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Abstract

In this dissertation, we study networks of legislators, based on their voting behaviour. We
describe different network-construction methods and we review the state of the art of how
scholars transform voting data into networks describing the voting similarity of legislators.
We describe how one can detect dense sets of nodes called “communities” and we discuss
previous analyses of voting behaviour in the European Parliament.

In addition to our review material, we include original research in a novel analysis of
polarization. We use modularity optimization to measure polarization and detect communities
in the 7th Assembly (2009–2014) of the European Parliament (EP). Our results suggest that
polarization levels in the EP are different for different policy areas. We find relatively “robust”
partitions that split the EP in two communities. It depends on the policy area whether we can
assign a label to each community. For some policy areas (“environment”, “gender equality”),
we find “left wing” and “right wing” communities, but for other policy areas (“agriculture”,
“industry”), there appear instead to be an “extreme” community and a “centrist” community.
Hence, our results suggest that one should take into account the differences between policy
areas when one wants to study community structure in the European Parliament.
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Chapter 1

Introduction

“Politics is a network”.
– Metz and Jäckle (2016) –

Background

In 1927, Rice researched whether one can detect “blocs” of legislators within small legislative
bodies based on voting data [102]. He defined a bloc as a set of (at least two) legislators such
that there is a ratio of voting agreement higher than a particular (arbitrary) threshold for every
pair of legislators [102]. Beyle [13] continued Rice’s work [102, 103] and described a method
(that is now known as the “Rice–Beyle method”) to detect voting blocs and measure their
voting agreement [66]. Rice [103] assumed the existence of voting blocs and then measured
their voting agreement, whereas the Rice–Beyle method simultaneously identifies blocs and
measures their agreement [66]. In the past decades, many scholars have analyzed voting
behaviour from different points of view [6, 13, 37, 43–46, 66, 102, 103, 105]. Recently, scholars
have used several tools from network science to study topics in political science [63, 70, 123].
Particularly, some have used networks to analyze voting patterns and to detect blocs in
assemblies [20, 68]. In this paper, we use network analysis to simultaneously identify blocs of
legislators in the European Parliament and measure their voting agreement.

Aim of this dissertation

We study networks of legislators, based on their voting behaviour. We describe different
network-construction methods and we review the state of the art of how scholars transform
voting data into networks describing the voting similarity of legislators. We describe how
one can detect dense sets of nodes called “communities” in those networks. We also discuss
previous analyses of voting behaviour in the European Parliament. In addition to our re-
view material, we include original research in a novel analysis of polarization. We analyze
polarization and communities in the 7th Assembly of the European Parliament (2009–2014).

Research questions

We use tools from network science to measure polarization in the European Parliament (EP).
We investigate whether the EP has different levels of polarization for different policy areas
(such as “gender equality” or “agriculture”). We seek to examine the extent to which this
polarization corresponds to a division based on political parties or countries of origin. We
also hope to examine the kinds of communities that are present in the European Parliament.

6



We investigate whether these communities are “robust” and whether we can assign them a
label (e.g. in terms of “left wing” or “right wing”).

Outline

In Chapter 2, we introduce some notions from network science that we need throughout the
dissertation. In Chaper 3, we give an introduction to roll-call voting and present different types
of roll-call voting networks. In Chapter 4, we indicate tersely which one we use and we list
several options for the construction of such a network. In Chapter 5, we present the notion
of network “communities” and discuss ways that they can be detected algorithmically. In
Chapter 6, we elaborate on one method to detect communities; the optimization of modularity.
In Chapter 7, introduce the European Parliament, and we discuss our own original research
in Chapter 8. We conclude in Chapter 9.
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Chapter 2

Preliminaries

In this chapter, we introduce some network-scientific notions that we will use throughout the
dissertation. This chapter draws a lot of material from Chapters 1 and 6 in Newman’s book
(2010) about networks [86].

2.1 What is a network?

A network or graph G = (V,E,w) is a collection of points that can pairwise be joined by lines.
These points are called nodes and these lines are called edges. The set of notes is denoted by
V and the set of edges by E. We work with undirected networks, which means that edges
do not have a direction. Hence, an edge from node i to node j is the same as an edge from
node j to node i. We use n = |V | to denote the number of nodes in a network and m = |E|
to denote the number of edges. We use weighted networks, in which edges have a weight wij
(e.g. a real number) that represents the strength of the associated tie between node i and j.
A signed networks only has weights with value of +1 or −1.

If there is an edge e between node i and node j, we say that i and j are adjacent to each
other. We also say that they are neighbours. An edge e and node i are called incident in
this case (e and j are incident here as well). We study networks that have at most one edge
between any pair of nodes. An edge from a node to itself is called a self-loop. We assume that
networks are connected, which means that there is a path between every pair of nodes (so it
is possible to reach all nodes if one would travel along edges in the network starting from any
node). A subgraph is a network H = (U,F,w), such that U ⊆ V , F ⊆ E, and nodes i, j are
adjacent in H only if they are adjacent in G. A network in which there is an edge between
every pair of nodes is called complete.

2.2 Adjacency matrices

An adjacency matrix A ∈ Rn×n contains all information about a network. Its components
Aij are given by

Aij =

{
wij , if i and j are adjacent ,

0, otherwise .
(2.1)

An adjacency matrix corresponding to an undirected network is symmetric, because the
existence of an edge from i to j implies that there is an edge from j to i. In a network without
self-loops, all diagonal entries Aii are equal to 0.
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2.3 Bipartite networks

One special network type is a bipartite network. The nodes of a bipartite network are par-
titioned into two disjoint sets. Every edge runs between those two sets (i.e. every edge is
incident to a node in both sets). It is possible to “project” a bipartite network onto a uni-
partite network, but this leads to a loss of information. We discuss projections of bipartite
networks in Section 3.3, when we examine bipartite roll-call voting networks.

2.4 Centrality measures

Centrality measures quantify the importance of nodes or edges in a network. There are
many different centrality measures, such as the degree centrality, betweenness centrality, and
eigenvector centrality (see [86]). For our computations, we only consider degree centrality.

The degree di of node i is the number of edges incident to it. In a weighted network, the
strength ki of a node i is given by the sum of weights of all incident edges:

ki =
n∑
j=1

Aij . (2.2)

Because there are m edges in a network and every edge in an undirected network has two
“ends”, there are 2m ends of edges. The number of ends must be equal to the sum of all
degrees, so

m =
1

2

n∑
i=1

di . (2.3)

Similarly, for weighted networks the total weight W of the network, which is the sum of all
edge weights, is twice the sum of all node strengths:

W =
1

2

n∑
i=1

n∑
j=1

Aij . (2.4)

2.5 Exponential random graph models (ERGMs)

One uses exponential random graph models (ERGMs) to examine the process of network
formation [20]. For instance, one can investigate how the degree distribution of a network
affects the network-formation process. To find the relevant factors for the process, one can
consider an ensemble of possible networks, and measure the similarity between these networks
and the original network [20]. We do not consider ERGMs in our research, but we refer to
them again in Section 7.7.3 when we discuss studies of the European Parliament.

2.6 Network analysis

One uses network analysis to discover patterns of connections, which can be modelled as a
network in which the nodes represent components of the system and edges represent their
connections. Hence, a network captures basic connection patterns [86]. An extensive set
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of tools for analyzing, modelling, and understanding networks has been developeed over the
years [86]. One useful tool is network visualization, which allows people to uncover patterns
that would be difficult to discover otherwise [57].

There are different scales at which one can analyse networks [98, 106, 127]. For example,
one can focus on properties of a single node or edge (e.g. how many edges are incident to
a particular node), which are called micro-scale properties. Second, if one focuses on an
entire network (e.g. how many edges does it take to “travel” between two random nodes),
then one is looking at the macro-scale. Finally, one can consider meso-scale properties to
discover features that might not be apparent at the micro-scale or macro-scale levels [106].
For instance, one can examine the way a network breaks down into dense sets of nodes known
as “communities” (see Chapter 5).

2.7 Use of networks in political science

Political scientists have also used network analysis [63, 70, 123]. By using network analysis,
one can identify which political actors are important and how these actors are connected to
each other, even though their relations are often invisible [57] and their performance is often
hidden by complicated voting procedures [24]. Network analysis is also useful because it takes
into account interdependence of political actors. In politics, flows of influence among actors
are important, so studying individual characteristics is insufficient [123].

Another advantage of network analysis is that one does not have to assume subjective
judgements in order to uncover structures in a political network nor does it require the re-
searcher to have a political opinion [95]. Finally, network analysis is useful as a means to
verify the results from other techniques in political science [4].

2.8 Examples of political networks

Scholars have studied many different political networks in the past decade. It is beyond the
scope of this dissertation to review this large body of work in detail, but several reviews
exist [63, 70, 109, 117, 123]. We briefly mention three examples to illustrate the power of
network analysis in political science. Keller (2015) examined promotion networks in the
Communist Party of China (CPC), where she used network centrality measures to identify
and predict the inner circle of the CPC five or ten years later [54]. Second, in a series of papers,
several authors studied committee-assignment networks in the United States and showed that
communities of committees can be identified without a priori knowledge about the politicians
[95–97]. They used various network types, such as bipartite networks (in which legislators
are connected to committees) or weighted unipartite networks (in which edges indicate the
number of committees on which two legislators both sit). Finally, a type of political network
that has been studied quite a lot in the past decade is a legislation cosponsorship network, in
which legislators are connected if they (co)sign the same bill [1, 2, 9, 19, 22, 23, 34, 35, 40,
57, 64, 74, 75, 99, 111, 128].

In Chapters 7 and 8, we analyze voting patterns in the European Parliament and try to
detect communities using tools from network science.
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Chapter 3

Roll-call voting

3.1 What is roll-call voting?

One of the core tasks of members of parliament (MPs) (which we will also call “legislators”) is
to vote on bills. A roll-call vote (RCV) is a vote in which the names of the legislators (along
with their votes) are recorded [20]. Hence, anonymous voting procedures or procedures in
which only the total result is recorded are not included in this definition. In some countries,
roll-call voting is exercised only upon request from at least a certain number of legislators.
There are different reasons why legislators would want roll-call voting to take place. For
instance, it might be used to emphasize a parliament’s will to pass/reject a bill or to place
other legislators under public scrutiny for their voting behaviour [6].

In some countries, such as the United States, all votes are recorded, so a lot of roll-
call voting data exist [93]. In many other countries, roll-call data is often unavailable for
periods prior to 1990 [3]. Because roll-call data is recently becoming more available [2], the
investigation of roll-call voting records has become more popular [68, 73, 93, 94, 124].

Strengths of studying roll-call votes

One strength of studying roll-call voting is that we have information about all legislators
(who are present), as each of them is supposed to vote “yes”, “no”, or “abstain” for every bill.
Hence, we can distinguish between legislators who are against a certain bill and legislators who
are not in favour (which is not possible for cosponsorship). However, if legislators are absent
(which is not unusual in some parliaments [73]), roll-call voting no longer gives information
about the opinion of all legislators. Another strength of roll-call voting data is that it can
be used to study voting cohesion within a political party (e.g. the extent to which legislators
vote in line with their party leader). Furthermore, because newspapers sometimes report how
legislators voted, roll-call voting data can also be used to analyse pressure on legislators to
vote consistently with the preference of their voters [3].

Weaknesses of studying roll-call votes

A weakness of studying roll-call voting is the availability of information. In some countries,
such as the United States, legislative votes are recorded systematically. By contrast, in others
(e.g. developing countries), votes are only recorded occasionally and under special circum-
stances [3]. If this roll-call voting data is unavailable, one could use other types of data (such
as cosponsorship data) to get insights about party politics [1].

Another weakness is that voting behaviour is often more subject than cosponsorship to
party discipline and agenda setting, as party leaders exert more influence over voting than
they do over cosponsorship [19]. Hence, it is hard to determine whether a legislator voted
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in a particular way because of his/her own preference or because of other reasons (such as
pressure from the party leader).

3.2 Spatial modelling of roll-call votes

There are several methods for analysing roll-call data [67]. We use network analysis, but
for comparison we briefly discuss a non-network approach called spatial modelling, which has
been used often for analysing roll-call voting data [3, 8, 69, 93, 94, 120]. Spatial modelling is
a powerful tool to characterize political ideology of legislators by finding structural patterns
in voting records. The idea behind spatial models is that vote choices can effectively be
represented in a (low-dimensional) space in which a small number of dimensions can generate
most individual issue dimensions [67]. Every legislator has his/her own ideal point for a specific
bill (his/her most favoured policy outcome). This ideal point is assumed to be a symmetric
single-peaked utility function, and a legislator will vote for the option that is closest to his/her
ideal point, as it gives him/her the highest utility [3]. The ideal-point estimates are inferences
based on statistical estimates, such that they fit as closely as possible with the observed
roll-call votes [67].

There has been an extensive literature on legislative behaviour using spatial models [8,
49, 69, 93, 94, 97, 112]. For instance, Alemán et al. (2009) compared roll-call voting to
cosponsorship and concluded that the ideal-point estimates from cosponsorship and roll-call
voting are correlated with each other for voting data in the United States and Argentina [3].

Waugh et al. argued that spatial models are more appropriate for individual roll-call
decisions rather than as measures of system-wide polarization (e.g. in terms of a distance
between political parties) [124]. Even though the assumptions in spatial modelling (such
as single-peakedness, transitivity, and completeness of preferences) seem to work for fitting
individual roll-call votes, these assumptions are too strict when one wants to examine group
dynamics on formal party divisions [124]. Because we are interested in examining political
group dynamics and measuring polarization in parliament, we thus follow Waugh et al. and
use network analysis to analyse the European Parliament.

3.3 Roll-call voting networks

Why should one use a networks approach?

Even though network analysis has become more popular in political science [63, 109, 117],
there are still very few studies that have used a network approach for analysing legislators’
voting patterns [74]. However, studying roll-call voting from a network perspective has several
clear advantages over other approaches.

First, no assumptions about rationality or spatial structures have to be made. Instead
of treating polarization as an ideological phenomenon with spatial assumptions, Waugh et
al. argued that it is better to focus on the observed voting behaviour and the way that
this behaviour divides legislators into distinct groups, by using tools in network science like
community detection (see Chapter 5) [124]. Moreover, they argued that the quality function
(to assess the goodness of a community assignment) called “modularity” (see Chapter 6) offers
a clearer measure of polarization than the existing spatial modelling measures [124].
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Second, Metz and Jäckle (2016) argued that network analysis may be able to measure
intra-party differences and to “partially open the black box of the political party”, even when
party discipline is strong [74]. This is useful because other methods do not always work well
in that case. (For instance, if one uses spatial models of roll-call voting when party discipline
is strong, it may be harder to interpret the dimensions [67]).

Which network representation should one use?

Macon et al. (2012) discussed different approaches to construct a roll-call voting network
[68]. Their primary goal was to investigate different ways to turn roll-call voting data into
a network and then to use community-detection tools (which are methods that try to find a
partition of the network in which there are dense sets of nodes that have few edges between
them; see Chapter 5). We use one of their approaches for our computations (a single unipartite
network), but we briefly discuss the other options here as well.

Unipartite networks

Several papers have used a single unipartite network to examine roll-call voting data [24, 124].
In such an approach, each node often represents a legislator and every edge between a pair of
legislators usually indicates some measure of the extent to which those two legislators voted
the same way. The network is unipartite because there is only one type of node (representing
legislators), so there can be edges between any pair of nodes. The adjacency matrix of this
network is given by a so-called similarity matrix, which shows the level of voting agreement
between each pair of legislators (see Chapter 4).

Instead of having one unipartite network, it is also possible to construct two separate
unipartite networks: a separate agreement and disagreement network [68]. In this approach,
one can separately consider voting agreement and disagreement between legislators. Conse-
quently, one can treat forms of disagreement differently (yes–no pairs versus abstain–no pairs),
as the yes–no pairs are counted separately. By using separate parameters for the agreement
and disagreement network, one can assign different importance to each type of pair [68].

Bipartite networks

One can also use a signed bipartite network to represent how legislators are connected to their
votes [68]. With such an approach, one set of nodes represents the legislators, and the other
set of nodes represents the bills on which there were votes. Every time legislator i votes in
favour of bill j, there is a positive edge eij . If legislator i votes against a bill, then there is
a negative edge. One thereby uses a signed bipartite network to capture the roll-call voting
data, in which abstentions are not included.

Although it is possible to transform a bipartite network into one or two unipartite networks
(with or without self-loops), the advantage of signed bipartite networks is that no information
about bills is thrown away. Legislators in unipartite networks are connected only to each
other, but when using a bipartite network, we retain the information about specific bills on
which two legislators agree or disagree. Bills may be very different (e.g. they might be related
to different policy areas), so one should try to include this source of information in a different
way (e.g. by constructing a distinct network for each policy area; see Section 8.2).
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Comparison of network representations

Because a bipartite approach uses more of the available information than the unipartite ap-
proaches, one could argue that it is better to work with the bipartite network representation
[68]. However, Macon et al. (2012) concluded that the unipartite network representations can
uncover a more diverse set of robust groups, which complements the information that they
uncovered by a bipartite approach. Moreover, they found the predominant grouping of coun-
tries in the United Nations General Assembly for all of these different network representations
[68]. In light of their experiences with their example, they suggested it is best to consider
multiple representations when one wants to obtain a thorough picture of roll-call voting. For
our computations, we use a single unipartite network approach because the data we obtained
was originally made available as a single unipartite network (see Section 8.1).

Which edge weights should one use?

Unweighted networks

To create an unweighted roll-call voting network, one has to encode all similarity scores as 1
values or 0 values. Scholars have used several approaches to convert different types of data
(such as voting data) into an unweighted network [2, 4, 40, 127]. First, one can use a uniform
bound δ as a threshold to create an unweighted adjacency matrix [4]. That is, given a weighted
adjacency matrix A and a threshold δ, the unweighted adjacency matrix Aδ is

Aδij =

{
1, if Aij ≥ δ,
0, otherwise .

The choice of threshold δ is subjective. Some authors picked an arbitrary value, such as
Amelio and Pizzuti (2015), who put δ = 0.6 so that two legislators are connected in the
unweighted network if they vote the same way at least 60% of the time [4]. Another option is
to set δ = µ, where µ is the mean weight of all edges [2]. Gross et al. (2012) chose a threshold
less arbitrarily by considering several values of δ and comparing their results. They thereby
observed which relationships seem to persist as weaker connections are removed [40]. Zanin
et al. (2016) suggested alternative approaches to using a uniform bound as a threshold [127],
such as maintaining some fraction of the edges with the highest weights or using a statistical
test to select edges that are significant. They also suggested using tools from data mining
to create unweighted networks. That is, after applying multiple thresholds, they analyzed
the resulting networks and reported “the most relevant features” by using recursive feature
elimination methods based on support vector machines and graph kernels [127]. For additional
types of thresholds, see [125].

Weighted networks

In a weighted network, one can distinguish the strength of ties based on values (i.e. weights)
associated to edges. The disadvantage of using weighted networks is that some measures from
network analysis are harder to apply. They might be unclear, as the interpretation of weights
may be ambiguous (e.g. reciprocity of weighted networks [113]) or they may not be defined
at all for weighted networks. Moreover, roll-call voting networks are expected to be almost
complete networks, as there are barely any 0 entries in the adjacency matrix. This has inspired
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some authors to use unweighted networks [4]. Other authors decided to display unweighted
versions of roll-call voting data (e.g. to illustrate community structure more clearly in their
figures), but to keep all information from the weighted network for their calculations and
analysis [74].

Despite these issues, we use weighted networks for the following reasons. Alemán and
Calvo (2013) argued that different levels of agreement between pairs of legislators are mean-
ingful, so it is important to take advantage of them, rather than throwing away information by
reducing all counts to edges with the same weight [2]. Moreover, there are good community-
detection methods for weighted networks (see Section 6.5.1) and by using “appropriate” vi-
sualization tools, we can present figures that clearly show different edge weights (see Section
8.3).

15



Chapter 4

How should one construct a
similarity matrix?

The edge weights in roll-call voting networks, giving a measure of similarity between pairs
of legislators, correspond to the elements of a similarity matrix S [106]. In this chapter,
we examine how to map roll-call voting data to a similarity matrix, which is an important
issue that has received little attention [68]. Scholars have constructed similarity matrices in
multiple ways [4, 24, 68, 124], and the resulting network can be affected strongly by the choice
of method [73].

4.1 Standard assumptions

There are some assumptions, which we call “standard” assumptions, that have been used in
several papers. A similarity matrix S has size n × n, where n is the number of legislators
in a parliament. Legislators i and j who vote the same way as each other are more similar
than legislators whose votes conflict. The more RCVs legislator i and j agree upon, the more
similar they are and the higher their similarity score Sij . We normalize all similarity scores
so that Sij ∈ [−1, 1] for all i and j, given by

Sij =
1

bij

K∑
k=1

cijk. (4.1)

In equation 4.1, K is the total number of considered bills (see Sections 4.2 and 4.4), cijk is
a certain score based on the outcome of the vote (see Section 4.5), and bij is used to normalize
the similarity score (see Section 4.6).

4.2 Which bills should we include?

Option 1: Include all bills

The most straightforward option is to include all bills regardless of how legislators voted on it.
We take this approach, because we want to do an exploration that includes all data instead
of throwing some of it away.

Option 2: Only include bills in which the size of the minority surpasses some
threshold

One could argue that a bill only provides useful information about voting similarity when there
is some substantial disagreement among legislators [68]. Hence, several authors [66, 68, 102]
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excluded unanimous RCVs from their analysis. In [124], the threshold was set in such a way
that the minority had to be at least 3% of all legislators.

Option 3: Only include bills in which the total turnout surpasses some threshold

One could also argue that a bill only becomes informative when a certain percentage of the
legislators actually vote. For example, Attina (1990) only considered bills in which at least
1/3 of the legislators voted [6].

4.3 Which legislators should we include?

Option 1: Include all legislators

We choose to include all legislators in our computations, because we want to do an exploration
that includes all data instead of throwing some of it away.

Option 2: Exclude “inactive” legislators

Some authors have ignored “inactive” legislators in their analysis. For instance, Amelio and
Pizzuti (2015) removed all legislators who never voted [4], Lyons and Lacina (2009) excluded
legislators who participated in very few RCVs [67], and Metz and Jäckle (2016) only examined
the top 50% of the most active legislators. If a legislator leaves parliament (e.g. by resigning or
dying), Dal Maso et al. (2014) considered the replacement legislator and departing legislator
as being a single node [24]. We treat both legislators separately by having one node for each
of them (see Section 8.2).

4.4 How should we deal with absence?

Option 1: Treat absence as abstention

The most common approach is to treat absence as abstention [4, 68]. Hence, a legislator who
does not vote for a particular bill is treated as a legislator who abstains for that bill.

Option 2: Ignore bills for which at least one of the two legislators is absent

Another approach is to treat absences as a lack of data [120] and exclude RCVs on which at
least one of the two legislators is absent [66]. For some situations, this implies that we only
have a very small number of bills to consider. Depending on the normalization (see Section
4.6), pairs of legislators could get very high agreement or disagreement scores based on only
a small number of bills [73].

Option 3: Assign different scores to absence and abstention

As we discuss in Section 4.5, there are authors who assign nonzero similarity scores to ab-
staining legislators [24, 73]. In this case, it is possible to distinguish between absence and
abstention by assigning a neutral score to absence (e.g. a score of 0) and a non-neutral score
to abstention [73]. We will use this approach.
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Option 4: Predict the vote of absent legislators

One could also try to predict what a legislator would have voted if he/she were not absent
using a process called imputation [49]. Jakulin and Buntine (2004) used different imputations
and compared the results. For instance, they considered the scenario in which legislators do
not vote because they expect to agree/disagree with the clear majority, because they lack the
information to make a decision, or because they do not want to reveal their opinion [49]. For
our computations, we do not have any information about the reasons why legislators were
absent, so we will not attempt to impute votes of absent legislators.

4.5 How should we assign similarity scores?

There are sixteen types of voting pairs, as every legislator has four options from which to
choose: yes, no, abstain, and absence. Other data sets can have more options, but those are
usually converted to one of these four [93]. To assign numerical values to these voting pairs,
some (potentially arbitary) choice has to be made about the magnitudes of their values [68].
For instance, one has to decide how many points to assign to abstain–abstain pairs. As noted
by Macon et al. (2012), this topic has not been considered much [68]. Below, we discuss the
options that other scholars have used.

4.5.1 How should we value yes–yes and no–no agreements?

One could argue that a yes–yes pair is “more similar” than a no–no pair, because a no–no
pair is not necessarily always an agreement [68]. Lijphart (1963) illustrated this point with
an example in which the United States and the Soviet Union could vote against a proposal
in the United Nations General Assembly for entirely different reasons, which thus does not
appear to be a “full agreement” between those countries [66]. However, two legislators who
vote in favour of a bill might also have completely different reasons for doing so. Moreover,
whether a “yes” or “no” vote is confirmative also depends on the way a vote is phrased (e.g.
“should the UK leave the EU?” versus “should the UK stay in the EU?”). Hence, we do not
make a distinction between yes–yes and no–no pairs in our computations.

4.5.2 How should we treat abstention?

If one ignores abstention like Amelio and Pizzuti (2015) [4], the table with similarity scores
looks like Table 4.1. However, we do not want to ignore abstention, so we have to explore other
approaches. There is no consensus in the literature about how many points one should assign
to abstaining legislators [24, 66, 68, 73]. There are many different reasons why a legislator
could abstain, such as neutrality, ignorance, external pressure, or lack of time [73, 120], but
one generally does not know which reason causes a legislator to abstain on a particular vote.
To create a similarity matrix, one has to decide whether an abstention should be interpreted
as a meaningful third option or as a special case.

Option 1: Treat abstention as one of the three meaningful options

Several authors [24, 68, 73, 124] considered abstention as one of the three meaningful options
that are available to a legislator. For instance, Dal Maso et al. (2014) and Waugh et al. (2012)
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Yes No

Yes 1 0
No 0 1

Table 4.1: Similarity scores used by Amelio and Pizzuti (2015) [4]

Yes Abstain No

Yes 1 0 0
Abstain 0 1 0

No 0 0 1

Table 4.2: Similarity scores used by Dal Maso et al. (2014) [24] and Waugh et al. (2012) [124]

used an approach (see Table 4.2) in which two legislators get a full score of 1 on a particular
bill if and only if they voted the same way [24, 124]. Mendonca et al. (2015) emphasized the
disagreement of a yes–no pair (see Table 4.3) by assigning a negative score to yes–no pairs
[73].

Yes Abstain No

Yes 1 0 −1
Abstain 0 1 0

No −1 0 1

Table 4.3: Similarity scores used by Mendonca et al. (2015) [73]

Option 2: Treat abstention as a different option

Lijphart (1963) made a distinction between “full agreement” and “partial agreement” [66]. If
both legislators abstain, they still get the same similarity score as a yes–yes pair and no–no
pair, but half of a score is given to yes–abstain pairs (see Table 4.4). Voeten (2000) analyzed
the United Nations General Assembly (UNGA) and treated abstention as a “no” vote [120].
His justification was that UNGA resolutions are not binding, so it only matters whether or
not a country is supporting a resolution. By contrast, Mendonca et al. (2015) compared both
options (i.e. treating abstention as an equally meaningful option (see Table 4.3) and treating
abstention as half of an agreement (see Table 4.5)), and concluded that the agreement scores
were very similar [73]. Consequently, they decided to present results for one table only. We
treat abstention differently from a yes/no vote (see Table 4.6). We assign every yes–yes pair
and no–no pair a maximum score of 1, and we assign yes–no pairs the minimum score of −1.
Every pair that contains exactly one abstaining legislator is assigned a score of −0.25 and
abstain–abstain pairs receive a score of 0.25. If one of the legislators is absent, we give a
neutral score of 0 (see Table 4.6).

4.5.3 Other approaches

There are other approaches that one can follow to construct a similarity matrix based on
roll-call voting. We briefly discuss two of them here: one based on information theory, and
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Yes Abstain No

Yes 1 0.5 0
Abstain 0.5 1 0

No 0 0 1

Table 4.4: Similarity scores used by Lijphart (1963) [66]

Yes Abstain No

Yes 1 0.5 −1
Abstain 0.5 0.5 0.5

No −1 0.5 1

Yes Abstain No

Yes 1 −0.5 −1
Abstain −0.5 −0.5 −0.5

No −1 −0.5 1

Table 4.5: Similarity scores used by Mendonca et al. (2015) [73]

the other on exponential weights. We do not use these approaches for our computations, but
we will use the information-theoretical notions when we discuss ways to compare “network
partitions” in Section 5.4.

Similarity based on information theory

Jakulin and Buntine (2004) computed the distance between two legislators by using notions
from information theory and treating similarity as a measure of interdependence [49]. For an
event X with possible outcomes {x1, ..., xK} having probabilities {p(x1), ..., p(xK)}, Shannon’s
entropy function [110] is

H(X) = −
K∑
k=1

p(xk) log2 p(xk). (4.2)

The joint entropy H(X,Y ) is given by

H(X,Y ) = −
K∑
k=1

K∑
l=1

p(xk, yl) log2 p(xk, yl). (4.3)

Jakulin and Buntine (2004) considered two different probabilistic models to describe the voting
process: one model assumes independence between the legislators’ RCVs and the other model
assumes dependence between their RCVs. If there is independence between a set X of RCVs
of legislator i and a set Y of RCVs of legislator j, then information about how i has voted
does not increase the probability that we can correctly predict what j has voted (and vice
versa). Hence, in the model assuming independence, we have

H(X,Y ) = H(X) +H(Y ). (4.4)

The difference between the two models’ entropies is called the mutual information [49]:

I(X;Y ) = H(X) +H(Y )−H(X,Y ). (4.5)

The minimum value of 0 is attained when there is no correlation between the voting behaviour
of legislators i and j. The higher the mutual information between two legislators, the greater
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Yes Abstain No Absent

Yes 1 −0.25 −1 0
Abstain −0.25 +0.25 −0.25 0

No −1 −0.25 1 0
Absent 0 0 0 0

Table 4.6: Similarity scores for our computations

their dependence and their “similarity” [49]. That is, a higher value of I(X;Y ) means that
we have more knowledge about the vote of legislator j given the vote of i. However, if two
legislators always vote in an opposite way (Jakulin and Buntine (2004) only considered “yes”
and “no” votes), the maximum value for I(X;Y ) is also reached. Hence, “similarity” has a
different meaning in this approach than the one that we defined in Section 4.1 (i.e. “legislators
i and j who vote the same way as each other are more similar than legislators whose votes
conflict”).

Exponential weighting

Bertozzi and Flenner (2016) used exponential weighting to consider voting records of the
United States House of Representatives [12]. They defined the voting record of legislator i by
a vector xi ∈ RK , where K is the number of bills, a “yes” vote is represented by 1, a “no” vote
by −1, and each abstention by a 0 in the voting vector. They defined the similarity between
two legislators by an adjusted Gaussian similarity function.

4.6 How should we normalize similarity scores?

Option 1: Divide each similarity score by the number of bills in which both
legislators vote yes/no

Waugh et al. divided each similarity score by the number of bills in which both legislators
vote yes or no [124]. Because we assign a non-zero similarity score to abstaining legislators
(see Section 4.5), it is necessary for us to take a different approach. Otherwise, the normalized
similarity score of two legislators could be larger than 1 if they both abstained most of the
time.

Option 2: Divide each similarity score by the number of bills in which both
legislators are present

Rombach et al. (2014) divided each score by the number of bills in which both legislators
were present [106]. This option, if combined with assigning a neutral score to absence, is the
same as ignoring a bill when at least one of the two legislators is absent. The disadvantage
of this approach is that legislators who almost never show up can still get a high normalized
similarity score. For instance, a pair of legislators who vote the same way on all ten bills are
assigned the same normalized voting score as a pair of legislators who vote the same way once
and did not show up the other nine times.
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Option 3: Divide each similarity score by the total number of bills in a session

Several authors divided each similarity score by the total number of bills in a session [24,
68, 73]. By using this approach, legislators who do not show up regularly end up having
a similarity score close to 0. Because we assign disagreeing legislators a negative similarity
score, it seems reasonable to assign absent legislators a neutral score of 0. Hence, we will
use option 3 and avoid assigning artificially high agreement scores to legislators with low
attendance [68]. A full weight of 1 can only be obtained by two legislators if they are always
present, vote exactly the same for all bills, and never abstain [24]. Macon et al. (2012)
noted that it does not matter for detecting communities whether one works with a uniformly
normalized similarity matrix (in which every similarity score is divided by the same constant
b), or whether one uses a similarity matrix that is not normalized at all [68].
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Chapter 5

Community detection

5.1 What is a community?

There is no consensus about the definition of a community [31, 33, 98]. One (classical) point
of view is that communities are relatively densely connected sets of nodes (e.g. compared to
the mean edge density [31]), which are sparsely connected to other dense sets of nodes [33].
Another approach is to assume that nodes of the same community are more likely to form
edges with nodes inside their community than with nodes outside their community [33].

Fortunato (2010) mentioned several descriptions of a community, including local ones
(focusing on one subgraph and neglecting the rest of the network), global ones (focusing on
an entire network), and descriptions based on node similarity (focusing on some reference
node property) [31]. Fortunato and Hric (2016) argued that a precise a priori definition of
community is not really needed, as most community-detection techniques (see Section 5.3) do
not require it [33]. Instead, communities are often “algorithmically defined” as the output of
a community-detection algorithm [31, 98].

In network science, hard partitioning or hard clustering refers to the process in which one
divides the nodes of a network over disjoint sets (communities). This division is called a
partition. We do not consider a division (called cover) into overlapping sets of nodes, which
is the result of soft partitioning [33]. In our computations, we do not fix the number q of
communities a priori (for a discussion of the specification of q, see [90]). In real networks
there can be hierarchical structure with subcommunities nested in communities [60, 62]. Con-
sequently, there can be several meaningful partitions that correspond to different hierarchical
levels and it might be hard to discriminate between them [31].

5.2 Communities in real-life networks

In real-life networks, there can be high concentrations of edges within groups of nodes, and low
concentrations between them [31]. Scholars have used community-detection tools to uncover
unknown structures that might have special functions [14, 31, 98]. For instance, Flake et al.
(2002) identified communities of highly related webpages by applying community detection
to the World Wide Web [30]. Traud et al. (2012) used Facebook data to find communities in
friendship networks and found that at most U.S. universities among the 100 they analyzed,
communities are mainly organized by class year, whereas at a few universities, the community
assignment is based predominantly on dormitory residence [116]. Scholars have also studied
communities in political networks [21, 104]. Porter et al. (2005) found strong links between
different committees and subcommittees in the United States House of Representatives (e.g.
between the House Rules Committee and the Select Committee on Homeland Security in the
107th Congress) [97]. Macon et al. (2012) identified communities of countries in the United

23



Nations General Assembly based on vote similarity and found, for instance, communities that
correspond to “Western” and “Eastern” communities [68].

5.3 Community-detection methods

There are many different methods to identify communities in networks. In the articles [31,
33, 98], one can find an extensive overview of methods such as spectral methods, dynamic
methods, hierarchical clustering methods, and many more alternatives. Spectral methods
use spectral properties, such as the eigenvalues of an adjacency matrix or of other matrices.
Dynamic methods use dynamical processes such as random walks to detect communites in
a network. Hierarchical clustering methods construct a hierarchy of communities based on
some “similarity” of nodes.

Even though scholars have tried to compare different community-detection methods [42,
73], there are no clear guidelines on how to compare these methods [31, 98], and there is
no universal best method [33]. Therefore, Porter et al. (2009) argued that it is best to use
multiple methods to analyze real-world networks such that one can have more trust in the
partitions that are similar across multiple methods [98]. In Chapter 6, we focus on one popular
method: the optimization of a quality function called modularity.

5.4 Comparing partitions

One might want to compare the results of different community-detection methods to each
other or to some metadata [42, 115, 126]. For instance, Newman and Clauset (2016) discussed
how metadata can be used to improve community detection [88]. Their method tries to learn
whether a correlation exists between some metadata and the detected communities, and the
method then uses the metadata if it contains useful information [88]. Hric et al. (2016)
introduced a generative model to assess the quality of metadata in its capacity to predict
the placement of edges in a network [47]. One can also use their method to improve the
prediction of missing nodes. Cherepnalkoski and Mozetic̆ (2016) applied community detection
to a parliamentary network and compared the detected communities to information about the
legislators [21].

Measures to compare partitions

There are different measures that one can use to compare partitions to each other; these
include measures based on pair counting or information theory [53, 115].

Measures based on pair counting

Measures based on pair counting consider the node pairs that are in the same communities
and the ones that are in different communties in two partitions. As before, let V be the set
of nodes {1, 2, ..., n}, let X = {X1, ..., Xr} be a partition of V into r communities, and let
Y = {Y1, ..., Ys} be a partition into s communities. We define the following numbers [53]:
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a11 = number of node pairs in the same communities as each other in X and Y. (5.1)

a00 = number of node pairs in different communities from each other in X and Y. (5.2)

a10 = number of node pairs in the same community in X and in different ones in Y. (5.3)

a01 = number of node pairs in different communities in X and in the same one in Y. (5.4)

One pair-counting measure is the Rand index R [100], which indicates the fraction of
node pairs on which both partitions agree (i.e. the node pairs that are either in the same
community for both partitions or in different communities for both partitions). The index
lies between 0 and 1 (where 1 indicates full agreement) and is given by

R(X,Y ) =
a11 + a00

a11 + a01 + a10 + a00
=
a11 + a00(

n
2

) . (5.5)

Another pair-counting measure is the Jaccard index [48]

J(X,Y ) =
a11

a11 + a01 + a10
. (5.6)

The Jaccard index divides the node pairs that are in the same community for both partitions
by the number of node pairs that are in the same community for at least one partition [31].
The Jaccard distance, which satisfies the standard metric axioms (non-negativity, symmetry,
and the triangle inequality) [65], measures dissimilarity between partitions:

dJ(X,Y ) = 1− J(X,Y ) =
a01 + a10

a11 + a01 + a10
. (5.7)

Information-theoretical measures

In Section 4.5.3, we discussed information-theoretical similarity measures. We can also use an
information-theoretical framework to compare partitions [26, 42, 73]. The more similar two
partitions X and Y are, the less information one needs to infer partition X from partition Y
or vice versa [53]. We can measure this amount of information with the normalized mutual
information (NMI) [114]:

NMI(X,Y ) =
2 I(X;Y )

H(X) +H(Y )
, (5.8)

where H(X) is the Shannon entropy defined in equation (4.2) and I(X;Y ) is the mutual in-
formation defined in equation (4.5). Another information-theoretical measure is the variation
of information (VI) [72], which is the sum of the information needed to describe X given Y
and vice versa [53]:

VI(X,Y ) = H(X) +H(Y )− 2 I(X;Y ). (5.9)

The normalized variation of information (NVI), which we will use in Section 8.2, is given by
[58]

NVI(X,Y ) = 1− I(X;Y )

H(X,Y )
. (5.10)

Both the VI and NVI satisfy the properties of a metric [53, 58, 118].
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5.5 Robustness of a partition

It is important to examine whether detected communities are significant. There are different
types of significance [76]. We measure how significant communities are by measuring their
robustness against some (random) perturbation (e.g. the addition or removal of edges in a
network) [53]. If an optimal partition of the original network is relatively similar to an optimal
partition of a perturbed network (indicated by an NVI score close to 0, for instance), one
considers the original partition to be relatively robust. Hence, the robustness approach follows
the assumption that a significant partition should not be altered by a small modification of a
network [60].

Scholars have used different definitions of robustness and different perturbation methods
[38, 53, 54, 60, 68, 76]. Gfeller et al. (2005) changed the weight of every edge eij by adding
some number (equally distributed) between −σwij and σwij , where wij is the weight of edge
eij and σ ∈ (0, 1) is fixed [38]. Karrer et al. (2008) rewired a fraction of randomly-chosen
edges and compared partitions of the original network to the partitions of perturbed networks
[53]. Macon et al. (2012) used different values for the resolution parameter (see Section 6.4.3)
to examine the robustness of network partitions [68].

We follow Lambiotte (2010) [60] and use three types of modifications to measure robust-
ness. First, we modify our networks by adding/removing some weight independently to every
element of our adjacency matrix. Second, we run our community-detection algorithm R times
and use a random ordering of the nodes, so that we can compare the results between different
runs. Third, we tune the “resolution parameter” γ (see Section 6.4.3) and compare optimal
partitions for different values of γ. We discuss these three modifications in more detail in
Section 8.2.
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Chapter 6

Modularity optimization

6.1 Quality functions

The most popular community-detection method is the optimization of a quality function,
which assigns a score (e.g. a real number) to each possible partition of a network [33].
Comparing the scores provides one way — though a rather imperfect way — of comparing
the quality of the partitions to each other. Within a particular network, partitions with higher
(or lower, depending on the quality function) scores are considered to be “better” partitions
[31].

However, we show in Section 6.4.3 that these partitions may not correspond to the par-
titions that one would consider to be the most “intuitive” or the most “preferred” ones.
Moreover, whether a partition is considered to be “good” depends on the definition of a com-
munity that one uses [31]. One can also use quality functions to compare the output of other
community-detection methods. We focus on the most popular quality function, called modu-
larity [89], but for a discussion of other quality functions (such as performance and coverage),
see [31].

6.2 Modularity of a partition

In a very influential paper [89], Newman and Girvan (2004) defined the notion of modularity
(for an unweighted network) as the fraction of edges that are incident to nodes within the
same community minus some expected value of this fraction, if edges were assigned randomly
in a network with the same expected degree distribution:

Q =
∑
i

(Eii −R2
i ) = Tr[E]− ||E2|| . (6.1)

In equation (6.1), symmetric matrix E is the normalized adjacency matrix of a network of
communities (i.e. in which each community is treated as a single node). Symbol Ri denotes
a row of matrix E (i.e. Ri =

∑
j Eij), which is the fraction of edges that are incident to

nodes in community i. Notation ||X|| denotes the sum of the elements of the matrix X. The
trace Tr[E] =

∑
iEii gives the total fraction of edges that connect nodes within the same

community. If there is a single community that contains all nodes, Tr [E] = 1 and Q = 0.
This single community does not give useful information about community structure.

We use a different notation for Q [85]:

Q =
1

2W

∑
ij

Bijδ(Ci, Cj) . (6.2)
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In equation (6.2), W is the total weight of the network (see Equation (2.4)) and Ci denotes
the community to which node i is assigned. The Kronecker delta δ(Ci, Cj) is equal to 1 if
node i and node j are assigned to the same community and 0 otherwise. The scalar Bij is an
element of modularity matrix

B = A−P, (6.3)

where P is a null model. This null model could, for instance, indicate some expected value of
the density of edges (see Section 6.3).

Many authors have used modularity [32, 82, 84, 85] to measure how well a partition
divides a network into communities. The modularity Q measures the density of edges within
communities as compared to the expected density in some null model (e.g. a network with
the same expected node-strength distribution). The value of Q lies in [−1, 1] (for networks
with nonnegative weights). For a given network, higher values of Q correspond to partitions
in which there are more/stronger edges within communities than one would expect by chance
in a certain null model [98]. If Q = 0, there are exactly as many edges within communities as
one would expect by chance [82].

6.3 Null models

In equation (6.3), we introduced a null model P that is used to take account of the expected
edge weight within communities. The value of modularity Q only has a meaning once P has
been defined [32]. There are many possible null models [11, 60, 101], and one can incorporate
specific network features (such as bipartiteness or signed edges) by choosing a particular
one [31]. The matrix P can be derived by some randomization of the original network [33].
Because we work with undirected networks, we require that Pij = Pji for all i, j. Moreover,
Q = 0 when there is only one community containing all nodes, so equations (6.2, 6.3) imply
that [84]

0 =
∑
ij

Bij =
∑
ij

[Aij − Pij ], (6.4)

and ∑
ij

Pij =
∑
ij

Aij = 2W. (6.5)

Consequently, we consider only null models that have the same total edge weight as our original
network. Bazzi et al. (2016) differentiated between “null models” and “null networks” [11].
They defined a null model to be a probability distribution on the set of adjacency matrices.
Under a specified null, a null network is the expected adjacency matrix (so the same null
network can correspond to different null models) [11]. We do not distinguish between null
models and null networks in this dissertation.

Uniform null model

The simplest null model is the uniform null model (or Bernoulli random graph), in which Pij
is a constant [84, 101, 104]. To satisfy (6.5), we have for all i, j that
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P ∗ij =
2W

n(n− 1)
. (6.6)

A weakness of the uniform null model is its degree distribution. Many real-life networks
have right-skewed degree distributions, but the uniform null model has a binomial degree
distribution (or Poissonian as n → ∞) [84]. These degree distributions are very different,
making the uniform null model a suboptimal model of most real networks [31]. However,
Richardson et al. (2009) noted that the uniform null model might be appropriate for the study
of similarity networks (such as voting-similarity networks), because of the relative uniformity
of edge strength among the nodes and because of the high network density [104]. Bazzi et al.
(2016) extended the notion of a uniform null model to a uniform null network [11].

Newman–Girvan null model

The most common null model is the Newman–Girvan (NG) null model [89]

P ∗∗ij =
kikj
2W

, (6.7)

which satisfies equation (6.5), as
∑

i ki = 2W . The NG null model gives the expected edge
weights in a random network in which edges are placed independently under the condition
that the expected node strengths in the random network match the actual node strengths
in the original network [68]. In other words, P ∗∗ij is an adjacency-matrix element yielding a
network in which the probability that there is an edge eij depends only on ki and kj (which
are independent of each other) [84]. We can combine equations (6.2, 6.3, 6.7) to obtain
Newman–Girvan modularity (QNG):

QNG =
1

2m

∑
ij

[(
Aij −

kikj
2W

)
δ(Ci, Cj)

]
. (6.8)

Unless specified otherwise, we refer to Newman–Girvan modularity whenever we discuss mod-
ularity in the remainder of this dissertation.

6.4 Modularity optimization

One does not only use modularity to compare the quality of network partitions a posteriori,
but also as an objective function that one wants to optimize a priori [14, 89]. There are
many community-detection algorithms that try to optimize modularity (see Section 6.5), and
a partition with the highest modularity Qmax is called an optimal partition [39]. We use
modularity optimization for our computations (see Section 8.2), so we try to find a partition
in which the total intra-community edge weights are optimized relative to the null model [68].
The maximum modularity Qmax depends on the network size (it usually is larger for larger n
[39]), so we only compare (maximum) modularity values between networks of the same size.
Because Q = 0 for a single-community partition, we know that [31]

Qmax ≥ 0 . (6.9)
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6.4.1 Computational complexity

Brandes et al. (2008) proved that it is an NP-hard problem to find the partition with Qmax

[18]. Because the number of possible partitions increases at least exponentially with n, it is not
feasible to check all possible partitions [32], even for networks of moderate size. (For instance,
in our computations with n = 840, there are B840 possible partitions, where B840 is a Bell
number). Hence, we need heuristics or approximation algorithms (see Section 6.5) that can
obtain partitions with Q close to Qmax in a reasonable amount of time [14, 98]. Approximation
algorithms rarely return an optimal partition, and they are often non-deterministic, as they
return different solutions to the same problem [31]. Even though the output of a modularity-
optimization heuristic usually has a modularity value lower than the theoretical maximum,
we still denote the largest modularity value that we obtain for a network by Qmax.

6.4.2 Strengths of modularity optimization

Although other community-detection methods often implicitly assume some kind of null
model, modularity-optimization methods make the null model explicit and clear [84]. Conse-
quently, one has more understanding of the method’s implications and more control to adjust
them, which makes modularity a very intuitive measure [84]. In Section 6.5.1, we discuss the
strengths of one particular modularity-optimization heuristic (the Louvain method).

6.4.3 Weaknesses of modularity optimization

Modularity-optimization methods also have several weaknesses. For instance, the maximum
modularity Qmax depends strongly on the size of a network, the number of communities, and
their inter-connectedness [39]. Consequently, one should generally not compare modularity
values between distinct networks of different sizes. (There can also be issues with comparing
values of Q for networks of the same size, so it is often better to focus on the obtained partition
than on the modularity value itself).

In this section, we discuss two major weaknesses of modularity optimization. The problem
of the resolution limit implies that the optimal partition (with Qmax) may not always corre-
spond to the most intuitive partition [32]. The problem of near-degeneracy means that there
can be (exponentially) many different partitions with Q very close to Qmax [39]. Because
of these weaknesses (and other weaknesses as well, see [33, 87]), one should be careful with
interpreting high-modularity partitions [39].

The resolution limit

Fortunato and Barthélemy (2007) showed that modularity optimization has a resolution limit
[32], in that modularity-optimization heuristics might miss communities that are smaller than
a certain scale (which depends on n and on the extent of interconnectedness of the commu-
nities). Consequently, heuristics might favor partitions that combine communities into larger
communities and return partitions that are different from the “intuitive” community assign-
ment. Therefore, the partition with highest modularity value might not always be the desired
partition. For instance, one can show that for a ring of K4 cliques (in which there is a single
edge between a clique and two neighbouring cliques), the partition with two cliques in one
community has higher modularity than a partition in which every clique is assigned to its own
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community (which is counterintuitive to the intuitive idea of a good community assignment)
[32, 33].

We describe the resolution limit by using a derivation from [31], adjusted to a weighted
network. (Note that weighted networks usually have less severe issues with the resolution
limit than unweighted networks [39]). Consider two communities A and B that have a total
strength of kA =

∑
i∈A ki and kB =

∑
i∈B ki and suppose (for simplicity) that kA ≈ kB = κ.

The expected total edge weight between community A and B is

w′AB =
kAkB
2W

. (6.10)

If community A and B are merged, the difference in modularity from the change is

∆QAB =
wAB
W
− kAkB

2W 2
, (6.11)

where wAB is the total edge weight between A and B. If there is a single edge with unit weight
between A and B (i.e. wAB = 1), one would intuitively expect that the two communities are
not merged. However, if

kAkB
2W

< 1 ,

then ∆QAB > 0 , which makes a partition with A and B in the same community a “better” (i.e.
higher-modularity) partition. Hence, given that the total edge weight between communities
A and B is larger than 1, one gets a higher modularity value when A and B are in the same
community if

κ <
√

2W. (6.12)

Consequently, if the output of a modularity-optimization heuristic includes communities with
a total node strength of the order of

√
W or smaller, we do not know a priori whether these

communities are single communities or combinations of smaller communities [31].
There are several ways (that are not necessarily inconsistent with each other) to describe

the origin of the resolution-limit problem. For instance, some authors [32, 50] described it
as a fundamental consequence of the additive form of equation (6.2), which implies that one
has to find the best tradeoff between the number of communities and the modularity value of
each term in order to maximize modularity. Other authors [31, 33] explained the problem in
terms of the null-model assumption that each node can interact with every other node. They
argued that it would be more reasonable (especially for large networks) to assume that each
node only interacts with a portion of the network.

How should one deal with the resolution limit?

Scholars have proposed different ways to deal with the resolution limit. For instance, one can
use multiple heuristics and find a consensus of the high-modularity partitions [28]. One can
also perform further subdivisions of the obtained communities by treating each community
as a separate network and applying modularity optimization again [32]. Fortunato (2010)
argued that the latter procedure (i.e. further subdivision) is not reliable because it requires
an arbitrary stopping criterion and because the “local” modularities within communities are
inconsistent with each other due to different null models [31]. Moreover, by treating a com-
munity as a separate network, one ignores the inter-community edges, so one is examining
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a network that is different from the original network, which could affect the results of any
subsequent modularity-maximization heuristic [85].

To deal with resolution limit, we consider “multi-resolution modularity” [60], which means
that we include a resolution parameter γ into the modularity matrix [101]:

B = A− γP. (6.13)

By considering different values of γ, one can “zoom in and out” to find communities at different
resolution scales [4, 98], thereby examining different “background” levels of agreement between
legislators. If one increases γ, one places more weight on the randomized term Pij , so it
becomes less advantageous to assign i and j to the same community [60]. Consequently, the
methods finds smaller communities for larger values of γ. By contrast, a smaller value of
γ implies that there is more weight on the observed term Aij , so the method favors larger
communities [87].

An issue with using multi-resolution modularity is that one does not a priori know the
“right” value of γ. Hence, one can compare partitions for a range of resolution parameters
and detect the “robust” communities [60, 68]. In section 8.2, we describe how we measure the
robustness of the detected partitions by combining several statistical tests [60]. However, we
cannot guarantee that we find all small communities [5], as this method does not completely
solve the resolution-limit problem [33]. Recently, Newman (2016) described a process in which
one repeatedly maximizes modularity (using different heuristics), and one recalculates γ until
convergence is achieved [87]. He found that this method to find the correct value of γ converges
quickly, but that convergence (or correctness) cannot be guaranteed [87].

The near-degeneracy problem

Good et al. (2010) showed that the modularity function exhibits extreme near-degeneracies, as
there can be exponentially many (or more) distinct partitions whose modularity values (local
optima) are very close to the global maximum Qmax [39]. In other words, the modularity
function is typically not strongly peaked around Qmax for practical examples. They also
showed that there may be very little overlap between these partitions (despite the closeness
of their modularity values), and that the global (theoretical) maximum Qmax can often not
be attained [39].

As the number of communities q gets larger, there are (exponentially) more non-optimal
ways to combine them, which makes it harder to find a partition with Qmax. Because there
are often many partitions with a relatively high modularity score, it is unsurprising that a lot
of heuristics tend to return good partitions [39].

How should one deal with the near-degeneracy problem?

One can try to circumvent the near-degeneracy problem in several ways. For instance, one
can construct a consensus partition across multiple optimizations [10, 25] to construct a repre-
sentative partition. We use this approach in Section 8.2. One can also use generative models
to identify community structure [39] or one can apply multiple computational heuristics to
compare the identified communities [98, 124]. In the latter scenario, one could decide to pick a
partition with the highest modularity [124] or to sample a partition from all high-modularity
partitions [39].
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6.5 Heuristics for modularity optimization

There are many distinct heuristics that can find partitions with modularity values fairly
close to Qmax in a reasonable amount of time [31]. Sometimes heuristics find partitions
that vary a little bit [124] and sometimes they can vary a lot [39]. For our application, we
use a locally-greedy heuristic (the Louvain method) that we describe in Section 6.5.1. Other
heuristics include other greedy techniques [83], simulated annealing [55, 101], spectral methods
[53, 84, 85, 104], extremal optimization [15, 29], and many more (see [31, 39, 98, 124]).

6.5.1 Louvain method

Blondel et al. (2008) introduced a locally greedy modularity-optimization method [14], that
is now known as the Louvain method, and that has been used by many scholars [21, 27, 39,
68, 78, 91, 106, 124].

The algorithm

We give pseudocode for the Louvain method in Algorithm 1. The algorithm tries to find
a network partition with high modularity. The algorithm has two phases. Before phase I,
every node i is assigned its own community (so that there are n communities initially). During
phase I, the algorithm moves nodes between communities to obtain a locally-maximal increase
of modularity. This phase can be repeated often, so nodes can be considered several times.
Whenever phase I stops, the algorithm has found a local maximum, as no move from a single
node can improve modularity. Phase II then starts. During phase II, a new network is created
in which every node represents one of the communities found during phase I. Once this new
network has been created, the entire algorithm is applied again until modularity can no longer
be increased.

Number of rounds

Every time phase II ends, we call this the end of a “round” of the algorithm. Within a
round, phase I is repeated as long as ∆Q > 0. Hence, in every round, the algorithm first
optimizes modularity by locally changing communities (phase I), and then it creates a new
network of the communities found (phase II). If the modularity value increases during round
t, the algorithm starts a new round t + 1 after phase II is over. In every round in which
modularity increases, the number of communities must decrease, as there is at least one
node (representing a community) moved into another community. Consequently, most of the
computing time (which is linear in n [31]) is used in the first round. The number of rounds is
usually very small [14].

Output of the algorithm

Different runs of the Louvain algorithm can give (slightly) different partitions [106]. In addi-
tion to considering the final output of the algorithm, one can also consider the intermediate
divisions after each round. Those divisions correspond to local maxima of modularity (at
different scales), as it is not possible to increase modularity by moving one node from a
community to a neighbouring community [14].
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Algorithm 1 Louvain method for community detection (pseudocode)

Input: Weighted adjacency matrix A (size n× n).
Output: Partition of n nodes and a modularity value Q

Set “increase” to FALSE
for all nodes i do

Assign each node its own community
end for

Phase I:
Set “repeat” to FALSE
for all nodes i do

for all neighbours j of i do
Evaluate gain of modularity (∆Q) for moving node i to the community of node j.
Let j∗ be a node for which ∆Q is maximum (if there is a tie, use a tie-breaking rule).
if ∆Q > 0 for j∗ then

Node i is moved to community of node j∗.
Set “repeat” to TRUE
Set “increase” to TRUE

end if
end for

end for

if “repeat” is TRUE then
Repeat phase I.

end if

Phase II — Creating a new network:
for all communities qi do

Create node Ni to represent community qi
end for
for all pair of nodes Ni, Nj where i 6= j do

Set the edge weight equal to the sum of edge weights between community qi and qj .
end for
for all nodes Ni do

Create a self-loop with weight equal to the sum of edge weights within community qi.
end for

if “increase” is TRUE then
Use this new network as an input of the Louvain method algorithm.

end if
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A user can choose to construct a hierarchical structure in which each level is given by
the intermediate division after a round. As noted by Fortunato and Hric (2016), “low” level
partitions have less unnatural community mergers (e.g. a ring of cliques can be detected this
way), but these partitions have lower values of Q than the “top” levels [33]. Hence, users
sometimes have to choose between the “optimal” partition (with highest modularity value)
and the most “intuitive” partition.

Increase in modularity

One can easily compute the gain ∆Q in modularity that occurs from moving an isolated node
x into a community Y . We repeat the definition of modularity with a Newman–Girvan null
model and resolution parameter γ (equation 6.8) here:

QNG =
1

2W

∑
ij

[(
Aij − γ

kikj
2W

)
δ(Ci, Cj)

]
.

By moving node x to community Y , the difference in modularity comes only from the terms
in which i = x and j ∈ Y or i ∈ Y and j = x. By symmetry, we consider only one of those
options (i.e. i = x and j ∈ Y ) and add the contribution twice:

∆QNG =
1

2W

∑
j in Y

2

[
Axj − γ

kxkj
2W

]
=

1

W

[
kx,Y − γ

kx
∑

Y

2W

]
, (6.14)

where kx is the strength of node x, the symbol kx,Y denotes the weight of all edges incident to
x and a node in Y , the symbol

∑
Y denotes the sum of all weights of edges incident to nodes

in Y , and W is the sum of all edge weights in the entire network. Equation (6.14) is equal to
equation (2) in [14].

Comparison to other modularity-optimization heuristics and to other community-
detection methods

Blondel et al. (2008) argued (in the paper where the method was introduced) that the
steps of the Louvain method are intuitive and easy to implement [14]. Several scholars have
compared the Louvain method to other modularity-optimization heuristics [14, 21, 31, 33,
98, 124]. Most of them confirmed that the Louvain method is computationally very efficient,
which makes the method suitable for large networks [21, 31]. Waugh et al. (2012) compared
the Louvain method to eight other modularity-optimization heuristics and showed that the
Louvain method was the one that found the best partition (with highest Q) in more networks
than any other heuristic [124].

Besides the weaknesses that apply to all modularity-optimization heuristics (i.e. the reso-
lution limit [32] and near-degeneracy problem [39]), scholars have also found some weaknesses
of the Louvain method or reasons to prefer other heuristics (or other community-detection
methods). Porter et al. (2009) stated that other modularity-optimization heuristics such as
spectral methods [84, 85, 104] and simulated annealing [55, 101] provide more sophisticated
means to find partitions with high modularity [98]. This observation was confirmed by Good
et al. (2010) for simulated annealing [39]. Lancichinetti and Fortunato (2009) [61] compared
the Louvain method to a community-detection algorithm (that is based on random walks)
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called Infomap [107]. They concluded that the Infomap method appears to beat the Louvain
method in terms of accuracy on “GN benchmark graphs”, “LFR benchmark graphs”, and
random graphs (for a description of these benchmark graphs, see [61, 62]).

6.6 Significance of high-modularity partitions

Optimization of modularity is supposed to deliver the most modular partition. However,
the presence of a high-modularity partition does not always guarantee that there is a clear
community structure [10, 31, 53]. For instance, Guimerà et al. (2004) showed that there are
high-modularity partitions in random networks (such as the Erdös–Rényi graph) [41]. This is
counterintuitive because Erdös–Rényi graphs are not expected to have community structure.
(In fact, the notion of modularity is based on the assumption that (some types of) random
networks do not have community structure [33]). These non-negative values of Q in random
graphs are due to fluctuations in the edge distribution, which can occur even if the edge
probability pij = p for all nodes i, j [31]. Bagrow (2012) demonstrated that trees can have
arbitrarily high values of modularity (as n → ∞), which is not in line with the common
assumption that trees typically do not possess modular strucure [7].

Hence, we want to know whether our obtained partition(s) represent meaningful commu-
nity structures or whether these structures may have arisen at random [10, 33]. If there is
a low probability that a community is generated randomly, we can be more confident that
the communities are meaningful. By comparing the community structure to a reliable null
model (see Section 6.3), one can estimate the likeliness of a particular community assignment
in a random network. For instance, one can use a p-value to measure the significance of a
partition. This value indicates the fraction of null-model configurations that yields results
(e.g. a community assignment) compatible with the ones measured in the studied network
[33]. (It is common to use p ≤ 0.05 as a threshold for significant results [33]).

Newman (2016) claimed that modularity maximization (in its generalized form with res-
olution parameter γ) is equivalent (for some appropriate choices of models and parameters)
to the method of maximum likelihood applied to the “(degree-corrected) planted partition
model” [87]. Consequently, he noted that modularity maximization only returns good par-
titions if communities in a network are statistically similar (which they may not always be)
[87]. For our computations, we measure the significance of partitions by considering their
robustness, as we discussed in Section 5.5.

6.7 Modularity as measure of polarization

Modularity is a measure that can be used to quantify community structure in legislatures,
it can be used to identify which legislators belong to each community, and it can be used to
measure how polarized a parliament is [124]. It does not a priori assume that political parties
are relevant communities, nor does it require information about political ideologies of the
legislators [128]. A higher value of Q indicates that a partition has stronger intra-community
edge weight and weaker inter-community edge weight (compared to some null model). Waugh
et al. (2012) argued that this corresponds to a parliament in which political groups are more
polarized [124]. That is, if the parliament is extremely polarized and legislators always vote
with their own party, we can expect the strongest possible edges within communities of legisla-
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tors of the same party and weaker edges between members of opposite parties. Consequently,
there are partitions of legislators with relatively high modularity values. By contrast, if there
is less polarization, legislators are more likely to vote in line with others outside their own
group, which decreases the modularity [124].

Many scholars have used modularity in several political applications [4, 24, 78, 98, 104, 124,
128]. For instance, Waugh et al. (2012) examined RCVs in the United States and hypothesized
that modularity can serve as an early warning of changing group dynamics and that medium
levels of Qmax might lead to instability in the United States Congress [124]. Moody and Mucha
(2013) examined RCVs and used modularity to show that the current level of polarization
in the US Senate is higher than in the past century [78]. Dal Maso et al. (2014) researched
RCVs in the Italian Parliament and hypothesized that modularity optimization could typically
split (modern democratic) parliamentary networks into two communities corresponding to the
governing coalition and the opposition [24].

One can also compute the modularity of a partition that is based on metadata (e.g. the
political party or country of a legislator). If one uses political parties to partition a network,
the corresponding modularity value is called party modularity Qparty [124, 128]. The ratio
Qparty/Qmax represents the relative contribution of formal party divisions to total polarization
and can be used to infer information about the role of political parties [124]. For instance, if
Qparty/Qmax is close to 1, this could suggest that the natural split of the parliamentary network
is aligned closely with party affiliation [128], and it could further imply that polarization is
usually driven by formal party division [124]. One can use the same method for partitions
based on other types of metadata, such as country modularity Qcountry), based on the country
a legislator is from.
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Chapter 7

The European Parliament

7.1 Members of the European Parliament

The European Parliament (EP) is a powerful legislature that represents approximately 500
million citizens of the European Union (EU) [20]. Voters from all EU countries directly elect
a national political group, and the number of delegates from a country corresponds roughly
to its population size (see Table 7.1) [20]. We consider the 7th European Parliament, which
was elected in 2009 and lasted until 2014. In 2009, there were 736 Members of the European
Parliament (MEPs), but the 7th Assembly ended with 766 MEPs, partly because Croatia
joined the EU. In the current 8th assembly (which we do not consider in this dissertation),
there are 751 MEPs.

7.2 Voting procedures

Votes can take place in three different ways: by showing hands, electronically, or by roll-call
voting. Because the first two options do not show how each individual MEP has voted, we
only include results of the third option in our analysis. In the European Parliament, only
certain votes are required to be taken by roll call (e.g. if there is a tight majority, during the
election of the European Commission, or upon request of a certain number of MEPs [20]). In
2009, about 1/3 of the votes were taken by roll call [45]. To increase transparency, VoteWatch
[121] has called for all votes in the EP to be taken by roll call, as is the case in the United
States Congress [122].

7.3 Policy areas

One can categorize votes based on their topic or policy area. We follow [73] and use the
categorization of policy areas from VoteWatch Europe [121]. We give an overview of the
number of votes for each policy area in Table 7.2.

7.4 Political groups

Most MEPs are part of a political group in the European Parliament. In the 7th Assembly
of the European Parliament, there were seven official groups (see Table 7.3), and there were
some MEPs (called “Non-Inscrits”) who did not belong to any official group. We list the
political groups ([20]) from most left-wing to most right-wing (except for the Non-Inscrits
(NI)):
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Country MEPs in 2009 MEPs in 2014

Austria 17 19
Belgium 22 22
Bulgaria 17 18
Croatia 0 12
Cyprus 6 6
Czech Republic 22 22
Denmark 13 13
Estonia 6 6
Finland 13 13
France 72 74
Germany 99 99
Greece 22 22
Hungary 22 22
Ireland 12 12
Italy 72 73
Latvia 8 9
Lithuania 12 12
Luxembourg 6 6
Malta 5 6
Netherlands 25 26
Poland 50 51
Portugal 22 22
Romania 33 33
Slovakia 13 13
Slovenia 7 8
Spain 50 54
Sweden 18 20
United Kingdom 72 73

Total 736 766

Table 7.1: Members of the 7th Assembly of the European Parliament (2009–2014).
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Policy Number of bills

Agriculture 53
Budget 179
Budgetary control 113
Civil liberties, justice, and home affairs 99
Constitutional and inter-institutional affairs 40
Culture and education 19
Development 29
Economic and monetary affairs 128
Employment and social affairs 44
Environment and public health 100
Fisheries 53
Gender equality 28
Industry, research, and energy 51
Internal market and consumer protection 39
Internal regulations of the EP 7
International trade 106
Legal affairs 67
Petitions 5
Regional development 35
Transport and tourism 40

Total 1235

Table 7.2: Policy areas (categorization from [121]) and number of bills for every policy area
during the 7th Assembly of the EP (2009–2014).

Group MEPs in 2009 MEPs in 2014

GUE-NGL 35 35
S&D 184 195
Greens-EFA 55 58
ALDE 84 85
EPP 265 274
ECR 54 56
EFD 32 33

NI 27 30

Total 736 766

Table 7.3: Political groups, ordered from most left-wing (top) to most right-wing (bottom)
except for the Non-Inscrits (NI), with their number of MEPs in the 7th Assembly of the EP
(2009–2014).
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• The European United Left–Nordic Green Left (GUE-NGL) consists of radical left-wing,
socialist, and communist parties.

• The Socialists & Democrats (S&D) consists of social-democratic, socialist and labour
parties.

• The Group of the Greens and European Free Alliance (Greens-EFA) consists of green
and regionalist/separatist parties.

• The Alliance of Liberals and Democrats for Europe (ALDE) consists of liberal parties.

• The European People’s Party (EPP) consists of Christian-democratic, conservative, and
centre-right parties.

• The European Conservatives and Reformists (ECR) consists of conservative and Eu-
rosceptic parties.

• The Europe of Freedom and Democracy (EFD) consists of extreme right-wing and Eu-
rosceptic parties.

• The Non-Inscrits (NI) consists of all non-aligned MEPs (the NI is listed last but it is
not necessarily the most right-wing party).

There are several reasons why MEPs join political groups. First, the official Parliament
Rules of Procedure require the formation of transnational groups, so these groups are awarded
resources and procedural advantages [6]. Second, MEPs who share the same ideology on many
issues have an incentive to form a group, e.g. so that they can divide tasks [43]. By having a
division-of-labour contract with the other MEPs from one’s political group, a politician has
a larger chance of achieving policy goals at a lower cost, as he/she can just follow the voting
instructions of his/her own group and spend most time on one specific policy area [43]. Finally,
political groups are also beneficial for the electorate, as voting cohesion among MEPs increases
the stability and predictability of voting outcomes in parliament [45]. Nevertheless, European
groups have less power than national groups to force members to vote in a particular way,
partly because national parties are the ones who select candidates for the European Parliament
[45].

7.5 Voting cohesion in the European Parliament

A measure of voting cohesion within a group indicates the extent to which legislators from
the same party cast the same vote [20]. There are different ways to define and measure
voting cohesion [6, 13, 37, 43–46, 66, 102, 103, 105]. Hix et al. (2005) concluded that voting-
cohesion levels of European political groups have been rising since the 1990s, as the powers of
the EP have increased and the political parties have become more important [43]. However,
McElroy and Benoit (2007) noted that some groups (such as the EPP) contain national parties
whose positions are out of line with other party group members. Therefore, they warned
against methods that automatically assume that national party positions can be inferred
from European group positions. This is one of the reasons why a network-based approach is
useful; it does not make any a priori assumptions about membership of political groups [71].
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Hix et al. (2009) applied spatial methods (see Section 3.2) to the European Parliament
[45]. They concluded that MEPs voted more along political-party lines than along national
lines for two reasons. First, MEPs follow voting instructions from the leader of their political
group, because they expect him/her to have the same (or at least a very similar) position on
complex legislative issues as they would have if they had time and resources to work out their
own positions. Second, MEPs choose to vote with their group to avoid risking future benefits
by voting against their European group, especially when there is a clear majority.

A report from VoteWatch (2011) [122] calculated that voting cohesion in the 7th Assembly
of the EP lies between 0.8 and 0.95 (where a minimum of 0 indicates that a group is split down
the middle in every vote and a maximum of 1 indicates full agreement). Moreover, this report
stated that MEPs primarily vote along transnational party lines rather than along national
lines [122]. Cherepnalkoski et al. (2016) observed from their results that the Greens-EFA,
S&D, and EPP are the most cohesive groups in the EP. The groups with the lowest cohesion
are the NI (non-aligned MEPs) and the EFD [20]. They also calculated that the level of
voting cohesion is very stable across different policy areas. (They categorized the votes into
9 policy areas [20] instead of our categorization into 20 areas [73, 121]).

7.6 Coalitions in the European Parliament

When MEPs of two or more political groups often agree in their voting, we say that they
form a coalition [20]. In 2014, a simple majority in the EP corresponded to 384 votes. A
coalition between the largest parties (EPP and S&D) could ensure 469 votes, a left-wing
coalition (S&D, Greens-EFA, and GUE-NGL) ensured 288 votes, and a right-wing coalition
(EPP, ECR, and EFD) ensured 363 votes. Mendonca et al. (2015) noted that the EP is
usually split between a coalition including the S&P and a coalition including the EPP [73].

Cherepnalkoski et al. (2016) examined coalition formation in the EP between 2014–2016
and concluded that the degree of co-voting corresponds closely to the seating order in the EP
from left (GUE-NGL) to right (EFD) [20]. They also suggested that the two largest parties
(EPP and S&D) find it easier to negotiate deals with smaller counterparts than with each
other, as was also observed by Hix et al. (2007) [44]. Moreover, Cherepnalkoski et al. (2016)
calculated that the strongest “cooperation” in terms of co-voting can be observed between
one of the major parties (S&D, EPP) and ALDE [20]. Lastly, they concluded that there are
four “blocs of coalitions” in the EP based on co-voting patterns:

• “Left-wing” bloc (GUE-NGL, S&D, Greens-EFA);

• “Centre” bloc (Greens-EFA, ALDE, EPP);

• “Centre-right” bloc (ALDE, EPP, ECR);

• “Far-right” bloc (ECR, EFD, NI).
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7.7 Previous network analyses of the European Parliament

7.7.1 Mendonca et al. (2015)

Methods

Mendonca et al. (2015) analyzed the 7th Assembly of the European Parliament using community-
detection methods [73]. They first constructed similarity matrices treating abstention either
as a full agreement or as half an agreement (see Tables 4.3 and 4.5). These two options give
results that are very similar to each other. They then ignored edges to create a network
that has positive edges only. That is, they considered positive networks in which only the
positive edges are kept, and they considered complementary negative networks (CNNs). To
construct a CNN, one starts with a complete unweighted network, then removes the edges
between pairs of nodes that have a negative edge in the original network, and then takes the
complement (i.e. one makes every non-edge an edge and vice versa). Lastly, they applied sev-
eral community-detection algorithms (including Infomap [107] and a method based on edge
betweenness [89]) to both types of networks.

Results

Mendonca et al. (2015) showed that a majority of MEPs tend to vote similarly most of the
time [73]. Moreover, the number of communities is relatively low (2–3). They noted that the
EP is split in two major political coalitions (one including the EPP and one including the
S&D), with some alliances of smaller parties [73]. The results of their two approaches (i.e.
considering positive networks and considering complementary negative networks) differ a lot,
which confirms that negative edges play a significant role.

What is different in our approach?

Although the network approach in Mendonca et al. (2015) is related to our approach, there are
substantive differences in methodology. First, we use the notion of modularity as measure of
polarization in the EP (see Section 6.7), and Mendonca et al. do not consider this. Second, we
use not only a different heuristic (the Louvain method) for optimizing modularity (Mendonca
et al. used a heuristic based on edge betweenness [89]), but we also try to interpret the
obtained communities (Mendonca et al. only mentioned the number of communities). Finally,
instead of throwing away information (by creating a positive network or a CNN), we keep all
information by mapping the weights from [−1, 1] to [0, 1] (see Section 8.2).

7.7.2 Cherepnalkoski and Mozetic̆ (2016)

Methods

Cherepnalkoski and Mozetic̆ (2016) analysed Twitter behavior of MEPs between 2014–2015
(i.e. in the 8th Assembly) [21]. They detected communities in the EP with the Louvain method
(see Section 6.5.1) and examined how well the communities correspond to the political parties.
They also evaluated the correspondence between the communities and the MEPs’ countries
of origin.
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Results

Cherepnalkoski and Mozetic̆ (2016) concluded that most of the communities were dominated
by a single political group. They also reported that most MEPs of each political group are
contained in a single communitity (except for MEPs from S&D and EFD who were divided
into two communities). They also showed that the detected communities are not organized
based on country memberships [21].

What is different in our approach?

Our research uses a different type of data (roll-call voting data instead of Twitter data),
and we employ different methods from Cherepnalkoski and Mozetic̆ (2016). For instance, we
construct a similarity matrix based on RCVs (see Chapter 4) and use modularity as a measure
of polarization (see Section 6.7).

7.7.3 Cherepnalkoski et al. (2016)

Methods

Cherepnalkoski et al. (2016) studied the extent to which MEPs of the same party cast the same
vote (voting cohesion), and the extent to which MEPs of different parties cast the same vote
(voting coalitions) in the European Parliament during 2014–2016 [20]. They analyzed roll-call
votes and Twitter data using exponential random graph models (ERGMs) (see Section 2.5)
and Krippendorff’s alpha reliability [59] (which compares observed agreement between voters
to the agreement expected by chance). Cherepnalkoski et al. explored whether coalitions are
formed in the same way for different policy areas, what the relationship is between co-voting
and retweeting patterns, and the cohesiveness of each political group in the EP.

Results

Cherepnalkoski et al. (2016) observed a positive correlation between retweeting and co-voting
for all policy areas except “economic and monetary system” [20]. Moreover, they calculated
that the level of voting cohesion is very stable across different policy areas (see Section 7.5)
and that there are four types of coalitions in the EP based on co-voting patterns (see Section
7.6).

What is different in our approach?

Even though we use the same type of data (roll-call votes) as Cherepnalkoski et al. (2016), our
methodology is different. We use a community-detection method (modularity optimization)
to find “blocs” in the EP, whereas they used ERGMs to investigate the network-formation
process and Krippendorff’s alpha reliability to measure voting agreement. We also use the
notion of modularity to consider polarization in the entire European Parliament, whereas they
examine voting cohesion within each single political party. Lastly, the categorization of policy
areas that we use (taken from [121]) has 20 categories instead of 9. (Most of the 9 categories
in Cherepnalkoski et al. seem to contain our categories as subsets).
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Chapter 8

Research methods and results

8.1 Data

Data extraction

The data that we use is from VoteWatch Europe [121] and has been made available by Men-
donca et al. (2015) [73]. VoteWatch Europe is an international, independent, and non-partisan
organization that provides access to all roll-call votes (RCVs) in the European Parliament. In
the VoteWatch Europe data, each MEP is described through his/her name, country, political
group, and the way that he/she voted for each roll-call vote in the EP [73].

Mendonca et al. (2015) developed a tool in R called NetVotes to process the VoteWatch
data [73]. They used the igraph R package to perform community detection. Their source
code, which we used for constructing the similarity matrix, is available on GitHub [80].

Description

We consider 1235 RCVs (see Table 7.2) in the EP (2009–2014) divided over 20 policy areas1

as in [73]. Between 2009–2014, some MEPs left the European Parliament and were replaced
by others, which gives a total of 840 MEPs in our data set. Each MEP can vote “for”,
“against”, “abstain”, or “be absent”. (Absence can either be “not present”, “present but did
not vote”, or “not present for a justified reason”, but we do not differentiate between those
options). Mendonca et al. (2015) noted that a majority of MEPs tend to vote similarly and
that a certain number of MEPs frequently abstained [73]. The RCVs are categorized based on
policy area (see Table 7.2) by VoteWatch Europe [121], and we construct a similarity matrix
for each policy area (20 matrices in total). We consider RCVs over the whole 5-year term.

Selection bias

About 1/3 of the votes in the European Parliament are taken by roll call, so we have not
considered 2/3 of all votes in the EP. McElroy and Benoit (2007) noted that there may be
a selection bias, as roll-call votes may be called selectively and strategically for some specific
issues [71]. Consequently, we should be careful when interpreting our results, as we do not
know how MEPs voted for a majority of the bills.

Number of bills

Some policy areas have only a small number of bills. (For example, there are 5 bills related
to “petitions” and 7 bills related to “internal EP regulations”; see Table 7.2.) Consequently,

1There is one policy area (“foreign and security policy”) for which we could not obtain any results due to
an error in NetVotes [80].
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we should be careful when analyzing those policy areas, as we have less certainty that the
observed patterns are representative for the policy area in general.

Missing data

Towards the end of our dissertation process (in August 2016), Professor Vincent Labatut
informed us that their VoteWatch data [80] is incomplete. A part of the RCVs from 2014
is missing, and some votes concerning amendments (2009–2014) are not included. They are
currently rewriting the code, but they have not released the updated version yet. This is
another reason why we need to be careful about interpreting the results.

8.2 Methods

Normalization of the similarity matrix

As discussed in Chapter 4, we construct a similarity matrix S such that all entries Sij ∈ [−1, 1].
We construct a nonnegative adjacency matrix A by letting

Aij = Sij × 0.5 + 0.5 , (8.1)

such that Aij ∈ [0, 1] for all i, j. We thus do not throw away information. MEPs who disagree
a lot with each other have an edge weight close to 0 between them, and MEPs who agree a
lot have a weight close to 1. A pair of MEPs who never vote for the same bill receive a weight
of 0.5 (so we have to keep in mind that we do not treat edges with weight 0.5 as “half of an
agreement”).

Measuring modularity

We use a function called modularity metric [16] (available for Matlab at [77]) to calculate
party modularity Qparty and country modularity Qcountry (which are the values of Q for
partitions based on, respectively, party affiliation and country of origin). We also use this
function to calculate the modularity of partitions based on “left-wing” versus “right-wing”
parties, and on “extreme” versus “centrist” parties. We obtain the values for Qmax directly
from the Louvain algorithm.

Louvain method

We detect communities by optimizing modularity using a variant of the Louvain method (see
Section 6.5.1). We use the function GenLouvain (version 2.0) to apply this method [51]. The
nodes are considered in a random order (uniformly at random), so multiple runs usually have
(slightly) different results [14, 60]. For every network, we run the algorithm R times (with
R = 100 for most results), which gives an ensemble of R partitions and R corresponding
modularity values. (As we discussed in Algorithm 1, the Louvain method chooses a move
that maximally increases modularity, so we do not enable “randmove” in GenLouvain).
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Consensus partition

We construct a single consensus partition that is most “similar” to the other R partitions
(obtained from different runs). We use a function called consensus similarity [28] from
the Network Community Toolbox [81] to obtain a consensus partition. We measure similarity
using the z-score of the Rand coefficient [115]:

zX,Y =
a00

σa00
− (a11 + a10)(a11 + a01)(

n
2

) , (8.2)

where σa00 is the standard deviation of a00, and the other symbols are as in equation (5.5).
We calculate the z-score using the function zrand from [115] (available at [81]).

Resolution parameter γ

We try to find a range of γ for which the obtained partitions are very similar to each other,
such that we can reasonably conclude that the detected communities are robust [68]. We
use normalized variation of information (NVI) (equation (5.9)) to measure similarity between
partitions, using a function called partition distance [72] (available at [17]).

Robustness

We use three methods to measure the robustness of our partitions [60]. For the first method,
we perturb a network by randomly changing the weight of each edge:

A∗ij = Aij + σ × uij , (8.3)

where σ ∈ [0, 1] is a fixed constant and uij is a random variable uniformly distributed between
−1 and 1. For each value of γ, we run the Louvain method once (using a deterministic
alphabetical node ordering) for M different realizations of a perturbed network. In this
approach, the robustness of partitions is given by

〈NVI〉random(γ) =
2

M(M − 1)

M∑
m=1

M∑
m′=m+1

NVI(Xm(γ), Xm′(γ)), (8.4)

where Xm(γ) is an optimal partition of the mth realization of the perturbed network for
resolution paramter γ [60].

For the second method, we fix γ and compare partitions of different runs of the algorithm.
In this case, robustness at resolution parameter γ is [60]

〈NVI〉algo(γ) =
2

R(R− 1)

R∑
i=1

R∑
j=i+1

NVI(Xi(γ), Xj(γ)), (8.5)

where Xi(γ) is the optimal partition in the ith run of the Louvain method.
For the third method, we measure robustness by tuning the resolution parameter γ. In

this case, we construct a consensus partition for each γ and compare it to partitions with
neighbouring values of γ (i.e. γ + ∆γ, where ∆γ = 0.01). The robustness is given by

〈NVI〉γ(γ) =
1

∆

∆∑
τ=1

NVI(X(γ), X(γ + τ)), (8.6)
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where X(γ) is a consensus partition at γ. When the value of 〈NVI〉γ(γ) between two partitions
with neighbouring values of γ is small, we know that these partitions are relatively similar,
which suggests that we have found robust communities. Nevertheless, Macon et al. (2012)
[68] noted that the identification of “robust” communities remains arbitrary to some extent
(e.g. the value of 〈NVI〉γ(γ) at which we call a partition “robust” is arbitrary).

Visualization

To visualize networks, we use the functions FRKK and graphplot2d which are both avail-
able at [119]. Function FRKK uses the Fruchterman–Reingold algorithm [36] to find an
optimal node placement for a given network with respect to communities. Then, it uses the
Kamada–Kawai algorithm [52] to place the nodes within each community. (We set epsilon =
0.01 , seed = 1993 , factor1 = 2, and factor2 = 4).

We use the function graphplot2d (with alpha = 2) to display our networks using coor-
dinates that are given by FRKK. To make our figures more clear, we only display edges with
a weight wij ≥ 0.85.

8.3 Results

Polarization for different policy areas

We first compare the (mean) maximum modularity values Qmax (over 100 runs) between
all policy areas for a fixed resolution parameter (γ = 1). In Table 8.1 and Figure 8.1, we
show that Qmax ranges between 0.016 (“legal affairs”) and 0.061 (“internal regulations of the
European Parliament”). Other policy areas with relatively high values of modularity (which
suggest a relatively high level of polarization) are “budgetary control”, “gender equality”, and
“petitions”.

We also show the country modularity Qcountry and party modularity Qparty in Table 8.1
and Figure 8.1. Policy areas with relatively high Qparty/Qmax ratios are “civil liberties”,
“employment and social affairs”, and “environment and public health”. Party affiliation
seems to contribute relatively little to the total polarization for “development” and “internal
regulations of the EP”. The policy area with the highest Qcountry/Qmax ratio is “agriculture”.
This is in line with the observation by VoteWatch Europe [121] that there seem to be some
national delegations (such as the French and Scandinavian ones) who vote together instead
of voting along political party lines [122].

Lastly, we consider two more partitions. First, we construct a “left wing” community
(consisting of GUE-NGL, S&D, Greens-EFA, and ALDE), and a “right wing” community
(consisting of EPP, ECR, EFD, and NI). Figure 8.2 shows that this division leads to a relatively
high modularity value in a network based on “gender equality” votes.

Second, we construct an “extreme” community (consisting of GUE-NGL, Greens-EFA,
EFD, and NI), and a “centrist” community (consisting of S&D, ALDE, EPP, and ECR).
Figure 8.2 shows that this division leads to a relatively high modularity value in a network
based on “industry” votes.
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Figure 8.1: Maximum modularity, party modularity, and country modularity values for all
policy areas, γ = 1

Figure 8.2: Left–Right modularity and Extreme–Centrist modularity for different null models,
γ = 1
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Policy Qcountry Qparty Qmax (mean) Qcountry/Qmax Qparty/Qmax

Agriculture 0.0020 0.011 0.022 9.3× 10−2 0.52
Budget 0.0024 9.1× 10−3 0.030 8.1× 10−2 0.30
Budgetary control 0.0023 0.014 0.047 4.9× 10−2 0.29
Civil liberties 0.0014 0.016 0.029 4.9× 10−2 0.57
Constitutional affairs −3.4× 10−5 4.7× 10−4 0.039 −9.0× 10−4 1.0× 10−2

Culture and education 0.0017 7.4× 10−3 0.029 5.7× 10−2 0.25
Development −2.8× 10−5 7.3× 10−5 0.029 −9.6× 10−3 2.5× 10−3

Economic affairs 0.0018 0.018 0.037 5.1× 10−2 0.49
Employment, social affairs 0.0020 0.021 0.037 5.6× 10−2 0.58
Environment, public health 0.0015 0.016 0.026 5.9× 10−2 0.60
Fisheries 0.0010 8.5× 10−3 0.018 5.9× 10−2 0.48
Gender equality 0.0026 0.024 0.051 5.1× 10−2 0.48
Industry, research, energy 0.0011 0.012 0.029 3.8× 10−2 0.41
Internal market 5.3× 10−4 0.010 0.023 2.3× 10−2 0.45
Internal EP regulations 7.7× 10−5 2.2× 10−4 0.061 1.3× 10−3 3.5 ∗ 10−3

International trade 8.9× 10−4 0.015 0.030 3.0× 10−2 0.51
Legal affairs 1.0× 10−3 5.1× 10−3 0.016 6.1× 10−2 0.31
Petitions 0.0010 0.016 0.043 2.4× 10−2 0.38
Regional development 0.0014 5.8× 10−3 0.026 5.4× 10−2 0.22
Transport and tourism 0.0021 0.014 0.026 8.2× 10−2 0.55

Average 0.0013 0.011 0.032 4.5 × 10−2 0.37

Table 8.1: Country modularity Qcountry, party modularity Qparty, (mean) maximum modu-
larity Qmax, ratios between modularities for each policy area, with γ = 1 and R = 100 runs
of modularity maximization using GenLouvain .
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Figure 8.3: Normalized variation of information NVIrandom for RCVs related to gender equal-
ity, M = 100

8.3.1 Different null models

In this section, we compare the results that we obtain using the Newman–Girvan null model
to the results that we obtain using a uniform null model (see Section 6.3). Figure 8.2 shows
that the modularity values for those two different null models are close when we consider a
left–right partition. When we consider an extreme–centrist partition, the uniform null model
gives modularity values that are approximately four times higher than the values we obtain
using the Newman–Girvan null model. Both observations (i.e. similarity between modularity
values for a left–right partition and a constant factor of 4 for an extreme–centrist partition)
seem to hold for all policy areas. Hence, we consider only the Newman–Girvan null model to
compare different policy areas.

8.3.2 Different randomizations

Equation (8.3) shows how we perturb a network by randomly changing the weight of each
edge (we use M = 100 different realizations of a perturbed network). In this section, we
compare different values of σ for a RCV network based on gender equality. In Figure 8.3, we
observe that higher values of σ lead to higher NVI values. Intuitively, this makes sense, as
higher values of σ increase the importance of the random contribution to each edge weight,
which leads to more variation between adjacency matrices and more variation between optimal
partitions. We use σ = 0.1 for our next computations, unless stated otherwise.

8.3.3 Communities in the European Parliament

We further investigate five policy areas: the one with the highest Qmax (“internal EP regu-
lations”), the one with the highest Qparty/Qmax ratio (“environment and public health”), the
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Figure 8.4: Mean number q of communities for RCVs related to agriculture, R = 100

one with the highest Qcountry/Qmax ratio (“agriculture”), the one with the highest left–right
modularity (“gender”), and the one with the highest extreme–centrist modularity (“indus-
try”).

Agriculture

Figure 8.4 indicates the mean number of detected communities as a function of γ (over R = 100
realizations of modularity maximization with random node ordering). The (mean) number of
communities increases quickly for γ > 1, so we do not expect robust partitions for γ > 1.

Figure 8.5 shows three types of robustness. The blue line indicates robustness with respect
to edge-weight perturbations. A lower value of 〈NVI〉random(γ) indicates that optimal parti-
tions (in M = 50 perturbed networks) are more similar to each other. The red line indicates
robustness of partitions with respect to multiple runs (R = 100) of the Louvain method (for
fixed γ). A lower value of 〈NVI〉algo(γ) implies that partitions (from different realizations with
random node ordering) are more similar. The yellow line in Figure 8.5 shows the robustness
of consensus partitions with respect to neighbouring values of γ (where we use ∆γ = 0.01,
R = 100). A lower value of 〈NVI〉γ(γ) implies that two partitions (obtained at resolution
parameter γ and γ + ∆γ) are more similar.

Based on Figure 8.5, the most robust partition of the EP network is a division into two
communities for γ ∈ [0.96, 0.99] (we do not consider a “division” into a single community).
We construct a consensus partition for different values of γ in this “robust” range. We then
calculate the fraction of MEPs that are in “community 1” (where “1” is an arbitrary label)
for each political party. For instance, if half of the GUE-NGL MEPs are in community 1 and
the other half are in community 2, the fraction equals 0.5.

In Figure 8.6, our computations illustrate that for our “agriculture” network, the optimal
division is not a strict division between “left wing” and “right wing”. The Greens, GUE-NGL,
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Figure 8.5: Mean normalized variation of information NVI for RCVs related to agriculture

Figure 8.6: Fraction of MEPs in “Community 1” for RCVs related to agriculture
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and the Non-Inscrits are clearly part of community 1, and the EFD is closer to community 1
as well. This community seems to consists of parties that are further away from the political
centre (either to the left or to the right). GUE-NGL consists of radically left-wing MEPs,
Greens-EFA consists of green and separist MEPs, the EFD consists of extreme right-wing
MEPs, and most of the Non-Inscrits tend to be extreme right-wing as well (e.g. some of
them formed a new extreme right-wing group in the 8th Assembly of the EP). The political
parties in which most MEPs are part of community 2 (EPP, ALDE, and S&D) are closer to
the political centre. We illustrate this partition with a network in Figure 8.7.

Environment

Figure 8.8 shows that the mean number of communities increases quickly for γ > 1.03, so
we do not expect to detect robust communities in that range. Figure 8.9 indicates that we
can find a relatively robust partition into two communities for γ ∈ [0.96, 0.98]. In figure 8.10,
we observe that the partition clearly follows party lines along a left–right dimension. Most
MEPs from the left-wing parties are in community 1 (ranging between 75% of the MEPs
(ALDE) to 95% of the MEPs (Greens-EFA)), and most MEPs from the right-wing parties
are in community 2. Hence, our results suggest that there are “left wing” and “right wing”
communities in the EP when MEPs vote upon environmental issues.

Internal EP regulations

In Figure 8.11, we see that the mean number of communities does not increase as rapidly for
γ ∈ [1.00, 1.08] as it did for agriculture and environment. The mean NVI values in Figure 8.12
fluctuate more than they did for agriculture and environment. In Figure 8.13, we consider a
partition into two communities for γ ∈ [0.90, 0.98]. This figure suggests that we cannot attach
a “label” to the two communities for the policy area “internal EP regulations”. The members
of almost all political parties are divided (equally) between the two communities (except for
the Non-Inscrits).

Gender equality

Based on Figures 8.14 and 8.15, there are relatively robust partitions for γ ∈ [0.92, 0.98] and
for γ ∈ [1.02, 1.03]. In Figure 8.17, we zoom in on the partition with two communities and
observe that there is a “left wing” community and a “right wing” community. We illustrate
this partition in Figure 8.16.

In Figure 8.18, we zoom in on the partition with five communities. A closer look suggests
that there are three communities with a substantial number of MEPs. One of them is a “left
wing” community (GUE-NGL, Greens-EFA, S&D, and ALDE), one of them is a “right wing”
community (ECR, EFD, and NI), and the third community mainly consists of MEPs from
the EPP party.

Industry

Figures 8.19 and 8.20 suggest that there are relatively robust partitions for γ ∈ [0.92, 0.98]. In
Figure 8.21, we observe that there is a “centrist” community (S&D, ALDE, EPP, and ECR)
and an “extreme” community (Greens-EFA, GUE-NGL, NI).
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Figure 8.7: Network of MEPs for RCVs related to “agriculture”, we only display edges with
a weight of 0.85 or higher, γ = 0.96.
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Figure 8.8: Mean number q of communities for RCVs related to the environment, R = 100

Figure 8.9: Mean normalized variation of information NVI for RCVs related to the environ-
ment
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Figure 8.10: Fraction of MEPs in “Community 1” for RCVs related to the environment

Figure 8.11: Mean number q of communities for RCVs related to internal EP regulations,
R = 100
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Figure 8.12: Mean normalized variation of information NVI for RCVs related to internal EP
regulations

Figure 8.13: Fraction of MEPs in “Community 1” for RCVs related to internal EP regulations
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Figure 8.14: Mean number q of communities for RCVs related to gender equality, R = 100

Figure 8.15: Mean normalized variation of information NVI for RCVs related to gender
equality
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Figure 8.16: Network of MEPs for RCVs related to “gender equality”, we only display edges
with a weight of 0.85 or higher, γ = 0.93.
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Figure 8.17: Fraction of MEPs in “Community 1” for RCVs related to gender equality

Figure 8.18: Fraction of MEPs in each community for RCVs related to gender equality,
γ = 1.02
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Figure 8.19: Mean number q of communities for RCVs related to industry, R = 100

Figure 8.20: Mean normalized variation of information NVI for RCVs related to industry
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Figure 8.21: Fraction of MEPs in “Community 1” for RCVs related to industry

The EFD party is split between those two communities. We find that the “centrist” part
of the EFD (20 MEPs) consists of 8 Italian MEPs and 12 MEPs from 9 other countries. The
“extreme” part of the EFD (15 MEPs) consists of 10 British MEPs and 5 MEPs from 4 other
countries. These British MEPs are all members of the UK Independence Party (UKIP).

8.3.4 Summary and comparison of results

Based on our modularity calculations, some policy areas seem to be more polarized than
others. We find that the EP is relatively polarized for bills related to “budgetary control”,
“gender equality”, and “internal EP regulations”. Policy areas that are relatively less polarized
include “fisheries”, “internal market”, and “legal affairs”. Party modularity is relatively high
for bills related to “civil liberties”, “employment”, and “environment”.

The most robust network divisions split the European Parliament into two communities.
Whether we can assign a clear label to each community depends on the policy area. When
we focus on environment-related bills and gender-related bills, there seems to be a “left-wing”
community and a “right-wing” community, which is in line with the result in [73] that there
is a bloc around the Socialists & Democrats (S&D) and a bloc around the European People’s
Party (EPP). However, for agriculture-related bills and industry-related bills, it seems as if
there is an “extreme” community and a “centrist” community (which includes both the S&D
and the EPP).

We note that the observation by Mendonca et al. (2015) (that the EP is split in two major
political coalitions, one including the EPP, and one including the S&D [73]) does not apply
to all policy areas in our research. We also find different results from Cherepnalkoski and
Mozetic̆ (2016), who analyzed Twitter data and reported that most MEPs of each political
group are contained in a single community [21]. Our results show some overlap with the
results by Cherepnalkoski et al. (2016), who observed four blocs of coalitions in the EP (a
“left-wing” bloc, “centre” bloc, “centre-right” bloc, and a “far-right” bloc) [20]. However, the
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relatively robust partitions in our analysis divide the network into two communities instead
of four.

Consequently, we confirm the importance of studying the European Parliament from dif-
ferent points of view, as the corresponding results may differ. It is useful to study different
types of data, to have multiple approaches, and to consider different resolution parameters.
Lastly, our results suggest that one should take into account the differences between policy
areas when one wants to study community structure in the European Parliament.
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Chapter 9

Discussion

In this chapter, we summarize our results and present some ideas for further research.

9.1 Conclusion

We started this dissertation by introducing notions from network science. Then, we discussed
several methods to study roll-call voting. We focused on one particular method; the construc-
tion of a unipartite weighted similarity matrix. We listed the choices one can make when
constructing a similarity matrix and we mentioned which options we chose.

In the chapter about community detection, we discussed what communities are, why it is
useful to study them, and how they can be detected. We focused on one particular community-
detection method; the optimization of modularity. We described strengths and weaknesses
of this method, and we introduced one particular heuristic for optimizing modularity; the
Louvain method.

In the chapter about the European Parliament, we introduced the political groups and
discussed previous network analyses of the European Parliament. Then, we described our
data, methods, and results.

We noted that some policy areas seem to be more polarized than others. The most robust
partitions split the European Parliament into two communities. It depends on the policy
area whether we can assign a label to each of the two communities. For bills related to the
“environment” or “gender equality”, there seems to be a “left wing” community and a “right
wing” community. For bills related to “agriculture” and “industry”, there seems to be an
“extreme” community and a “centrist” community in the European Parliament. Hence, we
conclude that one should take into account the differences between policy areas when one
wants to study community structure in the European Parliament.

9.2 Future work

In this section, we discuss more approaches that one could use to study roll-call voting net-
works (of the European Parliament).

9.2.1 Longitudinal data

We only considered RCVs between 2009 and 2014 (i.e. RCVs in the 7th Assembly of the
EP). It would be interesting to consider assemblies of the European Parliament over time and
examine whether we can detect different community structures for different assemblies. For
instance, Macon et al. (2012) examined longitudinal data for the United Nations General
Assembly (1946–2008), and observed a sharp increase in maximum modularity after the end
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of the Cold War [68]. For us, it would be interesting to analyse modularity values before and
after countries joined the European Union (or to analyze modularity values after a future
“Brexit”).

9.2.2 Measuring the role of an individual MEP

We considered groups of MEPs (such as political parties), but one could also measure statistics
of individual MEPs [31]. For instance, Waugh et al. (2012) discussed individual modularity
measures called “solidarity” and “divisiveness”, which calculate, respectively, how closely
aligned a MEP is to his/her political group and how polarizing a MEP is [124]. One could
also measure how often a MEP changes community membership during observation time [64].

9.2.3 Multilayer networks

We independently examined one network for each of the policy areas. To consider different
policy areas simultaneously, one could instead use a multilayer network [56] in which every
layer represents a policy area [10, 64]. Consequently, one can give a weight to each policy
area and learn more about robust community structure in the European Parliament. One
could also use multilayer networks to study community structure across multiple times [25]
or multiple values of resolution parameter γ [79]. Mucha et al. (2010) demonstrated the
usefulness of multilayer networks by applying them to the voting record in the U.S. Senate
[79].

9.2.4 Overlapping communities

We divided the nodes of a network over disjoint communities (so-called “hard clustering”),
but one could also allow communities to overlap (so-called “soft clustering”) [31, 33, 42]. In
this way, one could examine whether MEPs are part of multiple communities. For instance, an
MEP from Greens-EFA could simultaneously belong to a “left wing” community, an “extreme”
community, and a “Greens-EFA” community. Hence, it may be more realistic to assume that
MEPs belong to multiple communities.

9.2.5 Core–periphery structure

Instead of only studying community structure, one could also examine other types of mesoscale
structures, such as core–periphery structure [106]. A “core” is a (central) group of densely
connected nodes and a “periphery” is a group of sparsely connected nodes. A node belongs
to a core if and only if it is well connected both to other core nodes and to peripheral nodes.
One can try to discover core–periphery structure in an entire network [106], or one can try
to detect cores inside communities [24, 27]. (Note that a community can have multiple cores
and/or multiple peripheries [106]). De Leo et al. (2013) noted that if one removes a node
from a core of a community, this will affect a network partition more than if one removes a
node from a periphery [27].
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