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Abstract

Dengue fever is a tropical, mosquito-borne disease, currently with no vaccine.

We require greater understanding of how its spatial distribution evolves over time,

in order to inform policies aiming to prevent epidemics. This report uses data on

weekly dengue fever cases recorded in 79 provinces of Peru to form a time-dependent

network representing time-dependent correlations between time series. We will inves-

tigate the community structure in this network, and attempt to relate the changing

community structure to epidemic events by investigating how time-dependent spatial

distributions and geographical characteristics of communities correspond to disease

outbreaks.
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1 Introduction

1.1 Dengue fever

Dengue fever, principally carried by the Aedes aegypti mosquito, is a viral infection that

affects humans. It is prevalent in almost every tropical country, and there is currently no

vaccine. Approximately 2.5 billion people are at risk of infection, and 50 million infections

per year are estimated to occur worldwide. The virus is most dangerous when a patient

is infected a second time: in young children especially, a secondary infection can cause

dengue shock syndrome or dengue haemorrhagic fever, both of which are characterised by

severe haemorrhaging and further resulting complications [1].

To control the spread of dengue fever, we require greater understanding of how epidemics

occur in the places and at the times that they do. Given infection patterns up to a certain

point in time, there would ideally be a method for predicting how likely an outbreak is to

occur in a particular place in the near future, and its potential extent. One could then

envision efficient preventative policies targeting the control of A. aegypti in strategically

important provinces.

1.2 Epidemics in Peru

The present paper is based on data supplied by Dr Gerardo Chowell at Arizona State

University and originally collected by the Peruvian Ministry of Health. The data is a set

of 79 time series, each recording the weekly number of dengue fever cases in 79 (of 195)

provinces of Peru from 1994 to 2008. The other 116 provinces recorded no cases.

The US Agency for International Development (USAID) define a dengue fever epidemic

as a disease count that is two standard deviations above the baseline [2]. The dotted red

curves in Figure 1 show where this threshold lies; we use the entire time series to define

the baseline (i.e. mean) and standard deviation. This estimate is crude: national health

agencies use more sophisticated definitions [2]. Nevertheless, from Figure 1(a), we can

identify at least two clear Peru-wide epidemics (in 1996 and 2000–2001).

Dengue fever has become more prevalent since the 2000–2001 epidemic, suggesting a key
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question: what was different between the two epidemics, such that the dengue fever infec-

tion rate did not return to its original level after the second?

There is also a spatial element to the definition of an epidemic. This is illustrated in Figure

1, where we also plot the time series of two different provinces. Figure 1(b) shows that

only Utcubamba contributed a significant amount to the 1996 spike. Conversely, Figure

1(c) shows that Alto Amazonas did not experience either epidemic identified in Figure

1(a). However, there were four epidemic events local to that province, but none of them

are identifiable from the global time series.

Figure 1 shows that one should take care in defining the context of epidemics. Examining

global properties of data is important, but if one wants to understand the reasons epidemics

happen in the places that they happen then one must also take local properties into account.

Chowell et al. [3] comment that lower spatial resolution of epidemiological data will help

to generate new hypotheses about the underlying mechanisms of dengue distribution: for

example, they find that dengue fever tends to move from areas of high to low population.

1.3 Networks and communities

In this study, we convert the Chowell data (79 time series, each over 780 weeks) into a time-

dependent network and use techniques of network science to uncover underlying structures

in the data. This approach has been applied to the analysis of diverse time series data,

including fMRI [4, 5], foreign exchange rates [6], and social networks [7, 8, 9]. Many

techniques have to be adapted to their specific application, but Newman [10] summarizes

a rapidly expanding toolkit of generally applicable methods.

To create a time-dependent network out of our data, for any given time t, let each node

represent the portion of a province’s time series of some fixed length up to time t. The

edge weights between each pair of nodes are determined by some measure of the correlation

between those portions. The time-dependence arises by varying t, creating a network where

edge weights vary with t.

One technique for examining a network is the detection of its community structure [11].

Given a network, a community is a group of nodes with relatively denser edge weights

between one another than to the other nodes. A community structure is a partition of a

4



1994 1996 1998 2000 2002 2004 2006 2008
0

500

1000

1500

2000

Year

C
ou

nt

Weekly Dengue Fever Infection Count in Peru

(a) Weekly count of dengue fever infections aggregated across all provinces.
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(c) Weekly count of dengue fever infections in Alto Amazonas.

Figure 1: Aggregated time series, and example time series for specific regions.
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Figure 2: A network in which the author’s Facebook friends correspond to the nodes, and an

edge exists if there is a corresponding friendship link on Facebook. The network has been laid

out using the Fruchterman–Reingold algorithm [12]. The data was downloaded from Facebook

using the NameGenWeb application [13] written by Bernie Hogan of the Oxford Internet Institute

(http://apps.facebook.com/namegenweb/) and visualized in Gephi (http://gephi.org/).

network into (usually disjoint) communities, provided such a partition is reasonable.

An illustration of a (social) network with community structure is given in Figure 2. By

inspection, we can see densely connected communities (some more distinct than others)

with fewer connections to the rest of the network. These communities correspond to the

author’s assorted affiliations.

Although the notion of communities makes intuitive sense, a precise mathematical defini-

tion of communities is difficult to pin down [11, 14, 15]. The framework for most community

detection methods is to measure the quality of a partition of the nodes of the network in

terms of some quality function (see Section 2.2).

A community in our network corresponds to a distinct group of regions whose infection
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patterns are closely correlated. Our aim is to observe how changes in community structure

relate to the onset of epidemics of dengue fever. Are certain provinces important for

the transfer of infection to the rest of their communities, and why do certain provinces

experience epidemics when others do not?

2 Methodology

2.1 Network construction

To form a network from a set of time series {X1, X2, . . . , XN}, each of length T , we define

a set of N nodes {1, 2, . . . , N}, where node i corresponds to Xi. The edge weights Aij

between each pair of nodes i and j represent a measure of the similarity between Xi and

Xj. There are many choices for how to calculate the adjacency matrix A [4].

A simple map from a time series to a network is correlation; we will use a slight modification

of the correlation used in [16]. Let Xi(t) denote the value of Xi in week t. If ∆ is a positive-

integer parameter defining the time window for comparison of time series, then let

βij(t) =
t∑

τ=t−∆+1

Xi(τ)Xj(τ) (1)

define a set of scalar-valued functions on t = ∆,∆ + 1, . . . , T . We use {βij(t)} to define

the entries of a time-dependent adjacency matrix A by putting

Aij(t) =
βij(t)√

βii(t)βjj(t)
− δ(i, j), (2)

where we have ensured, using δ(i, j), that Aii(t) = 0 for all i and t. Note that, if βii(t) = 0

for some i and t, there were no infections over the time window, so we cannot define Aij

or Aji for any j using (2). In these instances, we set Aij(t) = Aji(t) = 0 so that node i has

no adjacent edges at time t.

The correlation (1) is a simple quantity to use as edge weights, but many other methods

also exist. These range from pairwise approaches, such as correlation, to global network

inference methods [4].
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Figure 3: A schematic (taken, with permission, from [8]) of inter-slice coupling: the four squares

represent networks in sequence as individual slices, and the dotted curves are the inter-slice edges

to make a single multislice network.

2.1.1 Coupling networks in sequence

An extension of this approach is to view each adjacency matrix A(t) for t ∈ {∆, . . . , T} as

a slice of a single “multislice” network [7, 8]. For a sequence of time-indexed networks, each

slice is coupled to its nearest-neighbouring slices. The inter-slice coupling is introduced

by linking together nodes which appear in neighbouring slices (see Figure 3). Inter-slice

couplings for a node j appearing in both time t and time s are denoted Cts(j). All

applications up to now [e.g. 5, 7, 8] consider Cts(j) ∈ {0, ω} and vary ω ≥ 0.

There is a trade-off between having many slices for good temporal resolution and ensuring

that each slice holds enough data that one can be confident of the statistical significance

of the adjacency matrix entries [5]. Thus we require a good choice of ∆: for instance,

choosing ∆ = 78 gives 10 non-overlapping slices A(78), A(156), . . . , A(780), which does

not give sufficient resolution, given that the large outbreaks in Figure 1 are shorter than

78 weeks. However, choosing a ∆ that is too small might result in unreliable intra-slice

adjacencies.
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2.2 Defining modularity

Suppose that we partition the nodes of a network into disjoint communities. To measure

the quality of the partition, we use the standard modularity

Q =
1

2m

∑
ij

(Aij − Pij) δ (ci, cj) , (3)

where 2m =
∑

ij Aij, ci denotes the community containing node i, and δ denotes the

Kronecker delta. The quantity Pij is known as the null model matrix, which gives a relative

value of how densely connected we expect nodes in a community to be under a given null

model (see below). It can be derived by combinatoric arguments [10] or by examining the

statistical properties of random walks on the network [17].

2.2.1 Newman–Girvan null model

The most popular null model used in community detection is Pij = kikj/(2m) [18], where

ki =
∑

j Aij. This corresponds to the edge weight between nodes i and j expected to arise

by chance, given the degrees of each node. This gives the Newman–Girvan modularity

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ (ci, cj) . (4)

By using the framework of statistical properties of random walks on such networks, this

null model can be modified to deal with directed networks, or signed edge weights, and so

on [17].

One can also bias modularity to favour larger or smaller communities. Reichardt and

Bornholdt [15] incorporated a resolution parameter γ into (4) to give

Q =
1

2m

∑
ij

(
Aij − γ

kikj
2m

)
δ (ci, cj) , (5)

and Lambiotte et al. [17] identified this parameter as the inverse of the timescale of a

random walk on the network. Small values of γ mean communities tend to be larger, and

vice versa.
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2.2.2 Modularity for sequences of coupled networks

The definitions above are made in the context of a single network slice. When considering

the multislice setting described in Section 2.1.1, Mucha et al. [8] used an altered Newman–

Girvan null model. Communities are formed across the entire multislice network. The

modularity is

Q =
1

2µ

∑
ijsr

[(
Aij(s)− γs

kiskjs
2ms

)
δsr + δijCsr(j)

]
δ (cis, cjr) , (6)

where cis refers to the community containing node i in slice s. The values γs, kis, and ms

refer to γ, ki, and m as defined in the sections above, but they are now defined separately

for each slice s, and 2µ =
∑

ijs Aij(s)+
∑

srj Csr(j) is the sum of all of the edge weights in

the multislice network.

Recall that we assumed that Csr(j) ∈ {0, ω}, where ω ≥ 0 is a constant. For our network,

if node j is in the large connected component at time t and t± 1, then Ct,t±1(j) = ω. All

other values of Csr(j) are set to 0. Modularity, given by (6), is then biased by the value

of ω such that larger values tend to result in communities containing nodes across more

contiguous slices, whereas smaller values allow more nodes in contiguous slices to be placed

into different communities.

2.3 Community detection algorithm

Given a function describing the quality of any partition, one can attempt to determine

an optimal partition of nodes into communities. This problem is NP-hard [19], so many

heuristic methods [10, 11] have been developed to maximize modularity. We will use the

popular, locally greedy algorithm known as the Louvain method [20], which is fast and

returns competitively high values of modularity [14].

The Matlab implementation of this algorithm was downloaded from Netwiki1.

1See http://netwiki.amath.unc.edu.

10



2.4 Community structure and epidemics

Our goal is to explore the community structure of the Chowell data, and in particular to

investigate how the community structure changed through 2000–2001 such that dengue

fever became more prevalent after the epidemic in that period [Figure 1(a)]. A secondary

question is to examine how the first outbreak, in 1996, was localized to just one node in

our network [Figure 1(b)] and did not propagate to others.

2.4.1 Geographical and temporal characteristics of communities

One approach to the investigation of algorithmically-determined communities is to examine

their geographical properties, to gain insight into how the geography of Peru determines

the different infection patterns they represent. In the multislice setting, communities also

exist over time, so we can study whether there are any critical time-points that mark a

shift in the distribution of infection patterns.

The inspiration for this approach is the work of Traud et al. [9], who carried out a similar

investigation for a set of five (static) online social networks. Algorithmically-detected

communities were compared to partitions of the data by demographic information. Our

network consists of nodes representing provinces, rather than people, so we will use similar

methods but replace demographic classifications with geographical ones.

The basis of the work in [9] is the standardization of pair-counting methods for comparing

two partitions. Given two partitions, define w11 as the number of node pairs classified

in the same community in both partitions, and w00 as those classified differently in both

partitions. If M is the total number of node pairs in the network, then the Rand coefficient

SR =
w00 + w11

M

measures the proportion of pairs that both partitions classify as either in the same com-

munity or in different ones. While easily interpreted, the measure is skewed towards higher

values when there are more communities. Hence, the value of this measure for one pair of

partitions is not, in general, directly comparable with the value returned for another pair.

Traud et al. [9] also identified similar problems with other (more complicated) pair-counting

methods. To overcome this, they compared the value calculated for the measure against
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what would be expected at random. This yields a z-score, known as the z-Rand score.

Large z-Rand scores point towards a statistically significant value for w, and hence signif-

icant agreement between the two partitions.

The formula for the calculation of the z-Rand score is given as follows. Let w := w11, and

let M1 and M2 denote respectively the number of pairs classified the same way in the first

and second partition. The z-Rand score is

zR =
1

σw

(
w − M1M2

M

)
(7)

for standard deviation σw expressed in terms ofM1, M2, M and total nodesN [9, Equations

(2.2) and (2.3)].

This allows us to quantify the agreement between any two partitions of a set of nodes.

In Section 3.4 we will quantify how the detected communities reflect node classifications

based on geographical characteristics and year.

3 Results

3.1 Time-dependent networks and modularity

In this section, we choose a time window of ∆ weeks to create a sequence of network

adjacencies A(t), given by (2), for t = ∆,∆ + 1, . . . , 780. For each value of t, we use the

Louvain algorithm to detect communities.

Figure 4 shows how the maximized modularity given by (5) varies with t for three values

of resolution parameter γ. This figure is an extension of Figure 4.1 from [16]. However,

in this report, the time t is defined as the end of the time window rather than as the

beginning. We made this choice because it only makes sense to look at past data to be

predictive. As a result, the large decrease in modularity found in [16] to occur at the

start of 2000 is actually found at the peak of the epidemic around the start of 2001.

Nevertheless, we can see that this decrease in modularity is not unique to γ = 1. In fact,

a decrease in modularity of over 0.1 occurs for all γ ∈ [0.8, 2.3], so we can be confident

of this feature’s robustness. Furthermore, this association of t with the end of each time

window with does not change the conclusion of [16] that the modularity decrease indicates

12



1994 1996 1998 2000 2002 2004 2006 2008
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Year

Q

Modularities at different resolutions

 

 
γ = 1/2
γ = 1
γ = 2

1994 1996 1998 2000 2002 2004 2006 2008
0

200

400

600

800

1000

1200

1400

1600
Dengue Fever Count across Peru

Figure 4: Modularity versus year for various resolution parameter values, compared to total

dengue fever cases. We use a window of ∆ = 52 (matching [16]).
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a possible correlation between community structure and the onset of epidemics. However,

the correlation between modularity, as a time series, and the global Peru-wide time series

ranges only from −0.1936 to −0.1084 for γ ∈ [0.8, 2.3].

3.2 Spatial properties of communities

Because our networks are embedded in space, we examined the spatial properties of the

detected communities. Figure 5 shows the positions of the nodes, collated from the Ge-

ographic Names Database2, and coloured by assigned community, at four times spaced

200 weeks apart. Some nodes are naturally more spaced apart, as they correspond to the

central points of larger provinces. Although there is no obvious pattern to track the spatial

properties of the communities, we can use the positions of the nodes to quantify the spatial

spread of communities.

For a given time t, we have a partition of all 79 nodes into rt communities. Each community

consists of nodes j with associated centroids (xj, yj). We measure the spread of a commu-

nity by taking the mean Euclidean distance of each of its nodes from their mean position.

We then average this over all non-singleton communities to give an average spread.

If a community structure is reliant on proximity, one would expect that as the number

of non-singleton communities increases, their corresponding mean geographical spread will

decrease. This is because each community’s size (i.e. number of nodes) will have to

decrease, but we would expect spatially adjacent nodes to remain in the same community.

This indeed happens in Figure 6, where there is a clear negative correlation of −0.6 between

community number and community spread after 2000. In 1999, there is a significant

decrease in geographical spread without the expected increase in community number.

We tentatively interpret this result to suggest that the community structure becomes ex-

tremely localized in the year leading up to the large, widespread epidemic starting in 2000

[again see Figure 1(a)], and from that point proximity remains important: up to that point,

communities were much more dispersed across the country. It is difficult to be certain, as

the small numbers of non-singleton communities also add some level of uncertainty to the

2Toponymic information is based on the Geographic Names Database, maintained by the USA National

Geospatial-Intelligence Agency. More information is available at www.nga.mil.
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Figure 5: Four snapshots of the detected community structure at different points in the time

series, where each node is arranged by the latitude and longitude of the centroid of the province.

In each snapshot, each colour corresponds to a different community. There is no correspondence

between colour across snapshots.
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Figure 6: Number of (non-singleton) detected communities, and average geographical spread of

communities versus time. We normalize both measures to lie between 0 and 1.

significance of this change. Nevertheless, Figure 6 is strikingly suggestive of such an inter-

pretation, but these results would be more convincing if we could show that the decrease in

spread is significant after incorporating the fact that some nodes are closer together than

others (see Figure 5).

3.3 Multislice network sequence

For further investigation of the global properties of the network, we use the multislice frame-

work of Sections 2.1.1 and 2.2.2. The adjacency matrix of each slice is formed by the defi-

nition (1)–(2), where we now choose ∆ = 26. We take the slices A(26), A(52), . . . , A(780),

so that the time windows do not overlap, and we consider only the large connected com-

ponent of the network at each stage. For each pair of consecutive slices, we link nodes that

appear in both with an interconnection strength of ω ≥ 0.

Figure 7(a) shows the result of the Louvain algorithm on the multislice network described

above for resolution and inter-slice parameters γ = ω = 2. It appears that the network

undergoes a clear transition in community structure just after the year 2000 begins (of
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(a) Community assignment in the multislice network. Each colour repre-

sents a community (detected with parameter values γ = ω = 2).

(b) Numbered nodes arranged on a map of Peru

(taken with permission from [16]).

Figure 7: Community assignment of numbered provinces.
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Figure 8: Nodes of the multislice network (i.e. province-times) are arranged along the x-axis,

and log2(ω) varies along the y-axis. Each colour represents a different community, detected at

varying values of ω, for γ = 2. Nodes are ordered arbitrarily.

course, this observation is for only one choice of parameter values). It is also apparent

that the network itself becomes much larger at this point, as infections appear in more

provinces. However, to get meaningful results, we require a systematic approach to ensure

that interesting features are robust to different values of the parameters γ and ω. This

report will use the “paintdrip” plots of Lewis et al. [21] for this.

Figure 8 shows such a plot: the top line of points in this figure, where log2(ω) = 1, is

a reordering of all 902 nodes found in Figure 7(a) into one row (sorted by community

assignment). Each row of the figure corresponds to one value of ω and represents the same

902 nodes in the same order (again coloured by community structure for that value of

ω). In this figure, γ = 2 is constant. Figure 9 follows the same procedure (additionally

removing any communities of size less than 30 nodes) for varying γ, where each panel

corresponds to a fixed ω. The ordering of nodes in the five plots of Figures 8 and 9 is not

the same.

These plots bring out the nodes that remain more cohesively grouped together than others

for multiple parameter values. For example, the nodes labelled from around 320 to 440

in Figure 8 remain distinct from the progressively more jumbled communities of the other

nodes as ω decreases. Figure 10 shows these nodes as node-times. We can clearly see a

robust community assignment consisting of most of the pre-2000 nodes. Note that Figure

8 does not put all of nodes 320–440 in the same community, but their various communities

18
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(a) Inter-slice strength ω = 0.25.
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(b) Inter-slice strength ω = 0.5.
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(c) Inter-slice strength ω = 1.
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(d) Inter-slice strength ω = 2.

Figure 9: Nodes of the multislice network (i.e. province-times) are arranged along the x-axis,

and log2(γ) varies along the y-axis. Each colour represents a different community (detected at

varying values of γ) for the respective values of ω. Nodes are ordered arbitrarily, and the order

is different for each ω. Communities of size less than 30 nodes are not plotted.
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Figure 10: Nodes labelled 320–440 in Figure 8 (a grouping robust to ω ∈ [0.25, 2]) plotted in

blue compared to the other nodes in green.

remain distinct from the rest of the network.

We now fix ω and vary γ. Figure 9 shows several “paintdrips”. Again, each of the four

panels show a cohesive group that persists for all values of γ considered, although Figure

9(a) has communities that are split into groups too small to be plotted as γ increases,

before joining together again. Again, these groups all correspond to pre-2000 nodes (i.e.

before the main epidemic). After the epidemic, communities appear to be less robust to

parameter variation.

3.4 Comparing multislice communities to manual partitions

3.4.1 A critical time point

To verify that community structure changes significantly after 2000, we now quantify how

well the detected communities partition the multi-slice network into two distinct time

periods. We use the methods described in Section 2.4.1 to compare the algorithmically-

determined partition of the multi-slice network with partitions into two time intervals

[t ≤ tc, t > tc], defined by a critical point tc. We let tc vary across all values of t (for
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∆ = 26, this gives tc = 1, . . . , 29) and observe for each how well the detected community

partition agrees with the [t ≤ tc, t > tc] partition.

Figure 11 shows how the z-Rand score varies by partition time tc and by inter-slice strength

ω for γ = 2. In particular, Figure 11(a) shows that the peak in zR at tc = 2003.5 is robust

to all values of ω ∈ [0, 3]. Figure 11(b) zooms into the smaller values of ω; it is apparent

that for any ω > 0 (however small) there is an increase in zR at this value of tc. As noted

in Section 2.1.1, ω = 0 corresponds to no inter-linking of slices. Hence, as soon as slices are

linked, we see a signal showing that the detected communities partition the time-dependent

network into [t < 2004, t ≥ 2004].

Observe in Figure 1(a) that 2004 is some time after the large epidemic. In fact, by inspec-

tion of Figure 7(a) and from the results of Section 3.3, we would expect 2000, not 2004, to

form the dividing year. We suspect that, because half of the node-times are before 2004,

this is skewing the results such that 2004 will naturally form a better partition. A topic of

further investigation is to determine if this is indeed a bias in methodology (and to account

for it, if it is).

3.4.2 Geographical partitioning

One can also manually partition the node-times using the geographical properties of the

nodes. Supplied with the data was a topographical classification of each province into

“Mountain”, “Coast”, and “Jungle”, with a further classification of the first two into

“north”, “central”, and “south”. Thus we partitioned the nodes into seven communities.

Another manual partition we considered came from the geopolitical divisions of Peru: the

provinces group together into regions3.

Figure 12 shows how zR (see Section 2.4.1) varies for different values of ω. We use the

partition into pre- and post-2004 nodes (Section 3.4.1) and the geopolitical and topograph-

ical partitions discussed above. For ω ≥ 1, the z-Rand scores show that all three manual

partitions are significantly correlated with the community structure. The most important

is region, which is followed by pre/post-2004, and then topography.

3See http://en.wikipedia.org/wiki/Provinces of Peru for the details of the grouping of provinces

into regions.
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Figure 11: Agreement between algorithmically-determined community partition and partition

by a critical time point. We measure this using the z-Rand score zr (7).
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Figure 12: The z-Rand score zR comparing the algorithmically-detected community partition of

the multislice network (with γ = 2) to the manual partitions into geopolitical regions, topographic

classification, and [t < 2004, t ≥ 2004]

That region is more important than topography is expected: regions are, typically, topo-

graphically homogenous (i.e. all jungle, all coast, etc.) but also composed of neighbouring

provinces. Therefore, because they share topography and proximity, and we have already

discovered that proximity is important to community structure, regions are in much greater

agreement with the detected communities than topography.

4 Discussion and Conclusions

4.1 Discussion

The results in Section 3 are indicative of connections between the community structure of

the network and the time series to which the network corresponds.

Treating the network as time-dependent, we have shown that optimal modularity (calcu-

lated by the Louvain algorithm) drops significantly at the peak of the 2000–2001 epidemic.

Recall that a decrease in modularity corresponds to a less clear partition into communities.

Figure 13 shows a simultaneous rise in total edge weight, corresponding to a rise in aggre-
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Figure 13: Total edge weights for A(t) with ∆ = 52.

gate correlation. Thus, the drop in modularity seems to suggest a greater inter-connection

between communities, where those which were once distinct become less so (rather than

the other possibility, in which communities become less densely intra-connected).

We also found a significant drop in the mean community spread during 1999. We tenta-

tively interpreted this result to suggest that the community structure becomes extremely

localized geographically in the year leading up to the large epidemic starting in 2000. If

further work confirms this result as a network feature robust to parameter changes, other

formulations of community spread, and other network constructions, then it supplies a

potentially retrodictive signal for the onset of an epidemic.

This calculation is also an example of an approach combining spatial with temporal fea-

tures. The results of Section 3.4 have the weakness of only considering either spatial or

temporal features: partitioning the node-times arranged in Figure 7(a) into either horizon-

tal or vertical groups. Ideally, one would manually cluster in both dimensions to attempt

to confirm our hypothesis of a major change in the importance of node proximity after

1999.

24



4.2 Further work

The results discussed above require much more testing if they are to be conclusive. As well

as checking robustness with respect to changes in parameter values, we require robustness to

alternative definitions of adjacency weights, modularity, community detection algorithms,

and so on. Below we describe some ways of of trying to check the robustness of our results.

4.2.1 Introducing time lag

The adjacency given by (2) is symmetric, and it compares the correlations of time series

pairs over the same time window. However, a disease takes time to propagate through

space. If we offset one time series by some lag parameter λ, then we might be able to

capture causality between the infection patterns in each pair of provinces. This change

would make the resulting network directed.

For each i, define the lagged time series Xλ
i by Xλ

i (t) = Xi(t− λ) with time lag λ. Rather

than substituting βij from (1) into equation (2), we use an altered βij(t) defined as

βij(t) =
t∑

τ=t−∆+1

Xλ
i (τ)Xj(τ) (8)

for t ∈ {∆+ λ,∆+ λ+ 1, . . . , T}.

This yields a directed network in which a large value of Aij implies that the time series Xi

somehow causes the behaviour of Xj. Of course, choosing to follow this method requires

us to decide the value of the time lag λ. Equation (8) assumes a constant global parameter

λ for simplicity only. There is no reason why the time lag from i to j should be the same

as from i to k, or even from j to i. An appropriate choice of λ should be informed by the

characteristic speeds of dengue fever spread but could also perhaps be inferred from the

data using cross-correlation methods [22].

4.2.2 Incorporating spatial effects in the null model

Modifications of the standard null model have recently been developed in order to deal

with networks embedded in space [23, 24]. Closely-located, larger nodes are more likely to
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be connected, so the null model should take this into account. One thereby hopes to take

into account what features of detected communities are simply artefacts of their nodes’

proximity and to detect structures that are not due simply to co-location. We have found

that proximity is extremely important in our data, but this might mask other structural

factors that we have not identified.

Expert et al. [23] recently proposed a null model that is given in the form

Pij = SiSjf(dij)

for pairs of nodes i, j distance dij apart. Here Si is some measure of the size or importance

of node i and the function f describes the changing likelihood of edge weight by distance.

4.2.3 Rubella data

Also available is similar data on rubella infections from 1997 to 2009 across more provinces

(by province, week, and age). Any future work will be far more convincing if the methods

can also be applied successfully to both data sets. Some parameter choices will need chang-

ing: for instance, the time lag described in 4.2.1 above will be different if the characteristic

timescales of the diseases are different. This is likely, as rubella is transferred through

airborne droplets rather than by mosquito [25].

4.3 Conclusions

This report is an exploratory step in investigating community structure in networks of

correlated time series of dengue fever infections. We have uncovered several promising di-

rections for further work that have generated some testable hypotheses. We have confirmed

and tested the robustness of the main result of Ng [16], that modularity drops during the

widespread epidemic as communities become more inter-connected. We have also shown

that the mean spatial spread of the detected communities drops significantly in the year

leading up to the main epidemic, suggesting a potentially retrodictive signal of the dengue

epidemic.

We also used a multislice framework for linking network slices corresponding to consecutive,

non-overlapping time windows. We have used methods of measuring the agreement between
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two partitions to show how individual geographical and temporal properties of the network

correlate with the detected communities. These communities tend to group provinces

belonging to the same region and into groups pre- or post-2004. This latter observation

is at odds with our findings about the major shift in community structure at the onset of

2000, and it requires further investigation.
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