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Abstract

In a system of coupled oscillators, synchronization occurs when the
oscillators spontaneously lock to a common frequency or phase. We study
a system of n ≫ 1 phase oscillators placed on a circle with random initial
positions and sinusoidal coupling with their k nearest neighbors on each
side. When all of the oscillators are identical, the final state of the system
is either full phase-locking (in which all oscillators have the same relative
phase) or a splay state characterized by a winding number q with the
oscillators uniformly spread apart in phase. However, when the internal
frequencies of the oscillators are uniformly distributed on a small interval,
we demonstrate that they settle into an “approximate” splay state, and
their phases are no longer uniformly spread. For k = 1, we examine the
system’s final state as a map and show that phase-locking synchronization
can never occur for nonidentical oscillators. We also derive a sufficient and
necessary condition for the existence of cycles.

The study of synchronization has been extremely prominent for
over two decades. The phenomenon is present in many systems in
physics, biology, and engineering. The Kuramoto model, one popular
system that models synchronization, describes n ≫ 1 phase oscillators
on a line. In this paper, we investigate a variant which was first
proposed by Wiley, Strogatz, and Girvan [1]. This variant differs from
the Kuramoto model by describing n oscillators on a ring rather than
a line topology. Our system generalizes theirs in that the oscillators
are not necessarily identical. Furthermore, to better understand the
final states that arise, we include an examination of the final state
as a map between oscillators rather than a set of coupled differential
equations.

Introduction

Over the past two decades, myriad researchers have spent a great deal of time
studying synchronization, which combines ideas from nonlinear dynamics and
network theory. Synchronization is the process by which interacting, oscillating
objects affect each other’s phases such that they spontaneously lock to a cer-
tain frequency or phase [2]. It arises in numerous areas of physics, biology, and
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engineering and can have either a positive or a negative impact; synchroniza-
tion is required for the successful operation of many real-world systems, such as
large populations of fireflies [3], the natural pacemakers of the heart [4], super-
conductors [5], laser light [6], and the natural circadian rhythms of the human
brain [7]. However, it has also led to the downfall of some systems, such as the
Millennium Bridge [8].

One of the canonical models that exhibits synchronization is the Kuramoto
Model [9], which describes a population of n ≫ 1 phase oscillators with internal
frequencies drawn from some distribution:

φ̇ = ωi +

n
∑

j=1

K

n
sin(φj − φi). (1)

Here φi represents the phase of oscillator i, ωi the internal frequency, K ≥ 0
the coupling strength, and the 1

n
scaling ensures that the system is bounded

as n → ∞. This equation describes oscillators arranged on a line, but it can
be modified for other topologies. In our work, for example, we consider a ring
topology.

The Model and Preliminaries

We investigate a generalization of the model studied by Wiley et al. [1]. Con-
sider a system of n ≫ 1 phase oscillators equally spaced on a ring, with initial
conditions for phase φi (i = 1, ..., n) randomly drawn from [0, 2π] (see Fig. 1).
In isolation, each oscillator would oscillate at its natural frequency ωi (a fea-
ture not present in the Wiley paper [1]), but when in the proximity of other
oscillators the rate of change in phase is affected by the phases of its k nearest
neighbors on either side of it.
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Figure 1: (Color online) A ring of n equally spaced oscillators. The ith (for
i = 1, ..., n) oscillator is coupled to its k nearest neighbors on either side, shown
here as hollow.

This system is described by the equation:
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φ̇i = ωi +

i+k
∑

j=i−k

K sin(φj − φi), i = 1, ..., n. (2)

Note that the factor of 1

n
is unnecessary because the sum is no longer infinite

as n → ∞.
Wiley et al. determined that when all the oscillators are identical (i.e., ωi =

ω for all i) there are two types of attracting final states for the evolution of
the oscillators’ phases. These equilibria occur after some transient dynamics,
that is, after the oscillators’ phases converge to a final value (see Fig. 2a in
which equilibrium is reached at approximately time = 800). One equilibrium
represents the complete phase-locking of all phase oscillators. In the other,
the system settles into uniformly-twisted traveling waves called “q-twisted” or
“splay” states (note that the synchronized state is actually a q-twisted state
with q = 0). In these splay states, oscillators are staggered equally in the phase
space and move at the same final frequency. However, it is also possible in other
applications for a splay state to occur with oscillators staggered equally in time
[5]. The number q is a winding number given by traveling around the circle
of oscillators and counting the number of phase twists. Furthermore, Wiley et
al. showed using heuristic arguments that the probability that random initial
conditions will lead to a state which is q-twisted is a Gaussian distribution
over q with mean zero and standard deviation proportional to

√

n/k. We have
reproduced these results (see Fig. 3).
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Figure 2: Plots of the phases of the oscillators evolving over time in a rotating
frame. (a) A typical plot of time against phase for identical oscillators with
k = 1, n = 80. In this case the system settles into q-twisted state with q = 2.
(b) The system for oscillators with frequencies taken randomly and uniformly
from the interval [−0.1, 0.1] settles into q = 2 as well, but the phases are no
longer uniformly spaced and the average frequency is nonzero.
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Figure 3: (Color online) Results reproducing Wiley et al.’s research for identical
phase oscillators. (a) The probability that the system reaches a q-twisted state
is distributed approximately normally with respect to q for identical oscillators.
The results from the numerical simulation (for 1000 random initial conditions,
with k = 1, G = 1, and n = 80) are given by the plotted stars, and the Gaussian
with the standard deviation of the data is shown by the curve. (b) Numerics
suggest that standard deviation σ is proportional to

√

n/k for G = 1. Data is

given by the stars, and linear regression gives σ ≈ 0.19
√

n/k. We also show the
line that fits the data.

Numerics

In their paper, Wiley et al. assumed a delta-function distribution–that is, all
of the oscillators have the same internal frequency. We first reproduced their
results, confirming that the probability that the final state is q-twisted is ap-
proximately Gaussian (see Fig. 3a). Wiley et al. then used the least squares
method to fit the data to a one-parameter (the standard deviation σ) discretized
Gaussian distribution using the least squares method, and found σ to be linearly
proportional to

√

n/k. We approximated the standard deviation directly from

the data, recreating the linearity of σ to
√

n/k (see Fig. 3b).
We took the natural frequencies of the oscillators from a uniform distribution

over a small interval centered at zero with the intent to later generalize to various
other distributions. There is no loss of generality from the center being at zero
because one can always put the system into a rotating frame. As the size
of the distribution interval increases, the oscillators develop a nonzero average
frequency, and they are no longer uniformly spread apart in phase. Instead, they
miss the q-twisted states with which they are associated by a small amount which
increases with interval width (see Fig. 2). Furthermore, numerical experiments
show that as interval width increases, the standard deviation decreases and the
absolute value of the mean increases (see Fig. 4).
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Figure 4: Probability distributions for nonidentical oscillators. (a) Distribution
for oscillators with internal frequencies taken randomly from a uniform distribu-
tion on [−0.1, 0.1] with k = 1, n = 80, and 1000 random initial conditions. (b)
The distribution for oscillators with internal frequencies taken randomly from a
uniform distribution on [−0.4, 0.4] with k = 1, n = 80, and 1000 random initial
conditions.

Discrete Formulation

To better understand the approximate q-twisted states, we study the analytics
from a different point of view. Thus far, we have been looking at the system in
terms of how each oscillator changes phase over time, but now we will switch
to studying how each oscillator acts in response to its neighboring oscillators.
As an analogy, if one were to study the dynamics of a crowd of people entering
an auditorium, instead of looking at each person’s evolution in time, we would
look at how each person moves around their neighbors–if everyone around him
is moving towards the entrance, he will move in the same direction. That is, we
use our equations to arrive at a discrete formulation of the system as follows.

We let k = 1 (when k > 1 the map becomes much more complicated and has
higher dimensionality). Assume that the oscillators have reached their equilibria
and are at their final state with common frequency Ω. Substituting into (1)
yields

Ω = ωi + sin(φi+1 − φi) + sin(φi−1 − φi). (3)

Let vi = φi+1 − φi and Pi = (Ω − ωi)/G. Rewriting the equation, we thereby
obtain the following map:

φi+1 = vi + φi ,

sin vi+1 = Pi+1 + sin vi . (4)
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It should be noted that when taking the arcsine there are two possible values
for vi. However, this map sends vi to the interval [−π

2
, π

2
]. Therefore this

does not pose a problem if vi is sufficiently small, or if adjacent oscillators
are sufficiently close in phase. In the original dynamical system (1), once the
oscillators settle into a final state with phases uniformly distributed from 0 to 2π.
Because we assumed that n is large, the difference between adjacent oscillators
must be small (in fact, smaller than π

2
). For adjacent oscillators to be π/2 apart

in phase, the winding number must be q = n/4. For a system with n = 80, this
corresponds to a winding number of q = 20: however, the probability of this
occurring is very small.

0 pi/2 pi 3*pi/2 2*pi
0

pi/2

pi

3*pi/2

2*pi

v

φ

Phase Diagram

Figure 5: (Color online) Phase diagram for Pi = 0. Different symbols represent
the iterations of (4) for different initial conditions. The phases of adjacent
oscillators jump around the phase space by a fixed amount while v stays constant
(i.e., vi = v for all i ≥ 2). Here, we plot 28 different random initial conditions.

When the oscillators are identical, Pi is identically zero. In this case, vi is
constant for all i, so subsequent φi values simply jump around the phase space
by a fixed amount, corresponding to the phases being uniformly spread apart
(see Fig. 5). Because φi is a periodic variable, it is possible that some iteration
may exactly fall upon a previous iteration, leading to a cycle in the map. This
only occurs for values of vi for which there exists a solution for the following
equation: 2πm1 = m2vi, where m1, m2 are integers and v is the constant phase
shift (v = vi for all i ≥ 2). Hence, the existence of such cycles depends solely
on the value of v1.

When Pi is constant and positive, solutions follow a family of curves until
vi = π

2
(vi+1 is then complex). There are no cycles in this case (see Fig. 6ab).

When Pi is constant and negative, the real portion of the phase plane rotates
by 180 degrees around the origin (see Fig. 6cd).

We have also determined a necessary and sufficient condition for the exis-
tence of cycles for general Pi: a K-cycle exists if and only if
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i+K
∑

j=i+1

Pj = 0 mod(2π) and

i+K−1
∑

j=i

vj = 0 mod(2π) (5)

for all i. We confirmed these results using numerical simulations. In particular,
this condition shows that full synchronization (corresponding to K = 1) occurs
if and only if Pi = 0 (mod(2π) and vi = 0 (mod(2π), or, when P and v are
identically zero. Therefore, exact phase-locking only occurs when oscillators
are identical. Hopefully (5) will help to shed more insight on the required
distribution for ωi to have precise K-cycles.
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Figure 6: (Color online) Phase diagrams for constant but nonzero Pi. Note that
in these diagrams φ is not for all of R for clarity. (a) The real part of the phase
diagram for Pi = 0.1. (b) The imaginary part of the phase diagram for Pi = 0.1.
(c) The real part of the phase diagram for Pi = −0.1. (d) The imaginary part
of the phase diagram for Pi = −0.1.
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Conclusions and Further Work

We studied the Kuramoto model on a ring topology (2) and found that when
oscillators are no longer identical, they no longer fall into the conventional notion
of a splay state. We rewrote (2) as a map (4) (with k = 1) to further study the
system. For k = 1, complete phase-locked synchronization only occurs when the
oscillators are identical. In addition, we have found a necessary and sufficient
condition (5) for the existence of cycles in the map (4).

The next step in this project is to connect the results obtained by examining
the map (4) to the dynamical system (2), especially the condition for cycles.
Possible future work includes using different distributions to obtain the natural
frequencies. For example, one might examine the case where the frequencies are
distributed in a near-delta distribution (that is, one where most oscillators are at
the same frequency but a few are not). One could also study the synchronization
phenomenon in different networks or topologies. Instead of a simple ring, one
might consider having ”shortcuts” such that diametrically opposed oscillators
are coupled. Alternatively, instead coupling at the same strength, one might
consider a gradual decay in coupling as distance from the oscillator increases
rather than only being coupled to the k nearest neighbors.
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