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Abstract

In this thesis, we study two data sets provided by the online fundraising

company FirstGiving. People can use FirstGiving to create a personal-

ized fundraising web page for a charity. From now on these people are

called fundraisers. The fundraiser can distribute the web page among his

or her friends, family members or acquaintances. These people can then

donate to the charity via FirstGiving as well. The data set consists of

the consumer data. We obtained two files. One file contains personal

information and demographic data about the users of FirstGiving. The

other file consists of the transaction data between donors and charities.

In the first part of this thesis, we construct networks from the data set

using charities and people as vertices. A tie between a person is formed

whenever he or she donated to a charity. We study networks depicting

the data from various time slots by applying network diagnostics to these

networks. These network diagnostics include the degree and degree dis-

tribution of vertices, the path between vertices, the closeness centrality

and the betweenness centrality. This is followed by deriving and testing

a collective behaviour model imitating the donation behaviour of people

using FirstGiving.
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Chapter 1

Introduction

1.1 Context and Motivation

FirstGiving [10] is an online company that enables private fundraisers to collect money

for a cause of their choice by providing tools to create a web page. A person wanting

to fundraise money online creates an account with FirstGiving and then has the op-

portunity to use the tools provided by FirstGiving to build a personalized web page

that raises awareness for a charity partnering with FirstGiving. The fundraiser then

distributes the web address of the site to friends, family members, and other acquain-

tances. If someone is interested in donating money to the charity via the fundraiser,

the money is transferred to a bank account through FirstGiving.

Figure 1.1: Fundraising with FirstGiving. Picture was taken from the FirstGiving
web site [10].
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FirstGiving was created in 2003, and since then has helped to raise more than $1

billion for charities world-wide. We obtained the data of the transaction processes

of the US based company starting from the beginning of the company (2003) up

until 2010 from Marc Stein. The text files containing the information are of a size

of more than 3GB. This data set includes the identification number of a donor, the

precise time to the second, and the amount in US dollars when the donor donated

to a charity via a certain fundraiser. Further, the data set also includes personal

characteristics of selected donors. That is, we have the personal details of 1,048,574

people out of 3,244,874. The personal information about the customers include, for

example, the age and gender, the state they are coming from together with the zip

code and city, a tendency in numerical values of whether a person is is interested in

donating to or fundraising money for a charity, information about the range of the

household income, and, finally, a classification into different social groups made by

an external company, Mosaic. Mosaic splits the US population into 13 social groups

such as “Affluent Suburbia” or “Blue-collar Backbone”. For this dissertation, we

limit our interest to a selected number of characteristics: we will only be concerned

about information of the age, state residence, and household income.

The aim of this thesis is to study the data set by following the donation behaviour

of the customers and users of FirstGiving over time. Then we want to apply network

diagnostics to understand the structure of the networks extracted from the data set.

This enables us to say more about the entire data set. That is, can we say anything

about the people using FirstGiving? If one donates via FirstGiving do people donate

more than once? Further, we aim to use this information to construct a model simu-

lating donor behaviour.

The structure of this thesis is as follows. First, we extract some demographics from

the consumer data. This is followed by a section where we state the donations and

definitions of the network and network diagnostics used in this report. This is fol-

lowed by a section where we discuss the results of applying the diagnostics to networks

constructed from the second data file that contains information about the donation

transactions. In the second part of this report, we introduce the concepts of epidemic

models. Consumer behaviour is based on collective behaviour, we will discuss some

literature on the issue before stating assumptions that lead to our consumer model.

We then study and test the model. Finally, we test whether the model leads to a
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similar network structure as observed from networks constructed from the data of

FirstGiving.
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Chapter 2

The Data Set

Figure 2.1: Steps to create a personalized fundraising webpage. Schematic indicating
steps to create a web page using FirstGiving [10].

Before applying network diagnostics, we give a general overview of the data set.

Whenever using FirstGiving to start ones own fundraising campaign (see Figure 3.1),

one can choose one of their partnering non-profit charities, or an event, team, or

person who already supports a charity. Suppose one wants to create a web page

then one has to choose what the initial occasion for the fundraising is. These are

categorized into four events: “Sporting” - for example dedicating a marathon run for
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a charity, “In memory of someone”, “Personal Occasion” - as in wedding or birthday

celebration, and “Use your imagination” - that includes fundraising campaigns such

as “grow a beard” or “quit smoking” [10]. FirstGiving targets people who want to

fundraise because of a personal reason or a special occasion. After choosing a cause,

one has to decide how long one wants to fundraise for: 6, 12 or 24 months long. Then,

FirstGiving asks for personal information such as name, address, city and state of res-

idence together with the zip code, and country. Afterwards, the fundraiser has the

opportunity to edit a standardized web page, and distribute the address of the web

page to friends and acquaintances. However, the newly created web page can also be

accessed via the FirstGiving web page by either looking for the fundraiser or looking

for the cause, and then choosing the fundraisers page to donate money. Beside the

credit card details, the donor has to provide information about his address (again city,

zip code and state) with no further information needed in order to place a donation.

The data set is split into two files. Both files include the entire customer data of

the United States based company from 2003 until 2010. The first file contains in-

formation about 2,805,391 users. The file includes information about, among others,

the age, household income, and state.

The second file contains the transaction data. That is the time whenever some-

one donated money via a fundraiser. In this file, we have the donor ID, the fundraiser

ID via which the donor donated money, the amount donated in dollars, a number

code for the charity, and the time and day up to seconds when the transaction took

place.

Starting with the file containing the consumer data, we did some basic summary

of the demographics. Thus, from the 1,048,574 rows contained in the file, there are

975,710 distinct consumers registered. Many consumers were registered more than

once. Probably1, they used FirstGiving multiple times, and some for their personal

details changed. However, about 94% of the consumers are registered once, 5% twice,

and the remaining 1% more than twice (with one person being registered 144 times).

Figure 2.2 shows the distribution of the donors of each state from the last 10 years.

1We tried to contact Marc Stein, but he did not respond. Thus, while analysing the data set,

we made the assumption that consumer IDs were distributed once and only assigned to one person.

Note that this might not be the case as another scenario might be that users get deleted after a

certain amount of time and then the number is redistributed.
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From the entire list, 1,111,025 entries come from the US. This number is less than

it should be as some people made spelling errors, and whenever unnoticeable or the

spelling error was made less than 10 times we disregarded these entries. Further, we

also ignored any donations made from outside the US. Otherwise, the abbreviations

for the 50 US states follow the standard list. Washington D.C. (DC) is included in

the state list.
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Figure 2.2: Number of donors normalised by population of each US state.

We normalised the data of the Figure 2.2 by the population of each state recorded

by the census of 2010 [7]. The highest contributions of consumers (both, donors and

fundraiser) are living in Vermont, Rhode Island, New Hampshire and Massachusetts

with Californian and Massachusetts having the most contributors in a non normalised

version. FirstGiving has its headquarters in Boston. Thus, it probably started its

promotion of the company in this area. California has the highest population in the

US. Thus, it was to be expected that the most consumers are coming from this state.

However, when looking at the normalised graph we see that California has a rather

low percentage of the population donating via FirstGiving. The lowest contribution

of percentage of donors is from Michigan.

The next demographic we looked at was the age of the donors. We plotted the num-

ber of donors against the information about the age a person entered when donating

money. This plot can be seen in Figure 2.3. Here, it becomes clear that the data

should be taken with caution as the data indicates it is possible that 80 plus year olds

used an internet company to donate but less likely. Nevertheless, Figure 2.3 shows

that the majority of users of FirstGiving are in their late thirties to early fifties. The

data plot has a mean value of µ̄ = 43 and a variance of δ̄ = 24. However, this and the
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Abbreviation Range of household income
A $ 1,000 - $14,999
B $ 15,000 - 24,999
C $ 25,000 - $34,999
D $ 35,000 - $ 49,999
E $ 50,000 - $74,999
F $ 75,000 - $99,999
G $ 100,000 - $124,999
H $ 125,000 - $149,999
I $ 150,000 - $174,999
J $ 175,000 - $199,999
K $ 200,000 - $249,999
L $250,000 +

Table 2.1: Range of the household income of donors

following conclusions drawn from the plots should be taken with caution because as

mentioned before the user might enter wrong information making the data set biased.
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Figure 2.3: Age distribution of donors.

Finally, we also plotted the income distribution of the donors in Figure 2.4. Ta-

ble 2.1 shows the abbreviations used in Figure 2.4. The majority of people donating

have an household income between $50, 000−$74, 999. The median household income

in 2010 in the US was $50,221 [7]. Figure 2.4 indicates that most of the contributors

using FirstGiving earn above the mean income of US households. However, again

this information might be bias for the same reason as for Figure 2.3.

The next several figures give a summary of the observations made in the second

data file. This file contains information about the time evolution of the donations
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Figure 2.4: Distribution of household income of donors.

made. Thus, the figures show the time evolution using different units. First, we

started with a year plot for donors’ contributions to charities (Figure 2.5).
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Figure 2.5: Number of donors vs. year.

In Figure 2.5, the crosses indicate the data measured from the file. The red line

connects the data points. We can see that in the years 2001 and 2002 no donors

contributed donations via FirstGiving, as the company was set up in 2003. It seems

to be that there is a bend in the curve at 2005 having a sharper slope afterwards.

The next plot shows the contributions of donors for different months. Again, we

normalised the data this time by the amount of donors in a year.

The data points in Figure 2.6 indicate the fraction of donors in a certain month.

We can see that most donations take place in April and September. April is the

month when many people receive tax returns. The peak in September is likely ex-

plained by donations dedicated to the terror attacks at September 11th 2001.
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Figure 2.6: Number of donors vs. month.

Again, we can see a change in behaviour from 2005 to 2006, as the donors are more

equally distributed over all months after 2005. The years before, the peaks in April

and September are more pronounced.
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Figure 2.7: Number of donors vs. days.

In Figure 2.7, we also plotted the normalised number of donors (whereby we nor-

malised such that the maximal number of donors in both months is equal to one)

against 61 days. The plot shows the data for August 1st until September 30th with

blue crosses. Again, to give the eye guidance, we connected the data points with a

solid red line. Interestingly, most of the donors give money during weekdays rather

than on weekends. However, there does not seem to be a preferable day during the

working days when more people donate money. We also can see again that there are

more donors on September than in August. Also, there is no obvious increase of the

number of donors at September 11th, but the number of donors does seem higher

around this day.
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Figure 2.8: Number of donors vs. Mondays in August until September 2008.

Finally, we plotted the number of donors against the hours of the day. Here, we

distinguish between Mondays (Figure 2.8) and Saturdays (Figure 2.9). We used

again the same time slot as for Figure 2.7, i.e. every Monday and Saturday in Au-

gust and September 2008. The time saved in the file is most likely East Coast Time,

but we do not know this with certainty. However, there are 5 different time zones

in the US. Thus, we needed to assign the right time for each donor using the state

information of each consumer from the previously discussed file. Note that for some

donors, there was no data saved in the consumer files. We therefore did not include

the donors without information. Also, states that have more than one time zone are

considered to belong to only one time zone. Further, we normalized every day by the

total amount of donors of each day. Then we took the mean of all days (9 Mondays

and 8 Saturdays).

2 4 6 8 10 12 14 16 18 20 22 24
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Hour − Saturday

N
or

m
al

is
ed

 D
on

or

Figure 2.9: Number of donors vs. Saturdays in August until September 2008.
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The plots can be seen in Figure 2.8 and Figure 2.9. Though one might expect the

daily routines of people to be different on weekdays and weekends. Interestingly,

most donors give money during the afternoon. On Mondays, we can see a peak of

donations around 16.00 and then during the evening the amount of donors decreases.

Note, however, that on Saturdays donations reach a maximum at 14.00 but donors

are also active in the evening and at night time. Certainly, we have to have in mind

that some donors might enter wrong information but it seems that quite a lot of

people also donated during the night - again more on Saturday than on Monday.

However, this information should be taken with caution, as we are not sure whether

the donation transactions are stored in Eastern time. From the plots, we see that the

donation behaviour in the sense varies that Saturdays people donate more throughout

the day whereas Mondays people tend to donate at the end of usual business hours

or the early evening.

In this chapter, we observed from the data that users of FirstGiving on average

are middle-aged people with good salaries. Further, we can conclude that people are

more inclined to donate money via FirstGiving in a month whenever they seem to

get a tax return or in memory of September 112. Nonetheless, there is no particular

peak visible during September 11. Also, people donate more during the week then

over the weekend. However, the hours during which people donate seem to be similar

Mondays and Saturdays. We also ploted similar graphs with donations and charities

against years, months, days and hours, but each of these graphs behaved in a similar

way to the respected graphs with donors. Thus, we decided to omit the graphs for

brevity.

2August 29th was the day when Hurrican Katrina reached the coast of Louisiana. We plotted

the number of donors against days in September and October 2005, and the plot looked similar to

Figure 2.7.
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Chapter 3

Networks

3.1 Network Representation

This section gives an overview of standard notation in network theory but also details

some network diagnostics used in this work. The definitions were taken from Newman

[15], and Barrat et al.[3]. Note that we already discussed some centrality measures

such as degree, and eigenvector centrality, closeness and betweenness centrality, in a

Special Topic [24].

A network is commonly understood as a system that can be represented as a graph,

G = (V,E), with a set of nodes or vertices, V , representing the elements of the system

and a set of links, ties or edges, E, connecting the elements and representing some

sort of interaction between the elements. We will denote the cardinality of V as N

throughout this work. Further, elements of V are usually denoted with lower case

letters, i.e. we say, the vertex i is an element of V . If vertex i is connected to vertex j,

then {i, j} denotes an edge in E. A network is said to be undirected if for {i, j} ∈ V

then {j, i} ∈ V for all i, j in E. A network is directed if this is not the case. We say

the cardinality of E is m.

A common representation of a network is an adjacency matrix. An adjacency matrix,

A, for a simple graph, that is a graph where vertices are connected with at most one

edge, has elements aij [i,j∈{1,...,N}] such that

aij =

{

1 if (i, j) ∈ E
0 otherwise

∀ i, j. (3.1)

Obviously, for a directed graph, A is symmetric. Actually, equation (3.1), repre-

sents the entries for a simple unweighted graph. If the network has multiple edges
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distributed between the vertices, then the number of ties connecting the vertices re-

places the 1. A weighted graph has instead of the number of ties, a weight as a

non-zero entry. For example, if the network represents a phone network with the set

of vertices being people and the set of ties are calls made between the people than a

weight might be the duration of the call.

Figure 3.1: Schematic of a bipartite network. The vertices are forming the following
subsets: X = {1, 2, 3, 4, 5, 6, 7} and Y = {A,B,C,D}.

For some networks, the set of vertices has two distinct subsets, X, and Y . If no

ties connect different elements of the subsets but the ties run between elements of

distinct subsets, then a network is said to be bipartite. For example when one tries

to group people into common groups of classes, then one vertex subset contains the

people and the other the classes. A link between two vertices exists whenever a person

belongs to a certain class.

The adjacency matrix for a bipartite network is still of size N×N . However, we do not

need to store the entire adjacency matrix but only the necessary information can be

stored in a smaller matrix, the incidence matrix B with elements bij [i∈{1,...,n},j∈{1,...,g}]

where n and g are the numbers of elements of the respective subsets.

The incidence matrix represents a two-mode bipartite. To return to a one-mode

network, we can use a one-mode projection. The projection matrix, P , is formed

by multiplying the incidence matrix with its transpose or vice versa. For example,

if P has elements pij then P is constructed in the following way of a g × n, simple,

unweighted, incidence matrix B with elements bij:

pij =

g
∑

k=1

bkibkj =

g
∑

k=1

bikbkj, (3.2)

13



or in matrix form

P = BTB. (3.3)

For this case, P is an n × n matrix where the diagonal elements indicate how many

elements of the subsetX of size n are connected with vertices from the subset Y of size

g (which is the degree of these vertices which we will define later). The off-diagonal

entries are weights, namely, the common elements between the single vertices. If one

multiplies the matrix B with its transpose the following way:

P = BBT , (3.4)

then this results in a g × g matrix where the diagonal elements indicate again how

many ties lead to elements in Y from elements in X, and the the off-diagonal elements

represent the number of vertices in Y that are connected to the same elements in X.

3.2 Network Diagnostics

As mentioned before, the diagonal elements of a one-mode projection matrix indicate

how many vertices of one subset are connected to the same element in X in the

bipartite network. However, one can also just sum the entries of one row or column

of an unweighted adjacency matrix for one vertex. This sum is called the degree of a

vertex, and is written in terms of elements of an N ×N undirected matrix A in the

following way:

ki =
N
∑

j=1

aij. (3.5)

For a directed network, the number of edges leading to a vertex might differ from the

number leaving the vertex. Thus, for a vertex i, we define the in- and out- degree,

respectively, as:

kiin =
∑N

j=1 aij and kiout =
∑N

j=1 aji, (3.6)

and ki is then the sum of kiin and kiout . From these equations, we get the total number

of edges for an undirected network:

2m =
N
∑

i=1

ki. (3.7)

The mean degree 〈k〉 of a network is then defined to be

〈k〉 = 1
N

∑N
i=1 ki = 2m

N
. (3.8)
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The degree distribution1, p(k), is defined to be the frequency of the vertex degrees

[2, 15]. A degree distribution that was discovered in a couple of networks is the

power-law degree distribution [4]. Power-law distributions were noticed, for example

for the frequency of unique words occuring in “Moby Dick” [9, 16], for the degrees of

proteins in the known protein interaction network of yeast [9, 13], and the population

of cities [16]. The degree distribution, p(k), of a power law follows

p(k) = Ckα, (3.9)

where C is a constant. Further, p(k) has a singularity for k → 0. Therefore, there

must be a kmin > 0 at which the power law behaviour stops for any k such that

kmin > k ≥ 0. Thus, kmin is a lower bound, and C is called the normalization

constant as p(k) has to satisfy the following for all k ≥ 0:

∞
∑

k=0

p(k) = 1. (3.10)

Substituting equation (3.9) into equation (3.10), we get

C

∞
∑

k=0

k−α = 1. (3.11)

Hence,
C = 1∑

∞

k=0
k−α

≃ 1∫
∞

kmin
k−αdk

= (α− 1)kα−1
min ,

(3.12)

which implies that

p(k) ≃ α− 1

kmin

(

k

kmin

)−α

. (3.13)

We are interested in whether the degree distribution determined from our data fits a

power-law distribution. Therefore, we need a method for parameter fitting. We will

use the algorithm provided by Clauset et al. and the next paragraph contains the

derivation of the formulas used the in the algorithm Clauset et al. provided [9].

Clauset used the cumulative distribution function (CDF). That is

P (k) =
∞
∑

k′=k

p(k′), (3.14)

1The degree of a vertex is an integer value. Therefore, we are only interested in discrete distri-

butions.
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i.e. the fraction of all degrees greater than k′ or the probability that a chosen vertex

i has degree k′ or greater [P (k)) = Pr(K ≥ k)]. We can approximate P (k) by

P (k) = C
∑∞

k=0 k
′−α ≃ C

∫∞

k
k′−αdk′

= C
α−1

k−(α−1) = C
(

k
kmin

)−(α−1)
,

(3.15)

where we assume α ≥ 1 to ensure that the series is convergent. Thus, we are left

with two parameters that we need to determined from the data. First, we find an

approximation for α. For this, let us assume kmin is known. Then, we can apply the

method of maximum likelihood on P (k). That is, the probability that the data has

the same CDF as the theoretical distribution:

P (k|α) =
M
∏

i−1

α− 1

kmin

(

ki
kmin

)−α

, (3.16)

where M is the size of the data sample. This probability is called the likelihood.

Next, we apply the logarithm on equation (3.16):

L = ln(P (k|α)) = ln
[
∏M

i−1
α−1
kmin

(

ki
kmin

)−α]

=
∑M

i=1

[

ln(α− 1)− ln(kmin)− αln
(

ki
kmin

)]

= M ln(α− 1)−M ln(kmin)− α
∑M

i=1 ln
(

ki
kmin

)

.

(3.17)

For the maximum likelihood, we require dL/dαmax = 0, and solving equation (3.17)

for αmax gives

ᾱ = αmax = 1 + n

[ M
∑

i=1

ln
ki
kmin

]−1

, (3.18)

where the bar above α denotes the estimate of the exact solution from the data set. In

order to estimate the error, we consider the exponent of the last line of equation (3.17),

i.e.

P (ki|α) = ae−bα(α− 1)M , (3.19)

where a = e−M ln(kmin) and b =
∑M

i=1 ln(ki/kmin). The mean of α can then be approxi-

mated to
〈α〉 ≈

∫
∞

0
e−bα(α−1)Mαdx

∫
∞

0
e−bα(α−1)Mdx

= M+1+b
b

,

(3.20)

where we used Γ(a) =
∫∞

0
ta−1e−t. The second moment of α is then

〈α2〉 =
∫
∞

0
e−bα(α−1)Mα2dk

∫
∞

0
e−bα(α−1)Mdk

= M2+3M+b2+2b+2Mb+2
b2

.

(3.21)
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Thus, the variance is given by

σ2 = < α2 > − < α >2

= M+1
b2

.
(3.22)

The standard deviation is

σ =
√
M + 1

[

M
∑

i=1

ki
kmin

]−1
. (3.23)

For M >> 1, we can approximate this to

σ ≈ α− 1√
M

. (3.24)

In order to find kmin, Clauset et al. minimizes the distance between the CDF of the

data and the best-fit model for values higher then k̄min, i.e.

C = maxk≥kmin
|S(k)− P (k)|, (3.25)

where S(k) is the CDF using the data set for k ≥ kmin, P (k) is the corresponding CDF

for the power-law model that best fits the data in the region k ≥ kmin. We chose k̄min

such that the value that D is minimized which is known as the Kolmogorov-Smirnov

statistic.

Finally, in their algorithm, Clauset et al. also uses the p-value test that indicates

whether the power-law distribution is a good fit for the data set. For this, they esti-

mate the parameters as described before and then use these parameters to generate

new data sets. Finally, p is the fraction of time whenever D′ = |S(k′)− P (k′)| is less
then the original D. Further, Clauset says that for p ≈ 0.0, one can rule out that

the distribution is actually a power-law distribution. For p ≤ 0.1 there is a moder-

ate indication that the power-law distribution models the actual behaviour, and for

p ≥ 0.1 the power-law distribution is a good model. However, it is still not for sure

that the observed degree distribution actually is a power-law distribution. Thus, the

p-test is more of an indication whether an observed distribution is not a power-law

distribution.

Another important concept to determine the network structure is that of a path

between vertices. A path is defined to be the set of edges between two vertices, i.e.

Epi1in
= {{i1, i2}, {i2, i3}, ..., {in−1, in}} ⊆ E and {i1, i2, ..., in} ⊆ V . The length of a
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path pi1in between vertex i1 and in can be defined as pi1in=|Epi1in
|, i.e. the cardinality

of Epi1in
[3]. A network is said to be connected if there exists a path between all

pairs of vertices in the network. If a path does not exist between two vertices i and

j, then we say, following the definition of Barrat et al. [3] that pij = ∞. If Epij is

the smallest possible subset of E containing a path between vertex i and j, then the

path is called a geodesic path or the shortest path between i and j. The diameter, d,

of a network is usually defined as the longest geodesic path that differs from infinity.

Further, the distance matrix P is the matrix with elements pij.

A way to find the shortest path for a vertex i to other vertices is the breath-first

algorithm [15]. The idea for the breath-first algorithm is the following: First, find

all of the neighbours of i. These have distance d equal to one. Next, we find the

neighbours of the neighbouring vertices and set d = 2, and so forth whereby by each

iteration step, we increase d by one. We used the breath-first algorithm from Sporns

[20]. For a bipartite network, the algorithm has an operation time of O(m + N),

where m is the number of ties, and N the cardinality of the set of vertices.

A network diadnostic that is derived from the geodesic path is the closeness cen-

trality. For a vertex i, the closeness centrality can be defined1 as [15]

ci =
1

N − 1

N
∑

j = 1
j 6= i

1

pij
. (3.26)

Using this definition, we can define pij = ∞ whenever a path between vertices i and

j does not exist. Thus, a vertex gets a high closeness measure if the length of the

geodesic paths from the vertex i to others is small, and has a low value whenever

the geodesic path to other vertices is long. Also, this measure values vertices that

have shorter paths higher then vertices that are further away from the vertex i.

The computation time for the closeness centrality is of order O(N) whenever the

distance matrix already has been computed. Further, from this equation, the so-

called harmonic mean distance 〈p〉 can be defined to be

〈p〉 = N
∑N

j=1 ci
. (3.27)

1This definition is not the original one that was developed by Sabidussi but a variation.
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A criticism of the closeness centrality is that values tend to be spread rather closely.

As an example, Newman [15] refers to the network of actors where the vertices are ac-

tors and an edge exists whenever two actors played in the same movie. The closeness

centrality values hardly differ between the highest ranked actor that Newman deter-

mined to be Christopher Lee with a value of 0.4143 and the lowest ranked actress Leia

Zanganeh who has a value of 0.1154. In between these two actors are, according to

Newman, “about half a million other actors”. This leads to big changes for networks

that vary over time, i.e. where the edges slightly change, the centrality measure for

the vertices might differ to a bigger extense then for example for the degree as it has

a wider dynamic range [15].

Another centrality measure is the betweenness centrality. Here, the focus is more

on whether a vertex lies on a geodesic path of other vertices. Thus, the betweenness

centrality for a vertex i is given by [6, 15]

bi =

∑

st nst(i)

nst

, (3.28)

where ni
st is 1 if vertex i lies on a geodesic path and zero otherwise and nst is the

number of all shortest paths from s to t between s and t. To calculate between-

ness centrality, we used algorithm from Rubinov [19] that is based on the algorithm

proposed by Brandes [6]. This algorithm has an operation time of O(N(m + N))

for unweighted graphs. To understand the algorithm, we summarize the algorithm

proposed by Brandes. First, he defines the pair dependency for a pair of vertices s

and t to be

δst(i) =
nst(i)

nst

, (3.29)

i.e. the probability that a path from s to t goes through i. Then he defines the set of

predecessors of a vertex i on shortest paths from a vertex s to be:

Ps(i) = {j ∈ V |{j, i} ∈ E, dg(s, i) = dg(s, j) + ω(j, i)}, (3.30)

where ω(j, i) = 1 if {j, i} ∈ E and equals 0 otherwise. Now, note that δist > 0 only

for t ∈ V/{s} whenever v lies in the shortest path between s and t. Further, there

exists exactly one edge {i, j} with i ∈ Ps(j). He then extense the pair-dependency

also to edges. That is

δst(i, e) =
nst(i, e)

nst

, (3.31)

where nst(i, e) is the number of shortest paths from s to t that contain not only i but

also e ∈ E. Thus, δst(i, e) is the probability that the path from s to t goes through i
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and over e. Thus, we can say that the probability of all shortest paths starting from

s going through v is

δs. =
∑

t∈V δst(i) =
∑

t∈V

∑

j|i∈Ps(j)
δst(i, {i, j})

=
∑

j|i∈Ps(j)

∑

t∈V δst(i, {i, j}).
(3.32)

Then, because there is an edge from i to j, there are nsi paths that first go through i

and then through j. Thus, the total number of paths going from s to t 6= j containing

i and {i, j} is
nsi

nsj

nst(j). (3.33)

Hence,

δst(v, {i, j}) =
{

nsi

nsj
if t = j

nsi

nsj

nst(j)
nst

if t 6= j
, (3.34)

and δs.(i) can be written as

δs.(i) =
∑

j|i∈Ps(j)

∑

t∈V δst(i, {i, j})

=
∑

j|i∈Ps(j)
nsi

nsj
+
∑

t∈V/{j}
nsi

nsj

nst(j)
nst

=
∑

i|j∈Pi(v)
σij

σiv
(1 + δs.(v)).

(3.35)

The dependency for a single vertex can be computed in O(m) whenever the shortest

path from a vertex i to all others is known. To compute the shortest paths for all

vertices using the breath first algorithm costs O(N +m). Thus, the total algorithm

to compute the betweenness for all vertices has an operation time of O(N(N +m)).

For some networks, beside the ties connecting vertices, the vertices also have ex-

tra information assigned to them. For example, the vertices might be a set of people

and as a characteristic (or class) the age of the people might be given. This is of

importance for a network diagnostic as it can be observed occasionally that vertices

have more ties with vertices having the same characteristic which is called homophily

or assortative mixing. The opposite, that is vertices rather connect to vertices with

an unlike characteristic, is called disassortative mixing. In mathematical terms, the

characteristics of one class can be written as a set, i.e. let ci ∈ {b1, b2, ..., bn} be a

characteristic of vertex i where bs is an element of the class of characteristics. The

modularity, Q, measures whether vertices were more inclined to connect to other ver-

tices of the same class or tend to show disassortative mixing.
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To derive the modularity, first consider the total number of edges that exist between

vertices of the same type, that is

1

2

N
∑

i=1

N
∑

j=1

aijδ(ci, cj), (3.36)

where δ(ci, cj) is the Kronecker symbol, 1/2 needs to be multiplied because edges are

counted twice. The total expected number of edges joining vertices of the same type

is the sum of all edges of the same type that might form a link with the edges of other

vertices of the same type, i.e.

1

2

N
∑

i=1

N
∑

j=1

kikj
2m

δ(ci, cj). (3.37)

Now, Q is defined to be the difference between the actual number and the expected

number of edges that join vertices of the same class divided by the total number of

edges in the network:

Q =
1

2m

N
∑

i=1

N
∑

j = 1
j 6= i

aij −
kikj
2m

δ(ci, cj). (3.38)

The modularity, Q, is the diagnostic of whether vertices are connected to other vertices

with the same class. Positive values of Q are related to assortative mixing by the given

class whereas negative ones indicate a disassortative mixing. Newman developed a

method to find Q for two groups. To determine Q, first consider the case when there

are just two groups, say, b1 and b2. Then, we can set b1 = 1 and b2 = −1. Thus,

ci = 1 or ci = −1 for all i ∈ V such that δ(ci, cj) = 1/2(cicj +1). Hence, we can write

Q = 1
2m

∑N
i=1

∑N

j = 1
j 6= i

aij − kikj
2m

(

1
2
cicj + 1

)

.
(3.39)

Note that
∑N

j=1 aij − ki
2m

∑N
j=1 kj

= ki − ki
2m

2m

= 0.

(3.40)

Say, dij = aij − (kikj)/(2m) then

Q = 1
2m

∑N
i=1

∑N
j=1 dij(cicj + 1)

= 1
4m

1
2m

∑N
i=1

∑N
j=1 dijcicj,

(3.41)
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or in matrix form

Q =
1

4m
cTDc. (3.42)

3.3 Computation of Network Diagnostics

There are different ways of constructing networks out of the data given by FirstGiv-

ing. An obvious way is to use bipartite networks. The vertices are the donors and

the classes to which they belonged are formed from the charities. That is, whenever

a donation from a person i to a charity j was recorded, we set bij = 1. Because of

computation time and also memory space, we had to aggregate the data. We decided

that an interesting way would be to look at different time slots and see how the net-

work structure developed over time.

Thus, the entire donor-charity network is aggregated in monthly and daily donations.

For some computations of network diagnostics, the size for monthly aggregated net-

work was still quite large. Thus, for this case, we further aggregated the network for

a day only. In particular, we will look at the donation behaviour in November, and

the first four Mondays and Saturdays of November of each year starting from 2003

until 2010.

The degree is an important basis for other network measures. But also, from the de-

gree, we can tell a bit about the structure of the network. Figures 3.2 and Figure 3.4

show the mean degree of the donor vertices and the charity vertices, respectively.
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Figure 3.2: Mean degree of donors in November.
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2003 can be disregarded, as that was the setup year of FirstGiving. Interestingly,

both the mean degree for the set of charities and the set of donors stay approximately

the same from 2004 to 2010. Thus, the charities have a mean degree of 21.7114 and

the donors have a mean degree of 1.0005.
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Figure 3.3: Mean degree of charities in November.
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Figure 3.4: Mean degree of donors in November of various years.

However, when looking at each year individually (Figure 3.4), the degree distribu-

tion might indicated a power law distribution. (Figure 3.4 is has both axes in log

scale. Thus, for a power law distribution we would expect a straight line.)

We applied the algorithm from Clauset et al. as explained above to the yearly values

and also performed a fit and p-value test for exponential and Gaussian distribution us-

ing built-in Matlab functions2. The results can be seen in Table (3.1) and Table (3.2).

2normfit and expfit
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Nov 2006 Nov 2007 Nov 2008 Nov 009 Nov 2010

pG 0.000 0.0000 0.0000 0.0000 0.0000
pE 0.000 0.0000 0.0000 0.0000 0.0000
pPL 0.0124 0.0000 0.9004 0.7444 0.0500

Table 3.1: p-value for power-law (PL), exponential (E) and Gaussian distribution
(G) determined from 2500 trials.

Nov 2006 Nov 2007 Nov 2008 2Nov 009 Nov 2010
α 1.7400 1.6700 2.2500 2.2500 2.2500
g 396 626 991 1269 1298
σ 0.0372 0.0268 0.0397 0.0351 0.0339
xmin 7 5 49 51 50

Table 3.2: Power - law exponent (α), size of the subset of charity vertices (g), the
standard derivation (σ) and xmin.

Clearly, the values indicate that the degree distribution of the charities cannot be

model with the exponential or the Gaussian distribution. For the power-law distri-

bution, November 2006 and November 2007 have low p-values. For November 2008,

November 2009 and November 2010, the power-law distribution cannot be ruled out.

Also note that the α values for these years are about the same with a similar value for

kmin. In order to say more, i.e. whether it reached a saturation state. However, the

p-values are not enough to ensure that the distribution really follows the power-law

but we can tell from these values that the distribution is not Gaussian or exponential.

The degree distribution of the donors is shown in Table (3.3). Table (3.3) shows

the fraction of donors with p(k = 1)/m and p(k≥2)/m. Certainly, the majority of

the donors donated once, and only a couple of people donated more than once in a

month.

Nov 2006 Nov 2007 Nov 2008 Nov 2009 Nov 2010
p(k=1)/m 0.9995 0.9996 0.9990 0.9992 0.9992
p(k≥2)/m 7.0451e-004 5.3383e-004 9.0308e-004 8.0139e-004 7.2757e-004

Table 3.3: Fraction of donors with a degree greater or equal to 2.

We also determined the shortest path between all vertices in the system. As the

operation time for the shortest path is O(m + g + n), we decided to aggregate the

network once more, and choose as the set of vertices the donors and charities active

Mondays in November of each year. Then, we determined the closeness diagnostic
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and determined the mean for the first four Mondays of each year seperatly to, finally,

determine the mean shortest path for the first four Mondays of each year. The mean

closeness diagnostic for each year can be seen in Table 3.4. We can see that the

highest value for 〈c〉 for both donors and charities occur in November 2008.

Nov 2006 Nov 2007 Nov 2008 Nov 2009 Nov 2010
〈cCharity〉 0.0072 0.0052 0.0888 0.0027 0.0512
〈cDonor〉 0.0129 0.0105 0.1506 0.0095 0.0544

Table 3.4: The mean closeness centrality of the first four Mondays in November 2006
- 2010 for charities and donors.
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Figure 3.5: Distance matrix of 06/11/2006.

To further investigate this, we plotted the distance matrix P for indiviual days. Fig-

ure 3.5 shows the distance matrix P for 06/11/2006. It has a diameter of 2. That is

none of the donors donated twice. Therefore, the donors either have a path of zero,

two or ∞. However, charities have a degree of zero or one. Thus, for a subgraph,

such that we consider one charity and the donors donating to this charity only, the

structure is star graph with the centre being the charity vertex. This also explains

the low value for the closeness measure for both the charities and the donors in 2006.

This structure is depicted in Figure 3.6.

We can see a rather high value for the closeness for charities and donors in 2008.

Figure 3.7 shows the distance matrix for 03/11/2008. The diameter here is 14. Two

donors donated to three different charities and 944 donors donated to two different

charities. The original bipartite network therefore has a mean degree for the donor
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Figure 3.6: Schematic diagram of star-graph structure where Ci indicates charity
elements and di donor vertices.

vertices of 1.8103. Therefore, out of 982081 = (n+g)2 possible entries of the distance

matrix only 1449 entries of P are equal to infinity. The change in the network struc-

ture is caused by the donors who donated more then once. These donors form bridges

connecting people donating to one charity. This structure is depicted in Figure 3.8

where d5 and d6 form bridges.

03/11/2008
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Figure 3.7: Distance matrix of 03/11/2008.

To summerize, Table 3.5 shows the mean path length of each network containing the

networks formed from the donation information of the first four Mondays in Novem-

ber. We can see that if the maximal degree for donors is greater then 1, then the

diameter of the network increases and the mean path length gets smaller. Certainly,

we can see from the data collected from the different network structure extracted

from different Mondays in November that slight changes in the structure lead to big
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06/11/2006 13/11/2006 20/11/2006 27/11/2006

< p > - donors 71.1988 91.1894 89.1072 64.7641
< p > - charities 147.4896 131.5063 154.1202 125.0000
diameter 2 2 2 2
kmax - donor 1 1 1 1

05/11/2007 12/11/2007 19/11/2007 26/11/2007

< p > - donors 126.4989 112.1553 89.1072 75.0637
< p > - charities 220.7381 181.1511 154.1202 181.6006
diameter 2 2 2 2
kmax - donor 1 1 1 1

03/11/2008 10/11/2008 17/11/2008 24/11/2008

< p > - donors 5.0341 99.6535 120.4093 5.1249
< p > - charities 5.6841 283.1490 293.4885 5.8076
diameter 14 2 4 12
kmax - donor 3 2 4 2

02/11/2009 09/11/2009 16/11/2009 23/11/2009

< p > - donors 102.3093 66.3854 141.3674 171.0805
< p > - charities 431.7321 378.8514 385.3848 369.7956
diameter 2 2 2 2
kmax - donor 2 1 1 1

01/11/2010 08/11/2010 15/11/2010 22/11/2010

< p > - donors 4.0144 169.2461 169.2461 192.9037
< p > - charities 4.0684 468.7028 423.6522 293.4885
diameter 2 2 2 2
kmax - donor 2 1 1 1

Table 3.5: Mean path length, < p >, diameter and maximal degree, kmax for the
aggregated, bipartite networks of various years.

differences in the mean path length and therefore closeness centrality for the single

vertices.

We also calculated the mean betweenness for the first four Mondays of November

from 2006−2010 (Table 3.6). Not surprisingly, in 2008 both the average betweenness

for donors and charities is the highest as in 2008 the bipartite charity-donor network

has the most multiple donors over the years. Note, that for the 2006, 2007 and 2009

the betweenness centrality for the star subgraphs with the centre being a charity ver-

tex and the donor vertices attached around the centre, for this subgraph the charity

vertices have a betweenness value of one. For the entire network, this clearly differs

as then we have to take more vertices into account.
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Figure 3.8: Schematic diagram of star-graph structure with bridges where Ci indicates
charity elements and di donor vertices. Further, d5 and d6 form the bridges in this
network.

Nov 2006 Nov 2007 Nov 2008 Nov 2009 Nov 2010
〈bCharity〉 0.0000 0.0000 0.0888 0.0000 0.0002
〈bDonor〉 0.0029 0.0025 0.1140 0.0014 0.0525

Table 3.6: The mean betweenness centrality of the first four Mondays in November
2006 - 2010 for charities and donors.

Finally, we determined the modularity for age, household income and state residence

for the donors in November from 2003 until 2007. As it is of interest to see whether

the donors have similar characteristics, we wanted to determine the modularity for

donors donating to the same charity. For this, we first computed the one-mode pro-

jection for the donor vertices from the bipartite network. However, when computing

the modularity, we ignored the diagonal elements because these elements indicate the

degree for a donor. But also then the one-mode projection can be regarded as an

adjacency matrix where the vertices are the donors and ties exists when two donors

donated to the same charity. Table 3.7 shows the results. Note, we did not differ

between a person from living inside the US or any other country. Further, for some

donors no personal details where known. Thus, we disregarded these donors. As one

can see in Table 3.7, there is a tendency for the donors that donated to the same

charity to also have similar characteristics. That is people in the same age group also

donate to the same charity. For the states, we see that people tend to donate to the

same charity, if they also are residence of the same state. With the highest value

in November 2003. The modularity for the state decreases for the next years until

2007. From 2007 onwards, we can see that the Qstate ≈ 0.02. We already mentioned
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that 2003 was the founding year of FirstGiving. Thus, it can to be expected that

the people setting up the company started with advertising it in areas close by such

as Massachusetts. Note, that in Figure 2.2, we saw that Massachusetts has one of

the highest fractions of its population donating via FirstGiving. Still, this is just a

hypothesis and needs further investigation. The same holds for the modularity values

for the age and household income. These level around 0.015 for Qage and 0.045 for

QH .

Nov 2003 Nov 2004 Nov 2005 Nov 2006
Qage 0.0165 0.0147 0.0138 0.0147
Qstate 0.0563 0.0269 0.0168 0.0138
QH 0.0397 0.0419 0.0464 0.0430

Nov 2007 Nov 2008 Nov 2009 Nov 2010

Qage 0.0179 0.0164 0.0164 0.0239
Qstate 0.0239 0.0239 0.0202 0.0205
QH 0.0482 0.0467 0.0497 0.0510

Table 3.7: Modularity for one-mode charity matrix for age (Qage), state (Qstate) and
the household income (QH).

In conclusion, we have seen from the degree distributions that donors are more in-

clined to donate to charities once than multiple times in a time period. Further, the

distribution of charities most likely does not follow a power law distribution but leans

in the direction of a power-law distribution. The closeness and betweenness central-

ities also indicate that donors donate only once. However, both have highly varying

values whenever donors donate more than once and the network structure changes

from having many star subgraphs with charities in the centre. The modularity val-

ues for state residency, age and household income suggests that donors with similar

characteristics also donate to the same charity.
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Chapter 4

Collective-Behaviour Model

4.1 The SI Model

In this chapter, we model the donation behaviour of a set of people. For this, we will

use a similar approach that has been used to model epidemics spreading through a

population where the members of a population again represent nodes. These models

are called agent-based models. For these kind of models, one considers the interaction

of each agent (i.e. in the case of the epidemics, the agents are people) of the system

separately and the model is a simulation imitating the interaction between the au-

tonomous agents [3].

We are interested in the change of configuration of the single agents, the elements

of a system V . For a set of states {s1, s2, ..., sn} an agent can be in, where n is the

number of states. Further, we denote ρi ∈ {s1, s2, ..., sn} to be the configuration of

i ∈ V , i.e. the state assigned to i ∈ V . The total configuration of a system is then

ρ(t) = (ρ1(t)), ρ2(t), ..., ρN (t) where N denotes the number of agents in the system.

The master equation is used to predict the likelihood of a change from one config-

uration ρ′ to another ρ using the transition probabilities W (ρ′ → ρ) for the various

states, i.e. [3]:

dP (ρ, t)

dt
=

∑

ρ′

[P (ρ′, t)W (ρ′ → ρ)− P (ρ)W (ρ → ρ′)], (4.1)

where the sum runs over all possible configurations ρ′ a system can be in and W (ρ′ →
ρ) =

∏

i ω(ρ
′
i → ρi), i.e. we consider the probability for each node i to change its

configuration from ρ′i to ρi individually as the agents are independent of each other.

Usually this equation cannot be solved and simplifications need to be made. A typi-

cal approximation of the Master equation is the mean-field assumption. That is, all

30



elements i in the system have the same properties and the likelihood to change from

one state to another is the same for all elements, i.e. independent of i.

This approach is also used in epidemic models. The simplest model is the suscepti-

ble/infected (SI) model. The SI model simulates the epidemic spread when a virus is

transmitted between hosts that are infected by a disease, and susceptible people that

can gain the disease by meeting any infected [15]. Thus, we have two states in which

each member of the population can be: susceptible and infected. In the first instance,

we consider the fully mixed case ignoring any underlying network structure but con-

sider the case whenever the chance of individuals to get the disease, per unit time, is

the same for all individuals. If we have a population V of N members, than let S(t)

be the number of members that are susceptible and X(t) the number of people that

are infected at time t (following the notation used by Newman [15]).

We then assume, using the mean-field approximation, that the number of people

that individuals meet per unit time is the same for all members of the population.

Say, this number is β. The average probability to meet someone in the susceptible

state is S/N . Thus, we can say that an infected person has on average contact with

βS/N people per unit time. We also know that in the total population there are X

infected people. Thus, the average rate for new infected people can be written as

dX

dt
=

βSX

N
, (4.2)

and the change of susceptible people in the population is

dS

dt
= −βSX

N
. (4.3)

Further, s(t) = S(t)/N is the normalised number of susceptible and x(t) = X(t)/N

is the normalised number of infected. Note, that s(t) and x(t) can also be seen as the

probability of an individual to be in the susceptible and infected state, respectively. So

the simplified approximation to the master equation for the probability of a member

of the populations to change into the infected state is then given by

dx

dt
= βsx, (4.4)

and for the susceptible state:
ds

dt
= −βsx. (4.5)
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Figure 4.1: The logistic equation with β = 0.11, x0 = 0.1.

Finally, note that s + x = 1. Thus, we can express equation (4.4) in the following

way:
dx

dt
= β(1− x)x. (4.6)

For x0 at t = 0, the solution of the above is then

x(t) =
x0e

βt

1− x0 + x0eβt
, (4.7)

that is the well-studied logistic growth equation. As seen in Figure (4.1), the graph

of the logistic equation is of S-shaped form.

However, a person does not meet everybody in the world with the same probabil-

ity but rather has a circle of contacts. This circle of contacts can be represented

using a friendship network, with an adjacency matrix A = {aij}i={1,...,N},j={1,...,N}.

Then, the probability for each person to get infected depends on the people which

whom the person comes into contact. Losing the approximation that everybody has

the same chance of getting infected implies that we now have to consider the state

for each individual separately. Thus, say, if a person i is still susceptible then si = 1

otherwise si = 0. Similar, if a person i is infected then xi = 1 otherwise xi = 0.

We need to incorporate the ties leading to a vertex symbolizing a person to other

vertices in a friendship network. The ties represent the circle of contacts a person is

able to meet. That is, the probability for a vertex i to meet someone who is infected

is
∑

aij∈Vi
aijxj where Vi is the subset of vertices to which i is connected. Note, that

we still use the approximation that the transition probability β is the same for all
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vertices ignoring effects such as differences in the immune system, etc. Thus, the

change in probability of being susceptible in time for a vertex i is given by

ds

dt
= −βsi

∑

aij∈Vi

aijxj, (4.8)

i.e. the rate of change β followed by the probability of finding i in the state si and the

probability of one of i’s neighbouring vertices to be infected. Similarly, the probability

change of a vertex i being infected is then

dx

dt
= βsi

∑

aij∈Vi

aijxj. (4.9)

4.2 A Threshold Model

The concept of contagion can be extended beyond epidemics but also to any spread

of a dynamical process in social interaction such as collective-behaviour [3]. For the

collective-behaviour simulation, we also included a threshold model. People might con-

sider the “cost” and “benefits” an action would persuade against each other [8, 12, 18].

For certain situations, the benefits and costs of one person depends on the behaviour

of others. Hence, one might include a threshold to model the behaviour when a

person considers to commit an action incorperating the idea of whether an action is

beneficial or harming. As such situations, Granovetter includes, amoung others, “dif-

fusion of innovations”, “rumours and disease”, “strikes”, “voting”, and “educational

attainment”. However, also social norms and movements belong to the list of “social

contagion” [8]. In general, in all the different cases, the decision to use a new product,

believe a rumour, attend a strike, vote for a certain party, or attend college depend

on the decisions of one’s peers. That is, one is more likely to use a new innovation

whenever others are using it as well, or believe in a rumour if there exists more than

one source [8, 18].

For example, Rogers [18] points to a study conducted in the late 1950s and early

1960s that observed the introduction of a new maths syllabus called “New Math-

ematics” at schools in Pennsylvania and West Virginia. He notes that six school

superintendents were needed until other schools in the area followed to introduce the

“New Mathematics” syllabus (however that the syllabus changed again at the end of

the 1960s [18].)
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Another example Rogers mentions is the study of the introduction of birth control in

the 1960s and 1970s. The data indicates that the threshold for a Korean woman to

participate in birth control depended on their husband’s opinion but also on her age,

education, and status in the villages [18].

There are two different cases for thresholds, as Centola [8] points out: In the first

case, the threshold depends on the number of people committing an action. This

was introduced by Grenovetter. However, Watts [23] introduced another concept.

Here, the threshold depends on a fraction of the population. Thus, the threshold

does not change with increasing or decreasing size of the population. For the fraction

threshold, Centola explains that all non-participators are taking into account as well.

Whereas, as the number threshold, only the participants play an active role. Which

threshold notation is better to use depends on the problem. As an example for the

fraction threshold contagion, Centola lists the example of littering in a neighbourhood

and disease spread. For the littering, it might stop with increasing neighbourhood

size even if the same amount of people place their rubbish in the environment. How-

ever, for a highly infectious disease where the threshold is one person, the transition

behaviour will not change by increasing population - still only one person is needed

to distribute the disease to the next one [8].

Finally, we will adopt Centalo’s notation of for the difference whenever there is only

one person needed to spread the contagion, i.e. the threshold is one. Then, he calls

the process simple contagion. However, if more than just one person or more than a

fraction is needed to trigger contagion than he calls this is complex contagion.

4.3 Collective-Behaviour Model for Charity Dona-

tion

As outlined in the Section 3.3, anybody wanting to use FirstGiving creates a web

page with a cause and then distributes the address to acquaintances, friends and

family. Thus, we have to differentiate between fundraisers that used FirstGiving and

donors that used the web page they received from a fundraiser. For the fundraiser,

the idea of a complex contagion might apply as FirstGiving distributes a product,

namely, the tool to construct web pages and the simplification of the money transfer

to a charity. The knowledge of the new product seems to follow a similar line as out-

lined by Granovetter in his threshold model of collective behaviour [12]. FirstGiving
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introduced a new product that customers in the form of fundraisers and donors might

need recommendation before actually using it. For people to use the tools provided

by FirstGiving, we therefore consider that people also need to have knowledge about

the company via acquaintances, family and friends before they would first become

fundraisers themselves. We further assume that complex contagaion changes to sim-

ple contagaion, as we assume, people then have their own experience, and do not rely

on others opinions. Thus, they might choose to collect money via FirstGiving again

despite the opinion of others. Further, we will also use a fraction threshold model as

the size of the set of contacts varies for each person. This seems to be a plausible

choice as each donor has a varying circle of contacts. Also, for reasons of simplicity,

we like to make the rough assumption that the treshold is the same for each person.

Further, a person with a low number of friends might not be able to gain a treshold

bigger than a certain number (for the case of the number threshold). Therefore, we

decided to use the fraction treshold.

Again as outlined in Chapter 2, FirstGiving aims at people that have a “private”

cause to fundraise money. That is, people can choose if they want to donate because

of a special day in their lives, i.e. rather than a birthday or wedding present they

would like friends to donate money to charity. This suggests that it is a reasonable

to assume that people donating via a fundraiser do so because they know this person

and otherwise would not have chosen to use the web page set up by the fundraiser to

donate money to their charity of choice. Note that this assumption excludes whenever

people use the search function to donate money via FirstGiving at their web page.

Ignoring people donating via FirstGiving directly, we again have a form of a threshold

model. However, this time we do not want to use the fraction treshold but rather we

consider that donating money via a fundraiser might be an act of kindness towards

the fundraiser, and rather it is seen as a favour from the donor to the fundraiser.

Hence, we we consider simple contagion as just one person triggers a possible dona-

tion.

We also take into consideration that a donor or fundraiser most likely needs some

time before he donates money again. We call this period “recovery” time. In epi-

demic models, this is the time a person is immune against a disease. It is usually

denoted as the period of recovery.

Thus, we say, a person i can be in five different states. Either, he or she never
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heard of FirstGiving and is susceptible (ni). Next, he can be in a fundraiser state

(fi), or a donor state (di). That state is followed by a recovery time whereby we

denote the state by ri. Finally, as the person i after the recovery does not rely on

the opinions of others anymore to use FirstGiving again, we also introduced another

susceptible state: si.

Figure 4.2: Schematic showing the transition from one state to another.

We also have to introduce the following transition probabilities from one state to

another: β is the transition probability to become a fundraiser, f , from either the

new susceptible state, n, the susceptible state where people have not donated via

FirstGiving yet, or susceptbile state, s, where people have donated at least once.

Further, α is the transition probability to become a donor from either n, or s, η is

said to be the transition probability for people to change into the recovery state, r,

while before being a donor, and γ is the transition probability to become a suscep-

tible, s, from being in the recovery state, r. Finally, we have to define a transition

probability ω for the change from fundraiser, f , to donor, d. Note it certainly is

possible that a fundraiser does not donate money to a charity. We ignore this case

mainly as it seems to be plausible that if someone makes the effort to generate a page

this person also donates money to that charity.
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We need to introduce a threshold function, Fi for a person i for complex contagion.

Fi(fj, dj, ǫ) =

{ ∑
j aij(fj+dj)

ki
if

∑
aij∈Vi

aij(fj+dj)

ki
> ǫ

0 otherwise
, (4.10)

where Vi is the set of neighbours of i, ki is the degree of i, and ǫ is the threshold.

Note, that this function also includes the varying probability depending on the frac-

tion of neighbours donating. That is, not only does one need to have a certain fraction

of friends before one is willing to donate but also the bigger the fraction of friends

is above the threshold limit donate or fundraise the more likely does one become a

fundraiser for the first time oneself. This might be because the more positive “re-

views” one has about a new product the more inclined one is to use it as well.

The next threshold function is for simple contagion:

Gi(fj) =

{

1 if
∑

aij∈Vi
aijfj > 1

0 otherwise
, (4.11)

Here, one person is enough to trigger a potential donation for reasons explained above.

In the model, we further assume that the number of people in the population does not

change. We call this number N . Further, as mentioned before, there is no difference

between people. That is, we will ignore any characteristics that might also influence

the donation behaviour such as income, age, and varying thresholds, etc. but say

that all people are equal (except of the number of contacts). Thus, we end up with

the following five ODEs:

dni

dt
= −αniGi(fj)− βniFi(fj, dj , ǫ),

dfi
dt

= −ωfi + βsi + βniFi(fj, dj, ǫ),

ddi
dt

= α(ni + si)Gi(fj) + ωfi − ηdi,

dri
dt

= ηdi − γri,

dsi
dt

= γri − αsiGi(fj)− βsi,

(4.12)

for i = 1, 2, ..., N and, note, that ni + fi + di + ri + si = 1. This is a set of five ODEs

with five unknown parameters and six unknown variables.

37



First, we will non-dimensionalize the above system of equations where we use that

t̂ = βt. Then equations (4.12) can be written:

dni

dt̂
= −α̂niGi(fj)− niFi(fj, dj, ǫ),

dfi
dt̂

= −ω̂fi + si + niFi(fj, dj, ǫ),

ddi
dt̂

= α̂(ni + si)Gi(fj) + ω̂fi − η̂di,

dri
dt̂

= η̂di − γ̂ri,

dsi
dt̂

= γ̂ri − α̂siGi(fj)− si,

(4.13)

where α̂ = α/β, γ̂ = γ/β, and η̂ = η/β [14]. Dropping the hats, we determine the

equilibrium points for equations (4.13). That is, we set dni/dt = dfi/dt = ddi/dt =

dri/dt = dsi/dt = 0. Then, we can re-arrange the first equation of (4.13) to

0 = (−αx− y)ni, (4.14)

for all i ∈ V , where x = Gi(fj) and y = Fi(fj, dj, ǫ). Thus, assuming α 6= 0 which

implies that either, ni = 0 or x = 0 = y. For the latter, this implies that fj = 0 for

j ∈ Vi. This is valid for all i ∈ V . Thus, fi = 0. This implies that the third equation

of (4.13) becomes

0 = −ηdi. (4.15)

Assuming η 6= 0, which implies that di = 0. Similarly, ri = 0 = si. Thus, one

equilibirum point is p0 = (1, 0, 0, 0, 0).

Now, consider ni = 0. Then, the system of equations (4.13) can be re-arranged

such that the equilibrium point p∗ = (n∗
i , f

∗
i , d

∗
i , r

∗
i , s

∗
i ) can be expressed by

n∗
i = 0,

f ∗
i =

s∗i
ω
,

d∗i =
αx+1

η
s∗i ,

r∗i =
αx+1

γ
s∗i ,

s∗i =
ωηγ

ηγ+(αx+1)ωγ+(αx+1)ωη
.

(4.16)
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To determine the stability, we are interested in the behaviour in the neighbourhood of

the equilibrium point. Thus, we consider a close distrubence, say, δ. Then, p′ = p+δ.

Using a Taylor series around the equilirium, we get







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
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, (4.17)

where ṗ = dp/dt and the 5×5 Jacobian matrix is denoted by J . In order to determine

the stability, we are interested in the signs of the real part of the eigenvalues, λ, of

J |p′ . If there is an eigenvalue where the real part is positive then the equilibrium

point is unstable. However, if all eigenvalues have a negative real part, then the

equlibrium is stable [14]. For p′ = p0 + δ, assuming α, β, ω, η and γ bigger than zero,

the eigenvalues are
λp01 = ω,

λp02 = η,

λp03 = 0,

λp04 = −γ,

λp05 = −α− 1.

(4.18)

This indicates an unstable equilibrium point (a saddle). For p′ = p∗ + δ, the first two

eigenvalues are
λp∗1 = −ω

λp∗2 = −αx− y.
(4.19)

However, for the three eigenvalues we need to solve

λ3
p∗3,4,5+(γ+1+α+η)λ2

p∗3,4,5+(αγ+γη+γ+η+αη)λp∗3,4,5−γηαx+αγη+γη = 0 (4.20)

For this, we used Maple’s solve function, and get that

λp∗3 =
1
3
(−αη − γ − 1) +O(α2, η2, γ2),

Re(λp∗4,5) =
1
3
(−αη − γ − 1) +O(α2, η2, γ2).

(4.21)

For, 0 < α, η, γ < 0 the real parts of the eigenvalues are negative. For, α = γ = η = 1

and x = 0, we that that:
λp∗3 = 0,

Re(λp∗4,5) = −2,
(4.22)
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and for α = γ = η = 1 and x = 1

λp∗3 ≈ −0.2451,

Re(λp∗4,5) ≈ −1.8774.
(4.23)

Thus, the p∗ is for 0 < α, γ, η ≤ 1 stable. Note, that 1 < α, γ, η is possible but the

analysis was inconclusive. Trials with the ODEs suggest that the equilibirum point

is still stable.

To test this model, we constructed a simulation incorporating the ideas of equa-

tions (4.12). We checked the state of each agent individually and depending on the

current state the agent, we computed a random variable. Whenever the variable was

less than the total probability to change from the current state to the next one, the

agents state moved, otherwise the agent stayed in the same state. Also, the simulation

includes a distribution of donors to charities. That is, in the simulation, we have M

charities that whenever a fundraiser is selected the charity gains a “donation” from

the fundraiser, but also from the donors that are attracted via the fundraiser donate

to the selected charity. Note, that again the charities are considered to be chosen with

the same probability disregarding any difference such as popularity, or a particular

cause the charities fundraises.

Further, we needed to choose a social network that represents people as vertices

and the edges as the social interactions between these people. We choose to use a

network from Facebook data of members of Vermont University of the Facebook100

data set [22] as the underlying social network. Facebook is a social networking site

that was founded in 2004. It started as a university project in Harvard but by 2005

it allowed people to register with an email address with an “.edu” ending. The Face-

book100 dataset contains the data of Facebook members of 100 American universities

at a certain day in September 2005 [22]. In particular, the file contains 100 adjacency

matrices whereby the vertices are the members of Facebook of each individual uni-

versity. An edge connects two vertices whenever they are “Facebook friends”. A

“Facebook friendship” starts when one person invites the other to become friends

and the other accepts. This leads to an undirected network. In a Special Topic [24],

we already discussed the network for Vermont University. Note, that online social

networks represent real world social networks just to a limited degree [5] as accepting

a “Facebook friendship” involves much less maintenance then to keep a real world

friendship. However, certainly, Facebook and other sorts of online social networking
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sites as well as emails might to be used to distribute the address of the fundraiser

webpage as it seems to be an easy way to attracted people with a link of the page.

Still, further research needs to go into this question to be completely sure whether

social online networks play an influential role in the distribution of fundraiser pages.

To give an overview of the network of the Vermont University [17] Facebook net-

work, we will summarize some main results of the Special Topic [24]. 7324 students

and faculty members were part of Facebook in September 2005, and 382442 friend-

ships existed between the Vermont University Facebook members. The network is a

connected network. The vertices in the network have a mean degree of 52.22. Further,

the mean distance for the shortest path is 2.13. Vertices have a normalised closeness

value of 0.3673. Thus, we can say that students and faculty members at Vermont

University in the Facebook data were closely connected.

To solve the system of ODEs, we used the forward Euler method [11, 21]. We do

not think the model is really accurate in the sense that the model predicts the be-

haviour of individuals accurately. However, it can be seen as a guidance for the

excepted behaviour over time. This is because we use quite a lot of assumptions and

neglect other important aspects (i.e. characteristics of the donors, a growing net-

work of customers, using a Facebook network as the underlying social network, etc.).

Therefore, we do not need to use an accurate method to solve the ODEs so decided

to use a method that is fast to implement.

We first checked whether the simulation and the system of ODEs show the same

long-term behaviour. As an initial starting condition, we used that 500 fundraiser

and 6824 “new” susceptible existed initially. Figure 4.3 shows the time evolution of

the normalized total number of people in a state. We run the simulation 100 times

and took the mean of all the outcomes of the simulation. The result is shown in the

red graphs and the solution to the ODEs is represented by the blue graphs.

||ns − nODE|| ||fs − fODE|| ||ds − dODE|| ||rs − rODE|| ||ss − sODE||
0.0127 0.0464 0.0467 0.0533 0.0209

Table 4.1: The difference between simulation and ODE values in the Euclidean norm.

There are 5 unknown parameters. Unfortunately, the time limit set on this thesis

41



0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

N
or

m
al

is
ed

 n
um

be
r 

of
 v

er
tic

es
 in

 r
es

pe
ct

iv
e 

st
at

e

 

 

n − simulation
s − simulation
f − simulation
r − simulation
d − simulation
n − ODE
s  − ODE
f  − ODE
r  − ODE
d  − ODE

Figure 4.3: The states n, f , s, d, and r represent the number of vertices in the
states normalized by the entire population of the Vermont University network. The
red graphs indicate the time evolution computed by the simulation whereas the blue
graphs show the solution of the ODEs. Initially there were 500 fundraiser and 6824
new susceptible present. Further, α = ω = η = γ = 0.5, ǫ = 0.1, and δt = 0.5.

did not allow an experiment in form of a questionnaire1 or other means to get further

inside into the specific ranges for the rates of change of the different states. Thus, to

see whether the system of ODEs shows similar behaviour as the simulation, we said

that α = ω = η = γ = 0.5. The error between the simulation and the ODE values

can be found in Table 4.1. The error of the Euler method is δt [11, 21]. This is not

really accruate. However, in Figure 4.3, we see that the behaviour of the model and

the simulation is similar.

The next step is to check whether we can see similar behaviour for different pa-

rameters as we observed in Section (3.3). First, we looked at the degree distribution

for the donors and charities for varying parameters. The bipartite network we studied

earlier is a network that evolves from an underlying friendship network. In particular,

the bipartite network has one set of vertices of donors and the other set is has elements

that represent the charities. To test the simulation for a wider range of parameters,

we varied α, η, γ and ω. Table 4.2 shows the values for each varying parameter. Note

that we kept the non-varying parameters at 0.5. Thus, this still shows a small per-

centage of possible combinations of parameters. For future work, we would attempt to

test the parameter space with a Monte-Carlo algorithm and choose parameters more

arbitrarily. However, it becomes clear that the maximal degree for the donors is one.

1Note, that FirstGiving already asked the donors about the likelihood for them to become donors

or fundraisers. This information can be found in the file containing the demographics.
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Also note that the number of donors donating to a charity for α, ω and η increases

when α, ω and η increase. The parameter values α and η also do not seem to have a

big influence on the number of donors in the system as the number of active donors

hardly changes. Whereas for increasing γ the number of donors decreases. This can

be explained by refereing to equations (4.16). The system is in steady therefore equa-

tions (4.16) apply. To have a large number of active donors, we require γ to be small

whereas for γ large the number of active donors decreases. The opposite is valid for ω.

0.1 0.2 0.3 0.4 0.5

α p(k = 0) 5577 5636 5656 5698 5750
p(k = 1) 1747 1688 1670 1626 1574

γ p(k = 0) 6642 6255 5999 5866 5699
p(k = 1) 682 1069 1325 1458 1625

ω p(k = 0) 3981 4109 5383 5837 5922
p(k = 1) 4344 2418 1941 1610 1402

η p(k = 0) 6672 6610 5987 5812 5655
p(k = 1) 1609 1689 1337 1487 1669

0.6 0.7 0.8 0.9 1.0

α p(k = 0) 5746 5807 5843 5851 5862
p(k = 1) 1703 1804 1814 1899 1936

γ p(k = 0) 5621 5520 5510 5425 5388
p(k = 1) 1703 1804 1703 1610 1941

ω p(k = 0) 5696 5563 5500 5456 3366
p(k = 1) 1628 1761 1824 1868 1958

η p(k = 0) 5693 5527 5509 5426 5495
p(k = 1) 1631 1797 1815 1815 1854

Table 4.2: Number of degrees for varying parameters α, η, γ and ω for 10 trials.

For the degree distribution for the charities we omited to have a look at different

parameters but used ω = η = α = γ = 0.5, again. Figure 4.4 shows that we get a

distribution for the number of degrees for the charities that does not resemble the

distribution observed in Section 3.3. Thus, the model is insufficient to imitate the

degree distribution for the charities observed in Section 3.3.

Finally, we also can say something about the betweenness centrality and the shortest

paths from the degree measures of the vertices of the bipartite network. Because

the active donors all have a degree of one and have not donated to more then one
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Figure 4.4: Degree distribution of donor-charity network for varying β where ω =
η = α = γ = 0.5 at t = 90 with 500 charities present.

charity, the shortest path for most of the donors to other donors who donated to the

same charity is two and to the charity itself one. Additionally, all charities have a

shortest path of one to the donors donating to them. For the betweenness centrality,

the charities form the centre of star sub-graphs similar as explained in Section 3.3.

Thus, on these subgraphs, all charities have a betweenness centrality value of one and

the donors have all a betweenness centrality value of zero.

This concludes the analysis of the collective behaviour model for a newly introduced

product. We have seen that it is important to have the fundraisers active for some

time to attract new customers in the beginning. An option to improve the model

would be to add a term that artificially increases the attention of new customers, for

example, via advertisement. Further, we also saw that the model is still insufficient

to explain the degree distribution of the charities that was observed in Section 3.3.

However, the model seems to lead to a similar degree distribution, betweenness value,

and shortest path as observed in Section 3.3.
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Chapter 5

Conclusions

We started this thesis by introducing FirstGiving. In particular, we drew attention

to the process of creating a fundraiser web page that was later incorporated in the

collective behaviour model. Then we started the study of the data set by extract-

ing some demographics from the data set containing information about the users of

FirstGiving. We suspect that the mean user is middle aged and earns above the 2010

average income of the US.

From the data set containing the transaction between donors and charities, the num-

ber of donors increase per year steadily, further we saw that April and September are

prefered month for donation. The data seems also to suggest that, on Mondays, more

donors partcipate via FirstGiving then on Saturdays. Finally, assuming that the time

whenever the transaction was made was saved in East Coast time, donations peak in

the afternoon and continue during the night.

The chapter about the demographics was followed by outlining the definitions and

network measures used in this thesis. In particular, we looked at the degree, high-

lighting the power-law degree distribution. The concept of a path between vertices

lead to the closeness centrality and the betweenness centrality. For the betweenness

centrality, we looked at the derivation of Brandes’ algorithm to weight vertices de-

pending on their occurence in the shortest paths from other vertices and modularity.

This was followed by a chapter where we applied the network diagnostics. We con-

structed the networks from the transaction data set where the vertices were formed

from the donors and charities. We said, there exist an edge between a donor and a

charity whenever a donor made a donation to a charity. This lead to the structure
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of a bipartite network. To save some computation time and memory space, we ag-

gregated the entire network into smaller once by only considering contributions made

to charities in November of each year. We further aggregated the networks by only

using active vertices of the first four Mondays in November.

The degree distribution for the charities indicate that it might follow a power-law

distribution. However, the p-test was inconclusive and, although we cannot definitely

say that the charity degree distribution follows a power-law, it is still valuable to say

that it is leaning towards it. For the donor degree distribution, it is fair to say that

most donated once during a month/day with a couple of people using First Giving

multiple times in that time period. The closeness and betweenness centralities for

the days indicated something similar. That is, most of the donors had a between-

ness centrality of zero and low closeness values. However, we saw a big change in

the topology of the network when just a couple of people donated more then once.

This caused the diameters of the networks to be significantly smaller and increased

the closeness value, as more vertices were available to have a path from one vertex.

Finally, we looked at the modularity of the donors who donated to the same charity.

It became visible that there is a leaning towards grouping of certain characteristics.

Thus, donors with a similar age, household income or who live in the same state tend

to donate to the same charity.

In the last chapter, we looked at a collective-behaviour model starting with the SI

model that simulates epidemic spread, followed by the threshold model and finally,

combining the two ideas to a model simulating the donation behaviour via FirstGiv-

ing. We used as an underlying social network: the Facebook network for Vermont

University from September 2005. The goal was to write a model that leads to a sim-

ilar structured network as observed in the previous chapters. Thus, after discussing

the equilibrium values of the ODEs, we also wrote a simulation based on the ODEs.

Part of the simulation was also a distribution of donors between charities. Finally,

we compared the degree distribution, betweenness, and closeness centrality with the

networks created from the data set. The simulation created similar results for the

degree distribution for donors, betweenness, and closeness centrality for the donors

and charities. However, the degree distribution of the charities differed from the one

observed. Thus, the algorithm for distributing donors among charities is insufficient.
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For future work, it might be useful to include a similar algorithm as the prefer-

ential attachment proposed by Barabasi and Albert that leads to a power-law degree

distribution [1]. That is, one starts with a seed network and adds a new vertex to the

network. The new vertex then distributesm edges. The edges are distributed starting

from the new vertex such that the other end is more inclined to attach at a vertex that

already has a higher number of edges then other vertices. This could be used to model

the contribution to a charity of a donor, as it seems plausible that there are a couple

of charities that are well known by a majority of people and therefore might be cho-

sen more often then say regional charities that are known only to people living closely.

As already mentioned, another project for future work is to distribute a question-

aire amoung the users of FirstGiving asking about the likelihood of becomeing a

fundraiser, donating via a fundraiser, what threshold they have to start using a new

product, the time they wait before donating again. Still, even when accumulating

this information, a further analysis of the parameter set in form of, say, a Monte

Carlo simulation might be helpful as people might give wrong information during

such questionnaire. Certainly, we need to further investigate the parameter space.

The data set has not been fully explored yet. There are still characteristics about

the donors that might be insightful in a further analysis, and might help to create a

social map of the donnors donating via FirstGiving.

Finally, an improvement of the ODE model would be to also consider thresholds

for each person individually instead of considering the threshold being the same for

each person, and test if that leads to different behaviour.
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