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Mikko, Philip, Stephen, and ä&i for their unwavering encouragement.



Abstract

Traditionally, differential-equation models for population dynamics have

considered organisms as “fixed” entities in terms of their behaviour

and characteristics. However, there have been many observations of

adaptivity in organisms, both at the level of behaviour and as an evo-

lutionary change of traits, in response to the environmental conditions.

Taking such adaptiveness into account alters the qualitative dynamics

of traditional models and is an important factor to be included, for

example, when developing reliable model predictions under changing

environmental conditions. In this thesis, we consider piecewise-smooth

and smooth dynamical systems to represent adaptive change in a 1

predator-2 prey system.

First, we derive a novel piecewise-smooth dynamical system for a preda-

tor switching between its preferred and alternative prey type in re-

sponse to prey abundance. We consider a linear ecological trade-off

and discover a novel bifurcation as we change the slope of the trade-

off. Second, we reformulate the piecewise-smooth system as two novel

1 predator-2 prey smooth dynamical systems. As opposed to the

piecewise-smooth system that includes a discontinuity in the vector

fields and assumes that a predator switches its feeding strategy in-

stantaneously, we relax this assumption in these systems and consider

continuous change in a predator trait.

We use plankton as our reference organism because they serve as an

important model system. We compare the model simulations with

data from Lake Constance on the German-Swiss-Austrian border and

suggest possible mechanistic explanations for cycles in plankton con-

centrations in spring.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Models of predator-prey population dynamics

The modelling of predator-prey dynamics is a long-established subdiscipline in

mathematical biology [97]. Indeed, mathematical biology is often introduced with

an example describing biomass or population density growth on resources. Since

the pioneering Lotka-Volterra equations for the temporal evolution of interact-

ing predator and population densities [85,137], exploiter-resource interactions de-

scribed via coupled systems of differential equations have also provided a versa-

tile modelling approach for applications other than ecology [57]. These examples

include epidemiological models for the interaction between immune system and

viruses, or infectious and susceptible populations [13].

The Lotka-Volterra system was originally developed to explain the oscillatory

behaviour of observed fish catches or of chemical concentrations in a chemical

1



reaction system [85,137]. For predator (z) and prey (p) density, the Lotka-Volterra

model [85, 137] is given as follows:

dp

dt
= rp− βpz,

dz

dt
= eβpz −mz, (1.1)

where r is the growth rate of the prey, β is the death rate of the prey due to pre-

dation, e is the predator conversion efficiency (which describes what proportion

of the prey eaten by the predator yields predator growth), and m is the predator

death rate. The Lotka-Volterra model (1.1) exhibits periodic solutions for preda-

tor and prey populations. However, these solutions are not stable, in that a small

perturbation from one solution can result in a huge difference in the amplitude of

the oscillations. Although it is unrealistic, the Lotka-Volterra model has been use-

ful for studying the mechanisms behind oscillatory population behaviour, thereby

suggesting further directions to acquire deeper understanding of the observed phe-

nomena [97].

In 1963, Rosenzweig and MacArthur introduced a modified version of the

Lotka-Volterra model with logistic prey growth and a saturating predation term

[109]:

dp

dt
= rp

(
1− p

K

)
− c p

p+ kp
z,

dz

dt
= ec

p

p+ kp
z −mz, (1.2)

where K is the prey carrying capacity, c is the maximum consumption rate, and

kp is the half-saturation constant for consumption (i.e., the concentration of p at

which the predation rate of z reaches half of its maximum value). The Rosenzweig-
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MacArthur model reproduces two types of behaviour: coexistence of predator and

prey at a steady state and predator-prey stable limit cycles—periodic orbits in

the predator-prey phase plane from which small perturbations tend to zero as

time t → ∞. Thus, the amplitude of the predator-prey cycles is independent of

the initial conditions (unlike in the Lotka-Volterra model). We discuss these two

models (1.1) and (1.2), and how they have been used to explain observed plankton

dynamics in Section 1.3.1.

1.1.2 Models for population dynamics and adaptive feed-

ing

The systems of equations (1.1) and (1.2) describe the population dynamics of

organisms that are represented as “fixed entities”—that is, with constant (or peri-

odically varying, as we discuss in Section 1.3.1) parameter values and fixed feeding

behaviour. In addition, typical models of predator-prey interaction consider the

time scale of adaptive change in traits, such as defence strategies against predators,

to be extremely long compared to the time scale of the predator-prey interactions.

However, there is increasing evidence that organisms can adapt to changing en-

vironmental conditions, such as prey availability, predation risk or temperature.

They thus exhibit both phenotypic plasticity , in which the same genotype can

express different phenotypes depending on the environment (see [63] for differ-

ent definitions of phenotypic plasticity), and rapid adaptive change of traits [38],

which are properties that affect how well an individual performs as an organ-

ism [91]. More experimental and observational studies are needed to determine

the interactions between the two different forms of adaptation and ecological in-
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teractions and mathematical modelling can play an important role in explaining

the dependencies between adaptation and ecological dynamics [38].

Adaptive feeding behaviour can be incorporated into a smooth dynamical sys-

tem by considering a more sophisticated functional response than in (1.1) or (1.2)

(see Section 1.4), whereas adaptive change of traits has been previously imple-

mented in models of population dynamics by representing a trait value as a system

variable instead of as a parameter (see Section 1.3.2). However, there are prob-

lems with these two approaches. First, it is not clear which smooth functional

response best describes adaptive feeding or adaptive change of traits. Second,

considering traits as system variables increases the dimensionality of the system.

Consequently, the analysis of the resulting system can become increasingly chal-

lenging when more species or other aspects, such as trade-offs between traits, are

taken into account. This is problematic for a full analysis of the resulting equa-

tions, which may be necessary to provide a deep mechanistic understanding of the

dynamical behaviour exhibited by the model. This mechanistic understanding can

then be used in developing models with predictive power.

In this thesis, we consider an alternative dynamical systems approach—that is,

piecewise-smooth dynamical systems—to include adaptive feeding, manifested as a

change in behaviour or a functional trait, into models for predator-prey population

dynamics. We do not expect the analysis in this alternative framework to be any

less challenging than that of a typical model for predator-prey interaction (i.e.,

such as (1.1) or (1.2) constructed for more than one predator-prey pair) that takes

adaptivity into account. However, to maximise analytical tractability, we start

from the simplest case and construct the piecewise-smooth dynamical system that

describes adaptive feeding between a predator and two prey. We choose two prey
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in order to model adaptive feeding interaction between a predator and multiple

prey with the lowest possible dimension. We investigate how adaptive feeding can

be modelled within this framework, which is not as common as smooth dynamical

systems in theoretical ecology. Nevertheless, it has considerable potential utility for

modelling adaptivity in predator-prey interaction (see Section 1.4). In the second

part of this thesis, we reformulate the piecewise-smooth system as a smooth dy-

namical system in two different ways. Piecewise-smooth and their smooth analogs

are related to one another, however, there does not yet exist a standard theory for

transiting between them. Thus, we aim to, not only increase the understanding of

the underlying mechanisms behind adaptivity and population dynamics, but also

contribute to the knowledge of the relation between a piecewise-smooth system

and its smooth analog constructed by using either hyperbolic tangent functions or

adding an extra dimension to the system.

1.1.2.1 Piecewise-smooth dynamical systems

Piecewise-smooth dynamical systems are a class of discontinuous systems—they

describe behaviour using smooth evolution of variables alternating with abrupt

events [15, 23]. These events can be caused by friction, collisions, impacts, or by

components such as relays that make a system switch from one behaviour to an-

other in a short time [23]. In addition to such engineering applications, piecewise-

smooth dynamical systems have also been used in some applications in biology.

In theoretical ecology, piecewise-smooth dynamical systems have given insight

into adaptive feeding of an optimal forager that maximises its growth [70, 74–77].

Piecewise-smooth dynamical systems have also been used to describe limitations
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on harvesting a species when it is rare [22, 73], different behavioural stages of

ruminants [122], and to approximate a sigmoid function in gene regulatory net-

works [14,45] or a Heaviside function in the behaviour of ion channel gates [5]. We

discuss previous studies of piecewise-smooth predator-prey models with adaptive

feeding in Section 1.4.2.

1.1.3 Plankton as a model system

We have chosen plankton as our example organism for models of predator-prey

interaction and adaptive feeding for the following principal reasons. Plankton are

small but important organisms with a short lifespan. These characteristics make

it possible to obtain field and experimental data on plankton. Because plankton

have a large population size and are often found in the well-mixed upper part of

the water column [78], one can study the temporal/spatiotemporal evolution of

plankton distribution using a continuum description and deterministic ordinary

or partial differential equations (ODE or PDE) models. In addition, plankton

have considerable diversity, which motivates the use of community-integrated pa-

rameters instead of species-specific parameters [93] and thereby models based on

low-dimensional differential equations. However, similar models can also be formu-

lated for any other predator-prey interaction in which it is viable to assume a large

population size, well-mixed environment, and the use of community-integrated pa-

rameters.

A simple and intuitive phytoplankton-zooplankton food web with a diverse

community of species enables a comparison between the model result and the ob-

served data, which in turn helps to assess the validity and suitability of the model.
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Accordingly, plankton food webs can serve as model systems for larger and more

complex ecosystems. Moreover, studying plankton populations can yield results

that are applicable to other complex systems [83]. For example, universal indica-

tors of critical shifts in system behaviour, such as species extinction or economic

collapse, have been studied by using plankton populations as the example sys-

tem [24]. Indeed, the understanding of the dynamics of ecological food webs can

be used directly in quantitative economics by developing analogous models for

“financial ecosystems” to give more insight into the stability of a network com-

posed of complex financial instruments that are operated by individual banks and

investment funds [51].

1.2 Plankton data

1.2.1 A short introduction to plankton

Plankton are aquatic organisms varying from less than 0.2 µm to over 2 cm in

size that are principally transported by currents. They are thus “planktonic”1.

Phytoplankton (from 0.2 µm to 2 mm in size) produce organic compounds from

inorganic compounds. They are analogous to land plants: they photosynthesise

and require CO2, sunlight, and nutrients for growth. The required nutrients are

supplied from river outputs or deeper waters and are transported by tides, wind,

mixing and upwelling, which are influenced by water temperature [78].

Phytoplankton contribute less than 1% of the Earth’s photosynthetic biomass

1The word plankton comes from the Greek adjective for “wandering”. We have chosen to
follow this generally accepted convention instead of planktic, which is the correct adjective.
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but are responsible for roughly half of the Earth’s net production of organic com-

pounds [27] and half of the Earth’s carbon fixation [107]. Thus, they have a

biogeochemically important role in the Earth’s carbon cycle. Because plankton

are sensitive to the conditions in their environment (e.g., an increase in water tem-

perature affects the ability of phytoplankton to capture CO2 [107]), they function

as an indicator of the health and environmental change of the seas [24, 25, 78].

Phytoplankton can cause harmful algal blooms, which range in classification from

non-toxic nuisance to high toxicity to humans and marine organisms. They thus

impact both aquaculture and tourism [107].

Phytoplankton and the zooplankton (i.e., small crustaceans and marine worms

and juvenile forms of larger animals, such as crabs, fish, or starfish) that graze upon

them constitute the basis of aquatic food webs. Thus, the abundance, species com-

position, and timing of plankton blooms affect the abundance of other organisms

on higher levels of aquatic food webs—all the way up to fish and marine mam-

mals [25,78]. A crucial link in this chain of energy transportation from the bottom

to the top are ciliates—that is, small eukaryotic single cells with animal-like be-

haviour that propel themselves using an undulating movement that is generated

by small hair-like protuberances (called cilia)—that feed on small phytoplankton

and are grazed by small zooplankton [78]. Thus, studying predator-prey dynamics

in plankton is important for decision-making in the fishing industry and for the

world’s fish production [25], of which 80% is consumed by humans. Fish production

is a globally important factor for ensuring food security and provides livelihood

for more than 600 million people [30].

Recent studies based on processing and analysis of historical data sets ar-

rived at contradictory conclusions documenting both a decline [12] and an in-
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crease [87, 92, 110] in phytoplankton growth in warm seas. The disagreement was

reported widely in the media [9,108] and reflects not only the importance of reliable

long-term data collection but also the scientific insufficiency of relying only on de-

scriptive studies without the modelling of underlying mechanisms. Turning concep-

tual ideas such as the adaptive feeding behaviour in a phytoplankton-zooplankton

food web into mathematical models leads to quantitative understanding that can

be used to (1) explain mechanisms underlying the observed behaviour, (2) assess

the importance of each of these mechanisms, (3) propose experiments to test hy-

potheses, (4) predict how system behaviour changes under perturbations such as

climate change, and (5) adjust decisions that directly or indirectly affect aquatic

ecosystems. Because of the important role that plankton play in climate change,

and especially in the aquatic food chain, increased qualitative and quantitative

understanding of plankton dynamics is crucial for directing policy [25,107].

1.2.2 Lake Constance data

In Section 3.4.7, we will compare our model simulations with data from observa-

tions for ciliate-predators and their algal prey collected from Lake Constance on

the German-Swiss-Austrian border [125, 127]. These data, which were provided

by Prof. Ursula Gaedke (University of Potsdam, Germany), are an observational

data set for phytoplankton, small eukaryotic organisms that feed on phytoplank-

ton, and herbivorous and carnivorous zooplankton collected between 1979 and

1999. Situated in the northern Alps, Lake Constance is a freshwater lake with

a surface area of 536 km2. It has been under scientific study for decades, and

hourly records for weather conditions—such as temperature, surface irradiance,
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and wind speed—have been collected since 1979. In addition to such abiotic fac-

tors, weekly data on biomass of several phytoplankton and zooplankton species

are also available [6].

The Lake Constance data refer to abundance (individuals or cells per ml) and

biomass (units of carbon per m2) of a species obtained at least once in a sample of

a few ml to a litre of water in Lake Constance between March 1979 and December

1999. When unavailable, the abundance or the biomass were calculated from each

other using size of the species as a conversion factor [125, 127]. Each sample was

collected from a water column with an area of 1 m2 and a depth of 20 m. The full

data set includes over 23,000 observations of 205 different phytoplankton species.

As we discuss in Section 1.3, the Plankton Ecological Group (PEG) model

describes verbally the relative importance of forces (i.e., abiotic, top-down, or

bottom-up control mechanisms) that drive the observed seasonal patterns in plank-

ton biomass. According to the PEG model, in a lake with only a few nutrients,

nutrient limitation is a more important regulator of algal growth than predation.

In contrast, in a lake with a large quantity of nutrients, predation has been sug-

gested to control phytoplankton growth more than nutrient limitation [116, 117].

In its natural state, Lake Constance would be categorised as a lake with a low level

of productivity if there were no excess nutrients from agricultural and other sources

of human population in its catchment area. Lake Constance was categorised as a

lake with an intermediate level of productivity (as measured in terms of abundance

of nutrients such as nitrogen and phosphorus) when the data were collected [128].

However, the increased sewage-water treatment since 1979 has reduced the amount

of nutrients that enter Lake Constance. Nowadays, Lake Constance is once again

categorised as a lake with a low level of productivity [36].
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In addition to the well-documented plankton seasonal cycle (i.e., increase in bio-

mass in spring and decay in autumn; see Section 1.3), field observations of plankton

in Lake Constance indicate that predators and multiple prey species coexist in

spring when biomasses are high and the external conditions can be considered to be

stable. Importantly, ciliates and their algal prey populations also vary at shorter-

than-seasonal scales. The biomass and the properties at the community level have

been observed to fluctuate less than those at the level of individual species. During

years, such as 1991 and 1998 (see the data for two selected ciliate-predators and

a group of their algal prey species in Figure 1.1), when the spring bloom lasts

for several weeks (equivalent to 15 to 30 ciliate generations), phytoplankton and

ciliate biomasses exhibit recurring patterns of increases followed by declines [126].

It has been suggested that a relatively constant community biomass, but highly

variable biomasses of different species populations, results from alternation in the

number of predator and prey groups of different functionality present at different

times [128]. The different functionality can be manifested, for example, as different

predator feeding preferences or predation mechanisms. Additionally, both predator

and prey species can adapt to the prevailing situation by changing their diet [128].

There is experimental evidence of prey preference and selective feeding in preda-

tor behaviour in a laboratory experiment on ciliate-predator and phytoplankton-

prey species found in Lake Constance [94]. Such adaptive feeding has been sug-

gested to occur because different ciliate species benefit differently depending on

the match between their feeding mode and the prey species that are abundant

in the prey community. In the experiment, as well as in the field, ciliates have

been observed to actively select against certain types of prey [128]. As a result, it

has been suggested that the driving forces for the subseasonal temporal variability
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observed in ciliate-algal dynamics lie in predator-prey interactions between diverse

predator and prey plankton communities, particularly during periods of the year

in which environmental conditions are relatively settled [128]. We discuss previ-

ous approaches to model adaptive feeding behaviour in predator-prey systems in

Section 1.4.

Ciliates are known to have different modes of predator behaviour, and they can

be categorised roughly in terms of being more or less selective [136]. To illustrate a

predator that is more selective, some ciliate species such as Balanion planctonicum

(see magenta asterisks in Figure 1.1) hunt as “interception feeders” that scavenge

on food particles and intercept them directly. By contrast, ciliate “filter feeders”,

such as Rimostrombidum lacustris (see red asterisks in Figure 1.1), sieve suspended

food particles and provide an example of less selective predators. Consequently,

the prey community, on which the ciliate-predators feed, can roughly be divided

into easily digested (i.e., preferred prey; see blue circles in Figure 1.1) types and less

edible (i.e., alternative prey; see black circles in Figure 1.1) types on which ciliates

feed but select against when offered a mixed diet of both easily digested and less

edible prey [94]. Small diatoms (which are one of the most common phytoplankton

species [80]), such as Stephanodiscus parvus (which have a hard silicate cover), or

small and medium-size flagellates, such as Chlamydomonas spp. (i.e., green algae

with two hair-like protuberances (called flagella) [80]), can be considered as the

less edible prey type for ciliate-predators. By contrast, cryptomonads (a group

of small algae [80]) can be related to the preferred prey type [128]. In addition,

diatoms, flagellates, and cryptomonads are the dominant species groups in the

phytoplankton community during spring bloom [126].
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Figure 1.1: Biomass data for (asterisks) two ciliate-predator and (circles) two
algal prey groups in Lake Constance in (left) 1991 and (right) 1998. During
these years, the spring bloom lasted for several weeks (i.e., for 15 to 30 ciliate
generations), and phytoplankton and ciliate biomasses exhibit recurring patterns
of increases followed by declines [126]. Red denotes the unselective (i.e., filter
feeder) predator group and is composed of data for Rimostrombidum lacustris,
while magenta denotes the selective (i.e., interception feeder) predator group and
is represented by data for Balanion planctonicum. Blue denotes the preferred
(i.e., easily digested) prey group and is composed of data for Cryptomonas ovata,
Cryptomonas marssonii, Cryptomonas reflexa, Cryptomonas erosa, Rhodomonas
lens, and Rhodomonas minuta. Black denotes the alternative (i.e., less edible)
prey group and is composed of data for small and medium-size Chlamydomonas
spp. and Stephanodiscus parvus. These data, which were previously reported
in [125,127], were provided by Ursula Gaedke.
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1.3 Models for the onset and succession of plank-

ton blooms

Plankton form a community of high diversity, with different species present at

different times and in different places [27,78]. Plankton seasonal succession—that

is, the sequence of different species appearing, disappearing, and reappearing—in

fresh water systems is described verbally in the Plankton Ecological Group (PEG)

model [117]: A rapid growth of diatoms (e.g., one of the three principal eukary-

otic phytoplankton groups that have a silicate cover [27]) in spring is followed by

extensive zooplankton predation and nutrient depletion. In summer, zooplankton

decrease and diatoms are replaced by flagellates (e.g., eukaryotic phytoplankton

that are armoured with cellulose plates and have tail-like flagella that propel the

cell). In winter, both phytoplankton and zooplankton populations are low due

to decreased light availability and low temperature [117]. The driving forces for

such a succession are physical factors and internal dynamics of the food web, such

as top-down control from higher levels or bottom-up control from lower levels of

the web. For example, for phytoplankton, these control mechanisms correspond to

predation by herbivorous zooplankton (top-down) and nutrient limitation (bottom-

up) [78,117].
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1.3.1 Modifications of the Lotka-Volterra (1.1) and Rosen-

zweig-MacArthur (1.2) models

The Lotka-Volterra and Rosenzweig-MacArthur predator-prey models (in Equa-

tions (1.1) and (1.2), respectively) have inspired several extensions and modifica-

tions to explain the onset of plankton blooms and plankton seasonal succession

using systems of coupled ODEs or PDEs. Modelling work suggests that both

top-down and bottom-up mechanisms regulate the onset of a plankton bloom. In

the former approach, the phytoplankton-zooplankton food web is considered as

a nonlinear excitable system [130]2, where both an increase in the phytoplankton

growth rate and in the initial density can perturb the system into a bloom that

is controlled by zooplankton grazing (i.e., a top-down factor) [130]. In the latter

approach, a bloom is triggered as the level of nutrients (i.e., the bottom-up control

mechanism) exceeds a certain threshold [59]. However, it is unclear if it is feasible

to draw a strong conclusion about the relative importance of the regulation mech-

anisms from such a simplified model without testing alternative hypotheses, such

as phytoplankton competition and nutrient excretion by zooplankton [135].

To reproduce the plankton seasonal cycle, the top-down [130] and bottom-

up [59] regulation mechanisms for the onset of a bloom have been extended to sea-

sonally forced predator-prey models in [58] and [35,40], respectively. In addition, a

multispecies system governed by a seasonally forced Rosenzweig-MacArthur model

can reproduce the succession of different plankton species that occur seasonally

and have variations in the species composition between different years. This has

2An excitable system possesses stable equilibria. Once the system is perturbed, the behaviour
of these equilibria depends on the magnitude and nature of the perturbation. Importantly, an
excitable medium is able to support a solitary excitation wave, return to its initial state, and
generate a subsequent excitation after a certain amount of time has passed [97].
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also been observed in data [20]. Moreover, seasonal succession of a phytoplankton

bloom followed by a zooplankton peak has been observed to follow a latitudinal

gradient (i.e., in temperate zones, there is a spring and an autumn bloom each year,

whereas only one bloom appears in spring in the arctic [19]). The influence of the

latitudinal gradient on plankton seasonal succession was studied in [103], where a

forcing function was constructed from chlorophyll data collected by remote sens-

ing. This model reproduced the more complex seasonal cycles of phytoplankton

blooms in southern latitudes compared to northern latitudes [103]. In addition, a

discrete approach, in which the observed annual cycle for plankton is divided into

two distinctive intervals—the “good” season (i.e., when predator-prey dynamics

are governed by a Rosenweig-MacArthur model) and the “bad” season (i.e., when

both the predator and the prey experience exponential decay)—predicted that a

longer good season would increase the chance of predator and prey coexisting and

the peaks in population densities to appear early [65], which is in agreement with

data from laboratory experiments [119].

As concerns lake environments, seasonality modelled as periodically varying

parameters in a phytoplankton-zooplankton-fish system can generate the seasonal

plankton pattern observed in lakes [111]. The model in [111], like many of the mod-

els presented above, makes unrealistic assumptions concerning the role of nutrient

depletion in phytoplankton collapse after the bloom. In addition, the authors in-

clude seasonal forcing in the model using a sinusoidal periodic function that has the

same phase and amplitude for parameters which represent rather different aspects

of the model. Most importantly, the model deviates from observations, especially

in the amplitude of the population oscillations [111].
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1.3.2 Different modelling approaches for grouping similar

plankton species together

Because plankton have high diversity (there are approximately 25, 000 morpho-

logically defined forms of phytoplankton [27]), there have been several approaches

to group similar species together to model plankton in oceanography. These in-

clude nutrient-phytoplankton-zooplankton (NPZ) [26] or nutrient-phytoplankton-

zooplankton-detritus (NPZD) models [28], in which species that consume the same

resources (i.e., that are on the same trophic level) are grouped together (see [33] for

a review). To account for the high diversity in phytoplankton for their functioning

as a biological pump for cycling CO2 [27], different phytoplankton in plankton

functional type (PFT) models are grouped together according to the similarity of

their biogeochemical roles. PFT models are better than NPZ models at accounting

for the diversity of the species composition, but they require reliable parameter

values [55] that might not be yet known for every included species [4, 81].

Traits are properties of an organism that can be measured from individuals and

compared against measurements from individuals in other species. For example,

phytoplankton have traits that characterise their maximum growth or photosyn-

thesis rate, their size, or their susceptibility to predation. Traits can also be con-

structed as functional traits because they affect how well an individual performs as

an organism [91]. Additionally, performance in ecological function is constrained

by limited resources. An organism that invests more energy in predation-defence

mechanisms cannot invest as much energy in growth or other facets. This is an

example of an ecological trade-off . In an environment that changes seasonally,

trade-offs yield different optimal periods of time for different species. Thus, tem-
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poral variation of environment and trade-offs result not only in species coexistence

amidst limited resources but also in temporal variation exhibited within a commu-

nity [66,84], such as cycles between ciliate-predators and their phytoplankton-prey

during spring in Lake Constance (see Figure 1.1).

The coexistence of competing plankton species at high biomasses is one of the

key phenomena observed in plankton that has been difficult to model [128]. Despite

a dynamical-system analysis that can give a simple rule for checking whether a

model exhibits coexistence [18], NPZ and PFT models are both examples of models

of population dynamics that can easily become very complex. In particular, it can

be difficult to experimentally determine parameter values and retain analytical

tractability as more species or groups of species are added. As an alternative,

trait-based models, in which plankton species that have similar traits are grouped

together, provide an approach to study coexistence of species by keeping a model

sufficiently simple while preserving the diversity of the species composition [91].

Because of the high diversity in phytoplankton species communities, phyto-

plankton can be studied using a trait-based modelling approach. In theory, this

makes it possible to derive general principles of community ecology, which is the

study of coexisting species at a certain time in a given place [91] (see [83] for

review). In trait-based models, a community of species is usually represented by

a continuous trait distribution. The mean trait value and the variance indicate,

respectively, the characteristics of the most abundant species and the diversity

present in a community. In this way, one gathers information on how the total

biomass behaves instead of knowing what happens to a particular species [91]. The

trait-value distribution is affected by factors such as the surrounding environmen-

tal conditions and species interaction (e.g., competition and predation) [91]. For
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example, an increase in temperature can yield a shift in the species composition

as species better suited to the new governing conditions become more abundant.

This also justifies considering traits as state variables to account for their dynamic

characteristics, as has been done in [93].

1.4 Models for population dynamics and adap-

tive feeding

As we discussed in Section 1.2.2, it has been suggested that the coexistence and

variability in biomasses of different plankton species in spring results from the

alternation in the number of predator and prey groups of different functionality,

which manifests, for example, as different predator feeding preferences [128]. Ad-

ditionally, both predator and prey species can adapt to the prevailing situation by

changing their diet [128]. In the simplest case of a predator and two prey, two prey

species (with limited growth) can coexist if they share a predator [54]. However,

a standard Lotka-Volterra model for one predator and two prey (with unlimited

prey growth) that allows diversity in the prey community, predicts extinction of

the prey type that has a smaller capacity to survive [68]. Therefore, such a frame-

work is inappropriate for investigations of ciliate-phytoplankton dynamics during

spring, when predator-prey interaction—rather than nutrient limitation—seems

to govern plankton dynamics [116, 128], and several predators and prey coexist.

One way to resolve this discrepancy is to examine adaptive predator behaviour in

response to changes in prey densities.
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1.4.1 Prey switching

In ecology, prey switching refers to a predator’s adaptive change of habitat or diet

in response to prey abundance. In a system with at least one predator and mul-

tiple prey, prey switching is a way to describe the situation in which a predator

expresses preference for more abundant prey [95]. However, in a 1 predator-1 prey

system, prey switching refers to a change in predation as opposed to a predator

alternating between different prey types. In smooth differential-equation models,

such a change in predation of one type of prey can be modelled by, for exam-

ple, using a Holling type-III functional response [53], in which predation is low at

low prey densities but saturates quickly at a high value when prey is abundant.

Such a functional response was observed in a system of protist (i.e., eukaryotic

single cells with animal-like behaviour) predators and their yeast prey [42]. By

considering a case with a predator and multiple prey, one can explicitly examine

predator preference towards more abundant prey by constructing models in which

the densities of the different prey are system variables. It has been demonstrated

that prey switching can promote coexistence of competing prey species [124] or de-

crease prey competition due to a shared predator [2]. In addition, a prey-switching

approach has been used when switching is independent of total prey density [104],

for density-dependent switching [3], and using information on which prey type

was last consumed when there are two [134] or more [133] prey. The result that

flexible predator feeding behaviour affects the complexity and stability of food

webs raises the question of why food networks with large numbers of species and

complicated feeding or grazing interactions between them are commonly observed

in nature, even though standard ecological theory suggests that they should not
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persist (see [67] and references therein). Therefore, it has been suggested that

adaptive prey-switching in a food web composed of several species is an important

subject for research on modelling food webs [138].

1.4.2 Piecewise-smooth dynamical systems for prey switch-

ing

An alternative approach to studying prey switching is to posit that predators

behave as optimal foragers instead of explicitly incorporating adaptive predator

behaviour in response to changing prey densities. According to optimal foraging

theory, a predator’s choice to switch prey depends on prey abundances and which

diet composition maximises its rate of energy intake [120]. Originally, optimal

foraging theory is based on constant population densities, and it aims to predict

when a predator will always feed on its preferred prey. An optimal forager also

feeds on an alternative prey if doing so does not decrease its rate of energy intake

[120]. When using the principle of optimal foraging to model changing population

densities, a 1 predator-2 prey interaction can be represented as a piecewise-smooth

dynamical system [70].

Using optimum foraging theory [120], Křivan [70] showed that an alternative

prey can be part of an optimal forager’s diet (such that the probability that the

predator attacks the alternative prey is p ∈ [0, 1]). By contrast, the corresponding

1 predator-2 prey system in which the predator is not an optimal forager predicts

that both prey coexist and that the predator becomes extinct. In the model

proposed in [70], the predator always preys on one type of prey and also includes

the alternative prey in the diet whenever the energy intake rate is not decreased
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by doing so. How likely it is for the predator to eat the alternative prey depends

on how much prey of the first type (i.e., its preferred prey) is available. Once

the density of its preferred prey is below some threshold, the alternative prey

type is included in the diet. As a result, depending on parameter choices and

initial conditions, the predator can eat both prey, only one type of prey, or switch

between the two prey types. A similar 1 predator-2 prey system, in which the

diet decision is based on optimal foraging theory, was studied in [77]. This model

focused on prey competition and coexistence of predator and prey. It was suggested

that a predator behaving according to optimal foraging theory would promote

coexistence [77]. In another follow-up article [75], the logistic prey growth used in

the models in [70] and [77] was replaced by exponential prey growth, which allowed

for further analysis of the system because of increased analytical tractability. It was

shown that predation according to optimal foraging theory reduced the apparent

prey competition and increased the probability of coexistence of all of the species.

It has also been suggested that optimal foraging reduces the amplitude of pop-

ulation-density oscillations compared to models with non-adaptive predators [11,

75, 77]. In [11], this occurs because a global attractor arises in piecewise-smooth

systems and consists of stable Lotka-Volterra cycles. In other words, trajectories

that start inside the attractor do not escape it and will eventually follow Lotka-

Volterra-type dynamics. Trajectories that start outside the attractor either enter

it or approach it [11]. In addition to the choice of whether to include or exclude

an alternative prey, similar models of optimal behaviour in 1 predator-2 prey

systems have been constructed to study adaptive change of habitat in a two-

patch environment [74] as well as adaptive change of activity level (in behaviour,

such as refuge use or habitat choice) [76]. The model in [76] also includes a

22



trade-off: activity of the prey increases its growth but also its risk of predation.

Similarly, the predator growth rate increases with increased activity, but so does

the predator death rate. Again, it was demonstrated that the adaptive behaviour

has a stabilising effect on predator-prey population dynamics. This sometimes

results in an equilibrium of predator-prey coexistence [76]. In addition, if both

predator and prey adjust their activity levels, then there exists an upper bound

(which is independent of the initial densities) for the amplitude of population

density oscillations.

1.5 Models for population dynamics and adap-

tive change of traits

As opposed to an adaptive change in behaviour, such as prey switching in response

to prey availability (which is an example of phenotypic plasticity [63]), adaptivity

can be also understood as a change in traits as the result of evolution and seen

as changes in the genome of a predator and/or prey [38]. There have been sev-

eral investigations on the effect of evolutionary change of traits on predator-prey

dynamics, and it has been suggested that evolution incorporated into a model for

predator-prey interaction can either stabilise or destabilise equilibria (see [1] for a

review). In addition, evolution can decrease or increase the amplitude of cycles of

a predator-prey interaction [1]. Indeed, it has been clear since Darwin [21] that

ecological differences drive evolution, which in turn influences ecological interac-

tions. Hence, populations that are coupled, for example, through a predator-prey

interaction have both a demographic and an evolutionary effect on each other [82].
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Although this interplay has been generally considered as a slow process compared

to ecological interactions [115], there have been several recent observations of evo-

lution occurring and influencing ecological interactions on a time scale compara-

ble to that of the ecological interactions (see [38, 49] for review). In particular,

the evolutionary change of traits has been called “rapid” if it occurs on a time

scale of about 1000 generations and can be observed in laboratory conditions [38].

These observations vary from mammals [100] to bacteria [10], and it has been re-

ported that rapid evolutionary change can occur both in predator (e.g., in traits

involving resource consumption [46] or in the ability to counteract prey defence

mechanisms [50]) and prey (e.g., traits involving predator avoidance [61, 140]).

In particular, rapid evolutionary change of traits has been observed in a plank-

ton predator-prey system [37, 140], which is a good example system for studying

the coupling between rapid evolution and predator-prey interaction for its short

generation times and simple genetics [61].

Consequently, focusing only on ecological interaction without allowing proper-

ties of the interacting populations to undergo changes, which often come with a

cost in the population density, does not give a complete picture of the dynamics

of an ecosystem, let alone its ability to adapt to changing environmental condi-

tions [62]. There are many ways in which a rapid evolutionary change of traits has

been incorporated into a system of predator-prey interaction (see [38] for a review).

When using a system of ordinary differential equations, ecological and evolutionary

dynamics have been assumed to take place both on comparable and separate time

scales. As an example of the former, the out-of-phase cycles between a predator

(i.e., a small zooplankton) and prey (i.e., generically variable clonal lines of algae)

populations observed in the experiments in [37, 140] have been reproduced with
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a mathematical model with contemporary evolutionary and ecological dynamics.

This model suggested that they emerge from prey evolution, especially when the

trade-off between defence mechanism and the cost associated with it is flat (i.e.,

the defence mechanism is cheap) [62]. In an experiment with the same predator

and an algal prey with no genetic variability, the predator and prey populations

oscillate with a phase difference of a quarter of a cycle [140], which is predicted

by classical predator-prey models such as the Lotka-Volterra system in (1.1). In

addition, the level of variation in the adaptive trait value can act as a bifurcation

parameter. That is, the extent of the difference in defence against predators that

are present in the prey community determines what kind of dynamics (cycles or a

steady state) are exhibited by the predator-prey system with evolution [8, 61].

However, the mathematical analysis of a system of differential equations that

has comparable time scales of evolutionary and ecological dynamics and represents

a specific experimental set-up provides challenges both for analysis (even with rel-

atively simple nonlinearities) and for developing a general theory for coupling

between ecology and evolution [61, 62]. Some approaches exploit the assumption

of a separation of time scales between evolutionary and ecological interactions to

reduce the dimension of the resulting system of equations. On the one hand, in

the mathematical framework of adaptive dynamics [43], evolution is assumed to

occur on a slower time scale than ecological interactions. On the other hand, mul-

tiple time-scale dynamical systems have been suggested as a general framework for

gaining insight into evolutionary and ecological dynamics when these two processes

occur on a comparable time scale by studying scenarios in which the evolutionary

change occurs either on a slower [64] or on a faster [17] time scale than that of the

ecological interactions.
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The framework for studying rapid evolution and ecological dynamics using a

fast-slow dynamical system was introduced in [17]. In this model, the population

dynamics of a predator and a prey evolve on a slow time scale, whereas the evolu-

tion of a predator or prey trait occurs on a fast time scale. Thus, by considering a

scenario in which the evolution of a species occurs much faster than the changes in

population densities, one can retain analytical tractability and reduce the model

dimension compared to a case in which there is no separation of time scales be-

tween the evolutionary and ecological interactions. As a result, one can predict

the range of dynamics that a model with coupled ecological and evolutionary in-

teractions exhibits, because these dynamics are determined by the shape of the

predator functional response and the properties of trade-off curves incorporated

in the model. Moreover, it was demonstrated that a fast-slow dynamical system

as introduced in [17], can preserve the qualitative properties of dynamics exhib-

ited by a model in which only one time scale is present [62]. Similar to a model

with comparable time scales [62], a fast-slow dynamical system with rapid prey

evolution reproduces out-of-phase predator-prey oscillations observed in labora-

tory experiments [140] that are not present in the analogous model without rapid

evolution [17].

1.6 Outline of the rest of the thesis

The remainder of this thesis is organised as follows. In Chapter 2, we give some

definitions of piecewise-smooth dynamical systems to introduce the tools and tech-

niques that we will use later to analyse the piecewise-smooth 1 predator-2 prey
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system of Chapter 3. In this piecewise-smooth system, a switching manifold di-

vides the phase space into two smooth parts and gives the transition between

them. In general, the right-hand side of a piecewise-smooth dynamical system

(whose phase space can be divided into more than two smooth parts by more than

one switching manifold) is not uniquely defined on the switching manifold. How-

ever, we show how a unique solution can be constructed using Filippov’s convex

method [29]. In addition, piecewise-smooth dynamical systems can exhibit a rich

set of behaviours that do not arise in smooth dynamical systems. Such behaviour

includes equilibria located on a switching manifold, dynamics governed by flow

on a switching manifold, and discontinuity-induced bifurcations. We discuss these

properties of piecewise-smooth dynamical systems in Chapter 2.

In Chapter 3, we derive a piecewise-smooth dynamical system for an optimally

foraging predator and two prey in the presence of prey preference trade-off. We

use the tools and techniques from Chapter 2 to investigate the 1 predator-2 prey

system both analytically and numerically. First, we derive the flow on the switch-

ing boundary using Filippov’s method and present analytical expressions for the

equilibrium point on the switching boundary and for the points at which the two

vector fields on the different sides of the boundary are tangent to the switching

boundary between them. We then examine the dynamics numerically as we adjust

the slope of the preference trade-off and discover a previously unknown bifurcation

in piecewise-smooth systems. This (centre to two-part periodic orbit; “C2PO”) bi-

furcation describes a transition between a centre located entirely on the switching

boundary and a periodic orbit that evolves partly along the boundary and partly

outside of it. As the distance to the bifurcation point increases, the periodic orbit

experiences a period-doubling, which suggests a possible cascade to chaos. We also
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carry out numerical computations as a first step towards formulating a normal-

form map to describe this novel bifurcation. Finally, we compare simulations of

our system with data on planktonic protozoa-algae dynamics collected from Lake

Constance and conclude by discussing and commenting on the model assumptions

and results.

In Chapter 4, we reformulate the 1 predator-2 prey piecewise-smooth dynamical

system (from Chapter 3), which assumes a discontinuous switch in the predator’s

adaptive feeding behaviour, as a smooth dynamical system representing a gradual

change in the trait that determines the predator’s feeding mode. We first formu-

late the smooth system using hyperbolic tangent functions that allow us to turn

the discontinuous switch in feeding behaviour of the piecewise-smooth model into

a smooth prey-switching function. We then reformulate our second smooth ana-

log of the piecewise-smooth system by considering a predator trait as a system

variable. Hence, we develop a four-dimensional smooth dynamical system from a

three-dimensional piecewise-smooth dynamical system. We use a similar approach

to the ecological concept of fitness-gradient dynamics , which has been used previ-

ously to model evolutionary dynamics, and formulate an equation for the temporal

evolution for the predator trait. This trait corresponds to a constant parameter

that has different values on each side of the discontinuity in the piecewise-smooth

system of Chapter 3. We derive analytical expressions and carry out linear stabil-

ity analysis (numerically whenever analytical solutions are impossible or difficult

to obtain) for the equilibria of the two smooth systems. Similarly to Chapter 3,

we compare simulations of our two smooth systems with data on protozoa-algae

dynamics collected from Lake Constance. In addition, we compare the two smooth

systems with the piecewise-smooth system, and discuss the mathematical and eco-
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logical findings and implications of the two different modelling approaches. Finally

in Chapter 5, we summarise our findings and discuss future directions inspired by

them.
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Chapter 2

Tools and techniques

In this chapter, we discuss the tools that are used later in the analysis of our

piecewise-smooth system (Chapter 3). This entails techniques that have been

developed to account for the discontinuity—such as the definition of the sliding

flow on the discontinuity boundary and tangencies between the vector fields and

the boundary [23].

2.1 Piecewise-smooth dynamical systems

2.1.1 Introduction

The theory and methodology available for smooth dynamical systems provides a set

of qualitative tools for understanding phenomena—such as bifurcations or chaotic

behaviour—observed in dynamical systems. Some of these tools can be applied

to piecewise-smooth dynamical systems as well, but discontinuous systems exhibit

rich dynamics that require new mathematical tools [23].
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A piecewise-smooth, continuous-time dynamical system—that is, a piecewise-

smooth flow—is defined as follows [23]:

Definition 2.1 A piecewise-smooth flow is given by a finite set of ordinary

differential equations (ODEs)

ẋ = fi(x, µ), if x ∈ Si , (2.1)

where
⋃
i Si = D ⊂ Rn and each Si has a nonempty interior. The intersection

Σij := S̄i ∩ S̄j is either an R(n−1)-dimensional manifold including the boundaries

∂Sj and ∂Si, or is the empty set. Each vector field fi is smooth in both the state

x and the parameter µ, and it defines a smooth flow φi(x, t) within any open set

U ⊃ Si. In particular, each flow φi is well defined on both sides of the boundary

∂Sj.

The boundary between the regions Si and Sj is called a discontinuity or switching

boundary (or a discontinuity or switching set) Σij. Piecewise-smooth systems

can be categorised by their degree of smoothness. The definition of the degree of

smoothness [23] gives information on the behaviour of the piecewise-smooth ODE

system as it crosses Σij:

Definition 2.2 The degree of smoothness at a point x0 in a switching set

Σij of a piecewise-smooth ODE is the highest order r such that the Taylor series

expansions of φi(x0, t) and φj(x0, t) with respect to t, evaluated at t = 0, agree up

to terms of O(tr−1). That is, the first non-zero partial derivative of the difference

[φi(x0, t)− φj(x0, t)]
∣∣∣
t=0

with respect to t, is of order r.

For example, consider an ODE system with a single discontinuity boundary Σ12
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[23]:

ẋ =


f1(x, µ), if x ∈ S1 ,

f2(x, µ), if x ∈ S2 ,

(2.2)

where the quantities φ1 and φ2 are smooth flows defined, respectively, by f1 and

f2:

∂φi
∂t

(x, t)

∣∣∣∣
t=0

= fi(x) , (2.3)

and

∂2φi
∂2t

(x, t)

∣∣∣∣
t=0

=
∂fi
∂t

(x) =
∂fi
∂φi

(x)
∂φi
∂t

=
∂fi
∂x

(x)fi(x) ≡ fi,xfi(x) . (2.4)

Thus, according to Definition 2.2, if at a point x ∈ Σ12, we have f1(x) = f2(x)

and f1,x 6= f2,x, then the system has a degree of smoothness of 2. Similarly, if at

x ∈ Σ12, we have f1,x = f2,x but f1,xx 6= f2,xx, then the degree of smoothness is 3.

If f1(x) 6= f2(x) at a point x ∈ Σ12, then the first derivative of x has a dis-

continuity as Σ12 is crossed and the system has a degree of smoothness of 1.

Piecewise-smooth systems that have a degree of smoothness equal to 1 are called

Filippov systems. Because of the jump in the derivative, the points on the bound-

ary can be attracted to, or repelled from, both sides at the same time, and these

systems allow the possibility for the dynamics to evolve towards the switching

manifold from both sides of the discontinuity. The evolution of the dynamics

within Σ12 itself is called sliding motion, and we will define conditions for such

motion in Section 2.1.2.1. To distinguish piecewise-smooth systems with a degree

of smoothness of 2 or higher from Filippov systems, the former are often described

as “continuous” piecewise-smooth systems. This terminology is used because the

trajectories always cross the switching boundary without evolving along it in these
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systems [23].

2.1.2 Filippov systems

2.1.2.1 Basic definitions

We now consider a piecewise-smooth system with degree of smoothness 1—that

is, a Filippov system—that has a single boundary Σ written as the zero set of a

smooth function h

ẋ =


f−(x), if h(x) < 0 ,

f+(x), if h(x) > 0 .

(2.5)

As shown in Figure 2.1, the orientation of the vector fields f+ and f− determines

whether the switching manifold is attracting or repelling. Three types of associated

dynamics can occur near a switching manifold in a Filippov-type piecewise-smooth

system. When the switching boundary is attracting from both sides of the dis-

continuity, the system is said to exhibit sliding (see Figure 2.1a). Crossing occurs

when trajectories that start from one side of the discontinuity traverse the switch-

ing boundary without following the sliding field on the boundary (see Figure 2.1b).

If both vector fields point outward from the discontinuity, then the region in the

switching boundary is defined as a region in which escaping occurs (see Figure

2.1c).

The boundaries of sliding, crossing, and escaping are determined by comput-

ing the points at which there is a tangency between the vector fields f− or f+ and

the discontinuity boundary h = 0 (see Figure 2.2). Determining the tangencies

is crucial for studying the behaviour of a system near a switching boundary, and
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f−

h =
0

f+

fs

(a) sliding

f−

h =
0

f+

(b) crossing

f−

h =
0

f+

fs

(c) escaping

Figure 2.1: The three possible types of dynamics in a piecewise-smooth system
(2.5) close to the switching manifold h = 0: (a) sliding along the sliding vector
field fs, (b) crossing, and (c) escaping (i.e., unstable sliding). We have shaded the
sliding and escaping regions.

it constitutes the first step for studying how dynamics in a piecewise-smooth dy-

namical system differ from those in a smooth dynamical system [16]. We give the

analytical expression for the regions of crossing, sliding, and escaping in Section

2.1.2.2 and the sliding flow in (2.5) at h = 0 in Section 2.1.2.3.

There are three basic tangencies between a piecewise-smooth vector field and

a switching boundary. In a fold, a vector field has a quadratic tangency with a

switching boundary (see Figure 2.2a). In a cusp, the tangency is cubic (see Figure

2.2b). Finally, a two-fold occurs when two folds intersect, and there is a quadratic

tangency between a switching manifold and each side of a vector field (see Figure

2.2c).

Studying the aforementioned tangencies in a piecewise-smooth system makes

it possible to describe bifurcations that can occur when, for example, a limit cycle

or an equilibrium point intersects a tangency point on a switching boundary. Such

bifurcations are examples of discontinuity-induced bifurcations (DIBs) [23], which

we discuss in Section 2.1.2.6. We compute analytical expressions for points at
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f−

h =
0

f+

(a) a fold

f−

h =
0

f−

f+

fs

(b) a cusp

f−

h =
0

f+

(c) a two-fold

Figure 2.2: Three basic tangencies between a piecewise-smooth vector field and a
switching manifold occur at (a) a fold (i.e., a quadratic tangency), (b) a cusp (i.e.,
a cubic tangency), and (c) a two-fold (i.e., an intersection of two folds). We have
shaded the sliding and escaping regions.

which there is either a quadratic or a cubic tangency between one of the vector

fields and the switching boundary in Section 2.1.2.5.

2.1.2.2 Regions of sliding, crossing, and escaping

We examine the system (2.5) near the discontinuity boundary h(x) = 0 and give

the definition of a sliding region.

Definition 2.3 The sliding region of the discontinuity set of a system of the

form (2.5) with degree of smoothness 1 is given by that portion of the boundary of

h(x) for which

Lf+hLf−h < 0 , (2.6)

where L denotes the Lie derivative along the flow f and is defined for f+ as Lf+ =

f+ · ∇ = ẋ
∣∣
f+
· d
dx

. It is defined analogously for f− as Lf− = f− · ∇ = ẋ
∣∣
f−
· d
dx

.

Thus, the component of f+ normal to h has the opposite sign to the component of

f− normal to h, and the boundary h = 0 is simultaneously attracting (or repelling)
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from both sides. Therefore, when Lf+hLf−h > 0, trajectories of (2.5) cross the

switching boundary because the components of f+ and f− normal to h = 0 have

the same sign. Thus, trajectories that start from one side of the boundary pass

through h = 0 without evolving along it.

In stable sliding regions, the components of both f+ and f− that are normal to

h = 0 point towards the switching manifold, and trajectories reach sliding motion

in finite time. This occurs when

Lf+h < 0 < Lf−h . (2.7)

Unstable sliding—that is, escaping—occurs because the components of both

f+ and f− that are normal to h = 0 point away from h = 0. Trajectories that

hit these regions are repelled from the switching manifold in finite time. Escaping

motion is unattainable in simulations in forward time. In a system such as (2.5),

escaping occurs when

Lf+h > 0 > Lf−h . (2.8)

2.1.2.3 Sliding vector field

The solution to (2.5) at the discontinuity h = 0 can be expressed using Filippov’s

differential inclusion [29]. According to Filippov’s method, the sliding flow fs of

(2.5) at h = 0 is determined by a linear convex combination of the two vector

fields f− and f+ as follows:

fs = (1− α(x))f− + α(x)f+ , (2.9)
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where

α(x) =
Lf−h

Lf−h− Lf+h
∈ [0, 1] . (2.10)

The constant α defines the nonnegative constants of the combination (2.9) needed

for the flow fs to lie on the boundary Σ. If α = 0, then the sliding flow fs is given

by f−, so h < 0. Similarly, if α = 1, then fs = f+, which implies that h > 0.

Repelling sliding motion cannot be reached by following the system flow forward

in time, whereas attracting sliding motion entails loss of information on initial

conditions [23]. Filippov’s method is a formulation to describe the evolution of

flows written as in (2.5) when they undergo sliding motion on h = 0. We determine

the divergence of the sliding vector field by calculating

∇ · fs =
∂f

(1)
s

∂x1
+
∂f

(2)
s

∂x2
+
∂f

(3)
s

∂x3
, (2.11)

where f
(i)
s (i ∈ {1, 2, 3}) denotes the ith component of the sliding flow (2.9).

2.1.2.4 Equilibrium points

Piecewise-smooth systems have a type of equilibrium that can lie on the boundary.

In the case of Filippov systems, we give the following definition [23].

Definition 2.4 A point x̃ is a pseudoequilibrium if it is an equilibrium of the

sliding flow. In other words, for some scalar α,

f−(x̃) + α(f+ − f−) = 0, (2.12)

h(x̃) = 0 . (2.13)
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If α = 0, then the component of f− normal to h is 0 and the sliding flow is

determined only by f− tangent to the discontinuity set Σ. If α = 1, then the

sliding flow is determined solely by f+ tangent to Σ. At pseudoequilibrium, the

sliding flow fs = 0. Thus, α ∈ (0, 1). Usually, the pseudoequilibria are not

equilibria of either f− or f+ [23].

2.1.2.5 Tangency points

At the boundary between the sliding and crossing regions, the vector fields f− or

f+ become tangent to the switching manifold h = 0. At a fold, one vector field has

a vanishing first Lie derivative and a non-vanishing second Lie derivative. That is,

in the case of a fold (see Figure 2.2a) for f+, we have

Lf+h = 0 and L2
f+
h = Lf+(Lf+h) 6= 0 . (2.14)

In addition, the gradient vectors of h and Lf+h must be linearly independent of

each other, and the other vector field satisfies Lf−h 6= 0 [16].1

At a cusp (see Figure 2.2b), a vector field has a cubic tangency to a boundary.

For f+, this occurs when

Lf+h = 0 , L2
f+
h = 0 , and L3

f+
h 6= 0 . (2.15)

Thus, the sliding vector field has a quadratic tangency at the sliding boundary.

The condition Lf−h 6= 0 must also hold. Additionally, the gradient vectors of h,

the first Lie derivative Lf+h, and the second Lie derivative L2
f+
h are required to

1Vice versa, in the case of a fold for f−, we have Lf−h = 0, L2
f−
h 6= 0, and Lf+h 6= 0. The

gradient vectors of h and Lf−h must be linearly independent of each other [16].
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be linearly independent [16].2

At a two-fold (see Figure 2.2c), there is a quadratic tangency between the

sliding boundary and both f+ and f−. Therefore,

Lf+h = 0 and L2
f+
h = (Lf+h)2 6= 0 , (2.16)

Lf−h = 0 and L2
f−h = (Lf−h)2 6= 0 . (2.17)

In addition, the gradient vectors of h, the first Lie derivative Lf+h, and Lf−h are

required to be linearly independent [16].

In Section 3.3.4, we will determine the points at which one of the vector fields

of the 1 predator-2 prey piecewise-smooth system (3.4) has a quadratic or cu-

bic tangency between the switching boundary. Although a two-fold can arise in

three-dimensional piecewise-smooth dynamical systems, it does not occur in (3.4)

because the crossing and sliding boundaries do not intersect on the switching man-

ifold.

2.1.2.6 Discontinuity-induced bifurcations in Filippov systems

The tangencies between the vector fields and the discontinuity boundary are useful

for determining which type of bifurcations involving a limit cycle can occur. In

particular, in a system with three or more dimensions, such as the 1 predator-2

prey system (3.4) that we will introduce in Section 3.2, all generic one-parameter

sliding bifurcations occur at either a fold, a cusp, or a two-fold (see Figure 2.2).

2At a cusp between f− and the boundary between sliding and crossing regions, Lf−h = 0
and L2

f−
h = 0, and the conditions L3

f−
h 6= 0 and Lf+h 6= 0 must hold. In addition, the gradient

vectors of h, the first Lie derivative Lf−h, and the second Lie derivative L2
f−
h are required to be

linearly independent [16].
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Moreover, because the switching manifold h = 0 in (3.4) has codimension 13, all

of its one-parameter sliding bifurcations can be categorised into 8 different cases

(depending on the type of the tangency) [60].

In Filippov-type piecewise-smooth dynamical systems, there exists a classifica-

tion for the principal codimension-1 discontinuity induced bifurcations that involve

sliding. In these four bifurcations, a limit cycle of a Filippov system interacts with

the boundary between sliding and crossing regions. If there is a cusp, then a

trajectory that is situated entirely in the sliding region has a tangency with the

boundary. That is, the sliding vector field has a quadratic tangency to the switch-

ing boundary (see fs in Figure 2.2c). Perturbing the bifurcation parameter from

the bifurcation point results in the sliding trajectory leaving the switching plane

tangentially; because of the cubic tangency with the vector field, it returns to the

sliding region. This is case (1) and it is called an adding-sliding bifurcation be-

cause a trajectory that was entirely a sliding trajectory becomes a trajectory that

now includes both a non-sliding segment and a sliding segment [23]. A new sliding

segment is thereby added to the trajectory.

In addition to the adding-sliding scenario, the limit cycle can interact with the

boundary between sliding and crossing regions leading to the scenario of case (2):

crossing-sliding , where a perturbation causes the trajectory that initially crossed

the switching boundary to acquire a sliding segment and reach the attracting

sliding region, or case (3): grazing-sliding , where a limit cycle that is initially

located entirely in the region of one of the vector fields is perturbed into a trajectory

that grazes the switching boundary, and thereby acquires a sliding segment, or case

(4): switching-sliding , which is similar to crossing-sliding with the exception that

3That is, the difference between the dimension of the parameter space and the dimension of
the bifurcation boundary is 1.
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the sliding region is repelling. Thus, in switching-sliding, a trajectory that prior

to the perturbation does not intersect the switching boundary, does intersect the

boundary and undergoes sliding after the perturbation. The remaining four cases

including a systematic classification of all 8 one-parameter sliding bifurcations at

a smooth codimension-1 switching manifold of a n-dimensional system for n ≥ 3

can be found in [60].

We will see in Chapter 3 that the 1 predator-2 prey piecewise-smooth system

(3.4) exhibits an adding-sliding periodic orbit due to the presence of a cusp. We will

study the periodic orbit in more detail through numerical simulations in Sections

3.4.3 and 3.4.5.

2.1.2.7 Poincaré maps

The study of existence and stability of closed orbits exhibited by a system of differ-

ential equations can be translated into a study of fixed points on an iterated map,

such as the Poincaré map. A Poincaré map is a mapping from a Poincaré section

Π, which is an (N−1)-dimensional surface of section that lies transverse to the flow

arising from an N -dimensional vector field, to itself. Thus, for a three-dimensional

vector field, the Poincaré map determines how a point on a plane—that is, a point

on an intersection between the trajectory and the Poincaré section—changes when

it returns to the plane after the first iteration of the Poincaré map. The Poincaré

map P is a mapping from one intersection zn on the Poincaré section to the next

intersection zn+1 [121]:

zn+1 = P (zn) . (2.18)
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A fixed point z∗ of P satisfies z∗ = P (z∗). Furthermore, there exists a closed orbit

that starts from z∗ and returns to z∗. A Poincaré map can be used to prove the

existence of a closed orbit. Additionally, one can determine the stability of a closed

orbit by linearising the Poincaré map around the fixed point z∗ and computing

the characteristic multipliers [121].

Closed orbits exhibited by a piecewise-smooth dynamical system can be studied

by first constructing a global “incorrect” Poincaré map around the closed orbit that

does not take the discontinuity into account. One can then derive a non-smooth

globally correct Poincaré map to describe the characteristics of the closed orbits by

combining the first global map with a correction given by a discontinuity map [99].

The discontinuity map is a Poincaré map defined locally near where the interaction

between the trajectory and the discontinuity boundary occurs. This technique

has been used to describe the four principal sliding bifurcations mentioned in

Section 2.1.2.6 [23]. We will use the same technique in Section 3.4.6, where we

carry out numerical computations to formally describe the bifurcation in which the

adding-sliding periodic orbit is created in the 1 predator-2 prey piecewise-smooth

dynamical system (3.4).

2.1.2.8 Numerical simulations

Solving piecewise-smooth systems numerically requires a special numerical inte-

gration routine because most of the standard solvers assume that solutions are

sufficiently smooth [23]. To simulate the 1 predator-2 prey piecewise-smooth sys-

tem that we will introduce in this dissertation, we use the numerical method

developed for Filippov systems and implemented in Matlab [90] by Piiroinen
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and Kuznetsov [101]. This kind of explicit event-driven scheme is appropriate in

our case because we are considering fewer than 10 species and fewer than 10 dis-

continuity boundaries [23]. An event-driven scheme solves for the times at which

an event (i.e., a trajectory reaches a discontinuity boundary or a vector field be-

comes tangent to the discontinuity boundary) occurs. The method introduced

in [101] solves for trajectories within regions Si [see Equation (2.1)] using Mat-

lab’s standard numerical scheme (ode45, 4th–order Runge-Kutta method) and

locates crossings of the discontinuity boundary and tangencies with Matlab’s

built-in event-detection routines. After an event has been detected, the problem is

re-initialised at the point of the event. Importantly, the method takes the attract-

ing segments of the discontinuity boundary, where the dynamics of the system are

governed by the sliding vector field fs, into account [101].

In Chapter 3, we will derive a 1 predator-2 prey piecewise-smooth system and

apply the tools and techniques we introduced in Section 2.1 to investigate our

system both analytically and numerically.
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Chapter 3

A piecewise-smooth 1 predator-2

prey model

In Chapter 2, we introduced general important concepts for piecewise-smooth dy-

namical systems, such as sliding flow, pseudoequilibrium, and tangencies. In this

chapter, we use these ideas to analyse a 1 predator-2 prey piecewise-smooth system,

which we construct, simulate numerically, and compare with data from observa-

tions. We present analytical expressions for the equilibrium point at the switching

boundary and for the points at which the two vector fields on the different sides

of the boundary are tangent to the switching boundary between them. We show

that the 1 predator-2 prey system undergoes a novel adding-sliding-like (centre to

two-part periodic orbit; “C2PO”) bifurcation in which the prey ratio transitions

from constant to time-dependent. We suggest prey switching in the presence of a

preference trade-off as a possible mechanistic explanation for the observations of

the preferred and alternative prey types of ciliates in Lake Constance in spring.

Most of the contents of this chapter are based on a paper published in the SIAM

Journal on Applied Dynamical Systems [102]. In Section 3.4.6 we discuss new ma-
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terial on computations for a discontinuity mapping as a first step in constructing a

normal form to describe the centre to two-part periodic orbit (C2PO) bifurcation

exhibited by the piecewise-smooth 1 predator-2 prey model.

3.1 Introduction

The Lake Constance data set (see Section 1.2.2) refers to abundance of several

plankton species, including ciliates (see Section 1.2.1) (i.e., eukaryotic single-celled

organisms with animal-like behaviour—that is, a type of protist) that feed on small

phytoplankton and constitute an important link between the bottom and higher

levels of aquatic food webs [126]. Although the seasonal dynamics of ciliates and

small phytoplankton follow the well-documented plankton seasonal succession [117]

(see Section 1.3), ciliates and their algal prey populations also vary at shorter-than-

seasonal temporal scales [126, 128] (see Section 1.2.2). In addition, ciliates have a

prey preference and feed selectively, as different ciliate species benefit differently

depending on the match between their feeding mode and the prey species that

are abundant in the prey community [94] (see Section 1.2.2). Thus, it has been

suggested that the driving forces for the sub-seasonal temporal variability seen

in the Lake Constance data (see Figure 1.1 in Section 1.2.2) lie in predator-prey

interactions between diverse predator and prey plankton communities rather than

in nutrent limitation, particularly during periods of the year, such as in spring, in

which environmental conditions are relatively stable [116,128] (see Section 1.2.2).

The Lake Constance data set for ciliates and their algal prey exhibit coexis-

tence of species in a shared environment. Such coexistence has been suggested to
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arise from ecological trade-offs between traits [66]. Indeed, trait-based approaches

consider traits and their distributions as system variables when constructing mod-

els for investigating the existence and persistence of co-occurring species [91] (see

Section 1.3.2). In addition, prey switching has been suggested as a candidate

mechanism for coexistence in communities with diverse prey [3] (see Section 1.4).

Indeed, both ecological trade-offs between traits and adaptive feeding behaviour

have been observed in plankton [83,94].

Many investigations of prey switching have examined adaptive predator feeding

behaviour as either a smooth or piecewise-smooth dynamical system (see Section

1.4.1). In this chapter, we focus on the latter approach and suppose that a predator

behaves as an optimal forager and chooses a diet that maximises the predator’s

rate of energy intake [120]. Thus, following the ideas on Filippov systems for prey

switching [70] (see Section 1.4.2), we apply optimal foraging theory to derive a

novel piecewise-smooth dynamical system that models a predator that adaptively

feeds on two prey species and takes into account a trade-off in prey preference.

We make a pragmatic choice of using the Filippov convention instead of applying

differential inclusions in our model [29]. We use the tools and techniques we

introduced in Section 2.1 to examine the outcome of the population dynamics in

this discontinuous 1 predator-2 prey system as we adjust the steepness of the linear

preference trade-off. We thereby discover a previously unknown bifurcation in

piecewise-smooth dynamical systems and provide a possible link between predator-

prey dynamics and ecological trade-offs.

The rest of this chapter is organised as follows. In Section 3.2, we construct a

piecewise-smooth dynamical system for an optimal forager and its preferred and

alternative prey in the presence of a linear prey preference trade-off. In Section 3.3,
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we investigate this 1 predator-2 prey system analytically and derive expressions

for the sliding flow, pseudoequilibrium, and tangencies between the vector fields

and the switching boundary. In Section 3.4, we simulate the system numerically

to (1) examine its dynamics as we adjust the slope of the preference trade-off,

(2) describe a novel bifurcation in piecewise-smooth dynamical systems, and (3)

compare simulations of the system with data from Lake Constance. In Section

3.5, we discuss the model assumptions, results, and possible generalisations, before

concluding in Section 3.6.

3.2 The model

In our framework, prey switching occurs because the predator can adjust the extent

of consumption of its preferred prey. We assume that there is a trade-off in the

prey preference, which effectively is a trade-off in how much energy the predator

gains from eating the preferred prey instead of the alternative prey. An increase in

specialisation towards the preferred prey comes at a cost of the predator population

growth obtained from feeding on the alternative prey. For simplicity, we assume

that the preference trade-off is linear:

q2 = −aqq1 + bq , (3.1)

where q1 ≥ 0 is a nondimensional parameter that represents the extent of pref-

erence towards the preferred prey, aq > 0 is the slope of the preference trade-off,

bq ≥ 0 is the intercept of the preference trade-off, and q2 ≥ 0 is the extent of

preference towards the alternative prey. Assuming a linear predator mortality and
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a linear functional response between the predator growth and prey abundance

(we discuss this assumption in Section 3.5), we define a fitness function that the

predator maximises using the net per capita growth rate

R ≡ 1

z

dz

dt
= eq1β1p1 + eq2β2p2 −m, (3.2)

where z is the density of the predator population, p1 is the density of the preferred

prey, p2 is the density of the alternative prey, e > 0 is the proportion of predation

that goes into predator growth, β1 and β2 are the respective death rates of the

preferred and alternative prey due to predation, and m > 0 is the predator per

capita death rate per day.

We obtain the switching condition that describes when the predator chooses

consumption with a large preference towards the preferred prey (q1 = q1L) or

consumption with a small preference towards the preferred prey (q1 = q1S) to

maximise fitness by substituting (3.1) into (3.2) and differentiating R with respect

to q1:

∂R

∂q1
= (β1p1 − aqβ2p2) e . (3.3)

Thus, when ∂R
∂q1

> 0, the largest feasible q1L maximises predator fitness; when

∂R
∂q1

< 0, the smallest feasible q1S maximises predator fitness. For simplicity, we

assume that q1S = 0. This implies that the predator switches to the feeding

mode of consuming only the alternative prey when predator fitness is maximised

by having a small preference for consuming the preferred prey. We also assume

(again for simplicity) that prey growth is exponential. This yields the following
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piecewise-smooth 1 predator-2 prey model:

ẋ =


ṗ1

ṗ2

ż

 =



f+ =


(r1 − β1z)p1

r2p2

(eq1β1p1 −m)z

 , if h = β1p1 − aqβ2p2 > 0

f− =


r1p1

(r2 − β2z)p2

(eq2β2p2 −m)z

 , if h = β1p1 − aqβ2p2 < 0



,

(3.4)

where h = β1p1−aqβ2p2 determines the switching manifold h = β1p1−aqβ2p2 = 0,

and r1 and r2 (where r1 > r2 > 0) are the respective per capita growth rates of the

preferred and alternative prey. The right-hand side of (3.4) cannot be determined

uniquely for h = 0 by the criterion based on optimal foraging theory. For this

part of the phase space, the flow at the discontinuity must be constructed from f+

and f−. We will specify (3.4) at the switching manifold h = β1p1 − aqβ2p2 = 0 in

Equation (3.9) below.

In our numerical simulations in Section 3.4, we take β1 = β2. (For simplicity,

we also take β1 = β2 = 1 in order to omit β1 and β2 in our analysis in Section

3.3.) Hence, we assume that the predator exhibits adaptive feeding behaviour by

adjusting preference to, rather than attack rate on, the governing prey densities.

We can use production-to-biomass ratio—where the biomass is the mass of all

living and dead organic matter, and production represents the increase in biomass

produced by phytoplankton organisms—calculated from measurements in Lake

Constance as an index for phytoplankton growth. These data suggest that typical

values for the phytoplankton per capita growth rate vary approximately from 0.2

per day to 0.6 per day during the course of a year. The values for r1 (i.e., the
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growth rate of the preferred prey), r2 (i.e., the growth rate of the alternative prey),

and m (i.e., the predator death rate) can be obtained from parameter fitting using

approximate Bayesian computation (ABC) [129]. We discuss this method (that we

use to fit the periodicity in the prey ratio predicted by the model to that exhibited

in the Lake Constance data) in detail in Appendix B.

Because of the prey preference, the predator exerts more grazing pressure on

the preferred prey than on the alternative prey. One can explain this advantage

of experiencing lower predation pressure from above for the alternative prey by a

difference in the use of limited nutrients. For example, the alternative prey might

invest resources in building defence mechanisms such as a hard silicate cover,

which is difficult for the predator to digest. As a result, the alternative prey has

fewer resources left for population growth than the preferred prey (which does not

have as good a defence against the predator). To compensate for the difference

in preference, we assume that the growth rate of the preferred prey is larger than

that of the alternative prey. In biology, this phenomenon is called the evolutionary

double bind , and it refers to a situation in which resistance comes at a cost [41].

Our 1 predator-2 prey model assumes that the switch from the preferred prey

to the alternative prey occurs instantaneously. It is reasonable to model prey

switching via a piecewise-smooth dynamical system as long as predators are as-

sumed to behave as optimal foragers. The discontinuity in (3.4) comes from using

the principle of optimal foraging theory [120], which states that a predator chooses

a diet that maximises its growth. Hence, to determine the optimal choice for con-

sumption, we differentiate the mean energy intake rate with respect to the prey

preference, which is the parameter that the predator can adjust. It is not clear

whether in ecology there actually exist “discontinuous predators” (which switch
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their feeding strategy instantaneously, as is the case in our model). To our knowl-

edge, however, there is no evidence for any of the possible smooth approximations

that one can choose to model prey switching. Therefore, we use an abrupt switch

rather than a gradual switch and focus on a model with a discontinuity. We present

two smooth analogs of the piecewise-smooth system (3.4) in Chapter 4, where we

also comment on the differences and similarities between the models.

3.3 Analysis of the 1 predator-2 prey piecewise-

smooth model

In this section, we examine how the ideas from piecewise-smooth dynamical sys-

tems that we introduced in Section 2.1 manifest in the model (3.4). In particular,

we specify (3.4) at the switching manifold h = p1− aqp2 = 0 and compute analyt-

ical expressions for points at which there is a tangency between one of the vector

fields in (3.4) and the switching boundary (see Figures 2.1 and 2.2).

3.3.1 Regions of sliding, crossing, and escaping

The piecewise-smooth 1 predator-2 prey system with Lotka-Volterra interaction

terms in (3.4) contains a jump in the derivative of the population densities across

the discontinuity boundary h = 0. This jump makes (3.4) a Filippov system, so

its dynamics can interact with the switching boundary. The three types of such

dynamics are sliding, crossing, and escaping (see Figure 2.1). The condition (2.7)
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for sliding or escaping to occur in (3.4) is

Lf+hLf−h = (aqp2)
2 [(r1 − r2)2 − z2] < 0 . (3.5)

Thus, either sliding or escaping occurs in (3.4) for z2 > (r1−r2)2. When z2 < (r1−

r2)
2, a solution of (3.4) crosses the switching boundary because the components of

f+ and f− normal to h = 0 have the same sign. Therefore, trajectories that start

from one side of the boundary pass through h = 0 without evolving along it.

In stable sliding regions, the components of both f+ and f− that are normal to

h = 0 point towards the switching manifold, and trajectories reach sliding motion

in finite time. This occurs in (3.4) when

Lf+h < 0 < Lf−h =⇒ −z < r1 − r2 < z . (3.6)

Escaping (i.e., unstable sliding) occurs because the components of both f+ and

f− that are normal to h = 0 point away from h = 0. Trajectories that hit these

regions are repelled from the switching manifold in finite time. Escaping motion

is unattainable in simulations in forward time. Escaping occurs in (3.4) when

Lf+h > 0 > Lf−h =⇒ −z > r1 − r2 > z . (3.7)

However, escaping does not occur in (3.4) for physically meaningful quantities.
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3.3.2 Sliding vector field

The solution to (3.4) at the discontinuity h = 0 can be expressed using Filippov’s

differential inclusion [29]. According to Filippov’s method (see Section 2.10), the

flow of (3.4) at p1 = aqp2 is determined by a linear convex combination of the two

vector fields f− and f+ as follows:

fs =

(
1− Lf−h
Lf−h− Lf+h

)
f− +

Lf−h
Lf−h− Lf+h

f+ . (3.8)

Employing (3.8) and looking at h = 0, we thus see that the dynamics of (3.4) are

governed by the sliding vector field

fs =
1

2


(r1 + r2 − z)p1

(r1 + r2 − z)p2

eq1p1(r1 − r2 + z) + eq2p2(r2 − r1 + z)− 2mz



=
1

2


(r1 + r2 − z)aqp2

(r1 + r2 − z)p2

eq1aqp2(r1 − r2 + z) + eq2p2(r2 − r1 + z)− 2mz

 . (3.9)

The sliding vector field (3.9) is a linear convex combination of the two vector

fields f− and f+ on each side of the switching manifold h = p1−aqp2. The following

mechanisms drive the piecewise-smooth system in (3.4) to evolve according to

the sliding vector field (3.9). The vector field f− points towards the switching

manifold for a sufficiently large predator population (for z > r1 − r2) because the

predator prefers prey p1 (which has an advantage in growth rate compared to the

alternative prey), but it can also feed on the alternative prey p2. When the predator
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population is sufficiently small and the predator is feeding on the alternative prey

(i.e., when p1−aqp2 < 0), the preferred prey population p1 grows exponentially. As

a result, the quantity p1 − aqp2 increases as p1 becomes more abundant, whereas

the population p2 decreases because of predation. Consequently, the predator

switches to the preferred prey, which also contributes more to predator growth

than the alternative prey.

If the predator population is still small (i.e., when z < r1 − r2) when the

switch occurs, then the population of the preferred prey continues to grow after

the switch. This, in turn, supports predator growth. At the same time, the

population p2 grows exponentially. However, because of the increasing number of

predators that feed on p1 and the increasing number of alternative prey p2, the

quantity p1 − aqp2 eventually starts to decrease as predation catches up with the

growth of p1. At this point, f+ starts to point towards the switching manifold. The

vector field f− also points towards the switching manifold because the population

of the alternative prey p2 (if it is being eaten by the predator) would decrease in

the presence of a large predator population. Hence, at the switching manifold in

the sliding region (i.e., when z > r1 − r2), the predator is feeding on both prey

types because both f− and f+ point towards the switching manifold. In addition,

trajectories that enter the switching manifold cannot leave it if the preference

trade-off is sufficiently steep. We will discuss the reasons for this phenomenon in

Sections 3.4.1 and 3.4.2. Consequently, on the switching manifold—for which the

dynamics of the system are given by (3.9)—the predator feeds on both prey types

and the ratio of the prey populations tends towards aq.
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The divergence of the sliding vector field is determined by

∇ · fs =
∂f

(1)
s

∂p1
+
∂f

(2)
s

∂p2
+
∂f

(3)
s

∂z
= r1 + r2 − z + e(q1aq + q2)p2 − 2m, (3.10)

where f
(i)
s (i ∈ {1, 2, 3}) denotes the ith component of the sliding flow (3.9).

3.3.3 The equilibrium point

The sliding vector field (3.9) has an equilibrium point when fs(p̃1, p̃2, z̃) = 0. For

the system (3.4), there is a nontrivial pseudoequilibrium point at

p̃1 =
aqm(r1 + r2)

e(q1aqr1 + q2r2)
,

p̃2 =
m(r1 + r2)

e(q1aqr1 + q2r2)
, (3.11)

z̃ = r1 + r2 .

By evaluating the Jacobian of fs at (p̃1, p̃2, z̃), we find that its two eigenvalues are

the complex conjugate pair λ1,2, which satisfy the characteristic equation

λ21,2 −
m(r2 − r1)(q1aq − q2)

2(q1aqr1 + q2r2)
λ1,2 +

m(r1 + r2)

2
= 0 . (3.12)

The eigenvalues λ1,2 have negative real part when aq > q2/q1, are imaginary when

aq = q2/q1, and have positive real part when aq < q2/q1.
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3.3.4 Tangency points

The boundaries of sliding, crossing, and escaping are points at which there is a

tangency between the vector fields f− or f+ and the discontinuity boundary h = 0.

The three basic tangencies between a piecewise-smooth vector field and a switching

boundary are a fold, a cusp, and a two-fold (see Figure 2.2). Determining the tan-

gencies is crucial for studying the behaviour of a system at a switching boundary,

and it constitutes the first step for studying how dynamics in a piecewise-smooth

dynamical system differ from that in a smooth dynamical system [16]. As we dis-

cuss in Section 2.1.2.5, the tangency conditions for a fold (a quadratic tangency

between the vector field and the switching boundary) in (3.4) are

Lf+h = 0 =⇒ z = r1 − r2 , (3.13)

and

Lf−h = 0 =⇒ z = r2 − r1 . (3.14)

At a cusp there is a cubic tangency between the vector field and the switching

boundary, and there is a quadratic tangency between the sliding vector field and

the sliding or escaping boundary (see Section 2.1.2.5). For f+ in the 1 predator-2

prey system (3.4), the quadratic tangency is given by

L2
f+
h = aqp2

[
(r1 − z)2 − r22 − z(eq1aqp2 −m)

]
. (3.15)

Substituting Lf+h = 0 (i.e., z = r1 − r2) into (3.15) yields a cusp at

(p1, p2, z) = (m/(eq1),m/(eq1aq), r1 − r2) . (3.16)
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At (3.16), the sliding vector field (3.9) curves away from the discontinuity boundary

h = 0. Similarly, the condition for a quadratic tangency for f− is

L2
f−h = aqp2

[
(r2 − z)2 − z(m− q2p2) + r21

]
. (3.17)

Substituting Lf−h = 0 (i.e., z = r2 − r1) into (3.17) yields a cusp at

(p1, p2, z) = (aqm/(eq2),m/(eq2), r2 − r1) . (3.18)

At (3.18), the sliding vector field (3.9) curves away from the discontinuity boundary

h = 0. However, the cusp for f− does not occur in (3.4) for physically meaningful

quantities.

Studying the tangencies in a piecewise-smooth system makes it possible to

determine bifurcations that can occur when, for example, a limit cycle or an equi-

librium intersects a tangency point on the switching boundary. A bifurcation type

can be attributed to the tangency [60] (see Section 2.1). For example, because of

the presence of a cusp, the local flow near the tangency forces the trajectory of

the periodic orbit to first leave the switching boundary tangentially and then to

return to it in an adding-sliding bifurcation.

3.4 Numerical simulations

We now treat the slope aq of the preference trade-off in (3.1) as a bifurcation

parameter and study the 1 predator-2 prey system (3.4) numerically. We are

interested in the dynamics of (3.4) as the complex conjugate pair of eigenvalues
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of the pseudoequilibrium cross the imaginary axis. We will show that the system

undergoes a novel bifurcation that is similar to the adding-sliding bifurcation (see

Section 2.1.2.6).

The parameter aq gives the slope of the tilted switching manifold, and it cor-

responds biologically to the slope of the assumed linear trade-off in the predator’s

preference for prey. A large aq corresponds to a situation in which a small increase

in the predator’s desire to consume the preferred prey results in a large decrease

in its desire for the alternative prey. When aq → 0, a small specialisation in con-

suming the preferred prey requires only a small decrease in how much energy the

predator gains from eating the alternative prey. At aq = 0, the preference trade-

off no longer decreases (i.e., it is flat), which corresponds to a situation in which

specialisation in one prey has no effect on the desire for consuming the alternative

prey.

In Sections 3.4.1 – 3.4.3, we simulate (3.4) numerically in three different cases:

(1) aq > q2/q1, (2) aq = q2/q1, and (3) aq < q2/q1. These correspond, respectively,

to (1) the complex conjugate pair λ1,2 with negative real part, (2) the complex

conjugate pair λ1,2 with real part 0, and (3) the complex conjugate pair λ1,2 with

positive real part. To obtain our numerical solutions, we use the method developed

in [101] (see Section 2.1.2.8) for simulating Filippov systems. From Section 3.4.3

onwards, we focus on the region in which the complex conjugate pair of the system

(3.4) has positive real part and there exists a periodic orbit. In Section 3.4.5,

we show the periodic orbit period-doubles as we decrease aq further. In Section

3.4.6, we compute numerically a discontinuity map with the aim of obtaining an

analytical description of the novel bifurcation in which the periodic orbit is born.

Finally in Section 3.4.7, we compare the prey ratio of adding-sliding period-1 and
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period-2 orbit exhibited by the model (3.4) with data on cryptophyte (i.e., the

preferred prey type of ciliate-predators) and diatom prey (the alternative prey

type of ciliate-predators) collected from Lake Constance.

3.4.1 The pseudoequilibrium point

From our analytical results, we know that the pseudoequilibrium has a complex

conjugate pair of eigenvalues with negative real part when aq > q2/q1. In addition,

the divergence of the sliding vector field (3.10) evaluated at the pseudoequilibrium

(3.11) is negative. Thus, the pseudoequilibrium behaves as a sink when aq >

q2/q1. Accordingly, numerical simulations of (3.4) in this parameter regime have

trajectories that converge to the pseudoequilibrium in (3.11). See Figure 3.1 for

an example trajectory.

3.4.2 Sliding centres

At aq = q2/q1, the complex conjugate pair of eigenvalues λ1,2 have a real part

equal to 0, and the divergence of the sliding vector field evaluated at the pseu-

doequilibrium is also 0. Because the pseudoequilibrium is neither attracting nor

repelling in the linearised dynamics, every entirely sliding orbit is a periodic orbit

that surrounds the pseudoequilibrium (see Figure 3.2). Thus, the amplitude of a

periodic orbit depends on the point at which a trajectory intersects the switching

surface. In addition to these sliding periodic orbits, there exist periodic orbits that

cross the boundary between sliding and crossing regions (but which initially are

not entirely sliding) and converge slowly (with dimensional simulation times on
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Figure 3.1: Example trajectory of the 1 predator-2 prey model (3.4) for parameter
values aq = 4, q1 = 1, q2 = 0.5, r1 = 1.3, r2 = 0.26, e = 0.25, m = 0.14, and
β1 = β2 = 1. The system converges to the pseudoequilibrium (black circle) given
by (3.11). The predator’s diet is composed of both prey types when the system
dynamics evolves on the switching boundary h = 0 (shaded) according to the
sliding vector field (3.9).

the order of 103 days or larger) to an entirely sliding periodic orbit that is tangent

to the sliding-crossing boundary (see Figure 3.2).

At the bifurcation point aq = q2/q1, the dynamics of equation (3.4) on the

switching manifold are governed by the two-dimensional sliding vector field (3.9).

This system is effectively the Lotka-Volterra predator-prey system in Equation

(1.1). Therefore, we can find a first integral of the sliding vector field on the
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Figure 3.2: Example trajectory of (3.4) for parameter values aq = 0.5, q1 = 1,
q2 = 0.5, r1 = 1.3, r2 = 0.26, e = 0.25, m = 0.14, and β1 = β2 = 1. The
pseudoequilibrium (black circle) is surrounded by periodic orbits that evolve on
the switching manifold h = 0 in the stable sliding region (shaded). Periodic orbits
that reach the boundary between sliding and crossing eventually converge to the
periodic orbit that is tangent to the sliding boundary (blue trajectory).

switching manifold to show that the sliding vector field on the switching manifold

is a centre. First, we introduce the following change of coordinates:

u1 = p1 − aqp2 ,

u2 = aqp1 + p2 , (3.19)

u3 = z .
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The switching manifold h = p1 − aqp2 = 0 of the original system in (3.4) thereby

becomes u1 = 0. In the new coordinates (u1, u2, u3) in (3.19), the sliding vector

field (3.9) becomes

u̇1 = ṗ1 − aqṗ2 = f (1)
s − aqf (2)

s = 0 ,

u̇2 = aqṗ1 + ṗ2 = aqf
(1)
s + f (2)

s = (a2q + 1)p2(r1 + r2 − z) , (3.20)

u̇3 = ż = f (3)
s = ep2(r1 − r2)(q1aq − q2) + z(ep2(q1aq + q2)− 2m) ,

where f
(i)
s (i = 1, 2, 3) is the ith component of the sliding flow in (3.9). We

obtain p2 = u2/(1 + a2q) and z = u3 from (3.19) and substitute them into (3.20)

at the bifurcation point aq = q2/q1 to yield a two-dimensional sliding flow on the

switching manifold u1 = 0:

u̇2 = u2(a− u3)→
u̇2
u2

= a− u3 , (3.21)

u̇3 = u3(bu2 − c)→
u̇3
u3

= bu2 − c ,

where a = r1 + r2, b = 2eq2
1+(q2/q1)2

, and c = 2m. We let ξ = log u2 and η = log u3 to

obtain  ξ̇

η̇

 =

 0 −1

b 0


 eξ − c

b

eη − a

 , (3.22)

which has a centre at (ξ, η) = (log c/b, log a) with eigenvalues λ1,2 = ±i√ac. We

can now eliminate time from (3.22) by dividing ξ̇ by η̇:

dξ

dη
=
ξ̇

η̇
=

a− eη
beξ − c . (3.23)
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We then separate variables to obtain

(beξ − c)dξ = (a− eη)dη , (3.24)

which we integrate to get

beξ − cξ = aη − eη + C , (3.25)

where C is an arbitrary constant of integration. We carry out a Taylor expansion

of both sides of (3.25) around the fixed point (ξ, η) = (log c/b, log a). Defining

4ξ = ξ − log c/b and 4η = η − log a, the expansion becomes

c− c log
c

b
+
c

2
4ξ2 +O(4ξ3) = a log a− a+ C − a

2
4η2 +O(4η3) . (3.26)

Finally, by rearranging and discarding the higher-order terms, we can express the

sliding centres shown in Figure 3.2 as circles that satisfy

c

2
4ξ2 +

a

2
4η2 = c(log

c

b
− 1) + a(log a− 1) + C . (3.27)

The largest sliding centre in Figure 3.2 grazes the boundary between crossing

and sliding at r1− r2. Furthermore, the pseudoequilibrium in the u1-u2-u3-system

(3.20) is located at r1 + r2 on the u3- (or z-) axis. Thereby, we can calculate a

lower and an upper bound for the predator oscillations at the bifurcation point

aq = q2/q1. The piecewise-smooth system (3.4) predicts the predator population

oscillates between a minimum of r1 − r2 and a maximum of r1 + 3r2.

These analytically obtained upper and lower bounds are mirrored in the Lake

Constance data over the period 1979–1999 better for the abundance of the unselec-
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tive ciliate predator than that of the selective predator species (see Figure 3.3). For

the unselective predator, we simulate a sliding centre exhibited by the piecewise-

smooth system (3.4) with prey growth rates r1 = 1.3 and r2 = 0.26 obtained from

parameter fitting (see Appendix B). As concerns the unselective (i.e., filter feeder)

ciliate, there is some agreement between the data and the model prediction in

early May (see Figure 3.3a). If we choose prey growth rates r1 = 4 and r2 = 0.5,

the data and the upper and lower bounds predicted by the model (3.4) are closest

in mid May for the selective (i.e., interception feeder) ciliate predator (see Figure

3.3b). However, we note that in the data comparison for the unselective predator

species in Figure 3.3b, r1 = 4 is greater than what we obtain from our parameter

fitting (see Appendix B).
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Figure 3.3: (Dashed curves) Predator abundance z(t) for simulations of (3.4) [for
parameter values e = 0.25 m = 0.14 aq = 0.5 β1 = β2 = 1, (a) r1 = 1.3, r2 = 0.26,
and (b) r1 = 4, and r2 = 0.5] and (points) mean data calculated for the (a)
unselective and (b) selective predator species in spring in Lake Constance over
the period of 1979–1999. The unselective predator group is composed of data for
Rimostrombidum lacustris. The selective predator group is composed of data for
Balanion planctonicum.
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3.4.3 Adding-sliding periodic orbit

For aq < q2/q1, the pseudoequilibrium (3.11) of the sliding flow is repelling because

the complex conjugate pair of eigenvalues λ1,2 have negative real part. The sliding

vector field (3.9) behaves as a source (because ∇ · fs
∣∣
(p̃1,p̃2,z̃)

> 0). There is also a

periodic orbit. From our analytical calculations in Section 3.3.4, we know that the

vector field f+ has a cubic tangency with the switching boundary at the cusp at

(p1, p2, z) = (m/(eq1),m/(eq1aq), r1− r2). Because of the cusp, the local flow near

the tangency forces the trajectory of the periodic orbit to first leave the switching

boundary tangentially and then to return to it. In doing this, the periodic orbit

acquires a non-sliding segment before returning to the switching manifold h = 0

(see Figure 3.4).

One can detect adding-sliding periodic orbits using the sliding condition, as

there are two separate pieces of sliding trajectories when p1/(aqp2) = 1. Between

the sliding pieces, there is a non-sliding segment when p1/(aqp2) > 1. Using

numerical simulations of (3.4), we examine how the amplitude of the adding-sliding

periodic orbit measured from the pseudoequilibrium (p̃1, p̃2, z̃) in (3.11) scales with

the distance to the bifurcation point aqcrit = q2/q1. For aqcrit − aq < 0.1, we record

the amplitude as the difference in the maximum and minimum values of H − H̃,

G− G̃, and z − z̃, where

H = p1 − aqp2 , H̃ = p̃1 − aqp̃2 , G = aqp1 + p2 , G̃ = aqp̃1 + p̃2 .

Based on visual inspection, the scaling near aqcrit appears to be linear (see

Figure 3.5). For comparison, a linear scaling relation is known to arise for the

“generalised Hopf bifurcation” for piecewise-smooth dynamical systems discussed
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Figure 3.4: Example trajectory of (3.4) for aq = 0.4, q1 = 1, q2 = 0.5, r1 = 1.3,
r2 = 0.26, e = 0.25, m = 0.14, and β1 = β2 = 1. The system has a periodic orbit
that leaves the switching manifold (the stable sliding region is shaded) and returns
to it because of a cubic tangency between f+ and the switching manifold. Most
of the time, the predator feeds on both prey types because the system’s dynamics
evolves on the switching boundary according to the sliding vector field (3.9). With
these parameter values, the adding-sliding periodic orbit of (3.4) has a period of
approximately 20 days. In a single cycle, the alternative prey is not being predated
and p1/(aqp2) > 1 for approximately 5.5 days.

in [114]. In this context, such a generalised Hopf bifurcation refers to a periodic

orbit that is born when an equilibrium point of a planar, piecewise-smooth con-

tinuous system crosses the switching boundary. Recall that “continuous” is used

to describe piecewise-smooth systems with a degree of smoothness of 2 or higher

(see Definition 2.2) in which the trajectories always cross the switching boundary
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Figure 3.5: Amplitude of H − H̃ (blue), G − G̃ (red), and z − z̃ (black) of (3.4)
[for parameter values q1 = 1, q2 = 0.5, r1 = 1.3, r2 = 0.26, e = 0.25, m =
0.14, and β1 = β2 = 1] versus the distance aqcrit − aq < 0.1 from the bifurcation
point aqcrit = q2/q1. We calculate a least-squares fit of a straight line to the
amplitudes (calculated as the difference in the maximum and minimum values)
and the equations for these lines are (H − H̃) y = 0.26x (R2 ≈ 0.99); (G − G̃)
y = 0.16x− 0.43 (R2 ≈ 0.99); and (z − z̃) y = 0.38x− 0.47 (R2 ≈ 0.98).

without evolving along it [23]. In the generalised Hopf bifurcation, a complex

conjugate pair of eigenvalues of a piecewise-linear system (which is obtained by

linearising a piecewise-smooth system) have a negative real part on one side of the

switching boundary, a zero real part on the switching boundary, and a positive real

part on the other side of the switching boundary [114]. In a similar bifurcation

in three-dimensional piecewise linear systems—namely, in the focus-centre-limit

cycle bifurcation—the amplitude of the limit cycle scales as d2/3, where d is the

distance from the bifurcation point [34].

The bifurcation in (3.4), in which an adding-sliding periodic orbit arises from

a centre, has not (to our knowledge) been studied previously. Because a centre
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transitions to such a two-part periodic orbit, we call this a centre to two-part peri-

odic orbit (“C2PO”) bifurcation. In the C2PO bifurcation, adding-sliding periodic

orbits are born via a two-event sequence. First, there is a bifurcation reminiscent

of the standard Hopf bifurcation from smooth dynamical systems. This arises via

the behaviour of the eigenvalues of the sliding vector field fs, as the pseudoequi-

librium changes from attracting to repelling and a periodic orbit appears. Second,

as the distance to the bifurcation point increases, the periodic orbit grows and an

adding-sliding bifurcation ensues [23].

The C2PO bifurcation satisfies all four of the non-degeneracy conditions for an

adding-sliding bifurcation [23] (see Appendix A). Indeed, the C2PO bifurcation

resembles the standard adding-sliding bifurcation, in which a periodic orbit with a

sliding segment and a non-sliding segment is born from an entirely sliding periodic

orbit, but the way in which the periodic orbit is born is not quite the same. In

contrast to the standard adding-sliding bifurcation, the C2PO bifurcation includes

a family of entirely sliding centres (which we have proven are closed curves in

Section 3.4.2) at the bifurcation point. The standard adding-sliding bifurcation

has only one entirely sliding periodic orbit that grows to encompass a non-sliding

segment as the distance from the bifurcation point increases [23].
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3.4.4 Mechanism for the C2PO bifurcation

Using the change of coordinates we introduced in (3.19), we can write the sliding

vector field in the u2-u3-plane as

u̇2 = u2(r1 + r2 − u3) , (3.28)

u̇3 = e
u2

1 + a2q
(r1 − r2)(q1aq − q2) + u3(e

u2
1 + a2q

(q1aq + q2)− 2m) .

The system in (3.28) has a u2-nullcline determined by u3 = r1 + r2, and a u3-

nullcline determined by

u3 =

u2
1+a2q

e(r1 − r2)(q1aq − q2)
2m− u2

1+a2q
e(q1aq + q2)

. (3.29)

The pseudoequilibrium lies at the intersection of the nullclines and is given in the

u2-u3-system by

ũ2 =
2m(r1 + r2)(1 + a2q)

e[(r1 − r2)(q1 − aqq2) + (r1 + r2)(q1aq + q2)]
,

ũ3 = r1 + r2 . (3.30)

By studying the nullclines of the two-dimensional u2-u3-system, we find the follow-

ing mechanism for the C2PO bifurcation. For aq < aqcrit = q2/q1, the cusp (for f+

in the system (3.4)) (u2, u3) = ( m
eq1aq

(1 + a2q), r1− r2) lies at the intersection of the

boundary between crossing and sliding regions (i.e., u3 = r1 − r2) and one branch

of the hyperbola determined by the u3-nullcline in (3.29) (see Figure 3.6a). At

the bifurcation point aq = aqcrit = q2/q1, both the pseudoequilibrium and the cusp

move and become located on the same line (see Figure 3.6c). This happens at the
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same time as the eigenvalues of the pseudoequilibrium cross the imaginary axis in

the C2PO bifurcation. When aq > aqcrit = q2/q1, the pseudoequilibrium and the

cusp are no longer aligned on the same line (see Figure 3.6b). Thus, the C2PO

bifurcation involves two co-occurring events: (1) the eigenvalues of the pseudoe-

quilibrium cross the imaginary axis and (2) the cusp for f+ becomes aligned with

the pseudoequilibrium.

3.4.5 Period-doubling

We compute a bifurcation diagram for (3.4) by determining the local maxima of

the quantity p1/(aqp2) > 1 when aq → 0 and bq → q2. The period-1 adding-

sliding periodic orbit that emerges when aq < q2/q1 period-doubles as we decrease

aq from the bifurcation point. As we illustrate in Figure 3.7 (see Figure 3.8 for

example trajectories and sliding segments of a period-2, period-4, and chaotic

orbit), this suggests that there is a cascade to chaos as aq → 0. From a biological

perspective, aq → 0 corresponds to the situation in which there is little decrease

in the preference towards the alternative prey if the predator has an increase in

specialisation towards the preferred prey.
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Figure 3.6: The mechanism for the C2PO bifurcation in (3.4) represented on the
u2-u3-plane of the u1-u2-u3-system (3.20). (a) When aq < aqcrit = q2/q1, the
pseudoequilibrium is repelling (open grey circle). The cusp (open black circle) is
located at the intersection of the boundary between sliding and crossing (dashed
line) and the u3-nullcline (red curve). (c) At the bifurcation point aq = q2/q1,
the cusp moves to be aligned on the same line (i.e., the u3-nullcline) with the
pseudoequilibrium. (b) When aq > q2/q1, the cusp is located on the left branch
of the u3-nullcline and to the left of the attracting pseudoequilibrium (filled grey
circle). The u2- and u3-nullclines are given in red and an example trajectory is in
blue. We have shaded the sliding region.
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Figure 3.8: (Left) Example trajectories and (right) scaled prey ratio p1/(aqp2) of
(3.4) with (top) aq = 0.06, (middle) aq = 0.0035, and (bottom) aq = 0.0005 for
the parameter values q1 = 1, q2 = 0.5, r1 = 1.3, r2 = 0.26, e = 0.25, m = 0.14,
and β1 = β2 = 1.
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The following mechanisms drive the piecewise-smooth system in (3.4) to exhibit

the cascades seen in Figures 3.7 and 3.8. When aq = 0, we write the system in

(3.4) as

ẋ =


ṗ1

ṗ2

ż

 =



f+ =


(r1 − β1z)p1

r2p2

(eq1β1p1 −m)z

 , if h = β1p1 > 0

f− =


r1p1

(r2 − β2z)p2

(eq2β2p2 −m)z

 , if h = β1p1 < 0



. (3.31)

However, we note that the system (3.31) never crosses the boundary β1p1 = 0

from f+ to f− for physically meaningful values. Effectively, when aq = 0, the 1

predator-2 prey model in (3.4) is a Lotka-Volterra predator-prey system for z and

p1, while the alternative prey p2 can grow exponentially. The system in (3.31)

exhibits stable sliding for z > r1. At p1 = 0, the dynamics of (3.31) are governed

by the sliding vector field

fs =
1

2


0

(r1 + r2 − z)p2

z(eq2p2 −m)− r1eq2p2

 . (3.32)

The two-dimensional sliding flow (3.32) has an equilibrium point at (p̃1, p̃2, z̃) =

(0,m(r1 + r2)/(r2eq2), r1 + r2) with eigenvalues

λ1,2 =

r1m
r2
±
√(

r1m
r2

)2
− 4(r1 + r2)m

2
.
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For small (nonzero) aq, the predator population is sufficiently small and the

predator feeds on the alternative prey (i.e., when p1 − aqp2 < 0), the preferred

prey population p1 grows exponentially. However, the quantity p1− aqp2 increases

quickly after an increase in p1 population, because the population p2 decreases

due to predation. As a result, the predator switches to feed on the preferred prey,

and the alternative prey population p2 starts to grow exponentially. Therefore,

for small (nonzero) aq, the trajectories follow a limit cycle in the z-p1-phase plane

which allows p2 to reach a large population size. This phenomenon is seen as

large peaks in the prey ratio p1/(aqp2) in the bottom right panel of Figure 3.8.

Eventually, p1 is predated by z and the trajectories reach the sliding region. In

the case of aq = 0, when a trajectory hits the sliding region z > r1, the predator

population either increases or decreases, depending on whether the point at which

the switching boundary is reached is located to the left or to the right from a

branch of the z-nullcline z = r1eq2p2/(eq2p2 −m).

3.4.6 Numerical computations for calculating a normal form

for the “C2PO” bifurcation

Because bifurcation diagrams from dynamical systems that represent processes in

several different applications may look similar, it is necessary to classify (at least

near the bifurcation points) all possible bifurcations in a formal way. Thus, one of

the central aims of bifurcation theory is to assign each bifurcation a normal form,

and impose defining and non-degeneracy conditions , to describe and distinguish a

certain type of bifurcation from others. A normal form serves as an example system

for a certain type of bifurcation. In smooth dynamical systems, the calculation
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of a normal form involves using smooth and invertible parameter and coordinate

changes (and time-reparametrisations) to transform the dynamical system to its

simplest parameter-dependent form. The normal form is derived under the defining

and non-degeneracy conditions that are the equality and inequality conditions,

respectively, that specify a certain type of bifurcation [47,72].

In the case of smooth dynamical systems, there is theory for several different

kinds of bifurcations [72]. In Filippov-type piecewise-smooth dynamical systems,

there exists a classification for the principal codimension-1 1 discontinuity-induced

bifurcations that involve sliding (see Section 2.1.2.6). In these four cases—which

we recall are (1) adding-sliding, (2) crossing-sliding, (3) grazing-sliding, and (4)

switching-sliding—a limit cycle of a Filippov system interacts with the boundary

between sliding and crossing regions.

The aforementioned four sliding bifurcations can be described analytically with

normal-form maps [23]. The calculations of these maps include a local “discontinu-

ity map” [99] that is defined near the point at which the trajectory of a piecewise-

smooth system interacts with the discontinuity boundary. The discontinuity map

is needed to correct for the extra passage acquired in the bifurcation. For example,

in the general adding-sliding bifurcation, this extra passage is the non-sliding seg-

ment added to the trajectory when an entirely sliding periodic orbit is perturbed

and leaves the switching manifold before landing back on it. In the classification of

the sliding bifurcations, one is interested in a sliding bifurcation of a limit cycle and

thereby in obtaining a global Poincaré map (see Section 2.1.2.7) for the piecewise-

smooth vector field that exhibits a periodic orbit. Because such a Poincaré map

is constructed as a composition of several Poincaré maps, of which one is the

1That is, the difference between the dimension of the parameter space and the dimension of
the bifurcation boundary is 1.
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name Poincaré section maps from maps to location
PN Π zn zn+1 see Figure 3.9 (left)
P12 Π1 z1 ẑ2 see Figure 3.9 (right)
PDM - ẑ2 ẑ3 see Figure 3.9 (right)
P21 Π2 ẑ3 z4 see Figure 3.9 (right)

Table 3.1: A summary of the maps that we compute in this section. We compute
the global map PN by following a trajectory of (3.4) when aq < q2/q1 [see Figure
3.9 (left)]. We compute P12 and P21 by following the sliding flow (3.9) across the
boundary between sliding and crossing regions (see dashed lines in Figure 3.9),
and we compute PDM from the calculations for PN , P12, and P21.

discontinuity map, the resulting global Poincaré map is also discontinuous [23].

The C2PO bifurcation satisfies all of the defining and non-degeneracy condi-

tions of the adding-sliding bifurcation (see Appendix A). Thus, it will be possible

to take advantage of the calculations [23] for the adding-sliding bifurcation in com-

puting a normal-form map for the C2PO bifurcation. Therefore, the first step for

such a computation is to find a discontinuity map PDM that corrects for the extra

passage acquired as the periodic orbit undergoes adding-sliding. In the case of the

C2PO bifurcation, such a discontinuity map can be computed numerically using

Poincaré sections.

We compute PDM for the C2PO bifurcation as a combination of three maps:

A global map PN that takes into account, and two maps P12 and P21 that ignore,

the cusp between f+ and the switching boundary h = 0 [see Equation (3.16)]. For

the corresponding Poincaré sections and points that PN , P12, PDM , and P21 map,

see Figure 3.9 and Table 3.1.
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sliding region is shaded. (Left) The dashed line marks the boundary between the
sliding and crossing regions, and the location of the pseudoequilibrium is marked
with a black circle. (Right) The sliding region is extended beyond the bound-
ary between the sliding and crossing regions (marked with the dashed line). This
boundary is ignored and only sliding flow is considered in order to find the correc-
tion map PDM (red). The location of the (unstable) pseudoequilibrium is marked
with a black circle.

3.4.6.1 Calculation of the global map PN

We calculate PN with a Poincaré section Π located at the cusp given by Equation

(3.16) (see Figure 3.9 (left) for the location of Π shown in the case of aq < q2/q1).

Thus, for a point zn+1 on Π

zn+1 = PN(zn) . (3.33)

78



As expected from our numerical simulations in Section 3.4, there exists a periodic

orbit for aq < aqcrit = q2/q1. Hence, PN has a fixed point [see Figure 3.10 (top)]

and intersects with the line zn+1 = zn. At the bifurcation point aq = aqcrit = q2/q1,

there is a family of centres, of which the largest has a radius of about 0.6 [see

Figure 3.10 (bottom left)]. For aq > aqcrit > q2/q1, there exists an attracting

pseudoequilibrium [see Figure 3.10 (bottom right)].
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Figure 3.10: Numerical computations of PN in (3.33) for (top) aq = 0.4 < aqcrit ,
(bottom left) aq = 0.5 = aqcrit , and (bottom right) aq = 0.6 > aqcrit . The initial
distance (i.e., from point zn) to the pseudoequilibrium is given on the horizontal
axis. The vertical axis is the distance to the pseudoequilibrium after one iteration
of the map (i.e., zn+1). The red line is zn+1 = zn.
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3.4.6.2 Calculations of the local maps P12, P21, and PDM

In order to find the discontinuity map PDM [see Figure 3.9 (right)], we are only

interested in aq values near the bifurcation where the 1 predator-2 prey system

(3.4) exhibits an adding-sliding periodic orbit (i.e., aq = 0.4 < q2/q1). In addition,

we are only interested in centres that are greater than the largest entirely sliding

centre at the bifurcation when aq = q2/q1 (see the blue trajectory that reaches the

boundary between sliding and crossing, and slowly converges to the periodic orbit

that is tangent to the sliding boundary in Figure 3.2).

For the calculation of PDM from numerical simulations, we introduce the fol-

lowing matrix operation to represent a general mapping P from a point zn to

zn+1

zn+1 = Pzn =



z1n+1

z2n+1

...

zNn+1


=



P 1,1 0 · · · 0

0 P 2,2 · · · 0

...
...

. . .
...

0 0 · · · PNN





z1n

z2n
...

zNn


. (3.34)

Because P is diagonal, we can compute its entries from P i,i =
zin+1

zin
.

We use a similar approach that is presented in [23] to derive the discontinuity

maps for the four principal sliding bifurcations. Thus, we calculate the maps

P12 and P21 that ignore the cusp (and the boundary between sliding and crossing

regions) by following the sliding flow fs (3.9) of the 1 predator-2 prey system (3.4).

The locations of the Poincaré sections Π1 and Π2 for these maps are sketched in

Figure 3.9 (right). Therefore, if we start from a point z1 on Π1, and follow a

trajectory of the sliding flow (3.9) that reaches, and goes across, the boundary

80



between sliding and crossing [i.e., the dashed line in Figure 3.9 (right)], we reach

ẑ2 on Π2. For ẑ2, we have

ẑ2 = P12(z1) . (3.35)

Similarly, we can follow a trajectory of the sliding flow (3.9) from a point ẑ3 on Π2

that reaches, and goes across, the boundary between sliding and crossing before

reaching z4 located on Π1. For z4, we have

z4 = P21(ẑ3) . (3.36)

Thereby, the unknown discontinuity map PDM , which is the correction needed for

the non-sliding segment in the adding-sliding periodic orbit, relates the two points

ẑ2 and ẑ3 on Π2 by

ẑ3 = PDM(ẑ2) . (3.37)

Using Equations (3.35)–(3.37), we can write the returning point z4 on Π1 [see

Figure 3.9 (right)] as a combination of three maps:

z4 = P21 ◦ PDM ◦ P12(z1) . (3.38)

In addition, from our earlier computations for PN in (3.33), we know that z4 =

PN(z1). Thus, we substitute (3.36) to (3.38) to give

PN(z1) = P21(PDM(P12(z1))) . (3.39)

Finally, we obtain

PDM = [P21]
−1(PN(z1)) . (3.40)
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Considering each map in the matrix form that we gave in (3.34), and using the

equations above, we show a numerical computation of PDM in Figure 3.11.
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Figure 3.11: Numerical computations of (top left) P12, (top right) P21, and (bot-
tom) PDM . The initial distance (i.e., from point zn) to the pseudoequilibrium is
given on the horizontal axis. The vertical axis is the distance to the pseudoequi-
librium after one iteration of the map (i.e., zn+1). The red line is zn+1 = zn.

The numerical computations for the discontinuity map PDM are a necessary

step in the derivation of a globally correct Poincaré map for the C2PO bifurcation.

Above, we obtained a numerical description of the discontinuity map PDM that is

determined locally near the point where the interaction between the trajectory and

the boundary between sliding and crossing occurs. Using numerical computations
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similar to above combined with Taylor series expansions, we can derive an “in-

correct” map (for the whole period) that is determined in the region where there

is no interaction between the trajectories and the boundary between sliding and

crossing. By combining these computations with the computations above, we can

derive a (non-smooth) globally correct Poincaré map to describe the characteris-

tics of closed orbits exhibited by the 1 predator-2 prey system in (3.4). Finally,

by taking advantage of the calculations in [23] for the adding-sliding bifurcation,

we can compute a normal-form map for the C2PO bifurcation.

3.4.7 Comparison of 1 predator-2 prey model simulations

and planktonic protozoa-algae data

In this section, we compare the prey ratio of adding-sliding period-1 and period-2

orbits from the 1 predator-2 prey model (3.4) with data on cryptophyte and diatom

prey collected from Lake Constance in spring (see Section 1.2.2). We choose to

compare the scaled prey ratio p1/(aqp2) predicted by the model with the scaled

prey ratio calculated from the data because p1/(aqp2) = 1 indicates when the

dynamics of the 1 predator-2 prey system (3.4) are governed by the sliding vector

field (3.9) at the switching boundary.

Previous studies of the Lake Constance data set suggest that ciliates are the

most abundant herbivorous zooplankton group in spring, whereas cryptophytes

and diatoms are the dominant species groups in the phytoplankton community

[126]. Our motivation to compare the data and our prey-switching model is the

prey preference among ciliate species that actively select against diatom prey when

offered a mixed diet of both cryptophytes and diatom prey [94]. We restrict the
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time window of comparison to spring, as it has been suggested that predator-

prey feeding interactions are an important factor in explaining the ciliate-algal

dynamics in Lake Constance in that season [128]. Moreover, it is also believed that

in the spring such interactions have larger relative importance than environmental

conditions [116].

We use six different cryptophyte species as the group of preferred prey and three

different diatoms species to represent the ciliates’ alternative prey. We include

data for phytoplankton whose cell size is sufficiently small compared to the size

of ciliate predators and which dominate the algal community in Lake Constance

in spring [126]. For both species groups, we use linear interpolation to obtain

intermediate biomass values for each day of the year from approximately bi-weekly

measurements. We then calculate the mean of the 20 interpolated yearly data

between 1979 and 1999. These data exhibit an increasing trend. We remove the

trend by subtracting a least-squares fit of a straight line from the data. In Figure

3.12, we compare these data with the prey ratio that we obtain from simulations

of Equation (3.4). Although the model does not capture the increasing trend, it

successfully reproduces the periodic pattern early in the growing season when one

can argue that predator-prey interactions govern the protist-algae dynamics more

than physical driving forces in water masses that are rich in nutrients [116].

3.5 Discussion

We have combined adaptive predator behaviour and ecological trade-offs to model

the dynamics of a predator that feeds on a preferred and alternative prey as a
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Figure 3.12: (Dashed curves) Scaled prey ratio p1/(aqp2) for simulations of (3.4)
[for parameter values r1 = 1.3, r2 = 0.26, e = 0.25, m = 0.14, and β1 = β2 = 1];
(points) mean data calculated for the scaled prey ratio p1/(aqp2) in spring in Lake
Constance over the period 1979–1999; and (solid curves) processed data. The prey
ratios are scaled by (top left) aq = 0.4, (top right) aq = 0.2, and (bottom) aq =
0.06. For each panel, we obtain the processed data by subtracting a least-squares
fit of a straight line (dash-dotted lines) to the means of the data. The equations for
these lines are (top left) y = 0.08x+2.49, where the norm of the residuals is 10.97;
(top right) y = 0.17x+4.77, where the norm of the residuals is 21.94; and (bottom)
y = 0.57x + 15.91, where the norm of the residuals is 73.12. We then rescale the
detrended data to have a minimum of 0. The preferred prey p1 is composed
of data for Cryptomonas ovata, Cryptomonas marssonii, Cryptomonas reflexa,
Cryptomonas erosa, Rhodomonas lens, and Rhodomonas minuta. The alternative
prey group p2 is composed of data for small and medium-size Chlamydomonas spp.
and Stephanodiscus parvus.

piecewise-smooth dynamical system. The model in Equation (3.4) describes a

predator that can adaptively change its diet depending on the abundances of its
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preferred and alternative prey. We assumed a linear trade-off in prey preference

and analysed the dynamics of the system as we adjusted the slope of the trade-off.

To compensate for the preference, we assumed that the preferred prey has a larger

growth rate than the alternative prey.

The model predicts a steady state for the predator and prey populations as

long as the trade-off in prey preference is sufficiently steep. In other words, a

steady state occurs when a small increase in specialisation towards the preferred

prey would result in a large decrease in how much energy the predator could gain

from the alternative prey. As we decrease the slope of the preference trade-off,

a periodic orbit appears and period-doubles as the slope approaches 0. After

the bifurcation, the population densities oscillate and the prey ratio is no longer

constant. From a biological perspective, a mild trade-off suggests that a small

increase in the energy gained from the preferred prey would come at a small cost

in the energy gained from the alternative prey. We considered a linear preference

trade-off as a first step towards studying the effect of such a trade-off in a predator-

prey interaction in which prey switching occurs. Although several studies and

observations support the existence of trade-offs [66, 83], it is not clear what kind

of functional form they take. A previous model for population dynamics and prey

switching studied a convex (i.e., concave down) trade-off between the attack rate

and the degree of specialisation exhibited by a predator [3]. Concave relationships

have been formulated for the consumption of, and the energy obtained from, two

prey species in an approach in which these functions are plotted in the same picture

in order to solve the problem of optimal diet [106]. To develop a more complete

understanding of the effects of a preference trade-off on population dynamics, it

would be useful to consider generalisations of the model with nonlinear trade-off

86



functions. From a mathematical perspective, a nonlinear trade-off could lead to a

more complex switching boundary, which in turn could lead to different types of

bifurcation scenarios than in the current model.

We chose to use exponential prey growth to simplify analytical calculations.

An important generalisation is to consider logistic prey growth, as nutrient limi-

tation is one of the most important nonliving factors that can drive the temporal

pattern of phytoplankton growth [117]. However, it has been suggested that the

importance of nutrient limitation is less pronounced than protist grazing at the

beginning of a growth season [116] for water masses that are rich in nutrients. Al-

though considering logistic prey growth increases the number of parameters in the

model (in addition to making analytical calculations significantly more challeng-

ing), it has two key advantages: (1) it would expand the suitable time window for

comparing simulations with data in water masses that are rich in nutrients; and

(2) its less restrictive assumptions yield a model that is also reasonable in principle

for water masses with low nutrient levels [116]. In addition, such a generalisation

would result in a Filippov system with more than one steady state to interact with

the switching manifold and thereby create different dynamical behaviour than in

the current model with unlimited prey growth.

The 1 predator-2 prey system (3.4) describes a feeding interaction in which

there is a known predator preference and in which there is active selection against

an alternative prey. This model reproduces the periodicity in the scaled prey

ratio during the early growing season in Lake Constance, during which predator-

prey interaction has been suggested as an important driving factor for ciliate-algae

dynamics. However, it does not capture the increasing trend in the data. We spec-

ulate that a generalisation of the model that allows the prey growth to increase
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slowly in time might make it possible to also capture the increasing trend. We

motivate the time-dependent prey growth rate by the fact that the phytoplank-

ton production-to-biomass ratio calculated for Lake Constance exhibits a linear

increase in the prey growth in spring and a decrease in the autumn [39]. Scaling

the prey ratio by the time since the start of the spring would then allow us to test

whether growth is slowly increasing over the length of the growing season. How-

ever, we recall that Lake Constance (that in its natural state would be a lake with

a low level of productivity) was categorised as a lake with an intermediate level

of productivity when the data were collected [128] (see Section 1.2.2). Nowadays,

Lake Constance is again categorised as a lake with a low level of productivity [36].

Thus, it is possible that the increasing trend in the prey ratio reflects not only a

change in nutrient availability from early to mid growing season but also a change

in the lake’s level of productivity.

The model exhibits a novel (so-called “C2PO”) bifurcation, in which the dy-

namics transitions at the bifurcation point between convergence to a pseudoe-

quilibrium and periodic adding-sliding oscillations through a centre. This emer-

gence of adding-sliding orbits differs from the way in which they usually emerge

in piecewise-smooth dynamical systems [23]. The standard mechanism entails

the birth of an adding-sliding periodic orbit following a bifurcation in which the

eigenvalues of the pseudoequilibrium cross the imaginary axis, so that the pseu-

doequilibrium changes from attracting to repelling and an entirely sliding periodic

orbit is born. As the amplitude of the periodic orbit (which lies entirely on the

switching boundary) grows, the sliding periodic orbit eventually becomes tangent

to the boundary between sliding and crossing. Finally, this periodic orbit becomes

a trajectory that has a sliding segment separated by a non-sliding segment [23].
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We observed numerically that the amplitude scaling of the adding-sliding pe-

riodic orbit that emerges from the C2PO bifurcation appears to be linear in the

distance from the bifurcation, which is also the case for the generalised Hopf bi-

furcation in piecewise-smooth dynamical systems [114]. The C2PO bifurcation

resembles the focus-centre-limit cycle bifurcation in three-dimensional piecewise

linear systems [34]. However, the difference in amplitude scaling in the C2PO

and focus-centre-limit cycle bifurcation suggests that different normal forms char-

acterise these bifurcations [72]. In addition, the C2PO bifurcation satisfies all of

the defining and non-degeneracy conditions of the standard adding-sliding bifur-

cation [23]. Thus, by following the derivation of a normal-form map for a sliding

bifurcation [23], we started the construction of a normal form for the C2PO bi-

furcation by computing numerically the discontinuity map that is defined near

the point at which the trajectory of a piecewise-smooth system interacts with the

discontinuity boundary.

3.6 Conclusions

In this chapter, we combined two ecological concepts—prey switching and trade-

offs—and used the framework of piecewise-smooth dynamical systems to develop a

model of one predator that feeds on a preferred and an alternative prey. We derived

analytical expressions for the pseudoequilibrium, its eigenvalues, and the points

for tangencies between the two vector fields and the switching boundary. We then

confirmed our analytical results using numerical simulations, and we discovered a

novel bifurcation in which an adding-sliding periodic orbit is born from a centre.
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Based on numerical simulations close to the bifurcation point, the amplitude of

the adding-sliding periodic orbit seems to scale linearly with the distance from

the bifurcation point. In addition, we carried out numerical computations for

constructing a normal-form map to describe the centre to two-part periodic orbit

(“C2PO”) bifurcation.

Although we have motivated our investigation primarily from a biological per-

spective, it is also important to stress the utility of our model for development

of new theoretical understanding in piecewise-smooth dynamical systems. The

biological and mathematical motivations complement each other very well, and

investigating the condition for sliding corresponds to studying a scaled prey ratio,

and this in turn offers a possible link between ecological trade-offs and population

dynamics. Hence, the model offers an encouraging example of how combining the-

oretical and practical perspectives can give new insights both for the development

of theory of piecewise-smooth dynamical systems as well as for the development

of models of population dynamics with predictive power.

In this chapter, we have interpreted adaptation as flexible feeding behaviour of

a predator that has two feeding modes for consuming its preferred and alternative

prey. In addition, we have assumed that the switch in the predator’s feeding

behaviour is discontinuous. Therefore, in the next chapter, we will relax this

assumption and consider a gradual change in the predator’s feeding mode. Thus,

we will construct a smooth dynamical-system analog of (3.4) in two different ways

to enable a comparison of piecewise-smooth and smooth dynamical systems, and

to give insight into modelling an abrupt or a gradual change in feeding behaviour

and population dynamics.
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Chapter 4

Two smooth analogs of the

piecewise-smooth 1 predator-2

prey dynamical system

In Chapter 3, we constructed and studied the dynamical behaviour of a 1 predator-

2 prey piecewise-smooth system based on the assumption of an optimal forager

adaptively switching between two prey. In the piecewise-smooth system, the

change in the predator’s diet choice is discontinuous. In this chapter, we aim

to relax this assumption of a discontinuous switch and construct a 1 predator-2

prey system that allows a gradual change in the predator’s adaptive feeding be-

haviour. We do this in two different ways. First, we write a smooth analog for

the system in (3.4) by using hyperbolic tangent functions. Second, we obtain an-

other smooth analog of (3.4) by considering the desire to consume the preferred

prey—a parameter that changes abruptly across the discontinuity in the piecewise-

smooth system—as a variable that changes along with the population dynamics.

By carrying out stability analyses for the two smooth systems, simulating them in
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a biologically relevant parameter regime, and comparing model predictions with

data from Lake Constance, we gain insight into not only the differences between

the adaptive feeding behaviour of unselective (i.e., “filter feeders”) and selective

(i.e., “interception feeders”) ciliate predators, but also different regularisations of

a piecewise-smooth dynamical system.

4.1 Introduction

Traditionally, the parameters that represent ecologically important traits of preda-

tor and prey species in models of population dynamics are taken to be fixed quan-

tities (see Section 1.1.1). However, as we discussed in Section 1.1.2, there has

been an increasing number of both theoretical and empirical studies that report

the effects of phenotypic change in prey and/or predator species on predator-prey

population dynamics. It has become evident that evolutionary and ecological dy-

namics should not be considered separately in cases in which it is possible for

evolutionary change of traits to occur on a time scale comparable to that of the

ecological interactions [38]. Recent studies have demonstrated that rapid adap-

tation of traits affects ecological interactions and can be observed especially in

organisms with short lifespans, such as species in plankton communities [8, 61].

In Chapter 3, we considered an optimal forager that can adaptively change

its diet in response to the abundances of its preferred and alternative prey. The

assumption of an optimal forager results in an abrupt change of diet and a dis-

continuity between the two vector fields. However, it is unclear whether there

exist such “discontinuous predators”. However, no evidence has been reported
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(to our knowledge) for any of the possible smooth approximations that one can

choose to model prey switching. Therefore, in this chapter, we aim to relax the as-

sumption of a discontinuous switch and consider a 1 predator-2 prey system that

includes a gradual change in the predator’s adaptive feeding behaviour. Thus,

by reformulating the 1 predator-2 prey piecewise-smooth dynamical system as a

three-dimensional smooth dynamical system with hyperbolic tangent functions,

and as a four-dimensional smooth dynamical system, we construct two novel (to

our knowledge) models for a predator and its two prey that accounts for adaptive

feeding and an ecological trade-off in prey preference.

4.2 Smooth analog I of the piecewise-smooth 1

predator-2 prey dynamical system

A smooth analog of the piecewise-smooth 1 predator-2 prey system (3.4) can be

written using hyperbolic tangent functions as follows:

ṗ1 = (r1 − β1z)p1

(
1 + tanh(k(β1p1 − aqβ2p2))

2

)
+ r1p1

(
1− tanh(k(β1p1 − aqβ2p2))

2

)
≡ f(p1, p2, z) ,

ṗ2 = r2p2

(
1 + tanh(k(β1p1 − aqβ2p2))

2

)
+ (r2 − β2z)p2

(
1− tanh(k(β1p1 − aqβ2p2))

2

)
≡ g(p1, p2, z) , (4.1)

ż = (eq1β1p1 −m)z

(
1 + tanh(k(β1p1 − aqβ2p2))

2

)
+ (eq2β2p2 −m)z

(
1− tanh(k(β1p1 − aqβ2p2))

2

)
≡ h(p1, p2, z)
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where k determines the steepness in the transition of the predator’s feeding be-

haviour. To follow the assumptions that we made in the construction of the

piecewise-smooth system and thereby to facilitate the future comparison between

the piecewise-smooth and smooth system I, we take β1 = β2 = 1, as in Chapter 3,

in order to omit β1 and β2 in our analysis.

4.2.1 Linear stability analysis of the smooth system I

At a steady state, f(p1, p2, a) = g(p1, p2, z) = h(p1, p2, z) = 0. This yields

f = p1

(
r1 − z

(
1 + tanh(k(p1 − aqp2))

2

))
= 0

⇒ z

(
1 + tanh(k(p1 − aqp2))

2

)
= r1, (4.2)

g = p2

(
r2 − z

(
1− tanh(k(p1 − aqp2))

2

))
= 0

⇒ z

(
1− tanh(k(p1 − aqp2))

2

)
= r2 . (4.3)

Summing (4.3) and (4.2) and setting (4.3) equal to (4.2) yields the following equa-

tions for a steady state solution (p̃1, p̃2, z̃):

z̃ = r1 + r2

(eq1p̃1 −m)r1 + (eq2p̃2 −m)r2 = 0 (4.4)

tanh(k(p̃1 − aqp̃2)) =
r1 − r2
r1 + r2

,
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which can be solved numerically. The Jacobian of the system (4.1) is


r1 − z

2
B (1 + p1kC) zp1kaq

2
BC −p1

2
B

zp2k
2
BC r2 − z

2
C (1 + p2kaqB) −p2

2
C

eq1z
2
B (1 + p1kC)− eq2p2zk

2
BC eq2z

2
C (1 + p2kaqB)− eq1p1zkaq

2
BC eq1p1

2
B + eq2p2

2
C −m

 ,

(4.5)

where

A = tanh (k (p1 − aqp2)) ,

B = 1 + A ,

C = 1− A . (4.6)

At aq = p1/p2, tanh(k(p1 − aqp2)) = 0 and for any k the system (4.1) is given by

ṗ1 = p1

(
r1 −

z

2

)
,

ṗ2 = p2

(
r2 −

z

2

)
, (4.7)

ż = z

(
eq1p1 + eq2p2

2
−m

)
,

which has three equilibria. There is a saddle at (p1, p2, z) = (0, 0, 0). The eigen-

values of this saddle are λ1 = r1, λ2 = r1, and λ3 = −m. There is an unstable

focus-node (that exists for aq = 0) at (p1, p2, z) = (0, 2m/eq2, r2), and the eigen-

values are λ1 = r1 − r2/2 and λ2,3 = r2/4± 1/2
√
r2(r2/4− 2m). Finally, there is

another saddle (that exists for aq =∞) at (p1, p2, z) = (2m/eq1, 0, r1). The eigen-

values of this saddle are λ1 = r2 − r1/2 and λ2,3 = r1/4± 1/2
√
r1(r1/4− 2m).

When aq < p1/p2 and k → ∞, then tanh(k(p1 − aqp2)) → 1. In addition, the
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system (4.1) reduces to

ṗ1 = (r1 − z)p1 ,

ṗ2 = r2p2 , (4.8)

ż = (eq1p1 −m)z .

This has a nonhyperbolic equilibrium at (p̃1, p̃2, z̃) = (m/eq1, 0, r1) with one real

eigenvalue λ1 = r2, a pair of pure-imaginary eigenvalues λ2,3 = ±i√mr1, and

an unstable equilibrium at (p̃1, p̃2, z̃) = (0, 0, 0). The eigenvalues of the unstable

equilibrium are λ1 = r1, λ2 = r2, and λ3 = −m. If aq > p1/p2 and k → ∞, then

tanh(k(p̃1 − aqp̃2))→ −1 and the system (4.1) can be written as

ṗ1 = r1p1 ,

ṗ2 = (r2 − z)p2 , (4.9)

ż = (eq2p2 −m)z .

This has a nonhyperbolic equilibrium at (p̃1, p̃2, z̃) = (0,m/eq2, r2), where the real

eigenvalue is λ1 = r1 and the pair of purely imaginary eigenvalues is λ2,3 = ±√mr2,

and an unstable equilibrium at (p̃1, p̃2, z̃) = (0, 0, 0) with eigenvalues λ1 = r1,

λ2 = r2, and λ3 = −m. We summarize our findings of the linear stability analysis

above in Table 4.1.
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state p̃1 p̃2 z̃
I trivial ◦ 0 0 0

II p1 extinct 0 eq2p̃2 = 2m
1−tanh(k(−aq p̃2))

2r2
1−tanh(k(−aq p̃2))

k →∞ ? 0 m/(eq2) r2

III p2 extinct eq1p̃1 = 2m
1+tanh(k(p̃1))

0 2r1
1+tanh(k(p̃1))

k →∞ ? m/(eq1) 0 r1

VI coexistence1
aqm(r1+r2)+

eq2r2arctanh( r1−r2
r1+r2

)
k

e(q1aqr1+q2r2)

m(r1+r2)−
eq1r1arctanh( r1−r2

r1+r2
)

k

e(q1aqr1+q2r2)
r1 + r2

k →∞2 aqm(r1+r2)

e(q1aqr1+q2r2)
m(r1+r2)

e(q1aqr1+q2r2)
r1 + r2

1 see Figure 4.1c in Section 4.2.2
2 • if aq > q2/q1

Table 4.1: Summary of the linear stability analysis for the smooth system I in
Equation (4.1). We indicate an unstable steady state with an open circle, a non-
hyperbolic equilibrium point with a star, and a stable steady state with a filled
circle.

4.2.2 Numerical computations for the equilibrium point of

the smooth system I

We now vary the slope aq of the preference trade-off and the steepness of the prey

switching k and study the steady state solution of the smooth system I in (4.4) nu-

merically. With parameter values (r1, r2, q1, q2,m, e) = (1.3, 0.26, 1, 0.5, 0.14, 0.25),

the three eigenvalues of the steady state (4.4) have all a negative real part when

both aq and k are small (i.e., k / 3) (see Figure 4.1c). We choose these parameter

values from our parameter fitting of the piecewise-smooth model (see Appendix

B) and they are the same as the values we use to simulate the piecewise-smooth

system in Chapter 3. For larger aq values (i.e., aq > 0.5), the steady state is stable

when k is large (i.e., k ' 70). When aq is small, the unstable steady state solution

for the preferred prey p̃1 is at its minimum, except for a very small k, when p̃1
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reaches its maximum concentration at a stable equilibrium (see Figure 4.1a). The

steady-state concentration of the alternative prey p̃2 reaches its maximum values

when aq is small, except for a very small k, when p̃2 is at its minimum values (see

Figure 4.1b). This behaviour of the steady state in (4.4) suggests that k → 0 is a

singular limit of the smooth system I in (4.1).

4.2.3 Comparison of the smooth analog I model simula-

tions and planktonic protozoa-algae data

We now compare the predator abundance from the smooth system I model (4.1)

with data on ciliate predators collected from Lake Constance in spring (see Section

1.2.2). We choose to compare the predator abundances predicted by the model

with the data from years 1991 and 1998 because during these years the spring

bloom lasted for several weeks and ciliate biomasses exhibit recurring patterns of

increases followed by declines (see Section 1.2.2).

Similarly to Chapter 3, our motivation to compare the data and our prey-

switching model is the prey preference among ciliate species that actively select

against diatom prey when offered a mixed diet of both cryptophytes and diatom

prey [94]. In addition, ciliate predators can be categorised roughly in terms of

being more or less selective [136] (see Section 1.2.2). As well as in Chapter 3,

we restrict the time window of comparison to spring in the case of the smooth

system I, as it has been suggested that predator-prey feeding interactions are an

important factor in explaining the ciliate-algal dynamics in Lake Constance in that

season [128]. It is also believed that in the spring such interactions have larger

relative importance than environmental conditions [116].
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Figure 4.1: Numerical computations for the population density at equilibrium in
(4.4) [for parameter values e = 0.25, β1 = β2 = 1, r1 = 1.3, r2 = 0.26, and
m = 0.14] of the (a) preferred prey p̃1 and (b) alternative prey p̃2 at the indicated
values of the slope of the preference trade-off aq (vertical axis) and steepness of the
predator switching k (horizontal axis). We indicate the value of the prey density
at equilibrium in colour and compute numerically the steady-state solution of the
smooth system I in (4.4) using Matlab’s solve function. To study the stability of
these equilibria, we compute the eigenvalues of the Jacobian in (4.5) and indicate in
panel (c) a stable steady state (4.4) with a filled circle (i.e., all the three eigenvalues
of the Jacobian have a negative real part) and an unstable steady state with a cross
(i.e., at least one of the three eigenvalues of the Jacobian has a positive real part).

We use two different predator species. For the predator that is more selective,

we include data for Balanion planctonicum that hunt as interception feeders. By
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contrast, for the predator that is less selective, we consider data for Rimostrom-

bidum lacustris that sieve suspended food particles and are thus ciliate filter feeders

(see Section 1.2.2). For both species abundances, we first normalise the approx-

imately bi-weekly measurements by L2-norm (see Appendix B). In Figures 4.2

and 4.4, we compare these data with the normalised predator abundance that we

obtain from simulations of Equation (4.1).

In 1991, the model successfully reproduces the first increase in the selective

predator abundance early in the growing season, and predicts an oscillatory pattern

later during spring when one can argue that predator-prey interactions govern the

protist-algae dynamics more than physical driving forces in water masses that are

rich in nutrients [116] (see Figure 4.2, left). In addition, the parameter fitting

suggests that the best fit between the model prediction and data is found in a

parameter regime where the steepness of the switching function k of the selective

predator species is large (see Figure 4.3, left). In the case of the unselective

predator species, there is good agreement between the peak abundances predicted

by the model and seen in the data (see Figure 4.2, right). The target distribution

for the steepness of the prey switching suggests that a good fit between the data

and the model prediction is found with both small and large k values (see Figure

4.3, right). However, the predator oscillations predicted by the model are not

solely determined by k but depend also on the slope of the preference trade-off

aq. Indeed, the probability density estimate for aq in the case of the unselective

predator species in 1991 is concentrated on larger aq values than in the case of the

selective predator species (see Appendix B).

In 1998, the model successfully reproduces the peak abundances in the selective

predator species in spring (see Figure 4.4, left). In addition, our parameter fitting
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Figure 4.2: (Asterisks) Normalised predator abundance z(t) for simulations of
(4.1) [for parameter values e = 0.25, β1 = β2 = 1, (left) r1 = 1.06, r2 = 0.30,
m = 0.20, aq = 0.03, k = 84, and (right) r1 = 1.25, r2 = 0.79, m = 0.47 aq = 0.13,
k = 27] and (circles) normalised data calculated for (left) the selective and (right)
unselective predator groups in spring in Lake Constance in 1991. We normalise the
data and the model simulation using L2-norm (see Appendix B). The unselective
predator group is composed of data for Rimostrombidum lacustris. The selective
predator group is composed of data for Balanion planctonicum.
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Figure 4.3: Smooth probability density estimate at the most strict tolerance
level calculated using Matlab’s ksdensity function for the steepness of the
prey switching k of the (left) selective and (right) unselective predator species
in the 1 predator-2 prey smooth model (4.1) [for parameter values e = 0.25 and
β1 = β2 = 1] using the ABC SMC method [129] (steps 1–7). We show here
only the target distribution of k, for probability denstity estimates at intermediate
tolerance levels, and for other parameters, see Appendix B.
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suggests that adaptive feeding of a selective predator would be best represented

with a steep switching function (i.e., with a large k value of the tanh function

in Equation (4.1)) (see Figure 4.5, left). Similarly to year 1991, the probability

density estimate for k in the case of the unselective predator is more stretched

than in the case of the selective predator (see Figure 4.5, right). Furthermore, the

model successfully reproduces the oscillatory pattern in the unselective predator

species in 1998, when the feeding behaviour of a unselective predator is represented

with a shallow switching function in the model in (4.1) (see Figure 4.4, right). For

more details of the parameter fitting, and for the distributions of k at intermediate

steps of the parameter fitting, see Appendix B.
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Figure 4.4: (Asterisks) Normalised predator abundance z(t) for simulations of
(4.1) [for parameter values e = 0.25, β1 = β2 = 1, (left) r1 = 1.07, r2 = 0.58,
m = 0.27, aq = 0.08, k = 43, and (right) r1 = 1.75, r2 = 0.71, m = 0.86 aq = 0.06,
k = 32] and (circles) normalised data calculated for (left) the selective and (right)
unselective predator groups in spring in Lake Constance in 1998. We normalise the
data and the model simulation using L2-norm (see Appendix B). The unselective
predator group is composed of data for Rimostrombidum lacustris. The selective
predator group is composed of data for Balanion planctonicum.
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Figure 4.5: Smooth probability density estimate at the most strict tolerance
level calculated using Matlab’s ksdensity function for the steepness of the
prey switching k of the (left) selective and (right) unselective predator species
in the 1 predator-2 prey smooth model (4.1) [for parameter values e = 0.25 and
β1 = β2 = 1] using the ABC SMC method [129] (steps 1–7). We show here
only the target distribution of k, for probability denstity estimates at intermediate
tolerance levels, and for other parameters, see Appendix B.

4.3 Smooth analog II of the piecewise-smooth 1

predator-2 prey dynamical system

We begin the reformulation of the piecewise-smooth system (3.4) as a four-dimensional

smooth system by first constructing the equation for the temporal evolution of a

predator population (z) and its preferred and alternative prey populations (p1 and

p2, respectively). We then define an expression for the temporal evolution of the

predator’s desire to consume the preferred prey (q) that undergoes rapid evolution

(or phenotypic plasticity).

103



4.3.1 Ecological dynamics

In our reformulation of the 1 predator-2 prey piecewise-smooth system as a smooth

system with predator trait evolution, we assume that the predator’s desire q to

consume the preferred prey is bounded between its smallest and largest feasible

values (qS and qL, respectively). We make this assumption to obtain a smooth

system that is as similar to the piecewise-smooth system (3.4) as possible. Thus,

we require that the extreme when q is at its maximum (q = qL), corresponds

to the case in which the predator fitness is maximised with a large preference

towards the preferred prey (q1 = q1L) in the piecewise-smooth 1 predator-2 prey

system (3.4). Similarly, we require that the extreme when q is at its minimum

(q = qS) corresponds to the case in which the predator fitness is maximised with

a small preference towards the preferred prey (q1 = q1S) in the piecewise-smooth

1 predator-2 prey system (3.4). For simplicity—and to ensure similarity to the

piecewise-smooth system (3.4)—we consider exponential prey growth and linear

functional response between the predator growth and prey abundance. This yields

the following system of differential equations for the population dynamics of the 1

predator-2 prey smooth system II:

dp1
dt

= r1p1 − (q − qS)β1p1z ,

dp2
dt

= r2p2 − (qL − q)β2p2z , (4.10)

dz

dt
= e(q − qS)β1p1z + e(qL − q)q2β2p2z −mz ,

where r1 and r2 (with r1 > r2 > 0) are the respective per capita growth rates

of the preferred and alternative prey, β1 and β2 are the respective death rates of
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the preferred and alternative prey due to predation, e > 0 is the proportion of

predation that goes into predator growth, q2 ≥ 0 is nondimensional parameter

that represents the extent of preference towards the alternative prey, and m > 0

is the predator per capita death rate per day. We will construct the equation for

the temporal evolution of q in Section 4.3.2.

To follow the assumptions that we made in the construction of the piecewise-

smooth system and thereby to facilitate the future comparison between the piecewise-

smooth and smooth system II, we take β1 = β2 = 1, as in Chapter 3, in order to

omit β1 and β2 in our analysis in Section 4.3.4. Hence, we assume that the preda-

tor exhibits adaptive feeding behaviour by adjusting its preference toward—rather

than its attack rate on—the governing prey densities. Similarly, to compensate

for the difference in prey preference, we assume that the growth rate of the pre-

ferred prey is greater than that of the alternative prey. In addition, we assume

that a small preference towards the preferred prey amounts to a feeding mode of

consuming only the alternative prey (qS = 0) and that a large preference towards

the preferred prey amounts to a feeding mode of consuming only the preferred

prey (qL = 1). These assumptions simplify the system (4.10) representing the

population dynamics of the smooth 1 predator-2 prey system II to

dp1
dt

= r1p1 − qp1z ,
dp2
dt

= r2p2 − (1− q)p2z , (4.11)

dz

dt
= eqp1z + e(1− q)q2p2z −mz .
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4.3.2 Evolutionary dynamics

In reformulating the three-dimensional piecewise-smooth dynamical system (3.4)

as a four-dimensional smooth system (4.13), we describe the rate of change of the

predator’s desire to consume the preferred prey by a bounding function that limits

the predator trait between its smallest (qS = 0) and largest (qL = 1) feasible value.

Futhermore, for the similarity between the four-dimensional smooth dynamical

system II and the three-dimensional piecewise-smooth system, we will determine

that the rate of change of the mean trait value is proportional to the quantity

p1 − aqp2, which we derived as the condition for prey switching using optimal

foraging theory in Chapter 3. Thus, the temporal evolution of the predator trait

takes the following form:

dq

dt
= q(1− q) (p1 − aqp2) . (4.12)

where aq (similarly to Chapter 3) is the slope of the prey preference trade-off.

4.3.3 Coupled ecological and evolutionary dynamics

By combining the ecological dynamics in (4.11) with the evolutionary dynamics in

(4.12), we obtain the following smooth 1 predator-2 prey system II with predator
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evolution:

dp1
dt

= ṗ1 = g1(p1, p2, z, q) = r1p1 − qp1z ,
dp2
dt

= ṗ2 = g2(p1, p2, z, q) = r2p2 − (1− q)p2z , (4.13)

dz

dt
= ż = g3(p1, p2, z, q) = eqp1z + e(1− q)q2p2z −mz ,

dq

dt
= q̇ = f(p1, p2, q) = q(1− q)(p1 − aqp2) .

When p1 > aqp2 in the piecewise-smooth system (3.4), the predator feeds only on

the preferred prey and the dynamics of the piecewise-smooth 1 predator-2 prey

system (3.4) are governed by f+. Because of our similar assumptions for smooth

analog II, the system in (4.13) reduces to f+ in (3.4) when q = 1. Likewise, the

vector field of the smooth system II (4.13) corresponds to f− of the piecewise-

smooth system in (3.4) when q = 0, and the predator’s diet is composed solely of

the alternative prey type.

4.3.4 Linear stability analysis of the smooth system II

The system in (4.13) has an equilibrium point when g1(p̃1, p̃2, z̃, q̃), g2(p̃1, p̃2, z̃, q̃),

g3(p̃1, p̃2, z̃, q̃), and f(p̃1, p̃2, z̃, q̃) are zero. The smooth model II in (4.13) has four

equilibria (see Table 4.2). We note that the predator and prey densities at the

steady state IV are equivalent to those at the equilibrium point (when q1 = 1)

of the piecewise-smooth 1 predator-2 prey model (3.4) we analysed in Section

3.3.3. We analyse the linear stability of these four equilibria by calculating the
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state p̃1 p̃2 z̃ q̃
I 0 0 0 arbitrary
II 0 m/(eq2) r2 0
III m/e 0 r1 1

IV aqm(r1+r2)

e(r1aq+r2q2)
m(r1+r2)

e(r1aq+r2q2)
r1 + r2

r1
r1+r2

Table 4.2: Four equilibria of the smooth system II in Equation (4.13).

eigenvalues of the Jacobian of the system in (4.13) evaluated at the equilibria:

J =



∂g1
∂p1

∂g1
∂p2

∂g1
∂z

∂g1
∂q

∂g2
∂p1

∂g2
∂p2

∂g2
∂z

∂g2
∂q

∂g3
∂p1

∂g3
∂p2

∂g3
∂z

∂g3
∂q

∂f
∂p1

∂f
∂p2

∂f
∂z

∂f
∂q



∣∣∣∣∣∣∣∣∣∣∣∣∣
(p̃1,p̃2,z̃,q̃)

(4.14)

=



r1 − q̃z̃ 0 −q̃p̃1 −p̃1z̃

0 r2 − (1− q̃)z̃ −(1− q̃)p̃2 p̃2z̃

eq̃z̃ e(1− q̃)q2z̃ eq̃p̃1 + e(1− q̃)q2p̃2 −m ep̃1z̃ − eq2p̃2z̃

q̃(1− q̃) −aq q̃(1− q̃) 0 (1− 2q̃)(p̃1 − aqp̃2)


.

We present our findings of the linear stability analysis in Table 4.3.

Steady state I is the trivial steady state of the system. Biologically, steady

state II corresponds to a situation where only the alternative prey and predator

are present. Steady state III represents a situation in which the population of the

alternative prey is zero.

Steady state IV is the most interesting state biologically because at state IV, all

three population densities are nonzero. At the steady state IV, which is equivalent

to the pseudoequilibrium of the piecewise-smooth system (3.4) with q̃ = r1/(r1 +
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r2), the Jacobian becomes

J =



0 0 −r1aqm
e(r1aq+r2q2)

−aqm(r1+r2)2

e(r1aq+r2q2)

0 0 −r2m
e(r1aq+r2q2)

m(r1+r2)2

e(r1aq+r2q2)

er1 er2q2 0 e(aq−q2)m(r1+r2)2

e(r1aq+r2q2)

r1r2
(r1+r2)2

−aqr1r2
(r1+r2)2

0 0


. (4.15)

When aq = q2, the four eigenvalues of the state IV satisfy the characteristic equa-

tion

λ41,2,3,4 +
m[2r1r2 + e(r21 + r22)]

e(r1 + r2)
λ21,2,3,4 +

m2r1r2
e

= 0 . (4.16)

Instead of analysing Equation (4.16) directly, we write u = λ2, and study the

following equation:

u2 +
m[2r1r2 + e(r21 + r22)]

e(r1 + r2)
u+

m2r1r2
e

= 0 . (4.17)

Similarly to Chapter 3, we are interested only in physically meaningful parameter

values (i.e., r1, r2, q2, m, e, aq > 0). Therefore, the intercept of the Equation (4.17)

is located on the positive vertical axis and Equation (4.17) reaches its minimum

when ui is less than zero, i = 1, 2. Thus, the two solutions u1 and u2 to Equation

(4.17) are both real and less than zero. As a result, the four eigenvalues λ1,2,3,4

that satisfy Equation (4.16) consist of two complex conjugate pairs with zero real

part, λ1,2 = ±√u1i and λ3,4 = ±√u2i, where u1 and u2 satisfy Equation (4.17).

Furthermore, the steady state IV is nonhyperbolic when aq = q2.

For aq 6= q2 (and r1 6= r2), the eigenvalues of the state IV satisfy the following
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state description λ1 λ2 λ3 λ4
I trivial r1 r2 −m 0

II p1 extinct r1
√
m/(eq2)i −

√
m/(eq2)i −aqm/(eq2)

III p2 extinct
√
mr1i r2 −√mr1i −m/e

IV coexistence

aq = q2

√
u1i −√u1i

√
u2i −√u2i ,

where ui, i = 1, 2 satisfies Equation (4.17)
aq 6= q2 see Equation (4.18)

Table 4.3: Summary of the linear stability analysis for the smooth system II in
Equation (4.13) that we calculate in this section.

characteristic equation

λ41,2,3,4 +

[
aqr1r2m+

me(aqr
2
1 + q2r

2
1) + aqr1r2m

e(aqr1 + q2r2)

]
λ21,2,3,4 (4.18)

+
aqr1r2m

2(aq − q2)(r1 − r2)
e(aqr1 + q2r2)

λ1,2,3,4 +
2aqr1r2m

2(r1 + r2)

e(aqr1 + q2r2)
= 0 .

Solving Equation (4.18) numerically, we find that the real parts of the eigenvalues

of the steady state IV cross the imaginary axis at aq = q2 from opposite directions,

and in pairs of two eigenvalues. In other words, in the neighbourhood of aq 6= q2,

the real part of two of the eigenvalues has a negative sign, while the real part of

the other two eigenvalues has a positive sign.

4.3.5 Comparison of the smooth analog II model simula-

tions and planktonic protozoa-algae data

In this section, we compare the predator abundance from the smooth system II

model (4.13) with data on ciliate predators collected from Lake Constance in spring

(see Section 1.2.2). Similarly to the parameter fitting of the smooth model I in
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Section (4.2.3), we choose to compare predator abundance predicted by the model

with the data from years 1991 and 1998, when the spring bloom lasted for several

weeks and ciliate biomasses exhibit recurring patterns of increases followed by

declines (see Section 1.2.2).

Similarly to Chapter 3, and to the smooth system II in Section 4.2.3, our

motivation to compare the data and our third prey-switching model is the prey

preference among ciliate species that actively select against diatom prey when

offered a mixed diet of both cryptophytes and diatom prey [94]. In contrast to

our procedure for the smooth system II, we combine the total predator abundance

from the two different predator species. Thus, the diversity of the predator group

is represented through the dynamics of the mean predator trait q in our smooth

model II (4.13). We combine the data for the total predator abundance from

data for the selective predator Balanion planctonicum that hunt as interception

feeders, and unselective predator Rimostrombidum lacustris that hunt as filter

feeders (see Section 1.2.2). Similarly to the data comparison in Section 4.2.3, we

first normalise the total predator abundance composed of the approximately bi-

weekly measurements by L2-norm (see Appendix B). However, in contrast to the

parameter fitting we carry out for the data comparison in Section 4.2.3, in the

parameter fitting for the smooth system II, we fix the prey growth rates based

on the results we obtained in the parameter fitting for the smooth system I. In

data comparison of the smooth system II model (4.13), we fit the total predator

mortality rate m and the perturbance ν from the nonhyperbolic steady state IV

when aq = q2 (for more details of the parameter fitting, see Appendix B). In

Figures 4.6 and 4.8, we compare normalised Lake Constance data with the total

predator abundance (i.e., z(t)) and the predator trait dynamics (i.e., q(t)) that we
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obtain from simulations of the smooth system II model (4.13).

In year 1991, the model reproduces the large increases in the total predator

abundance in spring, when one can argue that predator-prey interactions govern

the protist-algae dynamics more than physical driving forces in water masses that

are rich in nutrients [116] (see Figure 4.6). As a result, the model prediction for

the predator trait dynamics suggests that during peak abundances, the predator

population is feeding mostly on the predferred prey (i.e., q is near 1) (see Figure

4.7, top). Importantly, the peaks in the scaled prey ratio p1/(aqp2) are associated

with q near 1 which is similar to the model prediction of our 1 predator-2 prey

piecewise-smooth system (3.4) in Chapter 3 (see Figure 4.7, bottom). When the

scaled prey ratio is low, the model predicts that the predator’s diet choice has a

quick transition from a mixed diet (i.e., q ∈ (0, 1)) to the alternative prey (i.e,

q = 0) (see Figure 4.7, bottom).

In year 1998, the smooth model II (4.13) successfully reproduces the timings

of the peak abundances in the total predator abundance in spring, when we again

assume that predator-prey interactions govern the protist-algae dynamics more

than physical driving forces in water masses that are rich in nutrients [116] (see

Figure 4.8). When we fit the model to data from year 1998, the predator trait

dynamics show less pronounced switching than in the model prediction for year

1991, when the predators’ diet was mostly composed of either the preferred or the

alternative prey. The model predicts that during high predator abundance, either

of the unselective or the selective predator, the total predator population is feeding

on the preferred prey (i.e., q = 1) (see Figure 4.9, top). Based on visual inspection,

the model predicts that the predator population has a mixed diet (i.e., q ∈ (0, 1))

for longer periods of time than in year 1991. Similarly to year 1991, and to the
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mean data for years 1979–1999 we use in the data comparison of the piecewise-

smooth model (3.4) in Chapter 3, there is a periodicity in the calculated scaled

prey ratio. However, for year 1998, a large scaled prey ratio is not necessarily

associated with q = 1 (see Figure 4.9, bottom).
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Figure 4.6: (Asterisks) Normalised total predator abundance z(t) for simulations of
(4.13) (for parameter values e = 0.25, β1 = β2 = 1, r1 = 1, r2 = 0.4, aq, q2 = 0.5,
m = 0.26, and ν = 4.8, and initial values [p1(0), p2(0), z(0), q(0)] = [aqm(r1 +
r2)/[e(r1aq+r2q2)],m(r1+r2)/[e(r1aq+r2q2)], ν(r1+r2), r1/(r1+r2)]) and (circles)
normalised data calculated for the total predator abundance in spring in Lake
Constance in 1991. We normalise the data and the model simulation using L2-
norm (see Appendix B). The total predator adunbance is composed of data for the
unselective predator Rimostrombidum lacustris and the selective predator Balanion
planctonicum.
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Figure 4.7: (Grey curve) Predator trait dynamics q(t) from simulations of (4.13)
(for parameter values e = 0.25, β1 = β2 = 1, r1 = 1, r2 = 0.4, aq, q2 = 0.5,
m = 0.26, and ν = 4.8, and initial values [p1(0), p2(0), z(0), q(0)] = [aqm(r1 +
r2)/[e(r1aq + r2q2)],m(r1 + r2)/[e(r1aq + r2q2)], ν(r1 + r2), r1/(r1 + r2)]). (Cir-
cles) Normalised data calculated for the (blue) preferred prey, (cyan) alternative
prey, (red) unselective predator, and (magenta) selective predator group in spring
in Lake Constance in 1991. (Asterisks) Normalised prey data calculated for the
scaled prey ratio p1/(aqp2) in Lake Constance in spring 1991. We normalise the
data and the model simulation using L2-norm (see Appendix B). The preferred
prey p1 is composed of data for Cryptomonas ovata, Cryptomonas marssonii, Cryp-
tomonas reflexa, Cryptomonas erosa, Rhodomonas lens, and Rhodomonas minuta.
The alternative prey group p2 is composed of data for small and medium-size
Chlamydomonas spp. and Stephanodiscus parvus. The unselective predator group
is composed of data for Rimostrombidum lacustris. The selective predator group
is composed of data for Balanion planctonicum.
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Figure 4.8: (Asterisks) Normalised total predator abundance z(t) for simulations of
(4.13) (for parameter values e = 0.25, β1 = β2 = 1, r1 = 1, r2 = 0.4, aq, q2 = 0.5,
m = 0.19, and ν = 3.0, and initial values [p1(0), p2(0), z(0), q(0)] = [aqm(r1 +
r2)/[e(r1aq + r2q2)],m(r1 + r2)/[e(r1aq + r2q2)], ν(r1 + r2), r1/(r1 + r2)]). (Circles)
Normalised data calculated for the total predator abundance in spring in Lake
Constance in 1998. We normalise the data and the model simulation using L2-
norm (see Appendix B). The total predator adunbance is composed of data for the
unselective predator Rimostrombidum lacustris and the selective predator Balanion
planctonicum.
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Figure 4.9: (Grey curve) Predator trait dynamics q(t) from simulations of (4.13)
(for parameter values e = 0.25, β1 = β2 = 1, r1 = 1, r2 = 0.4, aq, q2 = 0.5,
m = 0.19, and ν = 3.0, and initial values [p1(0), p2(0), z(0), q(0)] = [aqm(r1 +
r2)/[e(r1aq + r2q2)],m(r1 + r2)/[e(r1aq + r2q2)], ν(r1 + r2), r1/(r1 + r2)]). (Cir-
cles) Normalised data calculated for the (blue) preferred prey, (cyan) alternative
prey, (red) unselective predator, and (magenta) selective predator group in spring
in Lake Constance in 1991. (Asterisks) Normalised prey data calculated for the
scaled prey ratio p1/(aqp2) in Lake Constance in spring 1998. We normalise the
data and the model simulation using L2-norm (see Appendix B). The preferred
prey p1 is composed of data for Cryptomonas ovata, Cryptomonas marssonii, Cryp-
tomonas reflexa, Cryptomonas erosa, Rhodomonas lens, and Rhodomonas minuta.
The alternative prey group p2 is composed of data for small and medium-size
Chlamydomonas spp. and Stephanodiscus parvus. The unselective predator group
is composed of data for Rimostrombidum lacustris. The selective predator group
is composed of data for Balanion planctonicum.
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state description smooth I smooth II piecewise-smooth
I trivial ◦ ? ◦
II p1 extinct ?1 ? ?
III p2 extinct ?1 ? ?
IV coexistence •2 ◦,?3 •4
1 as k →∞
2 stable if aq > a∗q(k) (see Figure 4.1c) where a∗q(k)→ q2/q1 as
k →∞

3 centre if aq = q2
4 stable if aq > q2/q1

Table 4.4: Summary of the linear stability analysis for the smooth system I in
Equation (4.1), smooth system II in Equation (4.13), and piecewise-smooth system
in Equation (3.4). We indicate an unstable steady state with an open circle, a
nonhyperbolic equilibrium point with a star, and a stable steady state with a filled
circle. The densities of the two prey and predator populations at the coexistence
state IV [i.e., (p1, p2, z) = (p̃1, p̃2, z̃)] in the smooth system II (see state IV in
Table 4.2) are equivalent to the population densitites at the pseudoequilibrium of
the piecewise-smooth system [see Equation (3.11)]. In the smooth system I, the
population densities at the coexistence equilibrium point (that lies on the switching
plane p1 = aqp2 as k →∞) are (p1, p2, z) = (p̃1 + δp1 , p̃2 − δp2 , z̃)1(see Figures 4.1a
and 4.1b) where δp1 ,δp2 → 0 as the slope of the hyperbolic tangent k →∞.

4.4 Discussion

Numerical simulations demonstrate that the piecewise-smooth system (3.4) and

its smooth analog I (4.1) produce similar behaviour as long as the steepness of

the hyperbolic tangent k is sufficiently large. In particular, both systems settle

to a steady state for aq > q2/q1 and to a periodic orbit for aq < q2/q1. However,

when the steepness of the transition in the hyperbolic tangent k is small, then the

smooth system I (4.1) predicts that the predator and the two prey also coexist at

steady state levels (instead of oscillating) when aq < q2/q1 (see Table 4.4).

1δp1
=

e2(q1aqr1+q2r2)q2r2arctanh
(

r1−r2
r1+r2

)
k , δp2

=
e2(q1aqr1+q2r2)q1r1arctanh

(
r1−r2
r1+r2

)
k
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The smooth dynamical systems I (4.1) and II (4.13) allow one to use standard

theory to determine the stability of an equilibrium using linear stability analysis

and to study bifurcations. In the case of the smooth system I (4.1), the analytical

expressions for the eigenvalues are complicated, so the bifurcation analysis is diffi-

cult to carry out with analytical calculations. However, it can be done numerically

(see Figure 4.1c). In addition, the smooth system I (4.1) requires one to use an

extra parameter k which has an influence on the system’s qualitative behaviour.

Moreover, for very large k, the system becomes stiff and hence more challenging

to be solved computationally.

The smooth system II (4.13) has the same number of parameters as the piecewise-

smooth system (3.4) but adds a new dimension (i.e., the predator trait q) to the

system. As a result, the steady state IV of the smooth system II (4.13) [that

corresponds to the prey and predator abundances at the pseudoequilibrium of the

piecewise-smooth system (3.4)] can be found analytically. In the piecewise-smooth

system the pseudoequilibrium is stable if aq > q2/q1. In the smooth system II the

corresponding equilibrium is a centre for aq = q2 and unstable otherwise (see Table

4.4). However, the analytical expression for the 4 eigenvalues is more complicated

than the expression for the 3 eigenvalues of the piecewise-smooth system (3.4).

This complexifies bifurcation analysis.

The theory for piecewise-smooth dynamical systems is not as well established

as that for smooth dynamical systems. Furthermore, standard methods used for

solving ODEs numerically are not applicable to piecewise-smooth systems and the

theory for the analysis of the numerical simulations in piecewise-smooth systems is

not complete [23]. However, the equilibrium in the piecewise-smooth system (3.4)

can be determined explicitly, and there exists an analytical expression for the flow
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at the discontinuity boundary (i.e., h = p1−aqp2 = 0). In addition to the definition

for the flow at the boundary, the theory available for piecewise-smooth systems

identifies the bifurcation that we observed as a type of adding-sliding bifurcation.

This result helps to facilitate understanding of the behaviour of the system (3.4)

close to the boundary. Moreover, this understanding can be used when analysing

the zooplankton-phytoplankton dynamics predicted by the model.

Assuming a linear trade-off between the prey preferences, in the case of the

1 predator-2 prey piecewise-smooth system (3.4), the ratio between the preferred

and alternative prey type is constant before the bifurcation and time-varying after

the bifurcation. Furthermore, the slope of the trade-off is directly included in

the modelling and present in the expression for the switching boundary. Taking

a piecewise-smooth approach entails following the condition for sliding given in

terms of the prey ratio (i.e., the system (3.4) is sliding when p1/(aqp2) = 1).

This is different from previous work [128], which studied the actual value, rather

than the ratio, of prey population densities predicted by the model. Using a

piecewise-smooth model, the analytical calculations can be as tedious as in smooth

systems, but there is one fewer model parameter, or model dimension, as there is

no need to define the “slope” of the tanh function, or the dynamics of the predator

trait. This is our advantage especially when more species are included, and the

analytical calculations are not complexified by hyperbolic tangent functions or

high dimensionality of the system.

With a smooth dynamical system approach, we can relax the assumption of

“discontinuous” predator of the piecewise-smooth system (3.4). Furthermore, us-

ing tanh functions to smooth the piecewise-smooth system (3.4), we can use data

to determine the steepness in the transition in the predator’s feeding behaviour for
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a particular predator type. Indeed, our parameter fitting to the Lake Constance

data suggests that a more selective predator species would be better modelled with

a steeper tanh function than a less selective predator species. If we regularise the

piecewise-smooth system (3.4) by considering a predator trait as a variable, we

add an extra dimension to the system and obtain a model prediction for preda-

tor trait dynamics with the smooth analog II model (4.13). As future work, this

model prediction could be tested against results from controlled laboratory ex-

periments where the genetic diversity of the predator species can be manipulated

and recorded. Such trait dynamics cannot be obtained from either the piecewise-

smooth system (3.4) or the smooth analog I model (4.1). Our smooth model II

predicts that a large scaled prey ratio occurs when the predator is feeding only on

the preferred prey. This phenomenon agrees with the results we obtained with the

piecewise-smooth model in Chapter 3.

The predator trait dynamics predicted by the smooth system II (4.13) could be

further compared with data collected from the field or from controlled experiments

with genetically diverse prey and/or predator populations. From an ecological per-

spective, the piecewise-smooth 1 predator-2 prey system (3.4) models the effects

of the predator’s adaptive change of diet in response to prey abundance; this is

an example of phenotypic plasticity [63]. The smooth system II (4.13) describes

the population dynamics of a predator and its two prey in the presence of rapid

evolution in prey preference. These two mechanisms (i.e., phenotypic plasticity

and rapid evolution) both cause rapid adaptation and affect the population dy-

namics [112, 139]. Although it is not clear how these different mechanisms affect

the population dynamics, it has been suggested that models that account for phe-

notypic plasticity exhibit a stable equilibrium more often than models accounting
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for rapid evolution [139]. It has been hypothesized that this can arise from a faster

response time of plastic genotypes than that of nonplastic genotypes to fluctuating

environmental conditions [139]. Indeed, the piecewise-smooth system (3.4) con-

verges to a steady state when the ecological trade-off is steep enough, but we have

not observed convergence to a steady state in the smooth system II (4.13).

4.5 Conclusions

To relax the assumption of a discontinuous switch in predator feeding behaviour

that we made for the piecewise-smooth 1 predator-2 prey model (3.4), and to be

able to compare a piecewise-smooth system with two associated smooth system,

we constructed smooth models using (I) tanh functions and (II) considering the

predator trait as a system variable. While using tanh function is a textbook

approach for regularising piecewise-smooth systems [16], considering a predator

trait as a system variable is an appropriate framework for studying the underlying

mechanisms and effects of a rapid adaptive change of a predator on the predator-

2 prey dynamics, when one assumes that the speed of evolution is comparable

to that of ecological interactions. Rapid evolution has been observed in several

organisms, including plankton [37,38,140]. Because plankton have short lifespans,

they make a good example system for studying the coupling between ecological

and evolutionary dynamics.

We constructed both the smooth systems I and II, (4.1) and (4.13), respectively,

so that they reduce to the vector fields of the piecewise-smooth dynamical system

(3.4) at the extremes where q = 1 or q = 0. We constructed the predator evolution
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in (4.13) by assuming that the change of the predator trait is similar to fitness

gradient dynamics [79]. However, for the smooth system II, instead of calculating

the fitness gradient from the equation for the predator population, we determine

the gradient to be equivalent to the switching condition in the piecewise-smooth

system (3.4). We then investigated analytically and numerically the equilibria and

eigenvalues of the two smooth systems using linear stability analysis. Finally, we

compared both smooth systems to the Lake Constance data, and to the piecewise-

smooth model (3.4).
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Chapter 5

Conclusions and future directions

5.1 Models for adaptive feeding in plankton

In order to develop reliable predictions about the state of ecosystems under chang-

ing environmental conditions, the ability of organisms to adapt should not be ig-

nored in models for population dynamics. Models for population dynamics repre-

sented with smooth differential equations evolving on the same time scale include

a long-established theory for the analysis of the resulting systems of equations.

However, as it is not yet clear in what mathematical form phenomena like prey

switching or rapid evolution should be represented, alternative approaches, such as

piecewise-smooth dynamical systems, offer promising directions for investigation

(see Chapter 1). In addition, the novelty of this approach makes it possible to ask

both ecological and mathematical questions about the models.

For example, in Chapter 3, we used the piecewise-smooth framework to con-

struct a model for a 1 predator-2 prey interaction with unlimited prey growth and

a tilted switching manifold between the two sides of discontinuous vector fields
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(see Section 3.2). The model (3.4) hypothesises prey switching in the presence of

an ecological trade-off in prey preference as a possible mechanistic explanation for

recurring patterns of increases followed by declines in ciliate and phytoplankton

biomasses that are exhibited in the Lake Constance data (see Section 1.2.2). In

addition, we discovered that the model (3.4) undergoes a novel adding-sliding-like

bifurcation (see Section 3.4). We summarise these findings in Section 5.1.1. In

Chapter 4, we relaxed the simplified approach of a discontinous prey switching

in the piecewise-smooth system by regularising it using (I) tanh function and (II)

adding a new dimension for the predator trait into the system. While model I

hypothesises prey switching is the steeper the more selective the predator species

is, with model II we gain extra insight into the predator trait dynamics that could

be further validated with data on genetic diversity of an adaptive feeding preda-

tor species. Thus, although the motivation of the models comes primarily from

a mathematical perspective, such modelling investigations have utility for the de-

velopment of new biological understanding of the coupling between ecology and

evolution.

5.1.1 Piecewise-smooth 1 predator-2 prey model

Using the principle of optimal foraging theory, we combined two ecological con-

cepts—prey switching and trade-off—in the framework of piecewise-smooth dy-

namical systems to develop a model of one predator that feeds on a preferred

and an alternative prey (see Chapter 3). We derived analytical expressions for

the pseudoequilibrium, its eigenvalues, and the points for tangencies between the

two vector fields and the switching boundary. We confirmed our analytical re-
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sults using numerical simulations. We also discovered a novel bifurcation, which

we named the “Centre to two-part Periodic Orbit” (C2PO) bifurcation, in which

an adding-sliding periodic orbit is born from a centre. At the bifurcation point,

there is a family of entirely sliding centres which we proved are closed curves.

Based on numerical simulations close to the bifurcation point, the amplitude of

the adding-sliding periodic orbit seems to scale linearly with the distance from the

bifurcation point. We also carried out numerical computations to facilitate the

future development of a normal-form map to describe the C2PO bifurcation.

We compared the results of our simulations with data on freshwater plankton

(see Section 1.2). Plankton are an important and suitable model system for not

only theoretical ecology but also for complex systems more generally. Similar to

many other organisms, adaptive feeding and ecological trade-offs have been ob-

served in plankton. There has been a lot of work on models of plankton dynamics

using dynamical systems (see Section 1.3) that have been successful in offering

various explanations for observations of plankton dynamics, such as triggering

mechanisms of plankton blooms, and reproducing patterns seen in the data, such

as relatively constant total prey biomass in contrast to highly variable individual

prey species’ biomasses. By comparing our simulations of the adding-sliding peri-

odic orbit with data, we reproduced the coexistence of species and suggested prey

switching in the presence of a prey preference trade-off as a possible mechanistic

explanation for cycles in the observed prey ratio during spring. The periodic or-

bit exists in the parameter range in which there is a mild trade-off in the prey

preference—that is, a predator with a small increase in the energy gained from

the preferred prey would exhibit only a small decrease in the energy gained from

the alternative prey. We used plankton as our example organism because of their
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suitability and importance, but similar prey-switching models can also be for-

mulated for any other 1 predator-2 prey interaction in which it is viable to use

models based on low-dimensional differential equations (i.e., large population size,

well-mixed environment, and the use of community-integrated parameters).

There are several future directions for this work. As concerns the derivation

of the model, optimal foraging theory combines the predator’s decision—that is,

the choice of habitat or prey—with the predator’s attempt to maximise a vari-

able related to its fitness (such as the mean energy intake rate). This decision

is made within certain constraints which can be set, for example, by the area

the predator can search or exploit [120]. Additionally, optimal foraging theory

assumes that the predator has available complete information on prey densities,

which is a strong assumption and should be relaxed. One such approach would be

to incorporate stochasticity in the prey densities observed by the predator, which

can be implemented as noise included in the switching condition. Earlier work

on a Filippov-type piecewise-smooth system (i.e., a relay control system) indicates

that noise has an important effect on the periodicity and amplitude of the periodic

orbits with sliding segments [113]. Hence, considering noise in a predator’s infor-

mation on prey densities would increase understanding of population dynamics

between two prey and a “noisy” optimal forager as well as of stochastic Filippov

systems more generally.

In Section 3.5, we discussed several generalisations of our piecewise-smooth

model (3.4)—such as limited prey growth and nonlinear trade-offs. These gen-

eralisations would expand the suitable time window for comparing simulations

with data (i.e., from early growing season to mid and late growing season) and

help to develop a better understanding of the effect of ecological trade-offs on
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population dynamics. In addition, these generalisations (and other ecologically

motivated generalisations, such as prey competition, saturating predator response

or two functionally different predator species) have a potential utility for unfold-

ing the C2PO bifurcation—that is, providing a family of vector fields whose local

flows contain all possible small perturbations of the flow generated by (3.4) [48].

Thus, an unfolding of (3.4) would provide a dynamical system that exhibits a

C2PO bifurcation as well as all other possible bifurcations of the pseudoequilib-

rium (3.11) [96]. Although the C2PO bifurcation satisfies the conditions that de-

fine a nondegenerate adding-sliding bifurcation, a variation of the equations that

reduces the C2PO bifurcation to the standard adding-sliding bifurcation would

(1) be helpful for the development of the normal-form map to describe the C2PO

bifurcation (and its comparison with the normal-form map of the standard adding-

sliding bifurcation) and (2) increase understanding of the relationship between the

C2PO bifurcation and other bifurcations in more detail. In addition to the stan-

dard adding-sliding bifurcation, these include a similar bifurcation to the C2PO

bifurcation in piecewise-linear systems [34] and piecewise-continuous systems [114].

As a step towards studying models of adaptive predator behaviour and ecolog-

ical trade-offs, we started from the simplest case (i.e., a system with one predator

and two prey). In our model, functional diversity is present only in the prey com-

munity and it arises as the difference in prey growth rates. Accordingly, we chose

species from a large data set to consider representative prey groups. Thus, these

choices leave predator diversity for future work. As we discussed in Section 1.2.2,

ciliates are known to have different modes of predator behaviour, and they can

be categorised roughly in terms of their selectivity. One can represent such diver-

sity in a predator community using different preference trade-offs. This could be
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studied using a piecewise-smooth dynamical system with more than three dimen-

sions (or by using a fast-slow dynamical system) and which could have more than

one switching manifold. Moreover, the switching manifolds might intersect with

each other. Such a generalisation would thus be very interesting (and challenging)

to study from both biological and mathematical perspectives. From a biological

viewpoint, this generalisation could be used to test a possible mechanistic expla-

nation for the patterns seen in the Lake Constance data, such as the relatively

constant total biomass contrasting with the highly variable biomasses of individ-

ual species [128]. From a mathematical viewpoint, this generalisation has potential

utility in developing a general methodology for bifurcations in piecewise-smooth

dynamical systems that arise from intersections of switching manifolds when the

ambient space has more than three dimensions.

5.1.2 Smooth 1 predator-2 prey models

The ecological motivation for reformulating our piecewise-smooth dynamical sys-

tem as a smooth dynamical system is based on relaxing the assumption of a discon-

tinuous switch. On the one hand, it is not clear whether there exist predators that

instantaneously change their diet. On the other hand, it is not clear which of the

many possible smooth approximations best describes prey switching. Therefore,

we regularised the piecewise-smooth system in two different ways.

First, we “smoothed out” the piecewise-smooth model using hyperbolic tangent

functions which allowed us to express a continuous change in the predator feeding

behaviour based on prey abundances. In doing so, we added one parameter to the

system (i.e., k) that represents the steepness of the continuous switch. We analysed
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the resulting smooth model I using a combination of linear stability analysis and

numerical computations. The equilibrium of the smooth analog of the piecewise-

smooth system constructed using tanh functions can be solved numerically. For

a sufficiently steep hyperbolic tangent, the dynamical behaviour (i.e., settling to

a steady state or periodic orbit) of the piecewise-smooth system and its smooth

analog I are the same. For a shallow hyperbolic tangent function, the smooth

system I (4.1) predicts that the predator and the two prey also coexist at steady

state levels (instead of oscillating) in the parameter regime, where the piecewise-

smooth system predicts all population densities oscillate. Finally, we fitted the new

parameter k to data collected for two different types of predator species that can be

categorised roughly based on their feeding behaviour. As a result, our parameter

fitting suggests that prey switching of a more selective predator would be best

represented with a steeper tanh function that that of a less selective predator.

Second, we regularised the piecewise-smooth system by increasing the dimen-

sionality of the system and reformulated the three-dimensional piecewise-smooth

system as a four-dimensional smooth dynamical system. The two vector fields on

each side of the discontinuity in the piecewise-smooth system describe the preda-

tor’s two different feeding modes: It feeds on the preferred prey type on one side

and on the alternative prey type on the other. Hence, there is an abrupt change in

the predator’s desire to consume the preferred prey across the discontinuity. When

reformulating our second smooth system from such a piecewise-smooth system, we

considered the desire to consume the preferred prey as a system variable (i.e., as

a variable that changes on a comparable time scale than that of the population

densities) and constructed an equation for its temporal evolution according to the

piecewise-smooth system. Our construction is similar to fitness-gradient dynamics,
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which have previously given insight into rapid adaptation and predator-prey inter-

action in plankton [17]. However, in contrast to how fitness-gradient dynamics is

applied in [17], we assumed that the predator fitness is equivalent to the switching

condition we obtained in the formulation of the piecewise-smooth system using op-

timal foraging theory in Chapter 3. We made this decision to guarantee that the

smooth analog II reduces to the piecewise-smooth system at the extremes of the

two different feeding modes, and thus, enables us to carry out a fair comparison

between the two systems and their behaviour.

We analysed the resulting four-dimensional system (4.13) using linear stabil-

ity analysis. Indeed, the steady state, where population densities are nonzero,

is equivalent in both systems. However, the four eigenvalues (i.e., two pairs of

complex conjugates) of the equilibrium in the smooth system II (4.13) have both

positive and negative real parts, except for a point at which the slope of the

preference trade-off is equal to the preference towards the alternative prey (i.e.,

aq = q2). Then, all four eigenvalues of the steady state have a zero real part. This

is different from the piecewise-smooth system where there is a complex conjugate

pair of eigenvalues, and thus, the real part of the eigenvalues have the same sign

everywhere. Finally, we fitted the smooth system II to data in order to find a

suitable perturbation from the steady state that yields oscilllations similar to the

recurring pattern of increases and declines in the ciliate predator population in

Lake Constance in spring.

The characteristic equation for the eigenvalues of the steady state, where the

populations coexist, is more challenging to analyse in the case of the two smooths

analogs than in the case of the original piecewise-smooth system. In fact, for the

smooth system I (4.1), the characteristic equation is difficult to solve analytically
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because we obtain only a numerical solution to the steady state. In the case of the

smooth system II (4.13), the characteristic equation involves solving a fourth order

equation which complexifies a possible future bifurcation analysis. Thereby, an

alternative approach for regularising the piecewise-smooth without increasing the

dimensions of the system would be to reformulate the piecewise-smooth system as

a fast-slow dynamical system according to the method originally developed in [118],

and later surveyed in [123].

Fast-slow dynamical systems are systems in which two time scales are present

[71]. Such a difference in time scales can arise in several different ways. For ex-

ample, fast-slow dynamics can occur in electrical circuits or in the communication

between cells through abrupt changes in a potential across a cell membrane [71].

Indeed, the classical examples of fast-slow systems are the Van der Pol [132] and

Fitzhugh-Nagumo equations [31,98]. The former describes the dynamics of an elec-

trical circuit with an amplifying valve, whereas the latter is a simplified version of

the Hodgkin-Huxley nerve axon model [52]. In addition to engineering and neu-

roscience applications, fast-slow dynamical systems have been used to give insight

into pattern formation between a slowly diffusing activator and an inhibitor with

a fast diffusion time scale [44], slow storage followed by a rapid release of elastic

energy in opening and closing of plant leaves [32], and ocean circulation in which

saline transport is assumed to be slower than thermal transport [69]. In theoretical

ecology, fast-slow systems have been useful for understanding the effects of rapid

evolutionary change of traits on predator-prey interaction [17, 62]. However, we

note that in the latter example, the fast-slow system is not obtained as a result of

regularising a given piecewise-smooth system.

The formal construction of a smooth system from a piecewise-smooth system
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enables a comparison between the two different modelling frameworks, both from a

biological and mathematical perspective. However, without additional data on the

functional form of prey switching (collected from a controlled laboratory experi-

ment, for example), it is difficult to say with the data we currently have which of

the three models—the piecewise-smooth system with a “discontinuous” predator

or the two smooth systems with a gradully adapting predator—provides a bet-

ter putative mechanistic explanation for the observations of plankton dynamics in

spring in Lake Constance. Based on the parameter fitting we carried out for the

smooth system, the simplistic assumption of a discontinous predator we made in

Chapter 3 is justified at least in the case of a selective predator. Above all, the

construction of models using alternative modelling approaches allows us to gain

more insight into the dynamics exhibited by the models. Furthermore, we can

use this knowledge and compare different models against each other and validate

them in order to construct prey-switching models for predator-prey interaction in

organisms besides plankton, as long as the assumptions of large population size,

well-mixed environment, and the use of community-integrated parameters are jus-

tified.
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Appendix A

Defining and nondegeneracy

conditions of the adding-sliding

bifurcation

The 1 predator-2 prey system in Equation (3.4) exhibits a novel centre to two-part

periodic orbit (“C2PO”) bifurcation that we discovered and studied numerically

in Section 3.4. The C2PO bifurcation differs from the standard adding-sliding

bifurcation in the way that the periodic orbit is born. In the C2PO bifurcation,

there is a family of entirely sliding centres at the bifurcation point. In the standard

adding-sliding bifurcation, however, there exists one entirely sliding periodic orbit

that grows to encompass a non-sliding segment as the distance to the bifurcation

point increases. However, as we are about to show, the C2PO bifurcation satisfies

both the defining (i.e., equality) and nondegeneracy (i.e., inequality) conditions

that specify the standard adding-sliding bifurcation [23]. This result enables us

to take advantage of the existing normal form map for the adding-sliding bifur-

cation in the process of deriving a normal form to describe the C2PO bifurcation
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analytically.

In addition to Filippov’s convex method (see Section 2.1.2.3), the sliding flow

at the discontinuity boundary h can also be formulated using Utkin’s equivalent

control method [131]. According to Utkin’s method, the sliding flow is a sum of the

mean of the two vector fields and a control γ(x) in the direction of the difference

between the vector fields:

fsU =
f+ + f−

2
+
f− − f+

2
γ(x) , (A.1)

where

γ(x) = −Lf+h+ Lf−h
Lf−h− Lf+h

∈ [−1, 1] . (A.2)

Similar to Filippov’s method, the sliding flow derived using Utkin’s control method

is tangent to h (i.e., LfsU h = 0). Utkin’s and Filippov’s methods are related using

γ = 2α−1. If γ = −1, then the sliding flow is governed by f+. For the 1 predator-2

prey system (3.4), the control γ(x) is given by

γ(x) =
p1(−2r1 + z) + aqp2(2r2 − z)

z(p1 + aqp2)
. (A.3)

The three defining conditions for all four principal sliding bifurcation scenarios

(i.e., adding-sliding, grazing-sliding, crossing-sliding, and switching-sliding) state

that the intersection point x∗ at which the critical trajectory involved in the bi-

furcation intersects with the boundary of the sliding region (1) has to belong to

the switching manifold, which (2) has to be well-defined. In addition, the inter-

section point (3) has to be located on the boundary of the sliding and crossing

regions [23]. In the case of the 1 predator-2 prey piecewise-smooth system (3.4),

the intersection point is the cusp x∗ = (p∗1, p
∗
2, z

∗) = (m/(eq1),m/(eq1aq), r1 − r2)
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between f+ and the switching boundary (see Section 3.3.4). For the cusp x∗, we

have (as the first defining condition of an adding-sliding bifurcation)

h(x∗) = p∗1 − aqp∗2 =
m

eq1
− aqmq1

eq1aq
= 0 . (A.4)

Thus, the cusp is located on the manifold h = p1 − aqp2. The second defining

condition also holds because h is well-defined:

dh

dx

∣∣∣∣
x∗

=

[
1 −aq 0

]
6= 0 . (A.5)

In addition, the third defining condition is satisfied because the intersection point

x∗ lies on the boundary of the sliding region

γ(x∗) =
p∗1(−2r1 + z∗) + aqp

∗
2(2r2 − z∗)

z∗(p∗1 + aqp∗2)
=
−(r1 − r2)
r1 − r2

= −1 , (A.6)

f+(x∗) = (r1 − z∗)p∗1 − aqr2p∗2 =
r1m−m(r1 − r2)−mr2

eq1
= 0 . (A.7)

The nondegeneracy condition applicable to all four sliding bifurcation cases

requires that in the neighbourhood of x∗, the vector field f− is pointing towards,

and does not graze, the switching boundary. This can be shown for the 1 predator-

2 prey system (3.4) at x∗, at which

Lf−h(x∗) = r1p
∗
1 − aq(r2 − z∗)p∗2 =

2m

eq1
(r1 − r2) > 0 . (A.8)

The aforementioned three defining (A.4)–(A.7) and one nondegeneracy (A.8) con-

ditions are the same in each of the four principal sliding bifurcation cases. However,

the second nondegeneracy condition is specific to the adding-sliding bifurcation and

requires an additional defining condition. This defining condition states that there
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must be a point of tangency between the sliding flow and the boundary between

the crossing and sliding regions at the bifurcation point. This occurs when

Lf+γ(x∗) := γxf+(x∗) =

[
−r2

(r1−r2)
(

m
eq1

) aqr2
(r1−r2) m

eq1

2
r1−r2

]
r2m
eq1

r2m
eq1aq

0

 = 0 , (A.9)

where

γx =

[
∂γ
∂p1

∂γ
∂p2

∂γ
∂z

]
. (A.10)

The second nondegeneracy condition, which is specific to the adding-sliding bifur-

cation, thereby requires that the sliding flow reaches its local minimum in terms

of the control γ. This is satisfied when

(Lf+)2γ(x∗) := γx(x
∗)f+x(x∗)f+(x∗) + γxx(x

∗)f+(x∗)2 > 0 . (A.11)

For Equation (3.4), the first term in the second nondegeneracy condition (A.11)

becomes

γx(x
∗)f+x(x∗)f+(x∗) =

[
−r1eq1

(r1−r2)m
aqr2eq1

(r1−r2)m
1

r1−r2

]
r22m

eq1

f22m

eq1aq

r2m(r1 − r2)

 = r2m.

(A.12)

Using

γxx =

[
∂2γ
∂p21

∂2γ
∂p22

∂2γ
∂z2

]
, (A.13)

for Equation (3.4), the second term in the second nondegeneracy condition (A.11)
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becomes

γxx(x
∗)f+(x∗)2 =

[
1

(r1−r2)
(

m
eq1

)2 −a2q
(r1−r2)

(
m
eq1

)2 −2
(r1−r2)2

](
m

eq1

)2


r22(
r2
aq

)2
0

 = 0 .

(A.14)

Finally, by combining the result in (A.12) and (A.14), we find that the second

nondegeneracy condition (A.11) holds in the case of the 1 predator-2 prey system

(3.4)

γx(x
∗)f+x(x∗)f+(x∗) + γxx(x

∗)f+(x∗)2 = r2m+ 0 > 0 . (A.15)
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Appendix B

Parameter fitting

There are several approaches available for parameter estimation of ODE models.

For example, COPASI [56] and Berkeley Madonna [86] are programme packages,

and PottersWheel [88] is a Matlab toolbox, that feature optimisation methods

for searching an ODE’s parameter space and minimising an objective function. In

addition to these software packages, approximate Bayesian computation (ABC)

methods can be used to infer parameter values and to distinguish between com-

peting ODE models (see [7] for a review). We use ABC combined with a sequential

Monte Carlo (SMC) method because the fitting results can be assessed by studying

the posterior parameter distribution rather than just a single value that gives the

best fit as a result of an optimisation method. In addition, this approach allows

us to code every step of the algorithm on our own. We can thereby be more aware

of the possible sources of error in the fitting process than when providing input

and analysing an output of an available software package.

In the case of the 1 predator-2 prey piecewise-smooth model (3.4), we compare

the scaled prey exhibited by the model with that calculated from the Lake Con-

stance data (see Section 3.4.7). Because the model captures the periodicity in the
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scaled prey ratio better than the amplitude, we calculate and use the periodicity

exhibited in the data as our objective function in the ABC method. Thus, we

look for a set of parameter values of the growth rate of the preferred and alter-

native prey (i.e., r1 and r2, respectively) and the predator mortality rate (i.e., m)

that yield a periodicity of the model (3.4) as close as possible to the periodicity

exhibited in the data. We introduce the ABC method [129] in Section B.1. We

then use it for estimating the prey growth rate in a standard 1 predator-1 prey

Lotka-Volterra model (1.1) as an example case in Section B.2.1 before presenting

the results for the parameter fitting of the piecewise-smooth model (3.4) in Section

B.2.2.

B.1 Bayesian inference and Monte Carlo meth-

ods

In the parameter-fitting process, we assume that the data are noisy observations of

a simulation of the piecewise-smooth 1 predator-2 prey model (3.4) with unknown

parameters collectively denoted by θ = (r1, r2,m). We then use a Bayesian ap-

proach to infer the parameters and to indicate the uncertainty of the results. In the

present study, we have some information about the parameters of the piecewise-

smooth system—for example, r1, r2,m > 0 and additionally 0 < aq < q2/q1 for

the adding-sliding periodic orbit to be present. This information is included in

the prior distribution π(θ). As we consider the data, which are represented in this

case by the scaled prey ratio calculated from the Lake Constance data, our knowl-

edge about the parameter θ changes. Thus, we calculate the posterior distribution
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P (θ|D) using Bayes’ rule

P (θ|D) =
P (D|θ)π(θ)

P (D)
, (B.1)

where P (D|θ) is the probability of the data given θ and P (D) =
∫
θ
P (D|θ)π(θ)dθ

is the normalising constant. In most applications, equation (B.1) does not have

a closed-form solution because P (D|θ) or the integral in the denominator are

unknown. However, the Monte Carlo (MC) simulation methods can be used to

estimate θ by repeatedly drawing random samples distributed according to P (θ|D).

In using the Monte Carlo method for fitting parameters of the piecewise-smooth

model to Lake Constance data, we first sample a candidate parameter set θ∗ from

π(θ), which for each element in θ is a uniform distribution within the appropriate

range. We have used simulations and literature (e.g., [39, 128]) to help determine

the upper limit of this range for r1, r2 and m. We then simulate the piecewise-

smooth model (3.4) with θ∗ and compare the simulation with the data by cal-

culating the squared difference d2(D,D∗) between the periodicity in the scaled

prey ratio exhibited in the simulation (D∗) and the periodicity in the prey ratio

exhibited by the data (D). That is,

d2(D,D∗) = (D −D∗)2. (B.2)

After calculating d2(D,D∗) for every θ∗, we examine the results by studying θ∗

sampled in the MC simulation and the corresponding differences d2(D,D∗). To

discriminate between parameter values according to the goodness of the fit, we

use a tolerance ε1 > 0 to determine the level of agreement between the simulation

and the data. We consider the sampled parameters that yield a difference below
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this tolerance as accepted parameter values and study the resulting distribution

of them.

B.2 ABC implementations

First, we implement a simple ABC rejection algorithm (as used in [105]), which

proceeds as follows:

I Sample a candidate parameter set θ∗ from π(θ).

II Simulate the model to create a simulation data set and calculate the error

between the periodicity in the scaled prey ratio in the data and that produced

by the model.

III Accept or reject θ∗ depending on whether or not the difference in the periodic-

ity lies within a desired range. That is, accept θ∗ if and only if d2(D,D∗) < ε1.

IV Repeat the algorithm until a required number of candidate samples are ac-

cepted. For example, choose ε1 such that 10% of the initial candidates are

accepted.

We use the ABC rejection algorithm to obtain estimates for d2(D,D∗) in a run

where first 10% and then 5% of the initial candidates were accepted. In other

words, we simulate N candidates, calculate the distance for each candidate, put

the candidates in order based on their value for d2(D,D∗), and accept 10% (or

5%) of them that give the smallest value for d2(D,D∗). We then choose the largest

distance generated by the accepted candidates as the desired tolerance level ε1,10%

(and εL,5%, where L is the number of tolerance levels). We construct a decreasing
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sequence of L tolerance levels {ε1,10%, ..., εL,5%} and apply these tolerance levels

to the ABC scheme based on the sequential Monte Carlo (ABC SMC) method

introduced in [129].

In ABC SMC, N candidate parameters {θ(1), ..., θ(N)} are sampled from π(θ).

The algorithm incorporates a decreasing sequence of L tolerance levels—for ex-

ample, {ε1,10%, ..., εL,5%}, where ε1,10% is the largest distance between the period

exhibited in the simulation and in the data when 10% of the N candidates sam-

pled are accepted in the ABC rejection method and εL,5% is the largest distance

between the period exhibited in the simulation and in the data when 5% of the

N candidates sampled are accepted in the ABC rejection method. Initially, we

sample θ∗ from π(θ). Then, at every iteration, we sample the candidate parame-

ters among the candidates that were accepted in the previous step. The tolerance

level is stricter at each step. Thus, the ABC SMC algorithm propagates through

the sequence of tolerance levels as it proceeds gradually towards the distribution

obtained at the last step [129]. The ABC SMC method proceeds as follows [129]:

1. Initialize the decreasing sequence of tolerance levels {ε1, ..., εL} = {ε1,10%, ..., εL,5%}.

Set tolerance level indicator l = 1.

2. Set candidate indicator i = 1.

3. In the first iteration (l = 1), sample a candidate θ∗ from π(θ). If t 6= 1,

sample θ∗ from {θ(i)l−1} with weights wl−1. Perturb the candidate according

to the perturbation kernel Kl to obtain θ∗∗, where θ∗ denotes a candidate

before the perturbation and θ∗∗ denotes a candidate after the perturbation.

For simplicity, we chose Kl to be a normal distribution centred on θ∗ with

variance 0.1.
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4. Simulate the piecewise-smooth system (3.4) with θ∗∗, calculate the period-

icity in the scaled prey ratio exhibited in the simulation, and determine the

squared difference d2(D,D∗) for the periodicity in the prey ratio exhibited

in the data. If d2(D,D∗) > εl, return to step 3.

5. Set θ
(i)
l = θ∗∗ and calculate the weight for the θ

(i)
l candidate:

w
(i)
l =


1 , if l = 0

π
(
θ
(i)
l

)
∑N

j=1 w
(j)
l−1Kl

(
θ
(j)
l−1,θ

(i)
l

) , if l > 0.

(B.3)

6. If i < N , set i = i+ 1 and return step 3.

7. If l < L, set l = l + 1 and return step 2.

A problem with the ABC rejection algorithm as a stand-alone sampling method

is its low acceptance rate if there is a large difference between the prior and pos-

terior distributions. To overcome this problem, ABC can be used together with

Markov chain MC simulations (ABC MCMC) which is guaranteed to converge

to the target (approximate) posterior distribution [89]. As a disadvantage, the

samples in the ABC MCMC are not entirely independent, and as a result, there

is a risk that the algorithm dwells or gets stuck in parameter regions that have a

low probability of being accepted. Thus, ABC SMC has been developed to avoid

these problems with the ABC rejection and ABC MCMC algorithms. Even though

a similar guarantee of convergence to ABC MCMC does not exist for the ABC

SMC [129], the goodness of the posterior distribution can be assessed through

analysing the intermediate distributions and the number of proposals that are

required to obtain a given number of accepted proposals [129].
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B.2.1 Implementation of the ABC SMC method for the 1

predator-1 prey Lotka-Volterra system in Equation

(1.1)

Before carrying out parameter fitting with Lake Constance data, we want to test

our ABC rejection and ABC SMC implementations with the 1 predator-1 prey

Lotka-Volterra model (1.1). We first generate data as a simulation of the model

(1.1) with noise following a normal distribution with standard deviation σ = 0.5

added. We then infer the employed parameter value for prey growth rate r = 1 with

the ABC SMC method. To calculate the squared distance, we choose nonnegative

prey densities among 30 points we select uniformly at random generated by adding

noise to the simulation (see Figure B.1 top left). We define the squared distance

as

d2(P ) =
∑
i

(Pdata(i)− P∗(i))
2 , (B.4)

where Pdata(i) denotes the prey density at the ith selected data point in the gen-

erated data and P∗(i) denotes the prey density predicted by the model at the

same point. As our prior distribution, we assume r ∼ U(0, 10). As we expect,

the squared distance shows a minimum at r = 1 (see Figure B.1, top right) and

the probability density estimates obtained in the ABC SMC method (steps 1–7)

approach a distribution that has a peak near r = 1 (see Figure B.1, bottom).
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Figure B.1: Estimating prey growth rate (r = 1) of the Lotka-Volterra model
(1.1) using (top) ABC rejection (steps I–VI) and (bottom) ABC SMC method
(steps 1–7). (Top left) Solid curve denotes the prey density of a simulation of the
Lotka-Volterra model (1.1) with (β, e,m) = (1, 1, 1) and (p(0), z(0)) = (0.5, 0.1).
Asterisks denote the data points we select uniformly at random from the prey
density of (1.1) after the addition of noise from a normal distribution with σ = 0.5.
For these data points we calculate the squared distance between the generated
data and the model simulation. (Top right) Squared distance d2(P ) between the
simulation (i.e., solid curve in top left) and the generated data (i.e., asterisks in top
left) as a function of prey growth rate r after 10000 iterations of the ABC rejection
algorithm (steps I–VI). (Bottom) Smooth probability density estimates calculated
using Matlab’s ksdensity function illustrate how the ABC SMC (steps 1–7)
propagates towards the target distribution in red. In the ABC SMC method
(L = 9, N = 1000), we construct the sequence of tolerance levels εi (i = 1, ..., 9)
linearly spaced between when 10% (ε1 ≈ 52.6) and when 5% (ε9 ≈ 36.9) of the
candidate samples θ∗ are accepted in the ABC rejection method (steps I–VI) for
the Lotka-Volterra system (1.1).
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B.2.2 Parameter fitting of the 1 predator-2 prey piecewise-

smooth system in Equation (3.4) to Lake Constance

data

To have an estimate for the periodicity in the prey ratio exhibited in the Lake

Constance data, we calculate the mean data for the prey ratio p1/p2 in spring in

Lake Constance over the period 1979–1999. For p1 and p2, we select the same

prey species as in the comparison between the piecewise-smooth model (3.4) and

the Lake Constance data (see Figure 3.12). Similarly to the data comparison in

Section 3.4.7, we obtain the processed data by subtracting a least-squares fit of a

straight line to the mean of the data. The equation for this line is y = 0.03x+0.95,

where the norm of the residual is 4.39. We calculate the period of the prey ratio

oscillations in spring as the mean difference between consecutive peaks in the

prey ratio (i.e., March 27, March 31, April 26, May 11, May 12, and May 15).

We choose these peaks based on visual inspection, and we calculate 11 period

estimates from them. With our choice of consecutive peaks, we obtain a period

of about 21.82 ± 4.30 days. We use this period as our data, to which we fit the

growth rate of the preferred (r1) and alternative (r2) prey, and the predator death

rate (m) of the piecewise-smooth model (3.4).

For the ABC rejection algorithm (steps I–II) that we carry out for 1000 itera-

tions, we assume the following uniform distributions as our prior distributions for

the parameters: r1 ∼ U(1, 3), r2 ∼ U(0.01, 0.8), m ∼ U(0.1, 1). We chose these

distributions by studying the literature (for example, [128]) and by simulating the

piecewise-smooth system numerically. We simulate the piecewise-smooth model

(3.4) with (q1, q2, β1, β2, e, aq) = (1, 0.5, 1, 1, 0.25, 0.4) and (p1(0), p2(0), z(0)) =
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(1, 1, 1) for 500 days of which we discard the first one-third as a transient based

on visual inspection and numerical simulations of the model (3.4). As a result of

our ABC rejection algorithm, we obtain the best fit to the period calculated from

the data (i.e., 21.82 days) with (r1, r2,m) = (1.50, 0.12, 0.10) and the period of the

prey ratio produced by the model (3.4) is about 21.9 days.

In the ABC SMC method (L = 9, N = 30), we construct the sequence of

tolerance levels εl (l = 1, ..., 9) equally spaced from when 10% (ε1 ≈ 51.4) and to

when 5% (ε9 ≈ 20.8) of the candidate samples θ∗ = (r∗1, r
∗
2,m

∗) are accepted in

the ABC rejection method. We simulate the piecewise-smooth model (3.4) with

(q1, q2, β1, β2, e, aq) = (1, 0.5, 1, 1, 0.25, 0.4) and (p1(0), p2(0), z(0)) = (1, 1, 1) for

750 days of which we discard the first one-third as a transient based on visual

inspection and numerical simulations of the model (3.4). As a result of our ABC

SMC method, the mean of the accepted samples at the final iteration (i.e., l = 9)

is (r∗1, r
∗
2,m

∗) = (1.33, 0.48, 0.14) and the period of the prey ratio then produced by

the model (3.4) is about 20.66 days. For the smooth probability density functions

of r1, r2, and m at each iteration (i.e., l = 1, . . . , 9), see Figure B.2.

B.2.3 Parameter fitting of the 1 predator-2 prey smooth

system I in Equation (4.1) and II in Equation (4.13)

to Lake Constance data

To have an estimate for the predator density in the Lake Constance data in years

1991 and 1998, we first normalise both the data points (Pdata(i)) and the model

prediction (P∗(i)) for the predator density z by L2-norm (i.e., the Euclidean dis-
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Figure B.2: Smooth probability density estimates calculated using Matlab’s ks-
density function for (top left) the growth rate of the preferred prey (r1), (top
right) the growth rate of the alternative prey r2, and (bottom) the predator death
rate (m) in the 1 predator-2 prey piecewise-smooth model (3.4) using the ABC
SMC method [129] (steps 1–7). In the ABC SMC method (L = 9, N = 30), we
construct the sequence of tolerance levels εl (l = l, ..., 9) linearly spaced between
when 10% (ε1 ≈ 51.4) and when 5% (ε9 ≈ 20.8) of the candidate samples θ∗ are
accepted in the ABC rejection method (steps I–VI) for the piecewise-smooth model
(3.4).
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tance)

L2Pdata/∗
=

√∑
i

∣∣Pdata/∗(i)
∣∣2 . (B.5)

In the parameter fitting for the data comparison in Section 4.2.3, we choose data

points between March 1 and June 15. We restrict the time window of comparison

to spring, as it has been suggested that predator-prey feeding interactions are

an important factor in explaining the ciliate-algal dynamics in Lake Constance

in that season [128] and that such interactions have larger relative importance

than environmental conditions [116]. In year 1991, there are 31 data points in the

chosen time window for the selective ciliate predator Balanion planctonicum and

19 data points for the unselective ciliate predator Rimostrombidum lacustris. In

year 1998, there are 15 data points for both the selective ciliate predator Balanion

planctonicum and unselective ciliate predator Rimostrombidum lacustris. In the

case of the smooth system II, we fit the model to the total predator abundance

calculated as the sum of the unselective and selective predator abundances. After

normalising these data points and the model prediction for these data points by

L2-norm in Equation (B.5), we align the peak abundances both in the data and

in the model simulation before calculating the squared distance (B.4) between the

data and the model prediction.

For the ABC rejection algorithm (steps I–II) that we carry out for 1000 itera-

tions, we assume the following uniform distributions as our prior distributions for

the parameters: r1 ∼ U(1, 3), r2 ∼ U(0.01, 0.8), m ∼ U(0.1, 1), aq ∼ U(0.01, 2),

and k ∼ U(2, 100). In the case of the smooth system II, we assume m ∼ U(0.05, 1)

and ν ∼ U(1.1, 5), where ν represents the initial perturbation from the steady state

V. That is, we start simulations of the smooth system II at z(0) = νz̃. We chose

these distributions by studying the literature (for example, [128]) and by simu-
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lating the smooth systems I and II numerically. We simulate the smooth model

I (4.1) with (q1, q2, β1, β2, e) = (1, 0.5, 1, 1, 0.25) and (p1(0), p2(0), z(0)) = (1, 1, 1)

for 457 (i.e., twice the lenght of the “spring” we chose to start March 1 and

end June 15) days of which we discard the first three months (i.e., 61 days) as

a transient based on visual inspection and numerical simulations of the model

(4.1). In the case of the smooth system II, we simulate the model (4.13) with

(r1, r2, β1, β2, e, q2, aq) = (1, 0.4, 1, 1, 0.25, 0.5, 0.5) and (p1(0), p2(0), z(0), q(0)) =

(aqm(r1 + r2)/(e(aqr1 + q2r2)),m(r1 + r2)/(e(aqr1 + q2r2)), ν(r1 + r2), r1/(r1 + r2)),

which for p1, p2, and q corresponds to the steady state IV of the smooth system

II (4.13). Similarly to the smooth system I, we simulate the smooth system II for

457 days of which we discard the first three months (i.e., 61 days) as a transient

based on visual inspection and numerical simulations of the model (4.13).

In the ABC SMC method (L = 10, N = 50) for the smooth system I, we

construct the sequence of tolerance levels εl (l = 1, ..., 10) equally spaced from

when 5% and to when 1% (in year 1991), and when 10% and to when 1% (in year

1998), of the candidate samples θ∗ = (r∗1, r
∗
2,m

∗, a∗q, k
∗) are accepted in the ABC

rejection method. We simulate the smooth model I (4.1) with (q1, q2, β1, β2, e) =

(1, 0.5, 1, 1, 0.25) and (p1(0), p2(0), z(0)) = (1, 1, 1) for 457 days of which we discard

the first three months (i.e., 61 days) as a transient based on visual inspection and

numerical simulations of the model (4.1).

In the ABC SMC method (L = 10, N = 50) for the smooth system II, we

construct the sequence of tolerance levels εl (l = 1, ..., 10) equally spaced from

when 10% and to when 1% of the candidate samples θ∗ = (m∗, ν) are accepted

in the ABC rejection method. We simulate the smooth model II (4.13) with

(r1, r2, β1, β2, e, q2, aq) = (1, 0.4, 1, 1, 0.25, 0.5, 0.5) and (p1(0), p2(0), z(0), q(0)) =
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(aqm(r1 + r2)/(e(aqr1 + q2r2)),m(r1 + r2)/(e(aqr1 + q2r2)), ν(r1 + r2), r1/(r1 + r2)),

for 457 days of which we discard the first three months (i.e., 61 days) as a transient

based on visual inspection and numerical simulations of the model (4.13).

As a result of our ABC SMC method for the smooth system I, the mean of

the accepted samples at the final iteration (i.e., l = 10) is (r∗1, r
∗
2,m

∗a∗q, k
∗) =

(1.56, 0.61, 0.17, 0.080, 62) for the selective predator fitted to the 1991 data. The

mean distance to the data produced by the model (4.1) is 0.35. For the unselective

predator fitted to the 1991 data, the mean of the accepted samples at the final

iteration (i.e., l = 10) is (r∗1, r
∗
2,m

∗, a∗q, k
∗) = (1.41, 0.66, 0.41, 0.16, 54) and the

mean distance to the data produced by the model (4.1) is 0.35. For the smooth

probability density functions of r1, r2, m, aq, and k at each iteration (i.e., l =

1, . . . , 10), see Figures B.3 and B.4, for the selective and unselective predator,

respectively.

In the case of year 1998, we obtain with our ABC SMC implementation that

the mean of the accepted samples at the final iteration (i.e., l = 10) for the

selective predator is (r∗1, r
∗
2,m

∗, a∗q, k
∗) = (1.45, 0.65, 0.52, 0.17, 76) and the mean

distance to the data produced by the model (4.1) is 0.23. For the unselective

predator, the mean of the accepted samples at the final iteration (i.e., l = 10) is

(r∗1, r
∗
2,m

∗, a∗q, k
∗) = (1.89, 0.66, 0.66, 0.17, 36) and the mean distance to the data

produced by the model (4.1) is 0.27, when fitted to the data from 1998. For the

smooth probability density functions of r1, r2, m, aq, and k at each iteration (i.e.,

l = 1, . . . , 10), see Figures B.5 and B.6, for the selective and unselective predator,

respectively.

As a result of our ABC SMC method for the smooth system II, the mean of

the accepted samples at the final iteration (i.e., l = 10) is (m∗, ν∗) = (0.29, 4.4)
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Figure B.3: Smooth probability density estimates calculated using Matlab’s ks-
density function for (top left) the growth rate of the preferred prey, (top right)
the growth rate of the alternative prey, (middle left) the predator death rate,
(middle right) the slope of the preference trade-off, and (bottom) the steepness of
the tanh function of the selective predator in the smooth model I (4.1) using the
ABC SMC method [129] (steps 1–7) and 1991 data. In the ABC SMC method
(L = 10, N = 50), we construct the sequence of tolerance levels εl (l = l, ..., 10)
linearly spaced between when 5% (ε1 ≈ 0.60) and when 1% (ε10 ≈ 0.46) of the
candidate samples θ∗ are accepted in the ABC rejection method (steps I–VI) for
the smooth model I (4.1).
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Figure B.4: Smooth probability density estimates calculated using Matlab’s ks-
density function for (top left) the growth rate of the preferred prey, (top right) the
growth rate of the alternative prey, (middle left) the predator death rate, (middle
right) the slope of the preference trade-off, and (bottom) the steepness of the tanh
function of the unselective predator in the smooth model I (4.1) using the ABC
SMC method [129] (steps 1–7) and 1998 data. In the ABC SMC method (L = 10,
N = 50), we construct the sequence of tolerance levels εl (l = l, ..., 10) linearly
spaced between when 5% (ε1 ≈ 0.57) and when 1% (ε10 ≈ 0.43) of the candidate
samples θ∗ are accepted in the ABC rejection method (steps I–VI) for the smooth
model I (4.1).
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Figure B.5: Smooth probability density estimates calculated using Matlab’s ks-
density function for (top left) the growth rate of the preferred prey, (top right)
the growth rate of the alternative prey, (middle left) the predator death rate,
(middle right) the slope of the preference trade-off, and (bottom) the steepness of
the tanh function of the selective predator in the smooth model I (4.1) using the
ABC SMC method [129] (steps 1–7) and 1998 data. In the ABC SMC method
(L = 10, N = 50), we construct the sequence of tolerance levels εl (l = l, ..., 10)
linearly spaced between when 10% (ε1 ≈ 0.71) and when 1% (ε10 ≈ 0.32) of the
candidate samples θ∗ are accepted in the ABC rejection method (steps I–VI) for
the smooth model I (4.1).
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Figure B.6: Smooth probability density estimates calculated using Matlab’s ks-
density function for (top left) the growth rate of the preferred prey, (top right) the
growth rate of the alternative prey, (middle left) the predator death rate, (middle
right) the slope of the preference trade-off, and (bottom) the steepness of the tanh
function of the unselective predator in the smooth model I (4.1) using the ABC
SMC method [129] (steps 1–7) and 1998 data. In the ABC SMC method (L = 10,
N = 50), we construct the sequence of tolerance levels εl (l = l, ..., 10) linearly
spaced between when 10% (ε1 ≈ 0.60) and when 1% (ε10 ≈ 0.35) of the candidate
samples θ∗ are accepted in the ABC rejection method (steps I–VI) for the smooth
model I (4.1).
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Figure B.7: Smooth probability density estimates calculated using Matlab’s ks-
density function for (left) the total predator death rate and (right) the pertur-
bation from the steady state IV of the total predator population (i.e., z(0) = νz̃)
in the smooth model II (4.13) using the ABC SMC method [129] (steps 1–7) and
1991 data. In the ABC SMC method (L = 10, N = 50), we construct the sequence
of tolerance levels εl (l = l, ..., 10) linearly spaced between when 10% (ε1 ≈ 0.71)
and when 1% (ε10 ≈ 0.32) of the candidate samples θ∗ are accepted in the ABC
rejection method (steps I–VI) for the smooth model II (4.13).

for the total predator population fitted to the total predator 1991 data. The

mean distance to the data produced by the model (4.13) is 0.32. For the smooth

probability density functions of m and ν at each iteration (i.e., l = 1, . . . , 10), see

Figure B.7.

In the case of year 1998, we obtain with our ABC SMC implementation that

the mean of the accepted samples at the final iteration (i.e., l = 10) for the total

predator population in 1998 is (m∗, ν∗) = (0.66, 2.2), and the mean distance to

the data produced by the model (4.13) is 0.20. For the smooth probability density

functions of m and ν at each iteration (i.e., l = 1, . . . , 10), see Figure B.8.
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Figure B.8: Smooth probability density estimates calculated using Matlab’s ks-
density function for (left) the total predator death rate and (right) the pertur-
bation from the steady state IV of the total predator population (i.e., z(0) = νz̃)
in the smooth model II (4.13) using the ABC SMC method [129] (steps 1–7) and
1998 data. In the ABC SMC method (L = 10, N = 50), we construct the sequence
of tolerance levels εl (l = l, ..., 10) linearly spaced between when 10% (ε1 ≈ 0.31)
and when 1% (ε10 ≈ 0.21) of the candidate samples θ∗ are accepted in the ABC
rejection method (steps I–VI) for the smooth model II (4.13).
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carlo without likelihoods. Proceedings of the National Academy of Sciences,

100:15324–15328, 2003.

[90] MATLAB. Version 8.1.0.604 (R2013a). The MathWorks Inc., Natick,

Massachusetts, 2013.

[91] B. J. McGill, B. J. Enquist, E. Weiher, and M. Westoby. Rebuilding com-

munity ecology from functional traits. Trends in Ecology and Evolution,

21:178–185, 2006.

[92] A. McQuatters-Gollop, P. C. Reid, M. Edwards, P. H. Burkill, C. Castel-

lani, S. Batten, W. Gieskes, D. Beare, R. R. Bidigare, E. Head, R. Johnson,

168



M. Kahru, J. A. Koslow, and A. Pena. Is there a decline in marine phyto-

plankton? Nature, 472:E6–E7, 2011.

[93] A. Merico, J. Bruggeman, and K.W. Wirtz. A trait-based approach for

downscaling complexity in plankton ecosystem models. Ecological Modelling,

220:3001–3010, 2009.

[94] H. Müller and A. Schlegel. Responses of three freshwater planktonic cili-

ates with different feeding modes to cryptophyte and diatom prey. Aquatic

Microbial Ecology, 17:49–60, 1999.

[95] W. W. Murdoch. Switching in general predators: Experiments on prey

specificity and stability of prey populations. Ecological Monographs, 39:335–

354, 1969.

[96] J. Murdock. Unfoldings. Scholarpedia 1(12):1904, 2006. http://www.

scholarpedia.org/article/Unfoldings Accessed: 19-05-2014.

[97] J. D. Murray. Mathematical Biology: I. An Introduction. Springer, 2002.

[98] J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission

line simulating nerve axon. Proceedings of the Institute of Radio Engineers,

50:2061–2070, 1962.

[99] A. B. Nordmark. Non-periodic motion caused by grazing incidence in an

impact oscillator. Journal of Sound and Vibration, 145:279–297, 1991.

[100] F. Pelletier, T. Clutton-Brock, J. Pemberton, S. Tuljapurkar, and T. Coul-

son. The evolutionary demography of ecological change: Linking trait vari-

ation and population growth. Science, 315:1571–1574, 2007.

169



[101] P. Piiroinen and Y. A. Kuznetsov. An event-driven method to simulate Filip-

pov systems with accurate computing of sliding motions. ACM Transactions

on Mathematical Software, 34:13:1–13:24, 2008.

[102] S. H. Piltz, M. A. Porter, and P. K. Maini. Prey switching with a linear

preference trade-off. SIAM Journal on Applied Dynamical Systems, 13:658–

682, 2014.

[103] T. Platt, G. N. White III, L. Zhai, S. Sathyendranath, and S. Roy. The phe-

nology of phytoplankton blooms: Ecosystem indicators from remote sensing.

Ecological Modelling, 220:3057–3069, 2009.

[104] D. M. Post, M. E. Conners, and D. S. Goldberg. Prey preference by a top

predator and the stability of linked food chains. Ecology, 81:8–14, 2000.

[105] J. K. Pritchard, M. T. Seielstad, A. Perez-Lezaun, and M. W. Feldman.

Population growth of human Y chromosomes: A study of Y chromosome

microsatellites. Molecular Biology and Evolution, 16:1791–1798, 1999.

[106] D. J. Rapport. An optimization model of food selection. The American

Naturalist, 105:575–587, 1971.

[107] P. C. Reid, G. Gorick, and M. Edwards. Climate change and European

Marine Ecosystem Research. Technical report, Sir Alister Hardy Foundation

for Ocean Science, Plymouth U.K., 2011.

[108] A. C. Revkin. “On plankton, warming and whiplash”. The New

York Times, 2011. http://dotearth.blogs.nytimes.com/2011/04/26/

on-plankton-warming-and-whiplash/ Accessed: 12-06-2013.

170



[109] M. L. Rosenzweig and R. H. MacArthur. Graphical representation and

stability conditions of predator-prey interaction. The American Naturalist,

97:209–223, 1963.

[110] R. R. Rykaczewski and J. P. Dunne. A measured look at ocean chlorophyll

trends. Nature, 472:E5–E6, 2011.

[111] M. Scheffer, S. Rinaldi, Y. Kuznetsov, and E. H. van Nes. Seasonal dynam-

ics of Daphnia and algae explained as a periodically forced predator-prey

systems. Oikos, 80:519–532, 1997.

[112] M. Shimada, Y. Ishii, and Harunobu Shibao. Rapid adaptation: A new

dimension for evolutionary perspectives in ecology. Population Ecology, 52:5–

14, 2010.

[113] D. J. W. Simpson and R. Kuske. Stochastically perturbed sliding motion in

piecewise-smooth systems. arXiv:1204.5792, 2012. Submitted.

[114] D. J. W. Simpson and J. D. Meiss. Andronov-Hopf bifurcations in planar,

piecewise-smooth, continuous flows. Physics Letters A, 371:213–220, 2007.

[115] L. B. Slobodkin. Growth and Regulation of Animal Populations. Holt, Rine-

hart, and Winston, 1961.

[116] U. Sommer, R. Adrian, L. De Senerpont Domis, J. J. Elser, U. Gaedke,

B. Ibelings, E. Jeppesen, M. Lurling, J. C. Molinero, W. M. Mooij, E. van

Donk, and M. Winder. Beyond the Plankton Ecology Group (PEG) model:

Mechanisms driving plankton succession. Annual Review of Ecology, Evolu-

tion, and Systematics, 43:429–448, 2012.

171



[117] U. Sommer, Z. M. Gliwicz, W. Lampert, and A. Duncan. The PEG-model

of seasonal succession of planktonic events in freshwaters. Archiv für Hydro-

biologie, 106:433–471, 1986.

[118] J. Sotomayor and M. A. Teixeira. Regularization of discontinuous vector

fields. In International Conference on Differential Equations, Lisboa, Equad-

iff 95, 1996, pages 207–223, 1996.

[119] C. F. Steiner, A. S. Schwaderer, V. Huber, C. A. Klausmeier, and E. Litch-

man. Periodically forced food-chain dynamics: Model predictions and ex-

perimental validation. Ecology, 90:3099–3107, 2009.

[120] D. W. Stephens and J. R. Krebs. Foraging Theory. Princeton University

Press, 1986.

[121] S. H. Strogatz. Nonlinear Dynamics and Chaos. Westview, 1994.

[122] J. Sun, E. M. Bollt, M. A. Porter, and M. S. Dawkins. A mathematical model

for the dynamics and synchronization of cows. Physica D, 240:1497–1509,

2011.

[123] M. A. Teixeira and P. R. da Silva. Regularization and singular perturbation

techniques for non-smooth systems. Physica D, 241:1948–1955, 2012.

[124] E. Teramoto, K. Kawasaki, and N Shigesada. Switching effect of predation

on competitive prey species. Journal of Theoretical Biology, 79:303–315,

1979.

[125] K. Tirok and U. Gaedke. Spring weather determines the relative importance

of ciliates, rotifers and crustaceans for the initiation of the clear-water phase

in a large, deep lake. Journal of Plankton Research, 28:361–373, 2006.

172



[126] K. Tirok and U. Gaedke. Regulation of planktonic ciliate dynamics and

functional composition during spring in Lake Constance. Aquatic Microbial

Ecology, 49:87–100, 2007.

[127] K. Tirok and U. Gaedke. The effect of irradiance, vertical mixing and temper-

ature on spring phytoplankton dynamics under climate change: Long-term

observations and model analysis. Oecologia, 150:625–642, 2007.

[128] K. Tirok and U. Gaedke. Internally driven alternation of functional traits in

a multispecies predator-prey system. Ecology, 91:1748–1762, 2010.

[129] T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. Stumpf. Approximate

Bayesian computation scheme for parameter inference and model selection

in dynamical systems. Journal of the Royal Society Interface, 6:187–202,

2009.

[130] J. Truscott and J. Brindley. Ocean plankton populations as excitable media.

Bulletin of Mathematical Biology, 56:981–998, 1994.

[131] V. I. Utkin. Sliding Modes in Control Optimization. Springer-Verlag, 1992.

[132] B. van der Pol. A theory of the amplitude of free and forced triode vibrations.

Radio Review, 1:701–710, 1920.

[133] E. van Leeuwen, Å. Brännström, V. A. A. Jansen, U. Dieckmann, and A. G.

Rossberg. A generalized functional response for predators that switch be-

tween multiple prey species. Journal of Theoretical Biology, 328:89–98, 2013.

[134] E. van Leeuwen, V. A. A. Jansen, and P. W. Bright. How population dy-

namics shape the functional response in a one-predator-two-prey system.

Ecology, 88:1571–1581, 2007.

173



[135] E. H. van Nes and M. Scheffer. What minimal models cannot tell: A

comment on a model of phytoplankton blooms. The American Naturalist,

163:924–926, 2004.

[136] P. Verity. Feeding in planktonic protozoans: Evidence for nonrandom acqui-

sition of prey. The Journal of Protozoology, 38:69–76, 1991.

[137] V. Volterra. Variations and fluctuations of a number of individuals in animal

species living together. In: Animal Ecology. pp. 409–448. McGraw Hill, New

York, 1931. Translation by R. N. Chapman.

[138] R. J. Williams. Effects of network and dynamical model structure on species

persistence in large model food webs. Theoretical Ecology, 1:141–151, 2008.

[139] M. Yamamichi, T. Yoshida, and A. Sasaki. Comparing the effects of rapid

evolution and phenotypic plasticity on predator-prey dynamics. The Amer-

ican Naturalist, 178:287–304, 2011.

[140] T. Yoshida, L. E. Jones, S. P. Ellner, G. F. Fussman, and N. G. Hairston Jr.

Rapid evolution drives ecological dynamics in a predator-prey system. Na-

ture, 424:303–306, 2003.

174


