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The study of temporal networks in discrete time has yielded numerous insights into time-dependent net-
worked systems in a wide variety of applications. However, for many complex systems, it is useful to develop
continuous-time models of networks and to compare them to associated discrete models. In this paper, we study
several continuous-time network models and examine discrete approximations of them both numerically and
analytically. To consider continuous-time networks, we associate each edge in a graph with a time-dependent tie
strength that can take continuous non-negative values and decays in time after the most recent interaction. We
investigate how the moments of the tie strength evolve with time in several models, and we explore—both
numerically and analytically—criteria for the emergence of a giant connected component in some of these
models. We also briefly examine the effects of the interaction patterns of continuous-time networks on the
contagion dynamics of a susceptible–infected–recovered model of an infectious disease.
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I. INTRODUCTION

Networks, in the form of graphs or more complicated
structures, are useful models of many complex systems in
nature, society, and technology [1,2]. In the simplest case
of a time-independent graph, one models entities as nodes
and interactions between them as (possibly weighted and/or
directed) edges. However, most networks change in time, and
the study of temporal networks—in which nodes and/or edges
change in time—is one of the most active areas of network
science [3–5].

Temporal networks differ from time-independent networks
in several respects. One significant feature is that the edges of
a temporal network may change between active and inactive
states. For example, in a communication network, e-mails or
text messages are instantaneous interactions between entities,
and we consider an edge between two entities to be active
during instantaneous communication. In other situations, such
as in a phone call, interactions between entities of a social
network may be active for some finite duration of time. Tem-
poral networks are very popular for studying time-dependent
networked systems, but almost all formulations of them have
focused on discrete time [6]. However, it is more appropriate
to study many systems using continuous-time temporal net-
works, which allow both discrete and continuous ties. Indeed,
even when interactions are instantaneous, their importance
or influence may last beyond the interaction time itself, and
one can model them as decaying continuously as a function
of time [7–9]. In such a “tie-decay network” framework, as
advocated in [6], one separates the concepts of interactions
and ties between entities. An interaction may or may not be
instantaneous (depending on the model), but the existence and
weights of the ties—which are affected by the interactions—
change continuously in time.

Ties between entities of a social network strengthen with
repeated interactions, and they often deteriorate without such
interactions [7,10]. Our paper is motivated by the recent for-

malization of tie-decay networks by Ahmad et al. [6]. In their
study, the strength of a tie between nodes decays exponen-
tially in the absence of interactions and discrete interactions
between entities boost the strength of a tie between entities.
This mechanism is also reminiscent of models of Hebbian
learning in neuronal networks, as the tie strength between
neurons can increase when they have similar interaction pat-
terns [11]. In a 2001 paper on tie-decay networks (although
without introducing such terminology), Jin et al. [12] exam-
ined continuous-time networks with an exponential decay of
tie strengths that they used to represent friendship strengths
between people in a social network. As we discuss in the
present paper, there are various ways to formulate models of
tie-decay networks, and we consider a few of them. Another
approach for studying temporal networks in both continuous
and discrete time is through statistical models, such as expo-
nential random-graph models [13].

As discussed in [6], a major challenge of studying
continuous-time temporal networks is the aggregation of in-
teractions between entities over time windows. There is a
delicate balance between smoothing noise and preserving
information content, and the choice of the size of a time
window plays an important role. If a time window is too
small, one may be unable to capture some important features
of a network. However, if the time window is too large, it
may eclipse important interactions in a network. Given these
issues, Sulo et al. illustrated that it is important to examine
multiple resolutions in time-dependent networks [14]. In the
present paper, we focus on the decay and boosting behavior of
ties between pairs of nodes. Therefore, it is often more mean-
ingful to examine the time step and the decay rate together,
instead of studying them separately.

To improve the understanding of continuous-time net-
works, it is important to generalize well-known network
models to continuous-time settings. An important example is
Erdős–Rényi (ER) networks [1,15], the simplest type of ran-
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dom graph. Each edge in a G(n, p) ER graph exists with
a homogeneous, independent probability p. An important
feature of the G(n, p) model is the emergence of a giant
connected component (GCC), which scales linearly with the
number n of nodes in a network, for probabilities that are at
least some critical value [1,15]. A related idea, which has been
used in models of numerous phenomena, is percolation on ER
graphs and other networks [16]. Many scholars have studied
GCCs (and giant percolating components) in a diverse set of
applications, such as navigability in transportation networks
[17] and transmissibility of diseases in social networks [18].
For example, Jin et al. [12] examined the development of a
GCC in a model of the formation of a social network.

In the present paper, we incorporate the G(n, p) model
into several continuous-time network models using a variety
of different mechanisms for the growth and decay of the tie
strengths between nodes. These mechanisms include the tie-
decay model of Ahmad et al. [6] and the back-to-unity model
of Jin et al. [12]. We also study two mechanisms—a diffusion
model and a convection–diffusion model—that are inspired by
random walks and partial differential equations (PDEs). For
all four of these mechanisms, we assume that the tie strength
between a pair of nodes is independent of the tie strengths of
any other edges in a network. With this independence assump-
tion, we derive the moments of the tie strength at stationarity
for the model of Ahmad et al. and a simplified version of the
model of Jin et al., and we then compare our results for the
first moment with numerical simulations. We also study the
emergence of a GCC in a simplified version of the back-to-
unity model, the convection–diffusion model, and a particular
limit of the tie-decay model of Ahmad et al. Our results
give insights into several different types of continuous-time
networks with tie decay, and we see that their properties can
differ from each other in substantive ways. As a case study, we
also briefly examine the effects of interaction patterns of the
back-to-unity model on contagion dynamics in a susceptible–
infected–recovered (SIR) model of an infectious disease.

Our paper proceeds as follows. In Sec. II, we discuss four
models of continuous-time networks with tie decay: the recent
model of Ahmad et al. [6], the back-to-unity model of Jin et al.
[12], a diffusion model, and a convection–diffusion model.
We examine the moments of tie strength in the Ahmad et al.
model in the long-time limit. We also study the emergence of
a GCC in a particular limit and compare it with our numerical
simulations. We then study the moments of the tie strength
and the emergence of a GCC in a simplified version of the
back-to-unity model. We also introduce two continuous-time
network models that are based on random walks—a diffusion
model and a convection–diffusion model—and we examine
the emergence of a GCC in our convection–diffusion network
model using ideas from PDEs and numerical analysis. In
Sec. III, we examine SIR dynamics on networks that we con-
struct from a simplified version of the back-to-unity model. In
Sec. IV, we summarize our results and suggest several future
directions.

II. MODELS

A. Tie-decay model of Ahmad et al. [6]

We start with the tie-decay model of Ahmad et al. [6]. This
graph model G(n, p, α, T ) has four parameters: the number

0 200 400 600 800 1000

Time

0

0.5

1

1.5

2

2.5

T
ie

 s
tr

en
gt

h

FIG. 1. An illustration of dynamics in the tie-decay model of
Ahmad et al. [6]. The tie strength between a pair of nodes increases
by 1 when there is an interaction during a time step, and it decays ex-
ponentially when there is no interaction. In the depicted simulation,
there are n = 1000 nodes, a decay rate of α = 0.01, an interaction
probability of p = 0.003, and T = 1000 time steps. The vertical axis
shows the tie strength of one edge. Six interactions occur between
the two nodes that are incident to this edge.

n of nodes, the computation time (i.e., the number of time
steps) T , a decay parameter α, and the probability p that a
pair of nodes interacts during one time step. One considers
the interaction probability p independently for each pair of
nodes. This model distinguishes between the concepts of
“interactions” and “ties,” which traditionally are treated as
equivalent concepts. There is an underlying continuous time,
which we measure in small increments of length δt , and a pair
of nodes can interact during a time step. The strength of a tie
between two nodes depends on the history of the interactions
between them. The primary goal of [6] was to generalize
PageRank centrality [19] to tie-decay networks. When we
examine such tie-decay networks, we consider networks with
undirected edges and tie strengths. We focus on the situation
in which nodes in a network have an equal probability of
interacting with any of the other nodes in each time step.
Using a characteristic function, we derive the moments of
the tie strength in the long-time limit. We also examine the
criterion for the emergence of a GCC in a tie-decay network in
the special case in which each node pair interacts at most once.

There are numerous possible choices in the above tie-decay
setting, and we follow those of [6]. Consider a time step of
length δt . If a pair of nodes interacts, which occurs with a ho-
mogeneous probability p, the tie strength of the edge between
these nodes increases by 1. If they do not interact, which
occurs with complementary probability 1 − p, the strength of
the tie between them decays by the factor eα δt . We also make
the assumption that, during a single time step, a pair of nodes
either has one interaction (thereby increasing the strength
of the tie between them) or has zero interactions (such that
the tie strength between them decays). We suppose that the
growth and decay pattern of each pair of nodes is independent
of all other pairs, so we independently consider each node
pair during each time step. As we mentioned in Sec. I, it is
more appropriate to examine the time step and the decay rate
together, rather than separately. For simplicity, we take δt = 1
in this model (and also in the back-to-unity model, which we
discuss in Sec. II B). In Fig. 1, we show an example of the
tie-decay model’s dynamics.
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Let A be an adjacency matrix that is associated with a
graph from G(n, p, α, T ) and encodes the tie strengths of the
edges. The entry Ae f gives the tie strength between nodes e
and f (where e �= f ). The matrix A is symmetric and has 0
entries on the diagonal.

The tie strength of each edge satisfies the same probability
distribution, so let us focus on a single edge. Let st be the tie
strength of a particular edge at time t , and suppose that s0 = 0.
To study the model of [6] with δt = 1, we run a Monte Carlo
simulation for a total of T steps using the following update
rule:

st+1 =
{

st + 1 , with probability p
st e−α , with probability (1 − p) .

(1)

That is,

st+1 = zt + e−α(1−zt )st ,

where zt is a Bernoulli random variable with parameter p.
To calculate the expectation of st , we write

E[s0] = 0 ,

E[s1] = p(1 + E[s0]) + e−αE[s0](1 − p) ,

...

E[st ] = p(1 + E[st−1]) + e−αE[st−1](1 − p) , for t � 1 .

It is difficult to evaluate the above recursive expression to
obtain a closed-form expression for E[st ], but we can obtain
a good approximation for large t . The expression for E[st ] is
a sum of terms of the form pie− jα , where i ∈ {1, . . . , t} and
j ∈ {0, . . . , t − 1}. The coefficients of pie− jα are all equal to
1 when i + j � t , and we can discard the other terms as small
as t → ∞. This allows us to approximate E[st ] as follows:

E[st ] ≈
t∑

i=1

t−i∑
j=0

pie− jα

= 1

1 − σ

[
p − pt+1

1 − p
− pσ t

(( p
σ

)t − 1
p
σ

− 1

)]
, (2)

where σ = e−α . This also yields the long-time behavior of
E[st ], which is given by

lim
t→∞E[st ] = 1

1 − σ

p

1 − p
. (3)

In the long-time limit, which is a stationary state, we can
write down the characteristic function of the distribution of
s := limt→∞ st . This function is

φs(k) = E[eiks] , (4)

where i2 = −1. From the tie-decay interaction and assuming
that the system is in a stationary state, it follows that

φs(k) = peikφs(k) + (1 − p)φs(σk) . (5)

We do not possess a closed-form solution to Eq. (5). However,
we can obtain all of the moments of s by differentiating Eq. (5)
and using the initial condition φs(0) = 1. The mth derivative

of φs at k = 0 is

φs
(m)(0) =

p
[ ∑m

j=1

(m
j

)
φ

(m− j)
s (0)i j

]
(1 − p)(1 − σ m)

, (6)

where φ
( j)
s (0) is the jth derivative of φs evaluated at 0. Using

Eq. (6), we calculate the mean E[s] and variance var(s) of s to
be

E[s] = p

(1 − σ )(1 − p)
,

var(s) = p

(1 − σ 2)(1 − p)2
.

We thereby recover Eq. (3).
We now verify that we indeed reach a stationary state

as t → ∞. The map with x �→ [p(x + 1) + (1 − p)σx] is a
contraction when α > 0 and p < 1. Let x, y ∈ R and φ(x) =
[p(x + 1) + (1 − p)σx]. It then follows that

|φ(x) − φ(y)| = |p(x − y) + (1 − p)σ (x − y)|
� |x − y||p + (1 − p)σ | .

By the Banach fixed-point theorem, we achieve a stationary
state by iteration.

We now examine how well Eqs. (2) and (3) agree us-
ing direct numerical simulations of tie-decay networks. Our
networks have n = 3000 nodes, a connection probability of
p = 0.1, and a decay rate of α = 0.05. Equation (3) yields
a limiting expectation value of 2.2782. At t = 50, our nu-
merical computations yield E[st ] ≈ 2.0368 and our analytical
approximation (2) yields 2.0902; at t = 100, we calculate
that E[st ] ≈ 2.2524 and our analytical approximation yields
2.2628; at t = 150, we calculate that E[st ] ≈ 2.2751 and our
analytical approximation yields 2.2770; at t = 500, we cal-
culate that E[st ] ≈ 2.2782 and our analytical approximation
yields 2.2782.

As t becomes larger, our simulations and approximation
become progressively closer to each other. The approxima-
tion is always larger than our simulation results because the
coefficients of the largest terms (pie− jα with i + j = t + 1)
that we dropped in our approximation are always negative.
If we include terms of this order in our sum, our refined
approximation is smaller than our simulation results because
the coefficients of the next-largest terms (pie− jα with i + j =
t + 2) in the sum are always positive. Based on our numerical
computations, we observe that these positive and negative cor-
rections to our approximation balance each other, rendering
Eq. (3) an accurate approximation in the long-time limit.

As we noted previously, we do not possess closed-form ex-
pressions for the stationary distribution of the tie strengths or
for its characteristic function (5). However, by reformulating
the problem as a Poisson process for large T and small p, we
can approximate the stationary distribution of the tie strength
in the special case in which each node pair interacts at most
once.

Consider a Poisson process with mean and variance λ =
Tp. The tie strength decays exponentially in time until the
Poisson process experiences an arrival, which causes the tie
strength to increase instantaneously by 1. This is an equivalent
formulation of the tie-decay process with a total simulation
time of T . The number NT of arrivals over time T for the
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FIG. 2. Size of the largest connected component in a tie-decay network that we construct using the model of Ahmad et al. [6] versus
the threshold g for different values of the decay rate α. In our simulations, there are n = 2000 nodes; decay parameters of (a) α = 0.001,
(b) α = 0.01, and (c) α = 0.1; a total simulation time of T = 1000; and an interaction probability of p = 10−5 (so λ = T p = 0.01). Each plot
is a mean over 200 instantiations. Using Eq. (13), we calculate the critical thresholds gcrit to be (a) 0.9592, (b) 0.6345, and (c) 0.0106.

Poisson process follows the Poisson distribution

P(NT = j) = λ j exp (−λ)

j!
. (7)

Let s be the tie strength of an edge at the end (specifically,
with t → ∞) of a tie-decay process that starts at s0 � 0. By
the law of total probability,

P(s < s̃) =
∞∑
j=0

P(s < s̃|NT = j)P(NT = j) . (8)

The case in which NT = 0 is not very interesting, as the tie
strength just decays exponentially. When NT = 1, let τ be the
(unique) arrival time of the Poisson process. If s̃ � (s0+1)
exp(−T α) (where equality holds when the arrival occurs at
t = 0), it follows that

{s < s̃} ⇐⇒
{
τ <

1

α
ln(s̃ exp(T α) − s0)

}
. (9)

The logical statement (9) suggests that we can readily calcu-
late the distribution of τ , as there is a unique arrival during the
interval. It follows that

P(τ � t |NT = 1) = t

T
. (10)

From (9) and (10), we obtain

P(s < s̃|NT = 1) =
{

ln(s̃eT α−s0 )
αT , s̃ � (s0 + 1)e−T α

0 , otherwise .
(11)

When λ 
 1, we can approximate the tie-decay process
by assuming that P(NT � 2) = 0. That is, we are assuming
that each node forms at most one tie during the entire process.
In this scenario, suppose that s̃ � (s0 + 1) exp(−T α). It then
follows that

P(s < s̃) ≈
1∑

j=0

P(s < s̃|NT = j)P(NT = j)

= e−T p

[
1 + p

α
ln(s̃eT α − s0)

]
. (12)

We now impose a threshold g for the tie strength, such that
we only consider edges with tie strengths that are at least g to
be active.

Setting s̃ = g, we approximate the value of a critical thresh-
old gcrit for the emergence of a GCC in a tie-decay network.
We write

gcrit = exp

{
α

p

[
eT p

(
1 − 1

n

)
− 1

]
− T α

}
+ s0e−T α . (13)

If g < gcrit, there is a GCC in our tie-decay network with
high probability (i.e., with a probability that approaches 1
as n → ∞); if g > gcrit, then with high probability there is
not a GCC. In Fig. 2, we examine the effect of the decay
parameter α on gcrit. We calculate that the critical thresholds
gcrit for a GCC to emerge are gcrit ≈ 0.9502, gcrit ≈ 0.6345,
and gcrit ≈ 0.0106 for decay rates of α = 0.001, α = 0.01,
and α = 0.1, respectively. In our simulations, we observe a
phase transition near g = gcrit.

B. A simplified version of the back-to-unity
model of Jin et al. [12]

Jin et al. [12] considered a type of tie-decay model
(although they did not use that terminology) in which an
interaction resets the strength of a tie between two nodes to
1, instead of increasing the tie strength by 1 [as in Eq. (1)].
Consequently, the tie strength of each edge is always bounded
above by 1. In Fig. 3, we show an illustrative example of the
tie-decay dynamics for the back-to-unity model of [12].

In their back-to-unity model, Jin et al. [12] used a threshold
g ∈ (0, 1] for the tie strength and they interpreted edges with a
tie strength of at least g as active. They examined the evolution
of model friendship networks using numerical simulations.
The main assumption in [12] is that two people are more
likely to meet when they have common friends than when
they do not. Each time two people meet, the tie strength of
the edge between them resets to 1. When they are apart, the
tie strength between them decreases exponentially. Jin et al.
also included an upper bound for the number of active friends
that one person can have simultaneously. Using their model,
they sought to achieve insights into the formation of social
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FIG. 3. An illustration of tie-decay dynamics in a simplified ver-
sion of the back-to-unity model of Jin et al. [12]. The tie strength
between two nodes resets to 1 if they interact during a time step.
In the depicted simulation, there are n = 1000 nodes, a decay rate
of α = 0.01, an interaction probability of p = 0.003, and T = 1000
time steps. The vertical axis shows the tie strength of one edge. Four
interactions occur between the two nodes that are incident to this
edge.

networks, and they supposed that a community forms in a
network concomitantly with the formation of a GCC.

In our discussion, we modify (and simplify) the back-
to-unity model of [12] by dropping (1) the assumption that
the chance that two people meet each other depends on the
number of their mutual friends and (2) the upper bound on
the number of friendships. With this simplified model, we can
make some analytical progress. Given an interaction probabil-
ity p and a threshold g, we derive a closed-form expression for
the criterion of the emergence of a GCC.

The long-time behavior of the mth moment of the tie
strength is

lim
t→∞E

[
st

m
] = p

1 − σ m(1 − p)
, (14)

where we recall that σ = e−α .
In the time-independent ER random-graph model G(n, p),

there is a GCC with high probability when

p � 1 + ε

n
(15)

for any ε > 0, because there is a phase transition for the
emergence of the GCC when ε = 0. When (15) holds, then
with high probability, there is a single GCC and all other
components have size O(ln(n)) [15].

Because the nodes are indistinguishable from each other,
we examine the probability that the strength of a particular
edge is at least as large as the threshold:

P(s � g) = 1 − P(s < g) , (16)

where we recall that s = limt→∞ st . We compute the proba-
bility on the right-hand side of (16) as follows. We know that
s cannot reset to 1 in the last step, as otherwise s = 1 � g.
Similarly, s cannot reset to 1 in the last q steps, because
otherwise it will not have enough time to decay to some value
that is smaller than g. Using this argument, we see that q needs
to satisfy

e−αq < g ,

which implies that

q �
⌈

− ln(g)

α

⌉
,

where �θ� is the ceiling function of θ (i.e., the smallest integer
that is at least as large as θ ) and we have assumed that ln(g)/α
is not an integer.1 The probability that s does not reset to 1 in
the last q steps is (1 − p)q, so

P(s � g) = 1 − P(s < g)

= 1 − (1 − p)�−ln(g)/α� . (17)

By the same argument, a GCC exists with high probability if

P(s � g) = 1 − (1 − p)�−ln(g)/α� >
1

n
. (18)

1When ln(g)/α is an integer, e−αq � g instead of having a strict
inequality.

FIG. 4. Presence versus absence of a GCC in the simplified back-to-unity model. In each panel, we show all components of a network
from a single simulation. In both simulations, there are n = 1000 nodes, an interaction probability of p = 1

1.1n , a decay parameter of α = 0.01,
and T = 3000 time steps. (a) We set the threshold to be g = 0.95, which yields P(s � g) ≈ 0.0054 > 1/n = 0.001. Therefore, there is a GCC
with high probability. (b) We set the threshold to be g = 0.995, which yields P(s � g) ≈ 9.09×10−4 < 1/n = 0.001. Therefore, with high
probability, there is no GCC.
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FIG. 5. Size of the largest connected component in networks that we construct using the simplified back-to-unity model. In our simulations,
there are n = 1000 nodes; a decay parameter of (a) α = 0.01, (b) α = 0.1, and (c) α = 1; and a threshold of g = 0.9. For each value of the
interaction probability p, we take a mean of our results over 250 realizations. Each realization has a run time of T = 500. Using Eq. (18), we
calculate the critical probabilities pcrit to be (a) 9×10−5, (b) 0.5×10−3, and (c) 1×10−3.

Because g ∈ (0, 1] and the decay parameter is α > 0, it fol-
lows that �−ln(g)/α� > 0. Therefore, if p > 1/n, there is a
GCC with high probability unless g = 1. That is, p > 1/n
is a sufficient condition for the existence of a GCC with
high probability. Recall that this is also the condition for the
existence of a GCC in Eq. (15). Therefore, the criterion for
the existence of a GCC in a network that one constructs from
the simplified back-to-unity model is stricter than that for an
ordinary ER G(n, p) graph. In Fig. 4, we illustrate the pres-
ence and absence of a GCC in a network with back-to-unity
interactions. Our analytical result in Eq. (18) agrees with our
numerical computations.

We also investigate numerically how the size of the GCC (if
there is one) in a network that we construct from the simplified
back-to-unity model varies with the interaction probability
p when we fix all other parameters. We show the results of
our numerical computations in Fig. 5. Based on Eq. (18) and
our parameter values, we calculate that the critical probabil-
ities pcrit for a GCC to emerge are pcrit ≈ 9×10−5, pcrit ≈
0.5×10−3, and pcrit ≈ 1×10−3 for decay rates of α = 0.01,

α = 0.1, and α = 1, respectively. As we see in our simula-
tions, there is a phase transition near p = pcrit.

C. Diffusion model of tie strengths

Another continuous-time model, which we introduce in the
present paper, is a toy model of a tie-decay network based on
diffusion. At each time step, each entity is equally likely to
interact with some entity or to not do anything. Each interac-
tion that occurs between a pair of nodes is independent of all
other pairs (i.e., all other edges), so the strength of each tie
changes independently of all other ties. This implies that, at
each time step, there is an equal probability (of 1/2) for the tie
strength of each edge to grow or decay by the factor exp(δx)
for some δx, which we assume is small. We assume that the tie
strength of each edge starts at exp(0) = 1. See Fig. 6(a) for an
illustration of the dynamics of this diffusion model. We show
that we can approximate the evolution of the distribution of tie
strengths by a linear diffusion equation, as in the derivation
of a diffusion equation from a symmetric random walk. In
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FIG. 6. An illustration of tie-strength dynamics for (a) our diffusion model and (b) our bounded convection–diffusion model. In both
panels, we use a spatial step of δx = 5×10−3, a time step of δt = 10−5, and a simulation time of T = 0.03. For panel (b), the convection
parameter is β = 5 and the upper bound of the tie strength is w = 0.8. The vertical axis of each panel gives the natural logarithm of the tie
strength of a single edge. In contrast to our simulations of the Ahmad et al. tie-decay model and the simplified back-to-unity model, the time
step δt �= 1. The diffusion model has a first-order error in time (as well as in space), so we need the time step to be small.
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Sec. II D, we will generalize our diffusion model to include
both diffusion and convection.

Because the tie strength of each edge changes indepen-
dently of those of the other edges, we examine the dynamics
of a single edge. Let u(x, t ) denote the probability that the tie
strength of a chosen edge at time t is given by exp(x). We
write the master equation

u(x, t ) = 1
2 [u(x − δx, t − δt ) + u(x + δx, t − δt )] , (19)

which we rearrange to obtain

u(x, t + δt ) − u(x, t )

= 1
2 {u(x + δx, t ) − u(x, t ) − [u(x, t ) − u(x − δx, t )]} .

(20)

We now approximate finite differences as derivatives in
Eq. (20). Specifically, we take δt → 0 and δx → 0, while
supposing that (δx)2

δt does not go to 0, to yield

∂u

∂t
δt = 1

2

[
(δx)2 ∂2u

∂x2

]

⇒ ut = 1

2

(δx)2

δt
uxx + O(δx) + O(δt ) , (21)

where we use the notation ut ≡ ∂u
∂t and an analogous notation

for spatial derivatives. The initial condition for (21) is

u(x, 0) = δ(x) , (22)

where δ(x) is the Kronecker delta function (and should not be
confused with δx, which denotes an infinitesimal change in the
variable x). This initial condition implies that, at time t = 0,
the tie strength of the chosen edge is exp (0) with probability
1. Equations (21) and (22) constitute a diffusion equation with
a delta-mass initial condition. With this initial condition, we
can solve this equation both numerically and analytically. We
define D = 1

2
(δx)2

δt , and we obtain the similarity solution [20]

u(x, t ) = 1√
4πDt

exp

(
− x2

4Dt

)
. (23)

Therefore, the tie strength in the diffusion model spreads out
over time as a Gaussian whose variance increases with time.

D. Bounded convection–diffusion model of tie strengths

We now modify the diffusion model in Sec. II C by sup-
posing that there is a preference for tie strengths to grow over
time. Specifically, at each time step, there is a probability of
(1/2 + 
) for a tie strength to grow by the factor exp(δx)
and a probability of (1/2 − 
) for it to decay by the factor
exp(δx). We also suppose that 
 is small. We view the growth
pattern of the tie strength as a one-dimensional (1D) random
walker that has a preference to move in the positive direction
[see Fig. 6(b)]. The associated master equation is

u(x, t + δt ) = (
1
2 + 


)
u(x − δx, t )

+ (
1
2 − 


)
u(x + δx, t ) . (24)

Following a similar procedure as with the diffusion model in
Sec. II C, we derive the equation

ut = kuxx − 4βkux + O(δx) + O(δt ) , (25)

where we assume that (δx)2

2 δt → const = k and 

δx → const =

β. We thereby obtain a convection–diffusion equation, with
the delta-mass initial condition (22).

To prevent our random walker from escaping to infinity,
we enforce each tie strength to have an upper bound W .
Specifically,

u(x, t ) = 0 for all x > w , (26)

where w = ln W . Equation (26) is a linear diffusion equa-
tion in a moving frame. By making the change of variables
(x, t ) → (ξ, t ), where ξ = x − 4βkt , we see that Eq. (25)
becomes

ut = kuξξ , (27)

which is the usual diffusion equation.
Together with conservation of probability, Eq. (26) en-

forces a boundary condition in our scheme for our numer-
ical computations of (25). Using a forward-time, central-
difference scheme gives

ui+1
j − ui

j

δt
= k

ui
j+1 − 2ui

j + ui
j−1

(δx)2
− 4βk

ui
j+1 − ui

j−1

2 δx
,

ui+1
j = aui

j−1 + bui
j + cui

j+1 , (28)

where the superscript i indicates the time discretization, the
subscript j indicates the space discretization, and

a = k
δt

(δx)2
+ 2βk

δt

δx
,

b = 1 − 2k
δt

(δx)2
, (29)

c = k
δt

(δx)2
− 2kβ

δt

δx
.

Inserting the expressions for k and β into (29) yields a =
1
2 + 
, b = 0, and c = 1

2 − 
. Inserting these values into our
numerical scheme in (28) yields

ui+1
j = (

1
2 + 


)
ui

j−1 + (
1
2 − 


)
ui

j+1 , (30)

which is equivalent to Eq. (24). This indicates that the numer-
ical scheme in Eq. (28) successfully describes the evolution
of the tie strength of an edge if the tie strength is sufficiently
far from the upper bound. By the minimum principle and the
infinite speed of wave propagation in our linear convection–
diffusion equation [20], Eqs. (25) and (27) give a nonzero
solution at the boundary for any t > 0, but our discrete system
in Eq. (24) has a nonzero solution at the boundary only after
some finite time.

To implement the numerical scheme (28), we have to use
a finite interval. As we discussed above, we already have
an upper bound on x. We also need a lower bound. Al-
though the solution to the convection–diffusion equation (25)
has an infinite propagation speed, our discrete model has a
finite propagation speed v = δx

δt . Therefore, we can choose
a lower bound −L (with L ∈ R>0) such that L � T

v
. That

is, at t = T , we have u(x, T ) = 0 for all x � −L. There-
fore, ui

j = u(x j, ti ), with our space discretization given by
{x0 = −L, x1, . . . , xN = w} (where N = w+L

δx ) and our time
discretization given by {t0 = 0, t1, . . . , tNT = T }.
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We derive boundary conditions by requiring conservation
of mass:

N∑
j=1

ui+1
j =

N∑
j=1

ui
j . (31)

Combining Eqs. (28) and (31) yields

ui+1
1 = ui

1(1 − a) + ui
2(1 − a − b) ,

ui+1
N = ui

N (1 − c) + ui
N−1(1 − b − c) . (32)

We now examine the boundary at x = w. From Eq. (32),
the boundary condition on the right (which we derive from
conservation of mass) is

ui+1
N = (

1
2 + 


)
ui

N + (
1
2 + 


)
ui

N−1 . (33)

Our model requires that the tie strength of an edge does not ex-
ceed some threshold w. Therefore, whenever the tie strength
of an edge reaches w, we require at the next time step that it
either remains at w or decays to w − δx. Similarly, if the tie
strength of an edge is w at time t , then the tie strength of that
edge at time t − δt is either w − δx or w. If, at some time, the
tie strength x is smaller than w but becomes x + δx � w at
the next time step, we always set the new tie strength to w. In
mathematical terms, we see from this discussion that

u(w, t + δt ) = (
1
2 + 


)
u(w, t ) + (

1
2 + 


)
u(w − 
x, t ) ,

ui+1
N = (

1
2 + 


)
ui

N + (
1
2 + 


)
ui

N−1 . (34)

Consequently, the natural boundary condition from the model
is equivalent to the boundary condition that we impose on our
numerical scheme (28) based on conservation of mass.

After choosing the bounds (i.e., the values of L and w)
of the domain of u, we implement our numerical scheme
(28) by building a transition matrix from Eqs. (28) and (32).
This matrix is a tridiagonal matrix in which the elements of
each column sum to 1, so it is a stochastic matrix and there
always exists an eigenvector with eigenvalue 1. This transition
matrix is a positive stochastic matrix if 
 < 1

2 . By the Perron–
Frobenius theorem, the eigenspace of the unit eigenvalue is
spanned by one vector, which is the stationary state.

At steady state, u(x, t ) = u(x, t + δt ), so it follows that
ui+1

j = ui
j . Inserting this relation into Eq. (33) yields

uN = (
1
2 + 


)
uN−1 + (

1
2 + 


)
uN , (35)

which implies that

uN

uN−1
=

1
2 + 


1
2 − 


. (36)

Away from the upper bound w, we have

uN−1 = (
1
2 + 


)
uN−2 + (

1
2 − 


)
uN

= (
1
2 + 


)
uN−2 + (

1
2 − 


) 1
2 + 


1
2 − 


uN−1

= (
1
2 + 


)
uN−2 + (

1
2 + 


)
uN−1 , (37)

which implies that

uN−1

uN−2
=

1
2 + 


1
2 − 


. (38)

By induction, we obtain

u j

u j−1
=

1
2 + 


1
2 − 


. (39)

From conservation of mass,∫
R

u(x, t )dx = const , (40)

which yields

ux(w) = 4βu(w) , (41)

where we take u → 0 and ux → 0 as x → −∞ based on our
numerical computations. From (41), we obtain the following
boundary conditions for our numerical computations:

uN − uN−1

δx
= 4βuN ,

uN = uN−1

1 − 4

. (42)

The boundary conditions in (42) are not exactly the same as
those that we derived directly from the numerical conservation
of mass in Eq. (31) or from the network model in Eq. (34).
However, Eqs. (35) and (42) agree to first order in 
.

Let η = 1
2 −

1
2 +


. From the delta-mass initial condition, we

have the geometric sum

N∑
j=1

ui = 1

δx

= uN (1 + η + η2 + · · · + ηN−1)

= uN
1 − ηN

1 − η

= uN
(1 − ηN )

(
1
2 + 


)
2


. (43)

Recall that N = w+L
δx and η < 1. Therefore, to obtain an

asymptotic solution to (28) and (32) at steady state, we may
take ηN → 0. In this asymptotic limit, we solve for uN in terms
of 
 and β to obtain

uN = 2
(
1
2 + 


)
δx

= 2β(
1
2 + 


) . (44)

We implement our numerical scheme in (28) and (32) with
the parameter values δx = 5×10−3, δt = 10−5, T = 0.05,
β = 15, w = 2, and 
 = 7.5×10−2. We also run 100 Monte
Carlo simulations on networks from our convection–diffusion
model with n = 2000 nodes and these same parameter values.
We take a mean of the simulations and show our results in
Fig. 7.

Equation (44) implies that the solution to the PDE (25) at
the boundary w at stationarity does not depend on the value
of w. This is pleasing, because there is no particular reason to
choose one value of w over another.

The numerical scheme in (28) and (32) is accurate to first
order both in time and in space. Because uN converges to the
steady-state solution u(w) as we decrease δx, we can make
concrete statements about the exact stationary-state solution
to the convection–diffusion equation with mass-conserving
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FIG. 7. Comparison of our numerical scheme (red curve) from
Eqs. (28) and (32) to a mean of Monte Carlo simulations over 100
realizations of our bounded convection–diffusion network model
(gray blocks). This figure gives the probability distribution of the tie
strength of an edge in a network. Because we assume that each edge
is independent of all other edges, this distribution applies to the tie
strength of each edge in the network.

boundary conditions. The boundary value of u at stationarity
is

u(w) = 4β . (45)

From Eq. (39), we obtain the following expression for u(x, t )
for x < w in the long-time limit (i.e., at stationarity):

u(x, t ) = lim
m→∞

( 1
2 − β w−x

m
1
2 + β w−x

m

)m

4β . (46)

One can think of the expression (46) as taking the limit of
our numerical scheme in (28) and (32) as the step size δx of
our space discretization goes to 0. Additionally, if u(x, t ) is a
solution to the convection–diffusion equation at stationarity, it
follows that

u(w, t )

u(w − δx, t )
= u(w − δx, t )

u(w − 2 δx, t )

= u(w − � δx, t )

u(w − (� + 1) δx, t )
(47)

for � ∈ Z�0.
From Eq. (47), we can obtain the solution to Eq. (25) at

stationarity. The solution is of the form

u(x) = CeB(x−w) . (48)

We determine the constants B and C from Eqs. (40) and (45)
to obtain

u(x) = 4βe4β(x−w) . (49)

The solution to the discrete convection–diffusion equations
(28) and (32) as ηN → 0 is

uN− j = 4β

1 + 2

η j , j ∈ {0, . . . , N} . (50)

Therefore, a necessary (but not sufficient) condition for our
convection–diffusion network to not have a GCC is


 <
1

4n − 2
. (51)

The solution (49) satisfies the original convection–diffusion
equation (25), subject to the conditions in Eqs. (40), (45),
and (47). The formula (50) provides a way to examine the
emergence of a GCC in our convection–diffusion network
model in the long-time limit. At stationarity, the probability
distribution of the tie strength of an edge is biased towards
the boundary, so we look near the boundary x = w for po-
tentially interesting behavior. We define a threshold W0 < W
and let w0 = ln(W0). Recall that we interpret all edges with tie
strengths that are smaller than the threshold value as inactive.
We interpret edges with tie strengths that are larger than or
equal to the threshold as active. Assuming that the system
(24) has reached stationarity, we calculate the probability that
a given edge has a tie strength that is at least as large as the
threshold. This probability is

P = 4


1 + 2


1 − ηk+1

1 − η
, (52)

where k = �w−w0
δx �. When P > 1/n, our network has a GCC

with high probability. A phase transition occurs when P =
1/n.

One can also study the stationary states of the convection–
diffusion equation (25) directly by setting ut = 0 to obtain
an ordinary differential equation. This gives the same result
as Eq. (49), provided we use the same initial and boundary
conditions.

Another way to look at the growth and decay of tie
strengths in our convection–diffusion network model is by
identifying the growth-and-decay process as a 1D birth–death
Markov process [21]. However, to use such an approach, we
need the process to have a state space � that is not bounded
from below. A way to do this is to first examine a finite
state space and then take the limit as its lower bound goes to
negative infinity. Examining a 1D birth–death Markov process
gives another way to derive Eq. (39).

An advantage of analyzing our tie-decay temporal network
model using ideas from convection–diffusion equations is that
it allows us to write down a characteristic time scale for a net-
work to reach a stationary state. From Eq. (27), we can view
the convection–diffusion equation as a diffusion equation in a
moving frame. Let τ1 to be the time that it takes for the initial
configuration to move to the boundary at x = w. This time is
given by

τ1 = w

4βk
.

Because the solution (23) to the diffusion equation is a Gaus-
sian distribution that expands over time, we define τ2 to be the
time that it takes for the initial configuration to expand until it
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FIG. 8. Comparison of (a) the discrete SIR model (54) and (b)–(d) SIR disease spread on simplified back-to-unity tie-decay networks with
different values of λ = NpP, where Np is the population and P is the probability that a tie strength is larger than or equal to the threshold.
We show the fractions of the population in each state (i.e., compartment) as a function of time for (b) λ = 1, (c) λ = 3, and (d) λ = 0.3. In
each panel, the horizontal axis is time, the dot-dashed blue curve indicates susceptible individuals, the dashed red curve indicates infected
individuals, and the solid yellow curve indicates recovered individuals. The infection rate is β̄ = 0.6, the recovery rate is γ̄ = 0.1, and the
population is Np = 5000. Our initial conditions are S(0)/Np = 0.998, I (0)/Np = 0.002, and R(0) = 0. Observe the similarity between the
plots in panels (a) and (b).

has a standard deviation of w. This time is given by

τ2 = w2

2k
.

Therefore, we expect to reach stationarity at roughly τ =
max{τ1, τ2} when starting from a delta mass initial condition.
This characterization of τ is similar to determining a time
scale based on the Péclet number [22], which measures the
relative strengths of convection and diffusion. If we use w as
length scale, the Péclet number is Pe = 4βw. Additionally,
τ = τ2 if and only if τ2 � τ1; equivalently, τ = τ2 if and only
if 2βw � 1, which entails that Pe � 2.

III. APPLICATION: A COMPARTMENTAL MODEL OF AN
INFECTIOUS DISEASE ON A TIE-DECAY NETWORK

Many infectious diseases spread in humans through net-
works of contacts between susceptible and infected people
[18,23]. However, not all contacts between infected and sus-
ceptible people result in an infection. If we are given the
interaction pattern between individuals, we can calculate the
associated tie strength of different pairs of people as a function
of time. By setting a threshold on the tie strength, suppose
that only contacts whose tie strength is at least as large as

the threshold result in a new infection. In this section, we
use a tie-decay network for the interaction patterns between
individuals and simulate a compartmental model on such a
network. We consider an SIR contagion [24,25]. [See [26]
for an investigation of susceptible–infected–susceptible (SIS)
contagions on tie-decay networks.] Suppose for simplicity
that individuals in a population interact with each other ac-
cording to the simplified back-to-unity model of Sec. II B.
This assumption requires that each pair of individuals interact
with equal probability. In reality, interaction probabilities are
heterogeneous, and such heterogeneity can significantly affect
the spread of a disease [18,23]. We also assume that the spread
of the disease does not affect the interactions in a network.
This assumption is also unrealistic, although it can be rea-
sonable in situations such as the early stages of an epidemic.
The spread of an infectious disease depends on how much
and how frequently individuals interact with each other. We
also assume that the tie-decay network has already reached a
stationary state when the disease first enters the population,
so we can use the distribution (17) of the tie strengths of the
network at stationarity.

We follow common notation for SIR models [25]. Suppose
that the population size is Np. Let S(t ), I (t ), and R(t ) denote
the (time-dependent) numbers of individuals in the suscepti-
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ble, infected, and recovered compartments, respectively. The
continuous-time SIR model in a well-mixed population is

dS

dt
= −β̄IS/Np ,

dI

dt
= β̄IS/Np − γ̄ I , (53)

dR

dt
= γ̄ I ,

where β̄ is the infection rate and γ̄ is the recovery rate.
Because it is easier to track the number of people in each
compartment on a daily or weekly basis than in continuous
time, it is often more meaningful to consider the following
discrete version of the SIR model:

Si+1 = Si − β̄IiSi/Np ,

Ii+1 = Ii + β̄IiSi/Np − γ̄ Ii , (54)

Ri+1 = Ri + γ̄ Ii .

One interpretation of the term β̄IiSi/Np is as follows. In one
time step, we suppose that each susceptible individual inter-
acts with a person who we select uniformly at random from
a population. With probability I/Np, this person is in the
infected compartment. An interaction between a susceptible
person and an infected person results in the former becoming
infected with probability β̄. The SIR models (53) and (54)
assume that disease spread does not affect the interaction
patterns of individuals.

In the synchronous-updating SIR model (54), each indi-
vidual from the susceptible compartment interacts with one
person in a single time step. By contrast, in the SIR model
that we examine on a tie-decay network, we assume that each
individual from the susceptible compartment interacts with
anyone in the population with the same probability p. The
only active interactions are ones with tie strengths that are
at least as large as the threshold. The probability P that a
tie strength is larger than or equal to the threshold is given
by Eq. (17). In a back-to-unity tie-decay network, in one
time step, an individual from the susceptible compartment
can have active interactions with any other individual in the
population with a probability that is given by Eq. (17). There-
fore, the number of active interactions of a susceptible person
satisfies a Poisson distribution, with mean λ = NpP, when
the population Np is large and P is small. In summary, we
describe SIR disease spreading on a tie-decay network as
follows. We have a population of size Np. An individual in
the susceptible compartment can have active interactions with
each other individual in the population with a homogeneous,
independent probability P. An active interaction between a
susceptible person and an infected person leads to infection
with probability β̄, and people from the infected compartment
recover at rate γ̄ .

We compare the results of simulating Eq. (54) and SIR
disease spreading on simplified back-to-unity tie-decay net-
works for several values of λ in Fig. 8. When λ = 1, we see
that the discrete SIR model (54) is a good approximation for
SIR disease spreading on such a tie-decay network. However,
when λ > 1, each susceptible individual interacts on average
with more than one person in each time step, so the disease

spreads faster on the tie-decay network than in (54). When
λ < 1, a susceptible individual interacts on average with fewer
than one person in each time step, so the disease spreads more
slowly on the tie-decay network than in (54). We also note
that λ > 1 corresponds to the criterion for the existence of a
GCC (with high probability) in our simplified back-to-unity
tie-decay network model as Np → ∞. Therefore, we see that
when there is a GCC in a back-to-unity tie-decay network,
an SIR contagion tends to spread faster than in the discrete
SIR model (54). When there is no GCC in such a tie-decay
network, an SIR contagion tends to spread more slowly than
in the discrete SIR model (54)

IV. CONCLUSIONS AND DISCUSSION

It is very popular to study temporal networks [3–5], but
most investigations of such networks focus on discrete-time
approaches. However, many networks evolve continuously in
time, and it is important to develop approaches for studying
such temporal networks. This is an important modeling con-
sideration, and it is often useful to consider the underlying
time as continuous even when subsequently discretizing the
dynamics of temporal networks.

In the present paper, we studied several continuous-time
network models with tie decay. We investigated the long-time
behavior of these models and examined the emergence of
giant connected components (GCCs) in the long-time limit
in the networks that these models produce. In addition to ex-
ploring two existing continuous-time models—the tie-decay
model of Ahmad et al. [6] and a simplified version of the
back-to-unity model of Jin et al. [12]—we also developed
a diffusion model and a convection–diffusion model for tie
strengths, and we examined the formation of a GCC in the
latter (which is a generalization of the former). We derived
the stationary distribution of tie strengths in the convection–
diffusion model using intuition from numerical computations
of a linear convection–diffusion PDE. Our analytical results
agree with our numerical simulations in the long-time limit.
We also examined SIR contagions on networks that we con-
structed using the simplified back-to-unity model.

All of the models that we studied in the present paper
produce temporal networks in which we distinguish between
interactions and ties between nodes. In all of these models,
the tie strength between two nodes grows when they interact
and decays exponentially when they do not. The specific way
in which tie strengths change is a key difference between
the models. In the tie-decay model of [6], the tie strength
between two nodes grows by 1 when there is an interaction
between them. In the back-to-unity model of [12], the tie
strength between two nodes becomes 1 when they interact.
In the diffusion model and the convection–diffusion model,
the tie strength experiences instantaneous exponential growth
when there is an interaction. Another way in which the models
differ is in the time scale between the interactions between
two given nodes. In the Ahmad et al. tie-decay model [6] and
the back-to-unity model [12], it is rare for two given nodes
to interact with each other in a given time step. Therefore, on
average, the strength of a tie between two nodes decays for
a long time after each interaction between them. By contrast,
in the bounded convection–diffusion model of tie strengths of
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Sec. II D, the probabilities of having an interaction (namely,
1
2 + 
) and of not having an interaction (namely, 1

2 − 
) are
both close to 1/2, with the former slightly larger than the
latter. (In the diffusion model of Sec. II C, these probabilities
are exactly 1/2.) Consequently, the tie strength between two
nodes does not decay for much time before there is another
interaction between them. In this model, we also impose an
upper bound on tie strengths to prevent them from becoming
arbitrarily large.

The tie-decay model of Ahmad et al. [6] and the back-
to-unity model [12] are interesting models of interactions
between people (or other entities) that are worth exploring
in applications. In Sec. III, we examined SIR contagions
on networks that are produced by a simplified back-to-unity
model. Using these types of models allows one to incorporate
a variety of interaction patterns, and it is important to further
study how different patterns affect dynamical processes on
social networks. Current efforts include investigations of SIS
contagions [26] and opinion dynamics [27] on the tie-decay
networks of Ahmad et al. [6]. Given that the tie strength
between two neurons can increase when they have similar

interaction patterns [11], we also expect network models like
the ones that we studied in the present paper to be relevant for
the analysis of phenomena like Hebbian learning in neuronal
systems.

When generalizing network analysis to continuous-time
formulations of temporal networks, it is useful to adapt fa-
miliar network ideas. Important notions to adapt include
random-graph models and GCCs (as in the present paper), and
it will be valuable to focus future efforts on generalizing other
ideas (such as community structure and various dynamical
processes on networks) to continuous-time network models.
In our analysis, we treated edges as evolving independently,
but many systems have correlations (e.g., mutual excitation
or mutual inhibition) between edges, and it is important to
generalize our analysis for those situations and to study how
such correlations affect dynamical processes.
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