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Abstract. Motivated by the modeling of customer mobility and congestion in supermarkets, we
study queueing networks with a single source and a single sink. We assume that walkers traverse a
network according to an unbiased random walk, and we analyze how network topology affects the
total mean queue size Q, which we use to measure congestion. We examine network topologies that
minimize Q and provide proofs of optimality for some cases and numerical evidence of optimality for
others. Finally, we present greedy algorithms that add edges to and delete edges from a network to
reduce Q, and we apply these algorithms to a network that we construct using a supermarket store
layout. We find that these greedy algorithms, which typically tend to add edges to the sink node,
are able to significantly reduce Q. Our work helps improve understanding of how to design networks
with low congestion and how to amend networks to reduce congestion.

Key words. queueing networks, random walks, congestion, human mobility, complex systems
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1. Introduction. Understanding the interplay between dynamical processes on
networks and the underlying network topology [18] is important for designing safe and
efficient communication networks [16, 17], transportation networks [19, 23], power
grids [5, 15], and more.

In this paper, we study a simple model of traffic on networks. There has been
much work to investigate how the topology of a network affects traffic on it [1, 6].
We examine a scenario that is inspired by customer mobility in supermarkets [21,
22]. In [22], we proposed a model of customer mobility in supermarkets that is based
on population-level mobility models; we examined congestion by placing a queueing
system at each node of a network. In the present paper, we study a more abstract
model of customer mobility. We consider open queueing networks [10] in which the
customers are random walkers. We analyze how network topology affects congestion,
which we measure using the total mean queue size Q. We focus on stationary queueing
networks with a single source node (representing the entrance of a supermarket) and
a single sink node (representing the till area and exit). Walkers (i.e., customers) enter
a network at the source node and follow an unbiased random walk. At each node,
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MINIMIZING CONGESTION IN QUEUEING NETWORKS 1833

walkers queue up to be served;1 the service time at each node represents the delay
due to congestion at that node. Walkers leave the network when they arrive at the
sink node.

Our model is a simplified model of customer mobility in a supermarket; it neglects
shopping intent, customer heterogeneity, and many other factors. However, such
simple models are important for providing insights into a focal application. They
also provide a starting point to explore more complicated models that capture more
realistic aspects of a problem. Although we are motivated by customer mobility in
supermarkets, one can adapt our model to study other applications (such as human
traffic in airports, warehouses, shopping centers, and other public facilities) [7, 8, 12].

We model and measure congestion in our networks. We treat congestion as a con-
dition that increases the journey time of customers and we seek to minimize the mean
journey time. By Little's law [11], minimizing the mean journey time is equivalent
to minimizing the total mean queue size Q. Because it is typically easier to directly
calculate Q than to calculate the mean journey time, we measure congestion using Q.

Our model is a variant of the traffic-dynamics model of Arenas et al. [1, 6].
We consider random walks on networks [13] with a single source and a single sink,
whereas every node in the Arenas et al. model is both a source and a sink. Arenas
et al. focused primarily on minimizing the traffic capacity \rho c (which, in our model, is
equivalent to the maximum arrival rate of a node) [3] instead of minimizing Q. How-
ever, our methods are applicable both to Q and to the maximum arrival rate \lambda max.
(See section 3.2 and our Supplementary Materials (supplement-ying.pdf [local/web
3.31MB]).)

We present our model in section 2. In our investigation of our model, we address
the following two questions: (1) Which network topologies minimize Q? (2) Given a
network, which edges should one add or delete to reduce Q?

We investigate the first question in section 3. We present an optimal directed
network topology (which we denote by G \=\scrC n

) that minimizes Q over the set of networks
with n nodes that do not have an edge from the source node to the sink node. In G \=\scrC n

,
each node other than the source and sink has an incoming edge (i.e., an in-edge) from
the source and an outgoing edge (i.e., an out-edge) to the sink. For small values of n,
we perform numerical investigations to find optimal networks when there is an edge
from the source to the sink. In this situation, we observe that the optimal topology
is G \=\scrC n

along with an edge from the source to the sink.
In section 4, we investigate the second question and present greedy algorithms for

edge deletion and edge addition to reduce Q. We apply these algorithms to queueing
networks that we generate using random-graph models and to a network from an
actual supermarket store layout. We demonstrate that these algorithms are able to
significantly reduce Q in all of these networks.

In section 5, we summarize our findings and outline several directions for future
study. We give additional details about our work in the Supplementary Materials
(supplement-ying.pdf [local/web 3.31MB]).

2. A single-source, single-sink open queueing network with unbiased
random walkers. Consider a single-source, single-sink open2 queueing network [10]
that takes the form of a directed, unweighted network (i.e., a graph) G = (V,E),

1For example, in the present context, an individual may wait for an opportunity to take an item
from a supermarket shelf.

2A queueing network is open if walkers can enter and leave the network (so there is at least one
source node and at least one sink node). By contrast, in a closed queueing network, walkers neither
enter nor leave.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

5/
23

 to
 1

31
.1

79
.2

20
.2

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://epubs.siam.org/doi/suppl/10.1137/21M1457515/suppl_file/supplement-ying.pdf
https://epubs.siam.org/doi/suppl/10.1137/21M1457515/suppl_file/supplement-ying.pdf


1834 YING, WALLIS, PORTER, HOWISON, AND BEGUERISSE-D\'IAZ

where V is the set of nodes (i.e., vertices) and E \subseteq V \times V is the set of edges. This
network has n = | V | nodes that we label from 1 (the source node) to n (the sink
node). Walkers arrive at node 1 from outside the system at a rate \lambda 01 = \lambda , which we
call the external arrival rate. We assume that the sink node n has no out-edges, so
it is a point of no return. This is sensible for most customers in a supermarket; once
customers reach the tills, they do not tend to go back to other parts of a store.

We assume that the topology of G satisfies certain reachability conditions. Specif-
ically, we assume that each node i\in V is in both the out-component of node 1 and the
in-component of node n. (The in-component and out-component of a node include
the node itself.) These conditions ensure that walkers can reach each node and that
all walkers eventually leave the system through the sink node. We summarize the
reachability conditions with the relation

Cout(1) =Cin(n) = \{ 1, . . . , n\} ,(2.1)

where Cin(i) and Cout(i), respectively, denote the in-component and out-component
of i. Therefore, for a fixed number n of nodes, we consider directed networks in the
set

\scrC n = \{ G= (V,E) : | V | = n, Cout(1) =Cin(n) = \{ 1, . . . , n\} , doutn = 0\} ,(2.2)

where douti is the out-degree of node i. For any graph G\in \scrC n, all nodes except n have
at least one out-edge because they are in the in-component of node n. Therefore,
douti \geq 1 for all i\in \{ 1, . . . , n - 1\} .

We assume that walkers traverse a network according to an unbiased random
walk. The associated transition matrix \bfitP has entries

Pij =

\Biggl\{ 
Aij/d

out
i , i\in \{ 1, . . . , n - 1\} 

0 , i= n ,
(2.3)

where Aij is the (i, j)th entry of the adjacency matrix \bfitA , whose entries are 1 if
(i, j)\in E (i.e., if there exists a directed edge from i to j in G) and 0 otherwise.

Each node i is a first-in-first-out (FIFO) single-server node with a fixed service
rate \mu i. We assume that \mu i exceeds the arrival rate \lambda i of i, as otherwise there is no
stationary state. In our computations and in section 3, we assume that the service
rates of the nodes are homogeneous, so \mu i = \mu for all i; however, we present our model
in a more general form (i.e., with heterogeneous service rates). We consider the system
at stationarity, thereby neglecting temporal variations in the external arrival rate and
the service rate. In reality, congestion in supermarkets is more complicated. It can
depend on the time of day (e.g., busy times, such as during lunch), the time of the
year (e.g., Christmas season), or a combination of many other factors (e.g., during
a weekend with good weather, many customers may rush to stock up on barbeque
supplies), and so on. However, if the system reaches stationarity sufficiently fast
(relative to the time scales of exogenous temporal variations), it is reasonable to
describe the system by its stationary state. We summarize our model and its inputs
and outputs in Figure 1.

2.1. Traffic equations. We calculate the arrival rate \lambda i by solving the traffic
equations [10]

\lambda i = \delta 1i\lambda +

n - 1\sum 
j=1

\lambda jPji , i\in \{ 1, . . . , n\} ,(2.4)
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MINIMIZING CONGESTION IN QUEUEING NETWORKS 1835

Traffic 
equations

Arrival 
rates 𝜆!

Queues Total mean 
queue size 𝑄

Network 𝐺

Input InputOutput Output

Single-server queues
with service rates 𝜇!

Service 
rates 𝜇!

With node 1 as source 
and node 𝑛 as sink

Transition 
matrix 𝑷

Routing 
model

Unbiased 
random walk

Input

Output Input

Equation (2.4)

Need 𝜇! > 𝜆!

Inputs

Legend:

Model Outputs

Fig. 1. Summary of our model of an open queueing network. The model takes a network G
and the service rates \mu i as inputs, and it outputs the total mean queue size Q.

where the Kronecker delta \delta 1i is 1 if i= 1 and is 0 for all other values of i. Equation
(2.4) is linear in \lambda i, so we can rescale the values \lambda i and \mu i by dividing by \lambda . Therefore,
without loss of generality, we set \lambda = 1 so that equation (2.4) becomes

\lambda i = \delta 1i +

n\sum 
j=1

\lambda jPji , i\in \{ 1, . . . , n\} .(2.5)

In matrix form, we write (2.5) as \Bigl( 
\bfitI  - \bfitP T

\Bigr) 
\bfitl = \bfitb ,(2.6)

where \bfitl = (\lambda 1, . . . , \lambda n)
T and \bfitb = (1,0, . . . ,0)T . There is a unique, positive solution to

(2.5) [10], so \bfitI  - \bfitP T is invertible and

\bfitl = (\bfitI  - \bfitP T ) - 1\bfitb ,(2.7)

where \lambda i > 0 for all i \in \{ 1, . . . , n\} . We know that \lambda n = 1 because the departure rate
from the system must equal the normalized external arrival rate (which is equal to
1). The arrival rates \lambda i are independent of the service rates \mu i (and they depend only
on the network topology) as long as \mu i > \lambda i for all i. In other words, the rate at
which customers arrive at node i does not depend on how fast it can serve customers
(as long as it is sufficiently fast), so it does not depend on the level of congestion (as
measured by the queue size) at i.

2.2. Total mean queue size Q. The mean queue size Qi at each node i at
stationarity is [10]

Qi =
\lambda i

\mu i  - \lambda i
, i\in \{ 1, . . . , n\} .(2.8)

The function Qi increases with \lambda i and decreases with \mu i for \lambda i \in [0, \mu i). That is,
increasing the arrival rate or decreasing the service rate results in longer queues. The
total mean queue size is

Q=

n\sum 
i=1

Qi =

n\sum 
i=1

\lambda i

\mu i  - \lambda i
.(2.9)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1836 YING, WALLIS, PORTER, HOWISON, AND BEGUERISSE-D\'IAZ

1

2

3

4

n-1

n

...

Fig. 2. G \=\scrC n
: A Q-optimal network over \=\scrC n.

3. Network topologies that minimize the total mean queue size Q. We
seek network topologies in \scrC n (or in some subset of \scrC n) that minimize the total mean
queue size Q when all nodes have the same service rate \mu > 1 (i.e., when \mu i = \mu > 1
for all i). As defined in equation (2.2), \scrC n is the set of networks such that (1) every
node is reachable from the source node, (2) the sink node is reachable from any other
node, and (3) the sink node has no out-edges. Given that \lambda n = 1, we only consider
service rates \mu > 1, because otherwise there is no stationary state for any queueing
network. For a fixed \mu > 1, we calculate the total mean queue size Q of a network
G\in \scrC n using the formula

Q=Q(G,\mu ) =

\Biggl\{ \sum n
i=1

\lambda i

\mu  - \lambda i
, \mu > \lambda i for all i

\infty , otherwise ,
(3.1)

where \lambda i = \lambda i(G) is the arrival rate of node i in G (see equation (2.7)).
For any set \scrG \subseteq \scrC n of graphs, we say that G \in \scrG is Q-optimal over \scrG if, for any

\mu > 1 and for all graphs G\prime \in \scrG , we have Q(G,\mu )\leq Q(G\prime , \mu ). That is, G is Q-optimal
over \scrG if, for any service rate \mu > 1, there is no other graph G\prime \in \scrG with a strictly
smaller total mean queue size.

We consider the following sets \scrG of graphs:
\bullet \scrC n: No additional constraints.
\bullet \=\scrC n = \{ G= (V,E)\in \scrC n : (1, n) \not \in E\} : No edge from node 1 to node n.
\bullet \scrU n = \{ G = (V,E) \in \scrC n : (i, j) \in E with j \not = n =\Rightarrow (j, i) \in E\} : ``Undirected""

networks in \scrC n. (All edges are bidirectional except for edges that are incident
to n.)

We primarily consider \=\scrC n because we are able to prove Q-optimality over \=\scrC n. We
abuse terminology and use the adjective undirected for any network in \scrU n because
such a network is equivalent to an undirected network with an additional constraint
that any walker on it leaves after being served at node n. (In other words, node n
remains a point of no return.)

A key result of this section is the following theorem.

Theorem 3.1. For n \geq 3, the network G \=\scrC n
= (V,E) with edge set E = \{ (1, i) :

i\in \{ 2, . . . , n - 1\} \} \cup \{ (i, n) : i\in \{ 2, . . . , n - 1\} \} (see Figure 2) is Q-optimal over \=\scrC n.
We give the proof of Theorem 3.1 in Appendix A.

3.1. Properties of Q-optimal networks. In the following two propositions,
we give necessary conditions for a network to be Q-optimal. These conditions relate Q
to the maximum arrival rate \lambda max :=maxi \lambda i and the total arrival rate \lambda total :=

\sum 
i \lambda i.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MINIMIZING CONGESTION IN QUEUEING NETWORKS 1837

1

2

34

5

(a) Network 1, which has the
arrival rates 6

5
, 3
10
, 3
10
, 4

5
, 1

for nodes (1, 2, 3, 4, 5).

1

2

34

5

(b) Network 2, which has the
arrival rates ( 6

5
, 1
5
, 1
5
, 4
5
, 1) for

nodes (1, 2, 3, 4, 5).

Fig. 3. The two networks that minimize \lambda \mathrm{m}\mathrm{a}\mathrm{x} over \scrU 5. The arrival rate of each node of network
2 is no larger than the arrival rate of the corresponding node of network 1. Therefore, network 2 has
a smaller total mean queue size Q than network 1 for any \mu > 6/5. This illustrates that a network
that minimizes \lambda \mathrm{m}\mathrm{a}\mathrm{x} does not necessarily minimize Q.

Proposition 3.2. Suppose that G minimizes Q over all graphs in some set \scrG 
for all values of \mu with \mu \leq \mu max for some \mu max > \lambda max(G), where \lambda max(G) is the
maximum arrival rate of G. For all G\prime \in \scrG , we then have

\lambda max(G)\leq \lambda max(G
\prime ) .(3.2)

That is, G minimizes the maximum arrival rate \lambda max over \scrG . Consequently, if G is
Q-optimal over \scrG , then G minimizes the maximum arrival rate \lambda max over all graphs
in \scrG .

Proof. We proceed by contradiction. Suppose that G minimizes Q for all values of
\mu that satisfy \mu \leq \mu max with \mu max >\lambda max(G), and suppose that G does not minimize
\lambda max over \scrG . There is then a graph G\prime with a strictly lower maximum arrival rate
\lambda \prime 
max < \lambda max. Choose any \mu \in (\lambda \prime 

max, \lambda max]. Let Q and Q\prime be the total mean queue
sizes of G and G\prime , respectively. Because G minimizes Q when \mu < \lambda max \leq \mu max, it
follows that Q \leq Q\prime . However, the total mean queue size Q of G is infinite (because
\mu < \lambda max), whereas the total mean queue size of G\prime is finite (because \mu > \lambda \prime 

max), so
\infty =Q>Q\prime , which is impossible.

The converse of Proposition 3.2 holds only when there is a unique network that
minimizes the maximum arrival rate \lambda max. In this case, a network that minimizes Q
for sufficiently small3 values of \mu also minimizes \lambda max and is the unique minimizer
of \lambda max. When there are multiple networks that minimize the maximum arrival rate
\lambda max, the converse of Proposition 3.2 is not true in general (see Figure 3).

The next proposition gives another necessary condition for a network to be Q-
optimal.

Proposition 3.3. A graph G minimizes Q over all graphs in some set \scrG for all
values of \mu such that \mu > \mu min for some \mu min > 0 if and only if

\lambda total(G)\leq \lambda total(G
\prime )(3.3)

3The parameter \mu is ``sufficiently small"" when \mu \leq \mu \mathrm{m}\mathrm{a}\mathrm{x} for some \mu \mathrm{m}\mathrm{a}\mathrm{x} > \lambda \mathrm{m}\mathrm{a}\mathrm{x}(G). The lower
bound \lambda \mathrm{m}\mathrm{a}\mathrm{x}(G) of \mu \mathrm{m}\mathrm{a}\mathrm{x} is necessary because Q is infinite for all G \in \scrG if \mu is smaller than the
minimum of the individual maximum arrival rates of these graphs. When all G \in \scrG have infinite
Q, then any G minimizes Q in the set \scrG , but the maximum arrival rate can be different in different
graphs. Therefore, in this case, a network that minimizes Q does not necessarily minimize \lambda \mathrm{m}\mathrm{a}\mathrm{x}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1838 YING, WALLIS, PORTER, HOWISON, AND BEGUERISSE-D\'IAZ

for all G\prime \in \scrG , where \lambda total(G) =
\sum 

i \lambda i is the total arrival rate of G. That is, G
minimizes Q for all sufficiently large values of \mu if and only if G minimizes \lambda total.
Consequently, if G is Q-optimal over \scrG , then G minimizes the total arrival rate \lambda total

over all graphs in \scrG .
Proof. For sufficiently large \mu , we have that \lambda i/(\mu  - \lambda i) \approx \lambda i/\mu for any node i

because the arrival rate \lambda i is independent of \mu . Consider the objective function \mu Q.
For a fixed value of \mu , a network minimizes Q if and only if it minimizes \mu Q. For
sufficiently large \mu , we have

\mu Q= \mu 
\sum 
i

\lambda i

\mu  - \lambda i
=
\sum 
i

\lambda i +\scrO 
\biggl( \sum 

i \lambda 
2
i

\mu 

\biggr) 
= \lambda total +\scrO 

\biggl( \sum 
i \lambda 

2
i

\mu 

\biggr) 
,(3.4)

which approaches \lambda total as \mu \rightarrow \infty . Therefore, if G does not minimize \lambda total, there
is some graph G\prime with a smaller value of \lambda \prime 

total and hence a smaller value of \mu Q
(and thus Q) when \mu is sufficiently large, which is a contradiction. Conversely, if G
does not minimize Q for sufficiently large values of \mu , it also does not minimize \mu Q
for sufficiently large values of \mu , so equation (3.4) implies that it does not minimize
\lambda total.

Propositions 3.2 and 3.3 describe properties of Q-optimal networks (over some
set \scrG of graphs) for extreme values of \mu . To minimize Q when \mu is small (i.e., in the
small-\mu regime), a Q-optimal network must have the smallest \lambda max of all graphs in \scrG .
To minimize Q when \mu is sufficiently large (i.e., in the large-\mu regime), a Q-optimal
network must have the smallest \lambda total of all graphs in \scrG .

Propositions 3.2 and 3.3 imply that G \=\scrC n
(a Q-optimal network over \=\scrC n) minimizes

\lambda max and \lambda total over \=\scrC n. Proposition 3.3 also states that minimizing Q in the large-\mu 
regime is equivalent to minimizing \lambda total. Although Proposition 3.2 does not state
that minimizing Q in the small-\mu regime is equivalent to minimizing \lambda max, it allows
us to identify the possible candidate networks that minimize Q in the small-\mu regime.
These candidates are the networks that minimize \lambda max.

3.2. Extensions. We extend Theorem 3.1 to other objective functions and other
types of queues in sections SM1 and SM2 of the Supplementary Materials.

3.3. Numerical evidence for the Q-optimality of G\scrC n over \scrC n. When we
consider networks in \scrC n instead of \=\scrC n (i.e., when we allow edges between nodes 1 and
n), we conjecture that the graph G\scrC n

in Figure 4 is Q-optimal over \scrC n. In section
SM3 of the Supplementary Materials, we show that proving that

1

2

3

4

n-1

n

...

Fig. 4. The graph G\scrC n : A conjectured Q-optimal network over \scrC n.
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MINIMIZING CONGESTION IN QUEUEING NETWORKS 1839

n - 1\sum 
i=2

\lambda i \geq 1 - 1

n - 1
(3.5)

for allG\in \scrC n is sufficient to guarantee theQ-optimality ofG\scrC n
over \scrC n. The inequality

(3.5) depends only on the arrival rates of the graphs G\in \scrC n.
We do not have a proof of (3.5), but we have verified by exhaustive enumeration

that all networks with 7 or fewer nodes satisfy (3.5). For larger network sizes (up to
n = 100 nodes), we employ a simulated-annealing (SA) algorithm to find networks
with minimal

\sum n - 1
i=2 \lambda i. The SA algorithm did not find any networks with smaller

values of
\sum n - 1

i=2 \lambda i, and the values of
\sum n - 1

i=2 \lambda i of the networks that we obtained using
SA are close to 1 - 1/(n - 1). For more details about the SA algorithm and our results
of using it, see section SM4.

3.4. Q-optimality of undirected networks. When we consider the set \scrU n of
undirected networks with n \geq 5, we observe behavior that is different than that for
directed networks. For n \in \{ 5,6,7\} , we find using exhaustive enumeration that there
are no Q-optimal networks over \scrU n. Instead, different networks minimize Q for differ-
ent values of the homogeneous service rate \mu . For example, when n= 5, the network
that minimizes Q over \scrU 5 when \mu = 2 (see Figure 5a) is different than the network
that minimizes Q when \mu = 2.5 (see Figure 5b). When n = 6 and n = 7, we again
find that which network minimizes Q depends on the service rate \mu . For networks
with 3 or 4 nodes, there exist Q-optimal networks (see section SM5).

Fig. 5. (a, b) We show networks that minimize Q over \scrU 5 for (a) \mu = 2 and (b) \mu = 2.5. (c, d)

We show conjectured undirected networks, (c) G
\lambda \mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}
\scrU n

and (d) G\lambda \mathrm{m}\mathrm{a}\mathrm{x}
\scrU n

, that minimize \lambda \mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l} and
\lambda \mathrm{m}\mathrm{a}\mathrm{x}, respectively, over \scrU n.
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1840 YING, WALLIS, PORTER, HOWISON, AND BEGUERISSE-D\'IAZ

To understand why there may not exist a Q-optimal network over \scrU n for n \geq 5,
we note that Propositions 3.2 and 3.3 imply that a Q-optimal network over \scrG can exist
only if it minimizes both \lambda max and \lambda total. When \scrG = \scrU n with n \geq 5, we conjecture
that there does not exist a network that minimizes both \lambda max and \lambda total. For \scrU 5, we
find by exhaustive enumeration that the network in Figure 5b minimizes \lambda total (and
is the unique minimizer), but it does not minimize \lambda max. In Figure 5a, we show a
network4 that minimizes \lambda max. For general n, we postulate two conjectures:

1. The network G\lambda \mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}

\scrU n
(see Figure 5c) uniquely minimizes \lambda total over \scrU n for

n\geq 3.
2. The network G\lambda \mathrm{m}\mathrm{a}\mathrm{x}

\scrU n
(see Figure 5d) is a network with minimum \lambda max over \scrU n

for n\geq 3.
In section SM6, we show that G\lambda \mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}

\scrU n
does not minimize \lambda max over \scrU n for n \geq 5.

Therefore, if both of these conjectures are true, there does not exist a network that
minimizes both \lambda max and \lambda total, which in turn implies that there are no Q-optimal
networks over \scrU n for n\geq 5. We have verified these conjectures for all n\in \{ 3, . . . ,7\} . In
section SM4.2.2, we present numerical evidence of their validity for larger values of n.

4. Reducing Q in undirected networks by adding or deleting edges. We
now examine algorithms to reduce the total mean queue size Q in networks. Because
supermarket store networks are (predominantly) undirected, we present our results on
queueing networks only for networks in the set \scrU n (i.e., networks that are undirected,
except for edges that are incident to the sink node). However, it is straightforward to
adapt our approach to directed networks.

In most real-world situations, it is infeasible to rewire a network into an optimal
one (or a conjectured optimal one) like the ones that we presented in section 3. In
practice, one typically can make only local perturbations to a network. The simplest
examples of network perturbations are additions or deletions of individual edges or
nodes [3]. For example, in an internet network (at the router level), adding connections
between routers (which are the nodes of the network) is costly for internet service
providers (ISPs), so it is useful for ISPs to identify the best edges that they can
add to improve traffic capacity [4, 9]. In street networks, some streets are closed
(corresponding to edge deletions) at rush hours to alleviate congestion [3, 14].

We fix the number of nodes and examine edge perturbations, which consist of
adding or deleting edges. We consider the following question: Given an unbiased
random walk on a single-source, single-sink open queueing network G = (V,E), how
do we add and delete edges to reduce Q? For the application to navigation in super-
markets, large changes in a store network are generally undesirable and disruptive.
We do not consider perturbations that consist of adding or removing nodes, because
it is not easy to expand most supermarkets and typically it is undesirable to remove
shelf space.

We propose a greedy algorithm (which we call the Greedy algorithm) that adds
and deletes edges from a graph to reduce Q. We also consider two variants of the
Greedy algorithm: the Greedy-Add algorithm (which considers only edge addi-
tions) and the Greedy-Delete algorithm (which considers only edge deletions). We
test the performance of the three algorithms on queueing networks with a topology
that we draw from random-graph models with source and sink nodes that we choose
at random (see section 4.3). We also test their performance on an actual store net-
work. When we generate random graphs, we choose parameters so that the models
typically generate sparse networks, in which the number of edges is much smaller than

4This network (see Figure 5a) is not the unique network that minimizes \lambda \mathrm{m}\mathrm{a}\mathrm{x} over \scrU n. There are
two distinct networks in \scrU 5 that achieve the minimum \lambda \mathrm{m}\mathrm{a}\mathrm{x} value of 1.2. We show them in Figure 3.
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MINIMIZING CONGESTION IN QUEUEING NETWORKS 1841

the number of nonedges. We do this because supermarket store networks (and most
other spatial networks [2]) are sparse. We demonstrate numerically that our three
greedy algorithms are able to significantly reduce Q for all considered random-graph
models and for the store network. The Greedy algorithm has the best performance
of these three algorithms.

4.1. Mathematical setup. Given an undirected5 and unweighted network G=
(V,E), we define an edge perturbation \Delta e=\Delta (i, j) on G to be the process of adding
an undirected edge e = (i, j) to G if e \not \in E or the process of deleting an undirected
edge e = (i, j) if e \in E. In the former case, \Delta e is an edge addition; in the latter
case, \Delta e is an edge deletion. We say that an edge perturbation \Delta e to G is valid if
the graph that we obtain by applying \Delta e to G satisfies our reachability conditions.
Otherwise, we say that that edge perturbation is invalid . In a graph G that satisfies
the reachability conditions, all edge additions are valid because adding edges cannot
lead to a violation of them.

4.2. The GREEDY algorithm. The intuition behind the Greedy algorithm is
to try to minimize Q by repeatedly applying particular edge perturbations, which we
select to give the best ``local"" decreases in Q, to a queueing network G. For each
possible perturbation \Delta e, we compute the total mean queue size Q\prime of the graph
G\prime that we obtain after performing the edge perturbation \Delta e on G. We rank each
perturbation in increasing order of \Delta Q=Q\prime  - Q or, equivalently, in increasing order
of Q\prime . (We break ties uniformly at random.) For any G\prime that does not satisfy the
reachability conditions, we define Q\prime to be infinity. An undirected network G satisfies
the reachability conditions if and only if both the graph G and the subgraph of G that
is induced on the node set \{ 1, . . . , n - 1\} are connected. Therefore, edge deletions are
the only edge perturbations that may cause G\prime to violate the reachability conditions
(if the original network G satisfies the reachability conditions).

At each iteration k of the Greedy algorithm, we perform Kk edge perturbations
for some integerKk. We apply edge perturbations one at a time according to the rank-
ing (in terms of \Delta Q) of the edge perturbations; we skip any invalid perturbations.6

We allow edge perturbations that increase Q, so Q does not necessarily decrease
monotonically throughout the optimization procedure. After performing Kk edge
perturbations, we recompute the ranking of all edge perturbations for the current
graph G. We then apply Kk+1 edge perturbations in iteration k+ 1. We repeat this
procedure of applying edge perturbations and recalculating edge-perturbation rank-
ings until we have performed T edge perturbations (for some predetermined integer
T \geq 1).7 We summarize the Greedy algorithm in Algorithm 4.1.

When Kk = 1 for all k, we apply, at each iteration, an edge perturbation that
results in the largest decrease in Q (or the smallest increase in Q, if all perturbations
increase Q); we recalculate the ranking after each perturbation. Calculating the
rankings of the permissible edge perturbation is computationally expensive, as it
requires solving a linear system to obtain \Delta Q for each permissible edge perturbation
in Cp(G). Larger values of Kk reduce the number of such calculations and thereby

5In our usage of the word ``undirected"", recall (see section 3) that the sink node n has no out-edges
and that all other edges are bidirectional.

6When Kk \geq 2, we recompute the ranking only after Kk edge perturbations. After applying the
first edge perturbation, subsequent edge perturbations may result in a graph that violates our reach-
ability conditions, so we skip any that do so. In this case, we consider additional edge perturbations
so that we perform Kk edge perturbations in total, provided that there are at least Kk valid edge
perturbations.

7Therefore, the final iteration can have fewer than Kk edge perturbations.
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1842 YING, WALLIS, PORTER, HOWISON, AND BEGUERISSE-D\'IAZ

Algorithm 4.1. The Greedy algorithm for reducing Q using edge perturbations.

1: procedure Greedy
2: Input : Network G = (V,E), service rates µi, total number T of edge perturba-

tions, number Kk of edge perturbations between recalculating rankings for each
iteration k

3: Output : Network G with up to T edge perturbations
4: Initialize:
5: Calculate ∆Q for each edge perturbation ∆e

(There are V
2 possible edge perturbations.)

6: Rank all edge perturbations in increasing order of ∆Q and save them in the
list R

7: num edges perturbed = 0
8: iteration number = 1
9: Algorithm:

10: while True do
11: num edges perturbed in loop = 0
12: Set K = Kk, where k = iteration number
13: while num edges perturbed in loop < K do
14: Take first edge perturbation ∆e = ∆(i, j) in R and remove it from R
15: if edge e = (i, j) already exists in G then
16: G ← G with e removed
17: else
18: G ← G with e added
19: if G satisfies the reachability conditions then
20: G ← G
21: Increment num edges perturbed in loop by 1
22: Increment num edges perturbed by 1
23: else
24: continue Skip because it is not a valid graph

25: if num edges perturbed ≥ T or R is empty then
26: return G
27: Recalculate ∆Q for each edge perturbation ∆e
28: Rank all edge perturbations in increasing order of ∆Q and save them in

the list R
29: Increment iteration number by 1

reduce the computational cost. However, when Kk \geq 2, the second edge perturbation
(and any subsequent ones) in each iteration may not give the largest decrease in Q,
because the ranking of the edges is based on the network before we apply the first edge
perturbation. We expect that theGreedy algorithm performs worse (i.e., decreasesQ
less) when we use larger values ofKk and that there is a trade-off between performance
and computation time. One can also calculate the value of \Delta Q only for a fraction fep
of all edge perturbations. Suppose that we choose these edge perturbations uniformly
at random whenever we determine a ranking of perturbations. Smaller values of fep
yield faster computation times (which may be desirable for large networks) in exchange
for potentially worse performance (i.e., larger final values of Q). In the present paper,
we rank all edge perturbations (i.e., fep = 1).

To compare the relative effectiveness of edge additions and edge deletions, we
also consider two variants---the Greedy-Add and Greedy-Delete algorithms---

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MINIMIZING CONGESTION IN QUEUEING NETWORKS 1843

Table 1
Our edge-perturbation algorithms.

noitpircseDmhtiroglA

Greedy At each iteration k, it performs Kk valid edge
perturbations that most reduce Q.

Greedy-Add At each iteration k , it performs Kk edge
additions (which are always valid) that most
reduce Q.

Greedy-Delete At each iteration k , it performs Kk valid edge
deletions that most reduce Q.

of Algorithm 4.1. The Greedy-Add algorithm allows only edge additions and the
Greedy-Delete algorithm allows only edge deletions. See section SM7 for complete
specifications of these algorithms. We summarize the Greedy algorithm and its two
variants in Table 1.

4.3. Random network topologies for queueing networks. We apply the
Greedy algorithm and its two variants to queueing networks that we generate from
the following six random-graph models (see section SM8 for their definitions):

1. Barab\'asi--Albert (BA) graphs with n = 100 nodes and a mean degree of
mBA = 3.

2. Erd\H os--R\'enyi (ER) G(n,p) graphs with n= 100 nodes and a connection prob-
ability of p= 0.06.

3. Random regular graphs (RRGs) with n = 100 nodes and a node degree of
d= 6.

4. Watts--Strogatz (WS) graphs with n = 100 nodes, 2kWS = 6 neighbors for
each node of the initial ring network, and a rewiring probability of p= 0.5.

5. Random geometric graphs (RGGs) on a unit square with n= 100 nodes and
a connection radius of r= 0.19.

6. Chung--Lu (CL) graphs with n= 100 nodes and a degree distribution that we
determine from the degree sequence of a BA network with n= 100 nodes and
mBA = 3.

Each of the models generates a set \{ Goriginal\} of undirected networks. The pa-
rameters of the random-graph models ensure that each network Goriginal has the same
number n of nodes (n= 100) and the same expected number \BbbE [m] of undirected edges
(\BbbE [m] = 300). We generate 100 networks from each random-graph model and perform
the following steps for each network Goriginal to convert it to a queueing network G
that satisfies our reachability conditions. To ensure that G is connected, we remove
all nodes (and their associated incident edges) from the original network Goriginal that
do not belong to the largest connected component. Therefore, the number of nodes of
a network G may be smaller than 100 and the mean number of edges across all G typ-
ically is smaller than 300. We choose a source node s uniformly at random from the
nodes of G. We then also choose a sink node uniformly at random from all sink-node
candidates. A node k is a sink-node candidate if k \not = s and removing k and its incident
edges does not disconnect the subgraph of G= (V,E) that is induced on V \setminus \{ k\} . For
n\geq 2, there is at least one sink-node candidate8 for any choice of s. We must choose

8To see this, consider a node k whose shortest path to node s is of maximal length (i.e., no nodes
are farther than node k from s). Node k is a sink-node candidate because a shortest path from any
other node j to s does not go through k. (Otherwise, such a shortest path from j to s is longer than
a shortest path from k to s.) Therefore, the subgraph of G = (V,E) that is induced on V \setminus \{ k\} is
connected, as required.
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1844 YING, WALLIS, PORTER, HOWISON, AND BEGUERISSE-D\'IAZ

a sink node from the sink-node candidates to ensure that our reachability conditions
are satisfied in the queueing network. We then relabel the nodes so that node 1 is the
source node and node n is the sink node (where n is the number of nodes of G).

We set the homogeneous service rate to \mu = 3\lambda max, where \lambda max is the maximum
arrival rate in the network, and we perform our edge-perturbation algorithms on
each graph G. For each graph G, we set the number T of edge perturbations to
\lfloor 0.48m\rceil , where m is the number of edges of G and \lfloor \cdot \rceil denotes rounding to the nearest
integer. We selectKk so that we recalculate the ranking of the edge perturbations after
making k\lfloor Fiterm\rceil total edge perturbations, where Fiter = 0.02 denotes the fraction of
a network's edges that we change between successive iterations of an algorithm. In
section SM9, we present our results when minimizing \lambda max and minimizing \lambda total. As
we explained in section 3.1, minimizing \lambda total is equivalent to minimizing Q in the
large-\mu regime. A network that minimizes Q in the small-\mu regime also minimizes
\lambda max, so minimizing \lambda max is a proxy9 for minimizing Q in the small-\mu regime. The
results that we present in section 4.4 are consistent with our results when using the
Greedy algorithm to minimize \lambda total. This suggests that a service rate of \mu = 3\lambda max

is in the large-\mu regime for the networks that we consider. When we minimize \lambda max

(see section SM9.2), we obtain qualitatively similar results to the ones that we present
in section 4.4.

4.4. Results of applying our greedy algorithms to random networks.
In our numerical computations, we find that edge additions tend to decrease Q more
effectively than edge deletions, but we decrease Q the most by allowing both types
of edge perturbations. We are then able to achieve values of Q that are close to
the conjectured minimum value. Additionally, the vast majority of added edges that
achieve the largest reductions in Q are incident to the sink node.

In Figure 6, we show the mean value of Q (and the associated standard errors) as
a function of the fraction F of edges that we perturb for each of the three algorithms.
Specifically, F is the number of edges that we perturb divided by m, which is the
number of edges of the original network. The original Greedy algorithm and its
two variants (see Table 1) are able to reduce Q using edge perturbations for all six
of our random-graph models (see Figure 6). Unsurprisingly, we achieve the largest
reduction in Q using the original Greedy algorithm, which can either add edges or
delete them. The Greedy-Add algorithm reduces Q slightly less than the Greedy
algorithm. The Greedy-Delete algorithm yields the smallest reduction in Q.

In each simulation, we start with a connected graph and perturb it using one
of our greedy algorithms. For a given \mu , we estimate a lower bound of Q using the
total mean queue size Qopt of G

\lambda \mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}

\scrU n
(see Figure 5c), which is our conjectured optimal

undirected network for large values of \mu . The value \mu = 3\lambda max, where \lambda max is the
maximum arrival rate of the initial graph of each simulation, is typically much larger
(by a factor of at least 6.5--42, depending on the random-graph model) than the arrival
rates of the optimized networks. Additionally, the results in the present subsection
are qualitatively similar to our results when we use the greedy algorithms to reduce
\lambda total (see section SM9.1). Therefore, we are likely in the large-\mu regime. To see how
close the values of Q that we obtain using our algorithms are to Qopt, we calculate
the ratio RQ =Q/Qopt for each simulation. For each random-graph model, we report
the mean value of RQ for the Greedy algorithm and its two variants (see Table 2).

9It is an imperfect proxy because minimizing \lambda \mathrm{m}\mathrm{a}\mathrm{x} does not guarantee that we can find a network
that minimizes Q in the small-\mu regime.
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0.0 0.1 0.2 0.3 0.4 0.5
Fraction of edges perturbed

0

2

4

6

Q

Greedy
Greedy-Add
Greedy-Delete

(a) Barabási–Albert graphs
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(b) Erdős–Rényi graphs
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(c) Random regular graphs
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(d) Watts–Strogatz graphs
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(e) Random geometric graphs
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(f) Chung–Lu graphs

Fig. 6. Comparison of the performance of our Greedy algorithm and its two variants
(Greedy-Add and Greedy-Delete) for decreasing the total mean queue size Q with edge per-
turbations. We plot the mean and standard error of Q as a function of the fraction F of perturbed
edges (i.e., the number of edge perturbations divided by the number of edges of the original network).
In most of the curves, the standard error is smaller than the marker size. For each F \in [0,0.48],
we take the mean of all simulations that yield finite Q after perturbing a fraction F of the edges.
The red dashed line indicates the mean value of Q\mathrm{o}\mathrm{p}\mathrm{t} (which we average over 100 networks), which
is our conjectured lower bound of Q.
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1846 YING, WALLIS, PORTER, HOWISON, AND BEGUERISSE-D\'IAZ

Table 2
The mean value of RQ = Q/Q\mathrm{o}\mathrm{p}\mathrm{t} for our original Greedy algorithm and its two variants

(Greedy-Add and Greedy-Delete) for our six random-graph models. We generate 100 graphs
for each random-graph model and run the three algorithms on each graph.

Model Greedy Greedy-Add Greedy-Delete

BA 1.009 2.241 5.641
ER 1.007 2.224 5.041

RRG 1.000 2.169 4.004

WS 1.000 2.184 4.569
RGG 1.034 2.148 61.580

Chung--Lu 1.030 2.252 7.692

Table 3
The fraction F\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{k} of edge additions (of the first \lfloor 0.2m\rceil edge perturbations) that are incident to

the sink node for the Greedy and Greedy-Add algorithms for our six random-graph models. We
generate 100 graphs for each random-graph model and run the two algorithms on each graph. We
show the minimum, mean, and maximum values of F\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{k} of the 100 simulations for each random-
graph model.

GREEDY GREEDY-ADD

Model Min Mean Max Min Mean Max

BA 1.000 1.000 1.000 0.948 0.998 1.000
ER 1.000 1.000 1.000 1.000 1.000 1.000

WS 1.000 1.000 1.000 1.000 1.000 1.000
RRG 1.000 1.000 1.000 1.000 1.000 1.000

RGG 1.000 1.000 1.000 0.754 0.955 1.000
Chung–Lu 1.000 1.000 1.000 0.929 0.994 1.000

The original Greedy algorithm achieves mean values of RQ that are close to 1, which
suggests that the algorithm is able to perturb the networks to obtain networks whose
total mean queue sizes are close to (or even equal to) Qopt. The mean values of RQ

for Greedy-Add range between about 2 and about 4. Greedy-Delete yields much
larger mean values of RQ; they are between 4.1 (for RRGs) and 47.5 (for RGGs).

In our simulations, we observe that the vast majority of edge additions yield
edges that are incident to the sink. To quantitatively measure this observation, in
each simulation, we record all edge additions until the fraction F of perturbed edges
reaches 0.2. (We use the value 0.2 because we obtain the largest reduction in Q when
F \in [0,0.2] (see Figure 6).) We then calculate the fraction Fsink of edge additions (of
the first \lfloor 0.2m\rceil edge perturbations) that yield edges that are incident to the sink. For
all six random-graph models, we find that the mean value of Fsink is close to or equal
to 1 for both the Greedy and Greedy-Add algorithms. In other words, almost all
edge additions (of the first \lfloor 0.2m\rceil edge perturbations) yield edges that are incident
to the sink node for both of these algorithms (see Table 3).

4.5. Results of applying the GREEDY algorithm to a supermarket store
network. We now apply theGreedy algorithm and its two variants to a supermarket
store network (see Figure 7) with n= 179 nodes and m= 384 edges. We construct the
store network by manually dividing the floor area into rectangular zones (i.e., nodes)
and connecting contiguous zones by edges [20, 22]. Deleting an edge (i, j) corresponds
to blocking the direct walkway between zones i and j, such as by adding an extra
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MINIMIZING CONGESTION IN QUEUEING NETWORKS 1847

Tills Entrance

Fig. 7. A supermarket store network with n = 179 nodes and m = 384 edges. We color the
source node (i.e., the entrance) in greenish yellow and the sink node (i.e., the tills) in red. The size
of each node is proportional to its arrival rate in the store's associated queueing network. We circle
the node with the highest arrival rate in blue.

shelf. Adding an edge (i, j) corresponds to creating a direct walkway between zones i
and j. This is possible10 only if zones i and j are next to each other but are separated
by shelves. Automatically identifying which edges are possible to add is a difficult
task and may not be possible without manual oversight. In this subsection, we use the
following procedure to identify possible edge additions. We represent each edge (i, j)
as a line between the centroids of zones i and j. We allow an edge addition \Delta (i, j)
if the edge does not intersect any other edges. We call this the planarity constraint
because it ensures that new edges do not violate the planarity of the store network.11

In practice, it may not be possible to add every edge that we identify in this way
to a store network. One should check manually whether or not any perturbed store
network is realizable in practice.

We apply our three greedy algorithms, with the planarity constraint whenever
we allow edge additions, to a store network G from a large United Kingdom super-
market chain. In our simulation, we take T = \lfloor 0.18m\rceil = 69 and determine Kk as
described in section 4.3. The service rate is 3\lambda max \approx 6.68, where \lambda max is the maximum
arrival rate of G. With these parameters, the original value of Q is 11.1.

First, we apply the Greedy-Delete algorithm to the store network G. This
algorithm decreases Q significantly and yields a final value of Q\approx 1.02 (see Figure 8a).
In the final network (see the left part of Figure 8a), the random walkers in the network
are effectively ``directed"" towards the sink node (i.e., the tills) because we have deleted
edges that lead them further away from the sink.

Second, we apply the Greedy-Add algorithm (with the planarity constraint) to
G. The algorithm decreases Q to a final value of Q \approx 6.30. The minimum value of

10We assume that we cannot build bridges over the shelves in a store.
11Although the original store network is not planar, it is approximately planar because we only

need to delete a small number of edges to obtain a planar graph.
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1848 YING, WALLIS, PORTER, HOWISON, AND BEGUERISSE-D\'IAZ

Q
Q

Q

Fig. 8. Application of the Greedy algorithm and its two variants (Greedy-Add and Greedy-
Delete) to a store network. The left part of each panel shows the final network after we apply the
indicated greedy algorithm. We color the source node (i.e., the entrance) in greenish yellow and the
sink node (i.e., the tills) in red. We color deleted edges in pink and added edges in blue. The size
of each node is proportional to its arrival rate; we circle the node with the highest arrival rate in
blue. The right part of each panel shows the total mean queue size Q as a function of the number
of perturbed edges. The red dashed line indicates our conjectured theoretical minimum value of Q.
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MINIMIZING CONGESTION IN QUEUEING NETWORKS 1849

Q, which we obtain after 38 edge additions, is Q \approx 6.16. In contrast to our results
for our six random-graph models (see section 4.4), the decrease in Q is much smaller
for the Greedy-Add algorithm than for the Greedy-Delete algorithm. This is
the case primarily because we are using the more restrictive Greedy-Add algorithm
with the planarity constraint for the store network. This limits the possible edges
that the algorithm can add. Without the planarity constraint, we obtain a (much
smaller) final value of Q\approx 1.25. However, this value is still larger than the total mean
queue size Q that we obtain using the Greedy-Delete algorithm.

Finally, we apply the Greedy algorithm (with the planarity constraint) to G.
This algorithm yields the largest decrease in Q and results in a final value of Q\approx 0.565
(see Figure 8b). This value of Q is close to the total mean queue size Qopt \approx 0.559
of the conjectured optimal network G\lambda \mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}

\scrU n
for large \mu . When we apply the Greedy

algorithm to the store network, most edge perturbations are edge deletions; only two
perturbations are edge additions. The perturbed network directs random walkers
to the sink node and thereby reduces congestion in the store. Unfortunately, the
resulting store layout is not very useful in practice. In a supermarket store net-
work, customers will not buy much if they immediately proceed to the tills and leave.
This reveals a shortcoming of our model. In our optimizations, we perturb networks
in a way that directs walkers as quickly as possible to a store exit. This strategy
ignores the shopping intentions of customers. In section 5, we briefly discuss a variety
of possible ways to improve our model to address this shortcoming.

5. Conclusions and discussion. Inspired by the modeling of customer mo-
bility and congestion in supermarkets, we studied an unbiased random walk on a
single-source, single-sink queueing network. We used the total mean queue size Q
as our congestion measure because (by Little's law) minimizing Q is equivalent to
minimizing the mean journey time of the random walkers.

We examined which network topologies minimize Q for a homogeneous service
rate \mu . One of our main results is that the network G \=\scrC n

(see Figure 2) minimizes Q
(for any value of \mu ) of the graphs in \=\scrC n, which is the set of all networks with n nodes
(with n \geq 3) that satisfy certain reachability conditions and do not have a directed
edge from the source node to the sink node. We also explored what occurs (1) when
we allow that directed edge and (2) when we impose an undirected network structure.
We found numerical evidence that G \=Cn

minimizes Q for all values of \mu in the first
case and that different networks minimize Q for different values of \mu in the second
case. We also established relationships (1) between minimizing Q and minimizing the
maximum arrival rate \lambda max and (2) between minimizing Q and minimizing the total
arrival rate \lambda total. For sufficiently small \mu (i.e., in the small-\mu regime), minimizing Q
implies that one is also minimizing \lambda max. For sufficiently large \mu (i.e., in the large-\mu 
regime), minimizing Q is equivalent to minimizing \lambda total. Therefore, when minimizing
Q in one of these two regimes, one can instead minimize the quantities \lambda max or \lambda total,
which are easier to calculate and are independent of \mu .

We also examined the use of edge perturbations---in the form of edge additions,
edge deletions, or both---of an existing network to decrease the total mean queue
size Q. We introduced a greedy algorithm that, at each step, performs the edge
perturbation that decreases Q the most. Because supermarket store networks are
undirected, we only considered undirected networks, but it is straightforward to adapt
our greedy algorithm to directed networks. We applied the greedy algorithm and two
variants of it---one that allows only edge additions and another that allows only edge
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1850 YING, WALLIS, PORTER, HOWISON, AND BEGUERISSE-D\'IAZ

deletions---to networks from six random-graph models and to a store network from
a real supermarket. We found that the greedy algorithm and its two variants are
able to reduce Q on all six types of random graphs. The greedy algorithm with both
edge additions and edge deletions yielded the largest reduction of Q and achieved a
value that is close to our conjectured minimum value of Q. The variant with only
edge addition performed slightly worse, although it was much better than the variant
with only edge deletion. In our numerical experiments on random graphs, most edge
additions yielded edges that are incident to the sink node. For the supermarket store
network, to ensure that our perturbations yield realistic (or at least plausible) network
structures, the only edges that are permissible to add are ones that satisfy a planarity
constraint (by not intersecting existing edges). We found that the greedy algorithm
with edge additions, edge deletions, and the planarity constraint reduced Q to a value
that is close to our conjectured minimum. However, the resulting network is not
practical for supermarkets because it directs customers towards the tills (and thus
towards a store's exit without shopping).

One potential way to address some of the shortcomings of our model is to incorpo-
rate shopping intentions. For example, each walker can have a shopping list of nodes
to visit before leaving a store [21]. Another possible improvement is to incorporate
constraints, such as a minimum visitation probability for each node, to ensure certain
elements of realism in our models and thereby yield more practical supermarket store
layouts through optimization.

Our work gives insight into how network topology affects the total mean queue
size Q in supermarket stores. We examined this question by studying unbiased ran-
dom walks on open queueing networks with a single source and a single sink. We
explored optimal network topologies and three greedy algorithms for perturbing an
existing graph towards an optimal network topology. The queueing networks that
we studied have a single source, a single sink, and homogeneous service rates. This
is a special situation, and extending our analysis to queueing networks with more
realistic scenarios, such as by examining more realistic mobility models (e.g., by
supposing that each walker has a shopping list or by considering congestion-biased
random walks in which walkers tend to avoid overly congested nodes) and hetero-
geneities (e.g., in service rates or mobility) are important avenues to explore in future
work.

Appendix A. Proof of Theorem 3.1. To prove Theorem 3.1, we first prove
two lemmas. These lemmas specify inequalities that are satisfied by the arrival rates
\lambda i of the nodes of any open queueing network G\in \=\scrC n.

Lemma A.1. For any open queueing network G \in \=\scrC n, the arrival rates \lambda i of its
nodes satisfy the following relations:

\lambda 1 \geq 1 ,(A.1)

\lambda i > 0 , i\in \{ 2, . . . , n - 1\} ,(A.2)

\lambda n = 1 .(A.3)

Proof. The inequality (A.1) follows from equation (2.5) and the nonnegativity of
\bfitP and \lambda i. We verified the inequality (A.2) and equation (A.3) in section 2.1 (see
equation (2.7)).
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MINIMIZING CONGESTION IN QUEUEING NETWORKS 1851

Lemma A.2. The arrival rates \lambda i of the nodes of any network G\in \=\scrC n satisfy

n - 1\sum 
i=2

\lambda i \geq 1 .(A.4)

Proof. Our network does not include the edge (1, n), so walkers can visit only
nodes 2, . . . , n - 1 (and not node n) from node 1 in a single step. Therefore,

n - 1\sum 
i=2

P1i =

n\sum 
i=2

P1i = 1 .(A.5)

The arrival rate \lambda 1 of node 1 is equal to the rate of departure at stationarity. Each
walker that departs from node 1 goes to one of the interior nodes 2, . . . , n - 1, so the
sum of the arrival rates of all interior nodes 2, . . . , n - 1 must be at least \lambda 1. Finally,
\lambda 1 \geq 1 because of (A.1); this gives the desired result.

The arrival rates \=\lambda 
(opt)
i of the nodes of G \=\scrC n

are

\=\lambda 
(opt)
i =

\Biggl\{ 
1 , i= 1 or i= n

1/(n - 2) , i\in \{ 2, . . . , n - 1\} ,(A.6)

so the total mean queue size is

Q(G \=\scrC n
, \mu ) = \=Qopt =

2

\mu  - 1
+

1

\mu  - 1/(n - 2)
.(A.7)

We will show that \=\bfitlambda 
(opt)

= (\=\lambda 
(opt)
1 , . . . , \=\lambda 

(opt)
n ) minimizes Q over the space of

all possible arrival rates \lambda i for graphs in \=\scrC n. To do this, we prove a more general
statement.

Proposition A.3. Fix \mu > 1 and let C \in [0, (n - 2)\mu ) be a constant. Let \Omega C,\mu 

be the set of vectors \bfitlambda = (\lambda 1, . . . , \lambda n)\in \BbbR n that satisfy

1\leq \lambda 1 <\mu ,(A.8)

0<\lambda i <\mu , i\in \{ 2, . . . , n - 1\} ,(A.9)
n - 1\sum 
i=2

\lambda i \geq C ,(A.10)

\lambda n = 1 .(A.11)

Let f(\bfitlambda ) : \Omega C,\mu \rightarrow \BbbR , and suppose that we have a nondecreasing function g : [1, \mu )\rightarrow \BbbR ,
a nondecreasing, convex, and differentiable function h : (0, \mu ) \rightarrow \BbbR , and a constant
c\in \BbbR such that

f(\bfitlambda ) = g(\lambda 1) +

n - 1\sum 
i=2

h(\lambda i) + c .(A.12)

It then follows that f is minimized on \Omega C,\mu when

\lambda i =

\Biggl\{ 
1 , i\in \{ 1, n\} 
C/(n - 2) , i\in \{ 2, . . . , n - 1\} .(A.13)

That is, for any \bfitlambda \in \Omega C,\mu , we have that

f(\bfitlambda )\geq g(1) + (n - 2)h

\biggl( 
C

n - 2

\biggr) 
+ c .(A.14)
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1852 YING, WALLIS, PORTER, HOWISON, AND BEGUERISSE-D\'IAZ

Proof. Without loss of generality, we assume that c= 0, as adding a constant to
f does not change its minimizers. Because g is nondecreasing,

g(\lambda 1)\geq g(1)(A.15)

for all \lambda 1 \geq 1 by the inequality (A.8).
By the convexity of h, for any \lambda ,a\in (0, \mu ), we have

h(\lambda )\geq h(a) + h\prime (a)(\lambda  - a) .(A.16)

Using a= \lambda 
(opt)
2 =C/(n - 2)\in (0, \mu ) and \lambda = \lambda i in the inequality (A.16) and summing

over all i\in \{ 2, . . . , n - 1\} yields
n - 1\sum 
i=2

h(\lambda i)\geq (n - 2)h

\biggl( 
C

n - 2

\biggr) 
+ h\prime 

\biggl( 
C

n - 2

\biggr) \Biggl( n - 1\sum 
i=2

\lambda i  - C

\Biggr) 

\geq (n - 2)h

\biggl( 
C

n - 2

\biggr) (A.17)

because h\prime (C/(n - 2))\geq 0 (recall that h is nondecreasing) and
\sum n - 1

i=2 \lambda i \geq C (by the
inequality (A.10)).

Combining the inequalities (A.15) and (A.17) yields

f(\bfitlambda ) = g(\lambda 1) +

n - 1\sum 
i=2

h(\lambda i)\geq g(1) + (n - 2)h

\biggl( 
C

n - 2

\biggr) 
, \bfitlambda = (\lambda 1, . . . , \lambda n)\in \Omega C,\mu ,

(A.18)

as required.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Fix \mu > 1. To ensure that Q is bounded, we consider a
network G \in \=\scrC n with arrival rates \lambda i that satisfy \lambda i < \mu . By Lemmas A.1 and A.2,
the arrival rates \lambda i of the nodes of G satisfy \bfitlambda = (\lambda 1, . . . , \lambda n) \in \Omega 1,\mu (i.e., \Omega C,\mu with
C = 1).

The total mean queue size Q of G as a function of the arrival rates \lambda i is

Q(G,\mu ) = f(\bfitlambda ) +
1

\mu  - 1
,(A.19)

where f(\bfitlambda ) is given by equation (A.12) with g(\lambda ) = h(\lambda ) = \lambda /(\mu  - \lambda ). Note that g is
nondecreasing, convex, and differentiable on (0, \mu ).

By Proposition A.3,

f(\bfitlambda )\geq g(1) + (n - 2)h (C/(n - 2))

=
1

\mu  - 1
+

1

\mu  - 1/(n - 2)
.

(A.20)

Therefore, the total mean queue size Q of any graph G\in \=\scrC n satisfies

Q(G,\mu )\geq 1

\mu  - 1
+

1

\mu  - 1/(n - 2)
+

1

\mu  - 1

= \=Qopt ,

(A.21)

so G \=\scrC n
is Q-optimal over \=\scrC n.
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SUPPLEMENTARY MATERIALS: MINIMIZING CONGESTION IN
SINGLE-SOURCE, SINGLE-SINK QUEUEING NETWORKS∗

FABIAN YING† , ALISDAIR O. G. WALLIS‡ , MASON A. PORTER§ ,

SAM D. HOWISON† , AND MARIANO BEGUERISSE-DÍAZ†

SM1. Optimality of the graph GC̄n for other objective functions. Equa-
tion Proposition A.3 implies that the graph GC̄n is a minimizer for any objective
function f(λ), with λ = (λ1, . . . , λn) ∈ Rn, of the form

(SM1.1) f(λ) = g(λ1) +

n−1∑
i=2

h(λi) + c ,

where g is a non-decreasing function on [1, µ), the function h is non-decreasing, convex,
and differentiable on (0, µ), and c is a constant. Recall that λn = 1, so the last term
in (SM1.1) is cλn = c.

Examples of objective functions that satisfy Equation (SM1.1) include the total

arrival rate λtotal (i.e., g(λ) = h(λ) = λ and c = 1), the total arrival rates
∑n−1
i=2 λi

of the interior nodes (i.e., g(λ) = 0, h(λ) = λ, and c = 0), and the total mean
queue size Q when node 1 has a different service rate µ1 than the other nodes (i.e.,
g(λ) = λ/(µ1 − λ), h(λ) = λ/(µ− λ), and c = 1/(µ− 1)).

The graph GC̄n minimizes both λmax and maxn−1
i=2 λi over C̄n. We proved the

former in section 3.1. To see the latter, note that the arrival rates λi of any graph G ∈
C̄n satisfy

∑n−1
i=2 λi ≥ 1 by Lemma A.2. Because λi ≥ 0, it follows that maxn−1

i=2 λi ≥
1/(n − 2). The arrival rates of GC̄n achieve this lower bound. We denote the vector

of these arrival rates by λ̄(opt).

SM2. Proof of optimality of the graph GC̄n for other types of queues.
When we use other types of queues, we can also show that, under certain conditions,
the arrival rates λ̄(opt) of GC̄n minimize the total mean queue size Q over C̄n. We
no longer have a single service rate µi for each node i; instead, there is an infinite-
dimensional vector of service rates {µik}k=1,2,... for each node i, where µik is the
service rate of node i when there are k customers at node i. As in our consideration
of single-server queues, we assume that each node has the same service rates, so

(SM2.1) µik = µ1k

for all nodes i, all positive integers k, and some constants µ1k > 0.
Our definition of Q-optimality for homogeneous single-server queues in the main

text (see section 3) entails a homogeneous service rate µ, so we need to extend our
definition of Q-optimality to more general queues. To do this, we start with the
quantity
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(SM2.2) U = sup

{
x ≥ 0:

∞∑
k=1

xk∏k
l=1 µ1l

<∞
}
,

which depends only on the service rates µ1k. A stationary state exists for a queueing
network that satisfies our reachability conditions (see Equation (2.1)) if the arrival
rates λi satisfy λi < U for all i [SM6]. Therefore, given service rates µ1k, the quantity
U is the supremum of the arrival rates λi to ensure that a stationary state exists. One
can verify that U = µ for single-server queues with service rate µ. We assume that
the service rates are sufficiently large to ensure that U > 1, as otherwise there exists
no stationary state for any network G ∈ C̄n. We thereby write the following extended
definition for Q-optimality: A network G ∈ G is Q-optimal over a set G of graphs if,
for any service rates µ1k such that U > 1, the total mean queue size Q of G does not
exceed the total mean queue size for any graph G′ ∈ C̄n. As before, we say that a
queueing network G ∈ C̄n without a stationary state has total mean queue size Q of
infinity.

Provided the service rates are sufficiently large (to ensure that there exists a
stationary state), the arrival rates λi of each node i in a queueing network depend
only on the network topology. In particular, they are independent of the type of
queue. Therefore, using different types of queues does not change the arrival rates,
so the arrival rates still satisfy Lemmas A.1 and A.2. Furthermore, for any network
G ∈ C̄n with finite Q, we have λi < U (as otherwise no stationary state exists, which
would then imply that Q = ∞). Consequently, the arrival rates λi of any queueing
network G ∈ C̄n satisfy λ = (λ1, . . . , λn) ∈ Ω1,U where λn = 1 and Ω1,U is defined in
Equations (A.8)–(A.10).

We can extend Proposition A.3 to apply to any type of queue that satisfies Equa-
tion (SM2.1) by replacing µ with U everywhere. Therefore, it follows that GC̄n is
Q-optimal over C̄n for any such queue. For example, the proof of Theorem 3.1 ex-
tends to queueing networks in which each node is a two-server queue with equal
service rates (of µ/2) at each queue. In this case, U = µ, which is the same as in a
single-server queue.

We choose g(λ) = h(λ) = 2µλ/(µ2 − λ2), so the total mean queue size is

(SM2.3) Q =

n∑
i=1

2µλi
µ2 − λ2

i

.

Therefore, GC̄n is a network in C̄n that minimizes Q when all queues are two-server
queues.

SM3. Q-optimality over GCn . When we consider networks in Cn (instead of

C̄n), the bound on
∑n−1
i=2 λi from inequality (A.4) in Lemma A.2 does not hold. There-

fore, to prove Q-optimality of GCn over Cn using the same approach that we used for

C̄n, we need to prove a different bound on
∑n−1
i=2 λi. We wrote our conjectured bound

in (3.5).
If (3.5) is true, we can show that GCn is Q-optimal by following the same steps as

in the proof of Theorem 3.1, except that we use C = 1− 1/(n− 1) instead of C = 1.

The arrival rates λ
(opt)
i of GCn are

(SM3.1) λ
(opt)
i =

{
1 , i = 1 or i = n

1
n−1 = C

n−2 , i ∈ {2, . . . , n− 1} ,

where C = 1 − 1/(n − 1). The arrival rates satisfy
∑
i λ

(opt)
i = C, as in the case for

C̄n.
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SM4. Simulated-annealing algorithm for determining optimal network
topologies.

SM4.1. Description of the simulated-annealing (SA) algorithm. We use
a simulated-annealing (SA) algorithm to try to find (directed or undirected) networks
with a minimum value of an objective function. We use objective functions f(λ)

(specifically,
∑n−1
i=2 λi, λmax, and λtotal) that depend only on the arrival rates λi

(with i ∈ {1, . . . , n}) of the nodes of an unweighted network G. We describe the SA
algorithm in Algorithm SM4.1.

Algorithm SM4.1 Simulated-annealing (SA) algorithm for finding networks that
minimize the objective function f

1: procedure SimulatedAnnealing
2: Input : Number n of nodes, objective function f(λ), number L of iterations
3: Output : A network G that has been optimized according to f
4: Initialize:
5: Let G0 (the initial network) be the fully connected network with n nodes
6: Set the computational temperature to Tc = 1
7: Algorithm:
8: for iteration k ∈ {1, . . . , L} do
9: Step A: Choose an ordered node pair (i, j) in the graph Gk−1 = (V,E)

uniformly at random from all possible pairs of nodes
10: Step B: Perform one of the following actions (depending on whether

(i, j) ∈ E or (i, j) 6∈ E):
11: if (i, j) 6∈ E then
12: Gk ← Gk−1 with (i, j) added
13: else
14: Gk ← Gk−1 with (i, j) removed
15: if Gk does not satisfy the reachability conditions then
16: Repeat Steps A and B until one selects a node pair (i, j) for which

either (i, j) ∈ E or Gk satisfies the reachability conditions

17: Step C: Compute the change ∆f in the objective function f between the
networks Gk and Gk−1

18: if ∆f ≥ 0 (i.e., Gk has a larger or equal objective-function value) then
19: With probability 1− exp(−∆f/Tc), reject the change and set
20: Gk ← Gk−1

21: Step E: Reduce the computational temperature Tc by 8.3× 10−6 Tc
22: Assign G← GL
23: return G

We run 105 iterations in total. As the SA algorithm progresses, we decrease the
computational temperature and the algorithm accepts progressively fewer changes
that increase the objective function.

We use the SA algorithm to attempt to find the following optimal n-node net-
works:

(1) a directed network with minimal
∑n−1
i=2 λi;

(2) an undirected network with minimal λmax = maxni=1 λi; and
(3) an undirected network with minimal λtotal =

∑n
i=1 λi.
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Fig. SM1. Histograms of the minimum values of
∑n−1
i=2 λi that we find using an SA algorithm.

We indicate our conjectured minimum value using the dashed red line. Note that the horizontal
scales are different in the different figure panels.

SM4.2. Results.

SM4.2.1. Directed n-node networks with minimal
∑n−1
i=2 λi. We conjec-

ture that for any directed network G ∈ Cn with n ≥ 3, the arrival rates λi of the nodes
of G satisfy

∑n−1
i=2 λi ≥ 1− 1/(n− 1) (see (3.5)). We have verified this conjecture for

all n ∈ {3, . . . , 7} by exhaustive enumeration.

We use the SA algorithm to find larger networks with minimal
∑n−1
i=2 λi. For each

n, we run the SA algorithm 20 times and record the value of
∑n−1
i=2 λi of the optimized

network that we obtain in each run. For n = 20, n = 50, and n = 100 nodes, the SA
algorithm did not find any networks with

∑n−1
i=2 λi that are smaller than 1 − 1/(n −

1), which is our conjectured minimum (see Figure SM1). The values of
∑n−1
i=2 λi

from our computations are close to our conjectured minimum value. Therefore, our
computational results support our conjecture.

SM4.2.2. Undirected n-node networks with minimal λmax or λtotal. We
conjecture for any network with n ≥ 3 nodes that the network Gλtotal

Un (see Figure 5c)
uniquely minimizes λtotal over Un. If this conjecture holds, then for any n ≥ 5, there
are no Q-optimal networks over the space Un of undirected networks that satisfy our
reachability conditions (see section 3). We also conjecture that for any network with
n ≥ 3 nodes, the graph Gλmax

Un (see Figure 5d) minimizes λmax.
For all n ∈ {3, . . . , 7}, we have verified both conjectures by exhaustive enu-

meration. For larger networks, we use the SA algorithm that we described in Ap-
pendix SM4.1 to obtain undirected networks with small values of λmax or λtotal.
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Fig. SM2. Histograms of the minimum values of (left panels) λmax and (right panels) λtotal
that we obtain using an SA algorithm. In each case, we indicate our conjectured minimum value
using a dashed red line. Note that the horizontal scales are different in different panels.

For each n, we run the SA algorithm 20 times and record the minimum objective-
function value from each run. For both objective functions, the SA algorithm yields
networks with objective-function values that are close to (but above) the conjectured
minimum values for n = 20, n = 50, and n = 100 (see Figure SM2). Therefore, our
results support both conjectures.

SM5. Q-optimal networks over Un for n = 3 and n = 4. We show that
Gλmax

Un is the unique Q-optimal network (which we defined in section 3) over Un for

n = 3 and n = 4. Note that Gλmax

Un is identical to Gλtotal

Un for n = 3 and n = 4.
There are only 3 different networks in U3 (see Figure SM3). Of these 3 networks,

the graph Gλmax

U3 has the smallest arrival rates λi for each node i. We show the arrival
rates in the captions of Figures SM3a to SM3c. Because Q =

∑
i λi/(µ − λi) is an

increasing function of λi for fixed values of the other arrival rates, the network Gλmax

U3
minimizes Q for all values of µ, so it is Q-optimal over U3.
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Fig. SM3. The 3 networks in U3 and their associated arrival rates (λ1, λ2, λ3).

There are 28 different networks in U4. Of these networks, there are 11 pairs
(G1, G2) of distinct networks (i.e., G1 6= G2) such that G1 is the same as G2 except
that the labels of interior nodes (i.e., the nodes that are neither a source nor a sink)
are swapped. For each pair (G1, G2), the network G2 has the same arrival rates as
G1, except that the arrival rates of interior nodes (i.e., nodes 2 and 3) are swapped.
Therefore, the total mean queue sizes of G1 and G2 are identical for any value of µ.
Consequently, we only need to consider one network from each of these pairs, so there
are 17 different networks to examine. We show these 17 networks in Figure SM4 and
give their arrival rates in Table SM1. For each node i, the arrival rate λi is smaller in
Gλmax

U4 than in all other networks except for networks 2 and 6. (In networks 2 and 6,

node 3 has a smaller arrival rate than in Gλmax

U4 .) Using the same argument as with

n = 3, we see that the network Gλmax

U4 has smaller values of Q than the other networks,
except for networks 2 and 6, for all values of µ.

We now show that Gλmax

U4 also has smaller or equal values of Q than networks 2

and 6 for all values of µ. Let λ
(opt)
i , λ

(3)
i , and λ

(6)
i be the arrival rates of node i in

the network Gλmax

U4 , network 3, and network 6, respectively. They take the respective
values

(SM5.1)

(
λ

(opt)
1 , λ

(opt)
2 , λ

(opt)
3 , λ

(opt)
4

)
= (1.25, 0.25, 0.75, 1) ,(

λ
(3)
1 , λ

(3)
2 , λ

(3)
3 , λ

(3)
4

)
= (1.5, 0.5, 0.5, 1) ,(

λ
(6)
1 , λ

(6)
2 , λ

(6)
3 , λ

(6)
4

)
=

(
2,

2

3
,

2

3
, 1

)
.

For a given service rate µ, let f(x) = x/(µ−x). The function f gives the mean queue
size of a node with arrival rate x ∈ [0, µ). To show that Gλmax

U4 has smaller values of
Q than networks 2 and 6, we need to show that
(SM5.2)

f(λ
(opt)
1 ) + f(λ

(opt)
2 ) + f(λ

(opt)
3 ) + f(λ

(opt)
4 ) ≤ f(λ

(l)
1 ) + f(λ

(l)
2 ) + f(λ

(l)
3 ) + f(λ

(l)
4 ) ,

for l = 3 and l = 6 and all sufficiently large values of µ (to ensure that a stationary
state exists). Specifically, we need to verify Equation (SM5.2) for all values of µ such
that µ > λli for l ∈ {3, 6} and for all i. (When l = 3, we require that µ > 1.5;

when l = 6, we require that µ > 2.) Because f is increasing and λ
(opt)
2 ≤ λ

(l)
2 and

λ
(opt)
4 = λ

(l)
4 for l = 3 and l = 6, it suffices to show that
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Fig. SM4. The 17 networks in U4 with different sets of arrival rates (see Table SM1).
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Table SM1
Arrival rates (to 2 decimal places) of the 17 networks in U4 with different sets of arrival rates.

(There are 28 networks in total in U4. As we explain in the text, each of the 11 networks that we
do not list in this table has the same arrival rates (up to relabeling of the interior nodes) as one of
these 17 networks.)

λ1 λ2 λ3 λ4

Gλmax

U4 1.25 0.25 0.75 1.00
Network 2 1.50 0.50 0.50 1.00
Network 3 1.33 0.33 1.00 1.00
Network 4 1.50 0.75 0.75 1.00
Network 5 1.50 0.50 1.00 1.00
Network 6 2.00 0.67 0.67 1.00
Network 7 2.00 1.00 1.00 1.00
Network 8 1.88 1.00 1.12 1.00
Network 9 1.67 0.67 2.00 1.00
Network 10 3.00 1.00 1.00 1.00
Network 11 2.00 1.00 2.00 1.00
Network 12 2.00 1.50 1.50 1.00
Network 13 2.00 1.00 3.00 1.00
Network 14 3.00 2.00 2.00 1.00
Network 15 4.00 2.00 2.00 1.00
Network 16 3.00 2.00 4.00 1.00
Network 17 3.33 2.67 3.00 1.00

(SM5.3) f(λ
(opt)
1 ) + f(λ

(opt)
3 ) ≤ f(λ

(l)
1 ) + f(λ

(l)
3 ) ,

for l = 3 and l = 6 and all values of µ such that µ > λli for l ∈ {3, 6} and all i.
We first show Equation (SM5.3) for l = 3. The function f is convex (i.e., concave

down) on [0, µ), so it satisfies

(SM5.4) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all t ∈ [0, 1] and x, y ∈ [0, µ). Setting t = 0.25 and t = 0.75 in Equation (SM5.4)
yields

(SM5.5)
f(0.25x+ 0.75y) ≤ 0.25f(x) + 0.75f(y) ,

f(0.75x+ 0.25y) ≤ 0.75f(x) + 0.25f(y) .

We sum both sides of the inequalities in (SM5.5) to obtain

(SM5.6) f(0.75x+ 0.25y) + f(0.75x+ 0.25y) ≤ f(x) + f(y) .

Using x = λ
(3)
1 = 1.5 and y = λ

(3)
3 = 0.5 then gives

(SM5.7) f(0.25× 1.5 + 0.75× 0.5) + f(0.75× 1.5 + 0.25× 0.5) ≤ f(1.5) + f(0.5) .

That is,

(SM5.8) f(1.25) + f(0.75) ≤ f(1.5) + f(0.5) ,

which verifies Equation (SM5.3) with (λ
(opt)
1 , λ

(opt)
3 ) = (1.25, 0.75) and (λ

(3)
1 , λ

(3)
3 ) =

(1.5, 0.5), as required.
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For l = 6, we sum the inequalities in (SM5.4) and insert t = 0.875 and t = 0.125
to obtain

(SM5.9) f(0.875x+ 0.125y) + f(0.125x+ 0.875y) ≤ f(x) + f(y) .

Substituting x = 4/3 and y = λ
(6)
3 = 2/3 into Equation (SM5.9) yields

(SM5.10) f(1.25) + f(0.75) ≤ f(4/3) + f(2/3) .

Therefore,

(SM5.11)
f(λ

(opt)
1 + f(λ

(opt)
3 ≤ f(4/3) + f(λ

(6)
3 )

≤ f(λ
(6)
1 ) + f(λ

(6)
3 ) ,

where the last inequality holds because f is increasing and λ
(6)
1 = 2 ≥ 4/3. Conse-

quently, Gλmax

U4 has smaller values of Q than networks 2–17, so it is Q-optimal over
U4.

SM6. Maximum arrival rates of Gλmax

Un and Gλtotal

Un . We show that Gλtotal

Un
(see Figure 5c) does not minimize the maximum arrival rate λmax (see Figure 5d)
over Un for n ≥ 5. We do this by showing that the maximum arrival rate of Gλtotal

Un is

larger than the maximum arrival rate of Gλmax

Un .

We first examine the arrival rates λi of the nodes of Gλmax

Un . These arrival rates
satisfy the following traffic equations (2.5):

(SM6.1)

λ1 =
1

n− 1
λ2 + 1 ,

λ2 =
1

2
λ1 +

n−1∑
i=3

1

2
λi ,

λi =
1

n− 1
λ2 , i ∈ {3, . . . , n− 1} ,

λn =
1

2
λ1 +

1

n− 1
λ2 +

n−1∑
i=3

1

2
λi .

The arrival rates of Gλmax

Un for n ≥ 5 are

(SM6.2)

λ1 = 1 +
1

n
,

λ2 = 1− 1

n
,

λi =
1

n
, i ∈ {3, . . . , n− 1} ,

λn = 1 ,

which satisfy Equation (SM6.1). Therefore, we see that Gλmax

Un has a maximum arrival
rate of λmax = λ1 = 1 + 1/n.
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We now examine the arrival rates λi of Gλtotal

Un . They satisfy the following traffic
equations (2.5):

(SM6.3)

λ1 =
1

3
λ2 + 1 ,

λ2 =
1

2
λ1 +

1

3
λ3 ,

λi =
1

3
λi−1 +

1

3
λi+1 , i ∈ {3, . . . , n− 3} ,

λn−2 =
1

3
λn−3 +

1

2
λn−1 ,

λn−1 =
1

3
λn−2 ,

λn =
1

2
λ1 +

n−2∑
i=2

1

3
λi +

1

2
λn−1 .

We establish a lower bound for λ1 (and thus a lower bound for λmax) by substituting
the second equation of Equation (SM6.3) into the first equation of Equation (SM6.3)
to obtain

(SM6.4) λ1 =
1

3

(
1

2
λ1 +

1

3
λ3

)
+ 1 .

Rearranging Equation (SM6.4) yields

(SM6.5)

5

6
λ1 =

1

9
λ3 + 1

> 1 ,

because λ3 > 0 (as node 3 is reachable by a walker). Consequently, λ1 > 6/5 = 1+1/5,
so λmax > 1 + 1/5 ≥ 1 + 1/n for all n ≥ 5. This shows that Gλtotal

Un has a smaller

maximum arrival rate than Gλmax

Un for n ≥ 5 and cannot minimize λmax over Un for
n ≥ 5.

SM7. Variants of our greedy algorithm for reducing Q. In Algorithms
SM7.1 and SM7.2, we summarize the two variants of our Greedy algorithm. The first
variant only allows edge additions, and the second variant only allows edge deletions.
Our original algorithm allows both edge additions and edge deletions.

SM8. Random-graph models. In this section, we present the definitions of
the six random-graph models that we used in section 4.

SM8.1. Barabási–Albert graphs. A Barabási–Albert (BA) graph [SM1] is an
undirected graph that we construct as follows. Given the parameters n ∈ Z+ and
mBA ∈ Z+ and an initial undirected graph with m0 ≥ mBA nodes, we add one node
at a time to the graph until it has n nodes. Each new node j attaches to mBA distinct
existing nodes, where we choose each node i with a probability that is proportional
to its degree di. We set the initial graph to be the graph with m0 = mBA nodes and
no edges. The number of edges of each BA graph is

(SM8.1) m = (n−mBA)mBA .
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Algorithm SM7.1 Greedy algorithm for reducing Q using only edge additions.

1: procedure Greedy-Add
2: Input : Network G = (V,E), service rates µi, total number T of edge additions,

number Kk of edge additions between recalculating rankings for each iteration k
3: Output : Network G with up to T edge additions
4: Initialize:
5: Calculate ∆Q for each edge addition ∆e
6: Rank all edge additions in increasing order of ∆Q and save them in the list R
7: num edges added = 0
8: iteration number = 1
9: Algorithm:

10: while True do
11: num edges added in loop = 0
12: Set K = Kk, where k = iteration number
13: while num edges added in loop < K do
14: Take the first edge addition ∆e = ∆(i, j) in R and remove it from R
15: G← G with e added
16: Increment num edges added in loop by 1
17: Increment num edges added by 1
18: if num edges added ≥ T or R is empty then
19: return G
20: if R is empty then . No further edges can be added
21: return G
22: Recalculate ∆Q for each edge addition ∆e
23: Rank all edge additions in increasing order of ∆Q and save them in the

list R
24: Increment iteration number by 1

SM8.2. Erdős–Rényi graphs. An Erdős–Rényi (ER) G(n, p) graph [SM4]
(which is also called a Bernoulli random graph) with p ∈ [0, 1] is an undirected graph
with n nodes in which any two nodes i and j are connected by an edge with a homo-
geneous, independent probability p. The number of edges of a G(n, p) graph follows
a binomial distribution with mean

(SM8.2) E[m] =
n(n− 1)p

2
.

SM8.3. Random regular graphs. Given the parameters n ∈ Z+ and d ∈ Z+

such that nd is even, a random regular graph (RRG) is an n-node d-regular graph
that we choose uniformly at random from all n-node d-regular graphs. We use the
algorithm by Kim and Vu [SM7] that samples a d-regular graph in an asymptotically
uniform way when d = O(n1/3−ε) for any ε < 1/3 as n→∞.

The number of edges of an RRG is

(SM8.3) m =
nd

2
.

SM8.4. Watts–Strogatz graphs. Given the parameters n ∈ Z+, kWS ∈ Z+,
and p ∈ [0, 1], we generate a Watts–Strogatz (WS) graph as follows. We start with
a graph with n nodes that are arranged as a regular n-gon, and we add undirected
edges such that each node is adjacent to its nearest 2kWS nodes. For each node i, we
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Algorithm SM7.2 Greedy algorithm for reducing Q using only edge deletions.

1: procedure Greedy-Delete
2: Input : Network G = (V,E), service rates µi, total number T of edge deletions,

number Kk of edge deletions between recalculating rankings for each iteration k
3: Output : Network G with up to T edge deletions
4: Initialize:
5: Calculate ∆Q for each edge deletion ∆e
6: Rank all edge deletions in increasing order of ∆Q and save them in the list R
7: num edges deleted = 0
8: iteration number = 1
9: Algorithm:

10: while True do
11: num edges deleted in loop = 0
12: Set K = Kk, where k = iteration number
13: while num edges deleted in loop < K do
14: Take first edge deletion ∆e = ∆(i, j) in R and remove it from R
15: G′ ← G with e removed
16: if G′ satisfies reachability conditions then
17: G← G′

18: Increment num edges deleted in loop by 1
19: Increment num edges deleted by 1
20: else
21: continue . Skip because it is not a valid graph

22: if num edges deleted ≥ T or R is empty then
23: return G
24: if R is empty then . No further edges can be removed
25: return G
26: Recalculate ∆Q for each edge deletion ∆e
27: Rank all edge deletions in increasing order of ∆Q and save them in the list

R
28: Increment iteration number by 1

then consider the edges that connect i with its kWS rightmost neighbors. We rewire
each of the associated kWS edges with independent probability p as follows. For each
edge (i, jold) that we rewire, we choose a node jnew uniformly at random from all
nodes that are not neighbors of i and replace (i, jold) with (i, jnew).

In the present paper, we produce connected WS graphs by repeatedly sampling
WS graphs using the procedure above until it produces a connected graph. The
number of edges of each WS graph is

(SM8.4) m = nkWS .

SM8.5. Random geometric graphs. Given the parameters n ∈ Z+ and r ∈
[0,
√

2], we define1 a random geometric graph (RGG) [SM2] to be a spatial, undirected
graph in R2 in which we place n nodes uniformly at random in the unit square in R2

such that each node is adjacent to all nodes within a Euclidean distance of r.

1Our definition is the simplest, traditional version of a RGG. See [SM8] for more general versions
of RGGs.
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For small r, the mean number of edges of an RGG is

(SM8.5) E[m] ≈ n(n− 1)πr2

2
.

Because of the boundary, the precise value of E[m] is smaller than the right-hand side
of (SM8.5). The formula (SM8.5) becomes exact as n→∞ and r → 0 with nr fixed.

SM8.6. Chung–Lu graphs. The Chung–Lu model [SM3] is a variant of a con-
figuration model [SM5]. Given n ∈ Z+ and a sequence w1, . . . , wn of positive weights
(to encode the expected degree sequence of a graph), we generate a Chung–Lu graph
as follows. For each pair of distinct nodes, i and j, we place an edge (i, j) between
them with independent probability wiwj/

∑
k wk. The expected degree E[di] of node

i is then

(SM8.6) E[di] = wi

(
1− wi∑

k wk

)
,

which tends to wi as n→∞.
The expected number of edges is

(SM8.7) E[m] =

∑
i E[di]

2
.

SM9. Reducing λmax or λtotal by adding or deleting edges. We use the
Greedy algorithm and its two variants (Greedy-Add and Greedy-Delete) to
reduce the maximum arrival rate λmax and total arrival rate λtotal. To do this, we
amend Algorithm 4.1 and replace any calculation of ∆Q by the changes in λmax and
λtotal, respectively. In other words, we change the objective function in our greedy
algorithms. We apply the three algorithm variants to 100 networks from each of the
six random-graph models that we mentioned in section 4. (See section SM8 for the
definitions of these models.) We use the same model parameters as in section 4; we
listed them in section 4.3.

SM9.1. Reducing the value of the total arrival rate λtotal. In Figure SM5,
we plot the mean value of λtotal as a function of the fraction of perturbed edges for
the three algorithm variants. The curves in Figure SM5 are qualitatively similar
to those in Figure 6 (where we used these algorithms to reduce Q). Analogously
to our definition of RQ (see section 4.4), we define Rλtotal

to be the ratio of the
achieved minimum value of λtotal to the conjectured minimum value. (The conjectured
minimum value of λtotal is the total arrival rate of Gλtotal

Un (see section 3.4).) For each
of the random-graph models, we observe that the mean value of Rλtotal

is close to the
corresponding mean value of RQ (see Table SM2 and Table 2). The similarity of the
mean values of RQ and Rλtotal

and of the curves in Figure SM5 and Figure 6 suggest
that reducing Q (with µ = 3λmax) is approximately equivalent to reducing λtotal.
In other words, we are in the large-µ regime with µ = 3λmax for our random-graph
models with the parameter values in section 4.3.

SM9.2. Reducing the value of the maximum arrival rate λmax. When we
use the Greedy, Greedy-Add, and Greedy-Delete algorithms to reduce λmax,
the mean minimum achieved values of λmax for all three algorithms are significantly
larger than the conjectured minimum value of λmax (see Figure SM6). (The con-
jectured minimum value of λmax is the maximum arrival rate of Gλmax

Un (see section
3.4).) We calculate the ratio Rλmax

of the minimum achieved value of λmax to the
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Fig. SM5. Comparison of the performance of the Greedy algorithm and its two variants
( Greedy-Add and Greedy-Delete) for decreasing the total arrival rate λtotal with edge perturba-
tions. We plot the mean and standard error of λtotal as a function of the fraction F of perturbed
edges (i.e., the number of edge perturbations divided by the number of edges of the original graph).
For each F ∈ [0, 0.48], we take the mean over all of the simulations that yield finite λtotal after
perturbing a fraction F of the edges. The red dashed line indicates our conjectured lower bound of
λtotal. (For most of the curves, the standard error is smaller than the marker size.)
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(b) Erdős–Rényi graphs

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of edges perturbed

0.0

0.5

1.0

1.5

2.0

2.5

m
ax

(c) Random regular graphs
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(d) Watts–Strogatz graphs
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(f) Chung–Lu graphs

Fig. SM6: Comparison of the performance of the Greedy algorithm and its two
variants (Greedy-Add and Greedy-Delete) for decreasing the maximum arrival
rate λmax with edge perturbations. We plot the mean and standard error of λmax as a
function of the fraction F of perturbed edges (i.e., the number of edge perturbations
divided by the number of edges in the original graph). For each F ∈ [0, 0.5], we take
the mean over all of the simulations that yield finite λmax after perturbing a fraction
F of the edges. The red dashed line indicates our conjectured lower bound of λmax.
(For most of the curves, the standard error is smaller than the marker size.)

SM19

Fig. SM6. Comparison of the performance of the Greedy algorithm and its two variants
( Greedy-Add and Greedy-Delete) for decreasing the maximum arrival rate λmax with edge per-
turbations. We plot the mean and standard error of λmax as a function of the fraction F of perturbed
edges (i.e., the number of edge perturbations divided by the number of edges of the original graph).
For each F ∈ [0, 0.48], we take the mean over all of the simulations that yield finite λmax after
perturbing a fraction F of the edges. The red dashed line indicates our conjectured lower bound of
λmax. (For most of the curves, the standard error is smaller than the marker size.)
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Table SM2
The mean value of Rλtotal

for the Greedy algorithm and its two variants ( Greedy-Add and
Greedy-Delete) for our six random-graph models. We generate 100 networks for each random-
graph model and run the three algorithms on those networks.

Model Greedy Greedy-Add Greedy-Delete

BA 1.017 2.329 5.198
ER 1.007 2.367 5.274
RRG 1.000 2.354 3.178
WS 1.000 2.345 3.781
RGG 1.030 2.180 55.444
Chung–Lu 1.034 2.279 13.932

Table SM3
The mean value of Rλmax for the original Greedy algorithm and its two variants ( Greedy-

Add and Greedy-Delete) for our six random-graph models. We generate 100 networks for each
random-graph model and run the three variants of the algorithms on those networks.

Model Greedy Greedy-Add Greedy-Delete

BA 1.080 1.064 3.102
ER 1.073 1.094 2.120
RRG 1.080 1.096 2.201
WS 1.083 1.095 2.115
RGG 1.106 1.126 8.532
Chung–Lu 1.083 1.072 3.780

conjectured minimum value of λmax in Table SM3 and find that the mean minimum
achieved value of λmax is at least 8–10% larger than the conjectured minimum. By
contrast, when we use the Greedy algorithm to reduce Q (with µ = 3λmax) or λtotal,
the means of the achieved objective-function values are within 3% of the conjectured
minima.

The Greedy-Add algorithm performs similarly to the original Greedy algo-
rithm at reducing λmax (see Table SM3). For the BA and Chung–Lu models, it even
yields a larger mean reduction in λmax than the Greedy algorithm.
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