for q ∈ [2.1, 2.3], a strong sign that it is closely related to the predicted Fano resonance
at q ≈ 2.18. Therefore, we conjecture that this mechanism is the way Fano resonances
appear in this system. This suggests that the dynamics of the scattering are not adequately
understood by only considering the transmission coefficient.

In this section, weconsider our original problem of Fano resonances in the Hertzian chain.

5.4 Fano Resonances in the Hertzian Chain

We explored the scattering process in our Hertzian chain for a wide range of wavenumbers
and breather frequencies in the Hertzian chain, using the method of wavepackets previously
described. We did not find any phenomenon comparable to Fano resonances or the growth
of a local mode we discussed in the K2−K3−K4 model. Rather, we observe different forms
of multi-channel scattering and simple transmission with no signs of resonances.

A possibility remains that Fano resonances exist for other parameter values of our model.
Recalling the evolution equation

mnün = A [∆− (un − un−1)]3/2+ − A [∆− (un+1 − un)]3/2+ ,

using the substitution un = ∆u′n, t =
√√

∆m1

A
t′ and dropping the primes, we obtain

mnün = [1− (un − un−1)]3/2+ − [1− (un+1 − un)]3/2+ ,

where mn = 1 if n is odd, and m2/m1 if n is even. Therefore, we conclude that the only
model parameter that can affect the scattering process is the mass ratio m2/m1: both A
and ∆ can be scaled away. We explored wave scattering with different values of this mass
ratio (although an exhaustive study is out of reach of our numerical methods), each time
sampling all available wavenumbers and breather frequencies, again finding no trace of Fano
resonances. Therefore, we conjecture that no Fano resonances are present in the Hertzian
chain.

These scattering results and breather properties (in particular, their stability) were
checked to hold in the K2 −K3 −K4 approximation to our Hertz potential given by (3.6).
Although this modified model results in a small change in breathers amplitudes and profiles,
the properties are mostly the same. In particular, no resonances were found in this reduced
model. Assuming that all of the scattering properties of the Hertzian chain are preserved in
the K2 −K3 −K4 approximation, the diatomic Hertzian chain can be seen as a particular
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instance of the diatomic K2 − K3 − K4 model, with Equations (3.6) defining a subspace
of the parameter space (K2, K3, K4). We conjecture that the Fano resonances found for
m1 = m2 = 1, K2 = 1, K3 = 0.5, and K4 = 1 are unavailable to the reduced parameter
space defined by the diatomic Hertzian chain. This conjecture could be verified by following
the Fano resonances when the parameters are varied and find exactly where they are lost.
In particular, if an uninterrupted branch of breathers could be continued from the model
used by Flach (the monoatomic K2 −K3 −K4 chain with m1 = m2 = 1, K2 = 1, K3 = 0.5,
and K4 = 1) to the model we use (the diatomic K2 −K3 −K4 with parameters dictated by
(3.6)), then we could perform a (numerical) bifurcation analysis explaining when and why
Fano resonances are lost.

In conclusion, although we cannot completely rule out the possibility of Fano resonances
in the Hertzian chain, the results we obtained seem to point to the nonexistence of such
resonances. Even if they exist, direct simulation of the equations of motion shows that their
observation is problematic, as explained in the previous section. Therefore, an experimental
observation of a Fano resonance in granular chains seems unlikely.

6 Conclusions

In this report, we introduced the equation used to model chains of solid beads. After ex-
amining properties of linear and solitary waves, we focused on localised excitations, called
breathers. We studied their existence and stability, and used numerical methods to obtain
them to high accuracy. We then introduced the concept of Fano resonances in progressively
more complicated examples, before presenting the results of Reference [31], a theoretical
derivation and numerical confirmation of a Fano resonance in a model of waveguide arrays.
Although our original goal was to extend these results to breather in Hertzian chains, we
illustrated on the example of the K2 − K3 − K4 model, for which Fano resonances were
predicted in Reference [15], that the direct use of the numerical method developed for the
waveguide arrays is problematic. We uncovered an interesting phenomenon that needs to be
studied in greater detail to have any hope of finding Fano resonances in more complicated
systems such as the Hertzian chain.

During this study, we coded several numerical methods. The fine-tuning of parameters
(such as the various accuracy settings) had to be done manually in each case, and the various
settings interacted in complex ways. This would benefit from a more systematic study. For
instance, given a differential equation that is integrated with specified absolute and relative
tolerances at each timestep, what are the resulting error bounds, and how should we choose
the various parameters of a Newton’s method using this differential equation as objective
function, as we did to obtain breathers? Which variants of Newton’s method are appropriate
to extend the convergence region or improve the computation time? (For instance, we used
Broyden’s method [4] to avoid recomputing the Jacobian matrix at each step) Should the
Jacobian be computed by finite differences or by integration of the linearised equations? In
both cases, because the Jacobian is numerically sparse, we could have used a collocation
method [9] or even automatic differentiation [21]. Also, the continuation procedure we
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used is very crude and does not adequately detect bifurcation (since the Jacobian becomes
singular). A very promising option is to use a package such as AUTO [10] to follow branches
of solutions.

Although some results were reported in Reference [39] about the various breathers sup-
ported by Hertzian chains, an interesting and ambitious goal would be to establish an ex-
haustive classification of all breather branches, and link them to relevant limiting cases by
numerical continuation. Also interesting would be the study of breathers in chains of beads
with different contact geometries, i.e. different exponents in the contact law (for instance,
F = δ2 for conical asperities [20]). Future areas of research also include higher-dimensional
lattices and accounting for energy dissipation, an important issue for experimental studies [5].

Concerning Fano resonances, we found in Section 5.3 that an important issue to be ad-
dressed is the study of scattering by discrete breathers in the presence of Fano resonances,
going beyond the classical approach of computing scattering states and transmission coef-
ficients. We conjectured the nonexistence of Fano resonances in the Hertzian chain, and
outlined a plan to confirm this using a bifurcation analysis.

Our results also suggest possible future experiments. For instance, we can already rec-
ommend the observation of multichannel scattering. If a long-lived breather can be created,
then using a sine wave of a well-chosen frequency in the acoustic band as input voltage of
the actuator should result in the observable creation of an optical wave (see Figure 5.2) by
the breather. However, the experimental observation of Fano resonances does not seem to
be a likely outcome, because of the uncertainty of their existence in our parameter regime
mentioned in Section 5.4 and the difficulty of their observation studied in Section 5.3.
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