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Non-Markovian Models of Opinion Dynamics on Temporal Networks\ast 

Weiqi Chu\dagger and Mason A. Porter\ddagger 

Abstract. Traditional models of opinion dynamics, in which the nodes of a network change their opinions
based on their interactions with neighboring nodes, consider how opinions evolve either on time-
independent networks or on temporal networks with edges that follow Poisson statistics. Most such
models are Markovian. However, in many real-life networks, interactions between individuals (and
hence the edges of a network) follow non-Poisson processes and thus yield dynamics with memory-
dependent effects. In this paper, we model opinion dynamics in which the entities of a temporal
network interact and change their opinions via random social interactions. When the edges have non-
Poisson interevent statistics, the corresponding opinion models have non-Markovian dynamics. We
derive a family of opinion models that are induced by arbitrary waiting-time distributions (WTDs),
and we illustrate a variety of induced opinion models from common WTDs (including Dirac delta
distributions, exponential distributions, and heavy-tailed distributions). We analyze the convergence
to consensus of these models and prove that homogeneous memory-dependent models of opinion
dynamics in our framework always converge to the same steady state regardless of the WTD. We
also conduct a numerical investigation of the effects of waiting-time distributions on both transient
dynamics and steady states. We observe that models that are induced by heavy-tailed WTDs
converge more slowly to a steady state than models that are induced by WTDs with light tails (or
with compact support) and that entities with longer waiting times exert more influence on the mean
opinion at steady state.
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1. Introduction. The structure of networks has a major influence on the dynamics of
complex systems of interacting entities in social, economic, information, biological, and phys-
ical systems [42]. In a network, entities interact via edges, which encode ties with time-
dependent strengths. To model a networked system, it is important both to account for the
time-dependence of edges and to examine the effects of (both time-independent and time-
dependent) network structures on dynamical processes [45], such as opinion formation [44],
the spread of infectious diseases [28], and e-mail communication [13].

When modeling real-life networks, it is convenient to assume that edges, which encode
events between humans or other entities, appear randomly in a way that is captured well
by a Poisson process. This assumption results in time-dependent networks (i.e., so-called
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``temporal networks"") with memoryless stochastic effects [37]. It overlooks the non-Markovian
and nonstationary nature of many systems [3], such as e-mail traffic and online communication.
To incorporate memory effects and to model dynamics with bursty and heavy-tailed interevent
times [27, 47], it is important to consider temporal networks with edges that appear (and are
thus available for events) according to stochastic processes other than Poisson processes.

Many dynamical processes on networks are non-Markovian [14, 19], which introduces non-
trivial memory-dependence into their dynamics. For example, in a social contagion, entities
typically require multiple sources of influence (i.e., social reinforcement) to adopt some idea
or behavior [32]. Such cumulative effects occur in the adoption of social norms and technolo-
gies [2, 7]. There have been a variety of efforts to incorporate memory effects into dynamical
processes on networks. Such studies include generalizations of voter models [4, 8, 53], com-
partmental models of disease spread [14, 29, 50, 56], social-contagion models [58], and random
walks [31].

Most research on incorporating memory effects into dynamical processes on networks has
focused on binary-state models, in which node states can take one of two values (e.g., suscep-
tible or infected), but it is also important to examine memory effects in models in which nodes
can take continuous values. Most research on these continuous-valued models incorporates
memory-dependence directly into network structure through time-dependent edge weights and
overlooks the effects of the previous node states. For example, Sugishita et al. considered an
opinion model on ``tie-decay networks"" [51], in which interactions between entities are time-
dependent and result in ties whose strengths increase instantaneously when an interaction
occurs and decay exponentially between interactions. However, simply placing a dynamical
process on a tie-decay network accounts only for the states during the most recent interaction;
it ignores how states change with time to attain their current values. By contrast, we seek to
account for the complete history of the states of a dynamical process.

Dynamical processes on networks are also impacted significantly by network architecture
[45]. For example, Meng, Van Gorder, and Porter [41] studied how time-independent network
structures affect the steady state and the convergence properties of a bounded-confidence
model (BCM) of opinion dynamics. Sood and Redner [49] investigated the relationship be-
tween a network's degree distribution and the convergence time of a voter model on that
network. Delvenne, Lambiotte, and Rocha [12] compared the effects of the structural and
temporal features of networks on dynamical processes. In particular, they examined when a
diffusion process is affected more strongly by network architecture or by a network's temporal
features. Such investigations emphasize the importance of considering network structure when
studying both transient and long-time qualitative behaviors of dynamical processes.

In the present study of non-Markovian opinion dynamics on networks, we consider ar-
bitrary weighted networks and allow the waiting time between events to follow an arbitrary
probability distribution, which is known as a ``waiting-time distribution"" (WTD). When the
edges of a network satisfy Poisson statistics, the times between events follow independent
exponential distributions [40] and thereby lead to memoryless models in which the dynam-
ics depend only on a network's present state. Instead of using such a restrictive setting,
we consider a generic WTD and use known results about interevent times [30] to systemat-
ically construct memory-dependent models of opinion dynamics. This setting allows us to
study models that capture time-dependent interactions between entities and thus naturally
incorporate memory effects.
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2626 WEIQI CHU AND MASON A. PORTER

Our paper proceeds as follows. In section 2, we propose a family of memory-dependent
models of opinion dynamics on temporal networks in which the social interactions between two
entities are determined by arbitrary WTDs. We illustrate the corresponding opinion models
for several examples of both discrete and continuous WTDs. We prove that ``homogeneous
models"" (in which all nodes have the same WTD) converge to the same steady state regardless
of the WTD, and we give conditions for consensus (in which all entities hold the same opinion)
in both homogeneous models and ``heterogeneous models"" (in which nodes have different
WTDs). In section 3, we examine our memory-dependent opinion models on three types
of graphs and investigate how WTDs affect both the transient dynamics and the steady
states. We conclude in section 4. Our code is available at https://bitbucket.org/chuwq/non-
markovian-models-of-opinion-dynamics-on-temporal-networks/src/main/.

2. Opinion models that are induced by waiting-time distributions. Let G be a weighted
and directed graph with N nodes. We represent this graph using an adjacency matrix A.
Entry Aij of this matrix gives the weight of the edge from node i to node j; it encodes the
interaction strength from entity i to entity j.1 We assume that the entries of A are nonnegative
real numbers and that each row sum of A is larger than 0. The row-normalized adjacency
matrix \widetilde A has entries \widetilde Aij = Aij/

\sum N
j=1Aij . Entity i has a time-dependent continuous-valued

opinion Xi(t) and an internal clock \tau i, which indicates its waiting time. Each entity maintains
its opinion until there is an event (which occurs at a random time that is determined by \tau i).
The waiting time \tau i between two consecutive events of entity i follows a WTD Ti(\tau ). When
an event occurs, entity i adopts the opinion of an adjacent node2 j with probability \widetilde Aij and
it resets its internal clock \tau i to 0. When Aii > 0, entity i is adjacent to itself, so it can choose
itself (with probability \widetilde Aii) when selecting a node from which to adopt an opinion. If this
occurs, entity i keeps its current opinion after the event and it resets its internal clock \tau i to
0. In Figure 1, we give an example of a two-node graph and illustrate how its entities update
their opinions.

Figure 1. (Left) A 2-node weighted graph with self-edges and (right) the trajectories of associated opinion
trajectories (X1 and X2). Initially, the two entities of the graph have opinions a1 and a2. At time t1, entity 1

experiences an event; it adopts opinion a1 (which is the opinion of entity 1) with probability \widetilde A11 = 0.8, and it

adopts opinion a2 (which is the opinion of entity 2) with probability \widetilde A12 = 0.2. In the depicted scenario, entity
1 adopts opinion a1 and holds that opinion until its next event, which occurs at time t3. Entity 2 holds opinion
a2 until its first event occurs at time t2. Entity 2 adopts the opinion of entity 1 at time t2; this results in a
consensus state in which both entities hold the same opinion a1.

1To consider an unweighted graph, we let Aij = 1 when there is an edge between nodes i and j and let
Aij = 0 when there is not an edge between them. In an undirected graph, Aij =Aji for all i and j.

2When Aij > 0, node j is adjacent to node i. When Aij = 0, node j is not adjacent to node i.
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The internal clock \tau i and WTD Ti(\tau ) determine when entity i can update its opinion,
and the normalized weight \widetilde Aij gives the probability that entity i adopts the opinion of entity
j. We assume that the events of different entities occur independently. If entity i adopts
opinion Xj(t) at time t, entity j still updates its opinion according to its internal clock \tau j
without noticing that entity i has adopted its opinion. Therefore, we consider unidirectional
interactions between entities. Such interactions arise in many social and biological systems
[20]. For example, followers of a social-media account can update their opinions by reading
posts without commenting or otherwise actively communicating with that account. As in [24],
our graphs G are temporal networks because of the WTDs of the nodes.

In the following subsections, we study models of opinion dynamics that are induced by
the WTDs of nodes on temporal networks. In section 2.1, we derive a master equation for
the time-dependent opinions of the nodes, which can have different WTDs. In section 2.2, we
examine models of opinion dynamics that use several well-known WTDs (Dirac delta distri-
butions, exponential distributions, and heavy-tailed distributions) for the interevent times. In
section 2.3, we examine convergence and consensus in our non-Markovian opinion models for
both homogeneous and heterogeneous systems.

2.1. Master equations for opinion dynamics with arbitrary WTDs. Let fi(x, t) be the

probability density function (PDF) of Xi(t) on an opinion space \Omega , and let q
(k)
i (x, t) be a PDF

on \Omega \times R\geq 0. The PDF q
(k)
i (x, t) governs the probability that entity i adopts opinion x at time

t in its kth event. For each entity i, we have\int 
\Omega 
fi(x, t)dx= 1 for any t\geq 0 ,\int \infty 

0

\int 
\Omega 
q
(k)
i (x, t)dxdt= 1 for any k \in N = \{ 0,1, . . .\} .(2.1)

The 0th event of each entity occurs at time 0. At time 0, entity i updates its opinion according
to the PDF fi(x,0) and sets its internal clock \tau i to 0. Suppose that entity i holds opinion x
at time t > 0. This opinion arises from an earlier event at some time t\prime \in [0, t), and entity i
does not have any event between times t\prime and t. In mathematical terms,

fi(x, t) =

\infty \sum 
k=0

\int t

0
\phi i(t - t\prime )q

(k)
i (x, t\prime )dt\prime ,(2.2)

where

\phi i(t) = 1 - 
\int t

0
Ti(t

\prime )dt\prime (2.3)

is the probability that an event of entity i occurs after waiting for time t. The function \phi i(t)
is the survival function with respect to Ti. To iterate between two consecutive events of the
same entity i, we write

q
(k+1)
i (x, t) =

\sum 
j

\Biggl[ \int t

0

\int 
\Omega 
q
(k)
i (y, t\prime )Ti(t - t\prime )dy dt\prime 

\Biggr] \widetilde Aijf
 - 
j (x, t) , k \in N ,

q
(0)
i (x, t) = fi(x,0)\delta (t) ,

(2.4)

where \delta (t) is the Dirac delta function.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2628 WEIQI CHU AND MASON A. PORTER

The density f - j (x, t) is the limit of fj(x, \tau ) as \tau \rightarrow t - . If entity i has an event at time
t and entity i adopts the state of entity j, we change i's opinion Xi to Xj(t

 - ), which is the
opinion of entity j right before a possible event of entity j at time t. When Ti(t) does not
possess a point mass (i.e., Ti(t) does not have a Dirac delta measure), f - and f are the same
because there is 0 probability that two events occur simultaneously. When Ti(t) possesses a
point mass (i.e., Ti(t) has a positive probability at one or more isolated points), we need to
distinguish between Xi(t

 - ) and Xi(t) to avoid ambiguity in situations when multiple events
occur simultaneously.

Let \=q
(k)
i (t) =

\int 
\Omega q

(k)
i (x, t)dx be the PDF on R\geq 0 that the kth event of entity i occurs at

time t. Using (2.4), we obtain

\=q
(k+1)
i (t) =

\int t

0
\=q
(k)
i (t\prime )Ti(t - t\prime )dt\prime , k \in N ,

\=q
(0)
i (t) = \delta (t) .

(2.5)

Combining (2.2), (2.4), and (2.5) yields equations for the probability densities of the
opinions:

fi(x, t) =
\sum 
j

\phi i(t)  \star 
\Bigl[ \widetilde Aij\theta i(t)f

 - 
j (x, t)

\Bigr] 
+ \phi i(t)fi(x,0) , i\in \{ 1, . . . ,N\} ,(2.6)

where  \star denotes time convolution and

\theta i =

\infty \sum 
k=0

\=q
(k)
i  \star Ti .(2.7)

Let the hat \^\cdot denote a Laplace transform. Using (2.5) and (2.7), we calculate that the Laplace
transforms \^\theta i and \^Ti satisfy

\^\theta i =
\Bigl( 
1 - \^Ti

\Bigr)  - 1
\^Ti .(2.8)

Let xi(t) =
\int 
\Omega xfi(x, t)dx be the expectation of Xi(t). A direct computation from (2.6) shows

that xi(t) satisfies the integral equation

xi(t) =
\sum 
j

\widetilde Aij

\Biggl[ 
\phi i  \star 

\Bigl( 
\theta ix

 - 
j

\Bigr) \Biggr] 
(t) + \phi i(t)xi(0) ,(2.9)

where \phi i and \theta i are defined in (2.3) and (2.8), respectively. Equation (2.9) gives a family of
memory-dependent opinion models that are induced by arbitrary WTDs Ti(t). When fi(x, t)
is continuous with respect to t, we take the Laplace transform of (2.9) and obtain

\^xi =
\sum 
j

\widetilde Aij
\^\phi i
\widehat \theta ix - j + \^\phi ixi(0) .(2.10)

We use the equalities

\^\phi i(s) =
1

s

\Bigl( 
1 - \^Ti(s)

\Bigr) 
and xi(0) = s\^xi(s) - \^\.xi(s)(2.11)

and rewrite (2.10) as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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NON-MARKOVIAN OPINION MODELS ON TEMPORAL NETWORKS 2629

\^\.xi =
\sum 
j

\widetilde Aij
\widehat \theta ix - j  - s \^Ti

1 - \^Ti
\^xi .(2.12)

By taking the inverse Laplace transform of (2.12), we obtain a set of coupled integro-differential
equations:

\.xi(t) =
\sum 
j

\widetilde Aij\theta i(t)xj(t) - [\chi i  \star xi] (t) ,(2.13)

where the Laplace transform of \chi i satisfies \^\chi i(s) = s \^Ti(s)(1 - \^Ti(s))
 - 1. Equation (2.13) gives

a family of memory-dependent opinion models that are induced by continuous-time WTDs.
We say that the opinion models (2.9) are homogeneous if all nodes (i.e., entities) of a

network have the same WTD T (t), which in turn leads to homogeneous survival functions
\phi (t) and \theta (t); otherwise, we say that the opinion models (2.9) are heterogeneous. For the
homogeneous case, we can simplify the memory-dependent opinion models (2.9) and write

xi(t) =
\sum 
j

\widetilde Aij

\Biggl[ 
\phi  \star 
\Bigl( 
\psi x - j

\Bigr) \Biggr] 
(t) + \phi (t)

\sum 
j

\Bigl( 
\delta ij  - \widetilde Aij

\Bigr) 
xj(0) ,(2.14)

where \delta ij is the Kronecker delta function and \psi (t) is related to the WTD T (t) by \^\psi (s) =
(1 - \^T (s)) - 1. From a direct computation, we see for all t\geq 0 that

\psi (t) = \theta (t) + \delta (t) , (\phi  \star \psi ) (t) = 1 , \psi (t)\geq 0 .(2.15)

2.2. Models of opinion dynamics that are induced by common WTDs. We now examine
opinion models (2.9) that are induced by several common WTDs, including both discrete-time
and continuous-time distributions. Some WTDs, such as the exponential distribution, yield a
Markovian dynamical process with a time discretization that matches the DeGroot model of
opinion dynamics [11]. Other WTDs, such as the gamma distribution, yield non-Markovian
dynamics; in these systems, the opinions depend on the entire history of all nodes' opinion
values. We also examine models that arise from heavy-tailed WTDs and study approximations
of them using a sum of Dirac delta measures (when we do not have explicit formulas for the
inverse Laplace transforms).

2.2.1. Dirac delta WTD. Consider a situation in which events occur after entities wait
for a fixed amount of time. That is, the WTD of each node is the Dirac delta distribution
Ti(t) = \delta (t - \bigtriangleup i), which yields

\^Ti(s) = e - \bigtriangleup is , \theta i(t) =

\infty \sum 
k=1

\delta (t - k\bigtriangleup i) , \phi i(t) = 1[0,\bigtriangleup i)(t) ,(2.16)

where 1[0,\bigtriangleup i)(t) is the indicator function on the interval [0,\bigtriangleup i).
In (2.9), x - j (t) is the opinion right before entity j changes its opinion at time t. Because

entity j updates its opinion after waiting for exactly time \bigtriangleup j , we have x - j (t) = xj(t - \bigtriangleup j).
This yields the opinion model

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2630 WEIQI CHU AND MASON A. PORTER

xi(t) = xi(0) , t\in [0,\bigtriangleup i) ,

xi(t) =
\sum 
j

\widetilde Aijxj(t - \bigtriangleup j) , t\in [\bigtriangleup i,\infty ) .(2.17)

Suppose that all entities wait for the same amount of time \bigtriangleup i = 1 before updating their
opinions (i.e., the model is homogeneous). We can then write (2.17) in matrix form as the
discrete-time dynamical system

x(n+ 1) = Px(n) , n\in N ,(2.18)

where x(n) \in RN is the vector of opinions and the transition matrix is P = \widetilde A, which is the
row-normalized adjacency matrix. The model (2.18) has the same form as the DeGroot model
of opinion dynamics [11].

2.2.2. Exponential WTD. We now suppose that each entity has an exponential WTD,
which is closely related to a Poisson point process. In a Poisson point process, the time
between two consecutive events follows an exponential distribution [40]. Poisson processes
have been studied extensively both because they are mathematically convenient and because
they are memoryless [21, 36]. We denote the exponential WTD of entity i by Ti(t) = \lambda ie

 - \lambda it,
where the rate parameter \lambda i > 0. From a direct computation, we obtain

\theta i(t) = \lambda i , \chi i(t) = \lambda i\delta (t) ,(2.19)

which we insert into (2.13) to obtain the opinion model

\.xi(t) = \lambda i
\sum 
j

\widetilde Aijxj(t) - \lambda ixi(t) .(2.20)

This yields a Markovian dynamical process x(t) that satisfies

x(t) = e\Lambda (
\widetilde A - I)tx(0) ,(2.21)

where \Lambda is a diagonal matrix with entries \Lambda ii = \lambda i, the matrix \widetilde A is the row-normalized
adjacency matrix, and I is the identity matrix. If we discretize the continuous-time opinion
x(t) at times n = 0, \bigtriangleup t, 2\bigtriangleup t, . . ., we obtain a discrete-time description of x(n) that satisfies
the iterative relation

x(n+ 1) = e\Lambda (
\widetilde A - I)\bigtriangleup tx(n) .(2.22)

This discrete model is equivalent to the DeGroot model with a transition matrix P = e\Lambda (
\widetilde A - I)\bigtriangleup t

(instead of \widetilde A). We can thus view the model (2.20) as a continuous-time extension of the
DeGroot model.

2.2.3. Gamma WTD. Another WTD with exponential decay is the gamma distribution,
which has been used for modeling a variety of phenomena, including human response times
[26], earthquake interevent times [54], and delayed effects in pharmacodynamic responses [52].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Suppose that entity i has the gamma WTD Ti(t) = \lambda 2i te
 - \lambda it. From a direct computation, we

obtain

\theta i(t) =
\lambda i
2

\Bigl( 
1 - e - 2\lambda it

\Bigr) 
, \chi i(t) = \lambda 2i e

 - 2\lambda it .(2.23)

We insert (2.23) into (2.13) to obtain the non-Markovian opinion model

\.xi(t) =
\sum 
j

1

2
\widetilde Aij\lambda i

\Bigl( 
1 - e - 2\lambda it

\Bigr) 
xj(t) - 

\int t

0
\lambda 2i e

 - 2\lambda i(t - t\prime )xi(t
\prime )dt\prime ,(2.24)

which we rewrite in matrix form as

\.x(t) =\scrK (t)
\Bigl[ \widetilde Ax(t) - \~x\{ t\} 

\Bigr] 
,(2.25)

where \~xi\{ t\} is a historically averaged opinion that is weighted by the exponential kernel
\kappa i(t) = \lambda 2i e

 - 2\lambda it, which weights recent opinions more heavily than older opinions, and \scrK (t) is
the diagonal matrix with entries \scrK ij(t) = \delta ij\scrK i(t). Specifically, \scrK i(t) and \~xi\{ t\} are

\scrK i(t) =

\int t

0
\kappa i(t

\prime )dt\prime , \~xi\{ t\} =
\int t
0 \kappa i(t - t\prime )xi(t

\prime )dt\prime 

\scrK i(t)
.(2.26)

We use the curly bracket \{ t\} to denote that \~xi\{ t\} depends on entity i's entire opinion trajectory
\{ xi(t\prime )\} t\prime \leq t. In comparison to the memoryless model (2.20) that is induced by exponential
WTDs, the memory-dependent model (2.25) includes an exponential time-relaxation kernel
\scrK i(t) =

\lambda i

2

\bigl( 
1 - e - 2\lambda it

\bigr) 
, which approaches the constant \lambda i/2 as t\rightarrow \infty . The model (2.25) also

includes a damping term that drives the opinion of each entity to its historical mean; this
promotes the self-consistency of each entity's opinion.

If we define the integral term in (2.24) as an auxiliary variable yi, we obtain the Markovian
system

\.xi(t) =
\sum 
j

1

2
\widetilde Aij\lambda i

\Bigl( 
1 - e - 2\lambda it

\Bigr) 
xj(t) - yi(t) ,

\.yi(t) = \lambda 2ixi(t) - 2\lambda iyi(t) ,

(2.27)

where the variables in this extended system are xi and yi for all i\in \{ 1, . . . ,N\} .
In section 3, we study the non-Markovian opinion model (2.25) that is induced by the

Gamma WTD. We are not aware of any existing opinion models that have the same form as
(2.25).

2.2.4. Heavy-tailed WTDs. Many real systems, such as e-mail communication [25] and
the spread of infectious diseases [57], have bursty properties, which cannot be captured well
by Poisson temporal statistics. In such situations, the time intervals between isolated events
deviate from an exponential distribution. Instead, they follow a heavy-tailed distribution.

Suppose that each node has a Pareto WTD. The Pareto distribution has been used to
model online participation inequality, distributions of wealth, website visits, and a variety of
other phenomena [59]. We write the Pareto distribution in the form Ti(t) = \lambda i(t + 1) - \lambda i - 1
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2632 WEIQI CHU AND MASON A. PORTER

with \lambda i > 0, where we have shifted the distribution so that its domain is [0,\infty ). A direct
computation yields

\^Ti(s) = \lambda i

\int \infty 

0
(t+ 1) - \lambda i - 1e - ts dt , \phi i(t) = (t+ 1) - \lambda i .(2.28)

The opinion model in (2.9) involves the inverse Laplace transform of \^\theta i = (1 - \^Ti)
 - 1 \^Ti. Un-

fortunately, there is not a convenient formula for the inverse Laplace transform of \^Ti.
Now suppose that the WTD of each node is a log-normal distribution, which is also heavy-

tailed and has the PDF

Ti(t) =
1\surd 

2\pi \sigma it
exp

\biggl[ 
 - (ln t - \mu i)

2

2\sigma 2i

\biggr] 
,(2.29)

where \mu i and \sigma 2i , respectively, are the mean and variance of the Gaussian distribution. A
closed-form expression does not exist for the Laplace transform of a log-normal distribution
[1]. Accordingly, we are unable to obtain closed-form expressions for related terms, such as \^Ti
and \^\theta i in (2.7), and their inverse Laplace transforms.

To the best of our knowledge, most common heavy-tailed distributions do not possess
an explicit form for the opinion models (2.9). Instead of aiming to determine analytical
expressions for models that are induced by heavy-tailed WTDs, we seek feasible numerical
approaches to simulate opinion models (2.9) that are induced by them. We approximate the
continuous-time WTD in (2.13) by a sum of Dirac delta distributions. This yields opinion
models (2.9) that are induced by sums of Dirac delta distributions.

2.2.5. WTDs that are sums of Dirac delta distributions. When a WTD consists of a
sum of Dirac delta distributions, the events take place at a set of discrete times. The WTD
Ti of node i is

Ti(t) =

\infty \sum 
k=1

mi
k \delta (t - k\bigtriangleup i) ,(2.30)

where mi
k, with

\sum \infty 
k=1m

i
k = 1, is the probability that an event occurs after entity i waits for

time k\bigtriangleup i. A direct computation yields

\phi i(t) = 1 - 
\lfloor t/\bigtriangleup i\rfloor \sum 
k=1

mi
k , \theta i(t) =

\infty \sum 
k=0

M i
k\delta (t - k\bigtriangleup i) ,

M i
k =

\sum 
\alpha \in Uk

mi
\alpha 1
mi

\alpha 2
\cdot \cdot \cdot mi

\alpha z
, Uk = \{ \alpha \in Nz

+ : \| \alpha \| 1 = k, z \in N+\} ,

where \| a\| 1 = | a1| + \cdot \cdot \cdot + | az| is the discrete \ell 1 norm, \lfloor \cdot \rfloor is the floor function, and N+ =
\{ 1,2, . . .\} . When k = 0, we define U0 to be the empty set, which implies that M i

0 = 0. The
first four terms of the sequence M i

k are
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NON-MARKOVIAN OPINION MODELS ON TEMPORAL NETWORKS 2633

M i
0 = 0 , M i

1 =mi
1 , M i

2 =mi
1m

i
1 +mi

2 ,

M i
3 =mi

1m
i
1m

i
1 +mi

1m
i
2 +mi

2m
i
1 +mi

3 .

When the node WTDs are sums of Dirac delta distributions, the associated memory-dependent
opinion model is

xi(t) =
\sum 
j

\widetilde Aij

\lfloor t/\bigtriangleup i\rfloor \sum 
k=1

\phi i(t - k\bigtriangleup i)M
i
kx

 - 
j (k\bigtriangleup i) + \phi i(t)xi(0) .(2.31)

This model accounts for situations in which each entity updates its opinions at discrete times.
One can use models of the form (2.31) as approximations of models that are induced by
heavy-tailed WTDs. When the inverse Laplace transforms of the node WTDs are difficult to
compute, we can discretize the WTDs (see (2.30)) with a small time step \bigtriangleup i and treat (2.31)
as the resulting model of opinion dynamics.

When the time steps are uniform (i.e., \bigtriangleup i = \bigtriangleup t for all i), we write (2.31) in the matrix
form

x[n+ 1] =

n\sum 
k=0

\Lambda \phi [n - k]\Lambda M [k+ 1] \widetilde Ax[k] + \Lambda \phi [n+ 1]x[0] ,(2.32)

where the bracket [k] denotes evaluation at time k\bigtriangleup t (e.g., x[n] = x(n\bigtriangleup t)) and \Lambda \phi and \Lambda M

are diagonal matrices with entries\Bigl( 
\Lambda \phi [k]

\Bigr) 
ii
= \phi i(k) ,

\Bigl( 
\Lambda M [k]

\Bigr) 
ii
=M i

k , k \in N .(2.33)

In the classical Friedkin--Johnsen (FJ) model [17], the opinion updates follow the rule x[n+1] =
\eta Px[n]+(1 - \eta )x[0] with a time-independent weight (1 - \eta ) on the nodes' initial opinions. We
can view the model (2.32) as an extension of the FJ model by writing x[n+1] as a sum of all
previous opinions x[k] (with k \in \{ 0, . . . , n\} ) weighted by time-dependent matrices P (n+1, k).
That is,

x[n+ 1] =

n\sum 
k=0

P (n+ 1, k)x[k] .(2.34)

Each time step generates a new opinion vector x[n], yielding the collection \{ x[0], x[1], . . . ,
x[n]\} of historical opinions that collectively determine x[n+1]. The model (2.34) renormalizes
the weights of the historical opinions x[k] at each time step and introduces time-dependence
through the weight matrices P (n+ 1, k). The model (2.32) is also related to a voter model
with an exogenous updating rule [15]; that voter model is a special case of (2.32). In section 3,
we implement the model (2.32) with weights M i

k from continuous-time WTDs.

2.3. Theoretical analysis. We now discuss the properties---including opinion conserva-
tion, convergence, and conditions for consensus---of the proposed memory-dependent opinion
models (2.9) for both homogeneous and heterogeneous scenarios.

2.3.1. Conservation of a weighted average of the opinions in homogeneous models.
When all nodes have the same WTD, the opinion models (2.9) reduce to the homogeneous
models (2.14). We state an opinion-conservation guarantee for the homogeneous models (2.14).
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2634 WEIQI CHU AND MASON A. PORTER

Theorem 2.1. Let w be a left eigenvector of \widetilde A with eigenvalue 1 (i.e., wTA=wT ). Suppose
that xi(t) are opinion trajectories of a homogeneous opinion model (2.14). It then follows that
the averaged opinion

\=x(t) =
\sum 
i

wixi(t)(2.35)

is conserved for any WTD.

Proof. Because \widetilde A is row-normalized, it has the eigenvalue 1 and an associated real left
eigenvector w. Using (2.14) and (2.35), we obtain the scalar integral equation

\=x(t) =

\int t

0
\phi (t - t\prime )\psi (t\prime )\=x - (t\prime )dt\prime ,(2.36)

where \=x - (t) = limt\prime \rightarrow t - \=x(t\prime ) and \phi and \psi are defined in (2.3) and (2.15), respectively. Let t\mathrm{m}\mathrm{a}\mathrm{x}

and t\mathrm{m}\mathrm{i}\mathrm{n} be the times that \=x(t) takes its maximum value and minimum value, respectively, in
the time interval [0, T ]. That is,

t\mathrm{m}\mathrm{a}\mathrm{x} = arg maxt\in [0,T ] \=x(t) , t\mathrm{m}\mathrm{i}\mathrm{n} = arg mint\in [0,T ] \=x(t) .(2.37)

Recall that \phi and \psi are positive and that \phi  \star \psi = 1. Direct computations yield

\=x(t\mathrm{m}\mathrm{a}\mathrm{x})\leq \=x(t\mathrm{m}\mathrm{a}\mathrm{x})

\int t\mathrm{m}\mathrm{a}\mathrm{x}

0
\phi (t\mathrm{m}\mathrm{a}\mathrm{x}  - t\prime )\psi (t\prime )dt\prime = \=x(t\mathrm{m}\mathrm{a}\mathrm{x}) ,(2.38a)

\=x(t\mathrm{m}\mathrm{i}\mathrm{n})\geq \=x(t\mathrm{m}\mathrm{i}\mathrm{n})

\int t\mathrm{m}\mathrm{i}\mathrm{n}

0
\phi (t\mathrm{m}\mathrm{i}\mathrm{n}  - t\prime )\psi (t\prime )dt\prime = \=x(t\mathrm{m}\mathrm{i}\mathrm{n}) .(2.38b)

The inequality in (2.38a) is an equality only if \=x(t) = \=x(t\mathrm{m}\mathrm{a}\mathrm{x}) for all t \in [0, t\mathrm{m}\mathrm{a}\mathrm{x}], and the
inequality in (2.38b) is an equality only if \=x(t) = \=x(t\mathrm{m}\mathrm{i}\mathrm{n}) for all t\in [0, t\mathrm{m}\mathrm{i}\mathrm{n}]. This implies that
\=x(0) = \=x(t\mathrm{m}\mathrm{a}\mathrm{x}) = \=x(t\mathrm{m}\mathrm{i}\mathrm{n}) and hence that \=x(t) is constant on any finite time interval [0, T ]. The
choice of T is arbitrary, so \=x(t) is constant.

Researchers have previously noted the conservation of weighted averages of opinions in
models of opinion dynamics [38, 48]. When the row-normalized adjacency matrix \widetilde A is also
column-normalized, Theorem 2.1 implies that the mean opinion \=x(t) =

\sum 
i xi(t)/N is conserved

(i.e., \=x(t) is constant). For an arbitrary heterogeneous model (which can include WTDs of
versatile forms), it is not guaranteed that the mean opinion is conserved. In Figure 6 (see
section 3.2), we give an example of a heterogeneous model in which the mean opinion is not
conserved. In section 3, we discuss this example in detail.

2.3.2. Analysis of consensus for homogeneous models. One common question in models
of opinion dynamics is whether or not a model converges to a consensus, in which all entities
hold the same opinion. Researchers have successfully determined consensus criteria and the
time to reach consensus in several types of models, including the classical DeGroot model [11],
the FJ model [16], and BCMs on graphs [35] and hypergraphs [9, 23]. We analyze the steady-
state opinions of the homogeneous memory-dependent models (2.14) and provide sufficient
conditions that guarantee convergence to consensus.
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NON-MARKOVIAN OPINION MODELS ON TEMPORAL NETWORKS 2635

Theorem 2.2. If the row-normalized adjacency matrix \widetilde A is diagonalizable and  - 1 is not an
eigenvalue of \widetilde A, then the homogeneous models (2.14) that are induced by any WTD converge
to the same steady state x\ast . The steady state x\ast satisfies

lim
t\rightarrow \infty 

x(t) = x\ast =
\sum 

\{ d:\nu d=1\} 

c0dvd ,(2.39)

where \{ vd\} are the eigenvectors (which we assume are linearly independent) of \widetilde A and \{ c0d\} are
the associated coefficients of x(0) with respect to the basis \{ vd\} .

Proof. Let \{ \nu d\} be the eigenvalues of \widetilde A. Consider the decomposition x(t) =
\sum 

d cd(t)vd.
From (2.14), we know that the basis coefficients cd(t) satisfy

cd(t) = \nu d

\Bigl[ 
\phi  \star 
\bigl( 
\psi c - d

\bigr) \Bigr] 
(t) + (1 - \nu d)\phi (t)c

0
d ,(2.40)

where \phi and \psi are defined in (2.3) and (2.15), respectively. Because \widetilde A is a right stochastic
matrix (i.e., its row sums are 1), the eigenvalues satisfy | \nu d| \leq 1. By assumption, \nu d \not = - 1. We
discuss the two cases \nu d = 1 and | \nu d| < 1 separately.

For eigenvalues \nu d = 1, we rewrite (2.40) as

cd = \phi  \star 
\bigl( 
\psi c - d

\bigr) 
,(2.41)

where the coefficients cd satisfy the equation for \=x in (2.36). By Theorem 2.1, we know that
cd(t) remains constant and hence always equals its initial value c0d.

For eigenvalues that satisfy | \nu d| < 1, we consider a mapping Fd from an L\infty -function space
to itself, with the norm \| y\| L\infty = supt\in [0,\infty ) | y(t)| . For all y \in L\infty , we define the mapping Fd

with the equation

Fd[y](t) = \nu d
\bigl[ 
\phi  \star 
\bigl( 
\psi y - 

\bigr) \bigr] 
(t) + (1 - \nu d)\phi (t)c

0
d .(2.42)

Because \phi  \star \psi = 1, we have

\| Fd(y1  - y2)\| L\infty =
\bigm\| \bigm\| \bigm\| \nu d\phi  \star \Bigl[ \psi \bigl( y - 1  - y - 2

\bigr) \Bigr] \bigm\| \bigm\| \bigm\| 
L\infty 

\leq | \nu d| \| y1  - y2\| L\infty \| \phi  \star \psi \| L\infty = | \nu d| \| y1  - y2\| L\infty ,
(2.43)

which implies that Fd is a contraction mapping. According to the Banach fixed-point theorem,
there exists a unique fixed point c\ast \in L\infty that satisfies Fd[c\ast ] = c\ast . Therefore, c\ast is the unique
solution of (2.40). For any fixed t, we choose T > t and have

| c\ast (T )| \leq \| \nu dc\ast \| L\infty 

\int t

0
\phi (T  - t\prime )\psi (t\prime )dt\prime + | \nu d| sup

t\prime \geq t
| c\ast (t\prime )| + | (1 - \nu d)c

0
d| \phi (T ) .(2.44)

We let T \rightarrow \infty in (2.44) to obtain

limT\rightarrow \infty | c\ast (T )| \leq | \nu d| sup
t\prime \geq t

| c\ast (t\prime )| ,(2.45)
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2636 WEIQI CHU AND MASON A. PORTER

where we have used the facts that \phi (t) is nonincreasing and limt\rightarrow \infty \phi (t) = 0. The time t is
arbitrary, so we let t\rightarrow \infty in (2.45) and obtain

limT\rightarrow \infty | c\ast (T )| \leq | \nu d| limt\rightarrow \infty | c\ast (t)| .(2.46)

Because | \nu d| < 1, the inequality (2.46) holds if and only if limt\rightarrow \infty | c\ast (t)| = 0. Therefore, for
all | \nu d| < 1, there is a unique solution cd(t) of (2.40) with cd(0) = c0d and limt\rightarrow \infty cd(t) = 0.

Combining the cases for \nu d = 1 and | \nu d| < 1, we have

lim
t\rightarrow \infty 

x(t) = lim
t\rightarrow \infty 

\left[  \sum 
\{ d: | \nu d| <1\} 

cd(t)vd +
\sum 

\{ d:\nu d=1\} 

cd(t)vd

\right]  =
\sum 

\{ d:\nu d=1\} 

c0dvd .(2.47)

Remark 2.3. In Theorem 2.2, it is necessary to include the condition that \widetilde A does not have
the eigenvalue  - 1. Consider the 2\times 2 matrix

\widetilde A=A=

\biggl( 
0 1
1 0

\biggr) 
,(2.48)

whose eigenvalues are 1 and  - 1. The model (2.18) that is induced by the Dirac delta WTD
never converges to a steady state if the two opinions are different initially. The two entities
swap their opinions whenever an event occurs.

Using Theorem 2.2, we find the following sufficient conditions to guarantee that the
homogeneous opinion models (2.14) converge to consensus (i.e., limt\rightarrow \infty xi(t) = x\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{e} for
all i).

Corollary 2.4. If the row-normalized adjacency matrix \widetilde A is irreducible and does not have
the eigenvalue  - 1, then all homogeneous models (2.14) converge to consensus regardless of the
initial conditions and WTDs.

Corollary 2.5. Suppose that \widetilde A is diagonalizable and does not have the eigenvalue  - 1. If\sum 
\{ d:\nu d=1\} c

0
dvd = c1, where c is a scalar and 1 is a vector in which each entry is 1, then the

homogeneous models (2.14) converge to consensus with the opinion value c for any WTD.

Corollary 2.6. If the homogeneous DeGroot model (2.18) (which is induced by the Dirac
delta WTD) converges to consensus, then all homogeneous models (2.14) converge to consen-
sus.

Corollaries 2.4--2.6 are direct consequences of Theorem 2.2. In Corollary 2.6, the conver-
gence to consensus of any particular homogeneous model (2.14) other than the DeGroot model
does not imply that the DeGroot model also converges to consensus. For example, consider
the adjacency matrix in (2.48). The model (2.21) that is induced by the exponential WTD
converges to consensus for any initial state, but the DeGroot model never converges if the
initial opinions are different. In numerical computations, we observe for the adjacency matrix
in (2.48) that the opinion models that are induced by the uniform WTD, the gamma WTD,
and heavy-tailed WTDs also converge to consensus. For continuous WTDs, the events of two
entities occur simultaneously with probability 0. With probability 1, the event of one entity
occurs first, which causes an opinion adoption by the other entity and eventually leads to
consensus.
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NON-MARKOVIAN OPINION MODELS ON TEMPORAL NETWORKS 2637

2.3.3. Analysis of consensus for heterogeneous models with Poisson statistics. When
the WTDs are exponential, the interevent times arise from Poisson point processes. In the
following theorem, we state a convergence criterion for this situation.

Theorem 2.7. Suppose that all nodes have exponential WTDs, which we parameterize by
the rate parameter \lambda i > 0 for node i. Let \Lambda be the diagonal matrix with entries \Lambda ii = \lambda i,
and let \widetilde A be a row-normalized adjacency matrix. If the matrix Z = \Lambda ( \widetilde A - I) is diagonaliz-
able with eigenvalue--eigenvector pairs \{ \nu d, vd\} d=1,...,N and the eigenvectors \{ vd\} are linearly
independent, then the model (2.20) converges to a steady state x\ast . Additionally, x\ast satisfies

lim
t\rightarrow \infty 

x(t) = x\ast =
\sum 

\{ d:\nu d=0\} 

c0dvd ,(2.49)

where c0d is the coefficient of vd in the decomposition of x(0) in terms of the basis \{ vd\} d=1,...,N .

Proof. The solution of (2.20) is x(t) = eZtx(0). If we express x(t) using the basis \{ vd\} ,
then the coefficients cd(t) are cd(t) = e\nu dtc0d. Let eig\mathrm{m}\mathrm{a}\mathrm{x}(\scrM ) denote the maximum eigenvalue
of a matrix \scrM . For all eigenvalues \nu d, we have

\nu d \leq eig\mathrm{m}\mathrm{a}\mathrm{x}(Z) = eig\mathrm{m}\mathrm{a}\mathrm{x}

\Bigl( 
\Lambda ( \widetilde A - I)

\Bigr) 
\leq eig\mathrm{m}\mathrm{a}\mathrm{x}(\Lambda ) eig\mathrm{m}\mathrm{a}\mathrm{x}( \widetilde A - I) .(2.50)

By the Gershgorin circle theorem, the maximum eigenvalue of \widetilde A - I is less than or equal to
0, which implies that \nu d \leq 0. Consequently, the coefficients cd(t) = e\nu dtc0d satisfy limt\rightarrow \infty cd(t)
= 0 for \nu d < 0 and cd(t) = c0d for \nu d = 0. This concludes the proof.

Theorem 2.7 gives a convergence criterion for a heterogeneous model (2.20) that is induced
by exponential WTDs. The matrix Z and the initial condition together determine if a model
converges to a consensus state. However, the rate parameter \lambda i of the exponential WTD
affects the speed of convergence; a larger \lambda i results in faster convergence. Using the same
notation as in Theorem 2.7, the following corollary guarantees convergence to consensus.

Corollary 2.8. If Z is diagonalizable and irreducible, then the model (2.20) converges to
consensus.

Corollary 2.8 is a direct consequence of Theorem 2.7. Because \widetilde A is row-normalized, Z =
\Lambda ( \widetilde A - I) has the eigenvalue 0 with the associated eigenvector 1. The irreducibility condition
in Corollary 2.8 guarantees that 1 is the only eigenvector of the eigenvalue 0 and guarantees
convergence to consensus.

There are other sufficient conditions that guarantee convergence to consensus. For ex-
ample, requiring the initial opinion to have a decomposition that satisfies the constraint in
Corollary 2.5 also guarantees convergence to consensus for the heterogeneous model (2.20).

3. Numerical computations. In this section, we numerically investigate the time evolu-
tion of the opinion models that we proposed in section 2. We study how WTDs affect opinion
dynamics by examining steady-state opinion clusters and the time to converge to a steady
state for both homogeneous and heterogeneous models on a variety of graphs.

We compare opinion models (2.9) that are induced by different WTDs on three types of
graphs. The first graph is the largest connected component of the Caltech network from the
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Figure 2. Sparsity patterns of the adjacency matrices of three graphs. Each blue dot signifies a nonzero
entry and each white dot signifies a 0 entry. (a) The Caltech network has N = 762 nodes and 16,651 edges.
(b) In our stochastic-block-model network, there are N = 762 nodes, s= 2 communities, an edge probability of
p\approx 0.0554 for edges within communities, and an edge probability of q = 0.002 for edges between communities.
With these probabilities, the expected total number of edges matches the number of edges in the Caltech network.
(c) A complete weighted graph with N = 30 nodes and weights that we draw independently from the uniform
distribution on [0,1].

Facebook100 data set [46, 55]. The nodes are individuals and the edges encode Facebook
``friendships"" between those individuals on one day in fall 2005. The second type of network
is a graph that we generate using the stochastic block model (SBM) G(N,s, p, q), where
N denotes the number of nodes. We assign nodes uniformly at random to one of the s
communities. We place edges between nodes in the same community with a homogeneous and
independent probability p, and we place edges between nodes in different communities with a
homogeneous and independent probability q. We run our simulations on only one SBM graph,
but we expect to obtain similar results on other graphs that are generated by the same SBM.
The third type of network is a complete weighted graph with random edge weights, which
we draw independently from the uniform distribution on [0,1]. We generate 100 graphs from
this network ensemble and use them in the study of heterogeneous opinion models (2.9). In
Figure 2, we show the sparsity patterns of the adjacency matrices of the three types of graphs.

We consider six different WTDs: Dirac delta, exponential, gamma, uniform, Pareto, and
log-normal distributions. The WTDs are given by the formulas

T\mathrm{d}\mathrm{e}\mathrm{l}\mathrm{t}\mathrm{a}(t) = \delta (t - \mu ) ,(3.1a)

T\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}(t) = 1[0,2\mu ](t) ,(3.1b)

T\mathrm{g}\mathrm{a}\mathrm{m}\mathrm{m}\mathrm{a}(t) =
4t

\mu 2
exp( - 2t/\mu ) ,(3.1c)

T\mathrm{e}\mathrm{x}\mathrm{p}(t) =
1

\mu 
exp( - t/\mu ) ,(3.1d)

T\mathrm{L}\mathrm{N}(t) =
1\surd 
2\pi t\sigma 

exp

\Biggl( 
 - (ln(t) - \mu )2

2\sigma 2

\Biggr) 
,(3.1e)

T\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{o}(t) =
\alpha 

(1 + t)\alpha +1
.(3.1f)
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The mean of the WTDs in (3.1a)--(3.1d) is \mu . The mean of the log-normal WTD in (3.1e)
is exp(\mu + \sigma 2

2 ), where the parameters \mu and \sigma are the mean and standard deviation of a
normal distribution. The mean of the Pareto WTD in (3.1f) is 1/(\alpha  - 1), where the parameter
\alpha > 1 is called the Pareto index. The Dirac delta and uniform distributions are compactly
supported, the gamma and exponential distributions have light tails (specifically, they decay
exponentially), and the log-normal and Pareto distributions have heavy tails. We discretize
the above WTDs (except for the Dirac delta distribution, which is already discrete) using
uniform grids (with a spacing of 0.01 between grid points) and approximate them by a sum
of Dirac delta distributions (see (2.30)).

3.1. Models of opinion dynamics with homogeneous WTDs. In this subsection, we
investigate the time evolution of opinion models (2.14) with homogeneous WTDs on the
Caltech network and the SBM network. These two networks have the same number of nodes
and a similar number of edges, but they have different community structures. In the WTDs
in (3.1), we use the following parameter values: \mu = 1 in (3.1a)--(3.1d), \mu = - 1 and \sigma =

\surd 
2 in

(3.1e), and \alpha = 2 in (3.1f). With these choices, these WTDs all have the same mean, which is
equal to 1.

We first examine the homogeneous opinion models (2.14) on the Caltech network. Because
the row-normalized adjacency matrix \widetilde A is irreducible and does not have the eigenvalue  - 1,
by Corollary 2.4, we expect the opinions to converge to consensus. In Figure 3, we show the
opinion trajectory xi(t) of each entity i for each WTD. We also show the time-dependent

Figure 3. Opinion trajectories xi(t) and their associated basis coefficients cd(t) on the Caltech network for
the homogeneous opinion models (2.14) with different WTDs. All of the models have the same initial opinion,
which we draw randomly from the uniform distribution on [0,1]. In the right panels, we plot the magnitudes
| cd(t)| of the basis coefficients as a function of time. We use solid colored curves for the coefficients that are
associated with eigenvalues that are smaller than 1, and we use dashed black lines (which we label with | cd\ast | )
to plot the coefficients that are associated with the leading eigenvalue \nu d\ast = 1. We observe that | cd\ast (t)| \approx 13.79
for each of the WTDs.
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2640 WEIQI CHU AND MASON A. PORTER

basis coefficients cd(t) that we obtain by expressing the time-dependent opinion vector x(t) in
terms of the eigenvectors \{ vd\} of \widetilde A.

As expected, the opinions of all entities converge to a single opinion cluster for each type of
WTD. We also observe that the coefficient cd\ast (t) that is associated with the eigenvalue \nu d\ast = 1
is constant with respect to time and that the magnitudes | cd(t)| of the other coefficients decay
to 0 for all WTDs. For different WTDs, the coefficient magnitudes | cd(t)| have different
dynamics as they decay to 0. For example, the coefficient magnitudes | cd(t)| for the uniform
WTD T\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}(t) = 1[0,2](t) decay linearly at first. Recall expression (2.40) in the proof of
Theorem 2.2. The basis coefficients cd(t) satisfy the bound

| cd(t)| \leq | \nu d| \| cd\| L\infty + \phi (t)| (1 - \nu d)c
0
d| .(3.2)

When T is a uniform PDF, we compute from (2.3) that \phi (t) = 1 - t/2 for t\in [0,2] and \phi (t) = 0
otherwise. This formula for \phi explains the associated linear decay of the coefficients cd(t) in
Figure 3.

We generate a single two-community SBM graph (see Figure 2(b)) and examine the homo-
geneous opinion models (2.14) on that SBM graph. We compute the eigenvalues of the row-
normalized adjacency matrix \widetilde A. Despite the two-community structure of this network, \widetilde A has
only one eigenvalue that is equal to 1. As guaranteed by Theorem 2.2, the opinions converge
to consensus for all initial opinions and all WTDs. In Figure 4, we show the opinion trajecto-
ries xi(t) and the behavior of their associated coefficients cd(t). For each WTD, the opinions
converge to consensus and the magnitudes | cd(t)| of the coefficients decay to 0 when \nu d \not = 1.

Figure 4. Opinion trajectories xi(t) and their associated basis coefficients cd(t) on the two-community SBM
network for the homogeneous opinion models (2.14) with different WTDs. All of the models have the same
initial opinion, which we draw randomly from the uniform distribution on [0,1]. In the right panels, we plot the
magnitudes | cd(t)| of the basis coefficients as a function of time. We use solid colored curves for the coefficients
that are associated with eigenvalues that are smaller than 1, and we use dashed black lines (which we label
with | cd\ast | ) to plot the coefficients that are associated with the leading eigenvalue \nu d\ast = 1. We observe that
| cd\ast (t)| \approx 13.42 for each of the WTDs.
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Figure 5. Time-dependent variances of the node opinions for opinion models with homogeneous WTDs on
(left) the Caltech network and (right) the two-community SBM network.

In the above simulations, we observe that the homogeneous opinion models (2.14) that
are induced by any WTD converge to consensus for both the Caltech and SBM networks,
but different models have different convergence rates. To compare the convergence rates of
the homogeneous opinion models (2.14) that are induced by our different WTDs, we plot
time-dependent variances of the opinions in Figure 5. For both networks, the variance decays
exponentially with time and the opinion models that are induced by the heavy-tailed WTDs
(i.e., the log-normal and Pareto distributions) have the slowest convergence to steady state; the
models that are induced by the uniform and gamma distributions have the fastest convergence.

In both networks, the row-normalized adjacency matrices \widetilde A have the same largest eigen-
value of 1. Because the coefficient cd\ast that is associated with the eigenvalue 1 is constant as a
function of time, the second-largest eigenvalue of \widetilde A determines the convergence rate. In the
Caltech network, the second-largest eigenvalue of \widetilde A is 0.7229. In the SBM network, the second-
largest eigenvalue is 0.9299, which is closer to 1 and hence leads to a slower convergence than in
the Caltech network (see Figure 5). The second-largest eigenvalue of \widetilde A is related to the Fiedler
value of the adjacency matrix A. The Fiedler value has a strong influence on the time that
it takes for random walks and diffusion processes on a network to converge to a steady state
[39]. In our simulations on the SBM network, we observe a scale separation of the variance
(see Figure 5). This may depend both on network community structure and on the WTD.

3.2. Models of opinion dynamics with heterogeneous WTDs. In this subsection, we
discuss the effect of WTD heterogeneity on the memory-dependent opinion models (2.9). We
consider (1) an example in which all nodes have the same WTD type but different WTD mean
values and (2) an example in which different nodes have different types of WTDs.

In our first example, we consider the heterogeneous exponential model (2.20), in which
the nodes have exponential WTDs (3.1d) with different values of the mean \mu . We examine
a scenario in which 90\% of the nodes have a WTD with a mean of \mu = 1 and the remaining
10\% of the nodes have a mean \mu that we vary. This ``90-10 decomposition,"" which also has
been used in a BCM with heterogeneous node-activity levels [33], is motivated by the so-
called ``90-9-1 rule"" of participation inequality. The 90-9-1 heuristic was proposed as a rule of
thumb [43] that 90\% of users consume content online but do not contribute to it, 9\% of users
occasionally contribute content, and 1\% of users account for most contributions of content.
In our example, we consider a 90-10 decomposition of a population for simplicity, but one can
also consider other decompositions (such as a 90-9-1 decomposition).
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Figure 6. Opinion trajectories of the opinion model (2.20), in which the nodes have exponential
WTDs (3.1d), on a complete weighted graph (see Figure 2(c)). The graph has 30 nodes and all nodes have
an exponential WTD. The WTD of 27 nodes has a mean of \mu = 1; the 3 nodes with the smallest initial opinion
values have means of (left) \mu = 0.2, (center) \mu = 1, and (right) \mu = 5. The steady-state mean opinions are (left)
0.5407, (center) 0.5015, and (right) 0.4096.

When the mean \mu < 1, the minority nodes represent ``open-minded"" entities that tend to
change their opinions more frequently than normal nodes. When \mu > 1, these nodes represent
``stubborn"" entities that tend to preserve their opinions by interacting less frequently than
normal nodes. We interpret nodes with long waiting times as stubborn entities, but similar
ideas arise in a variety of contexts. Prior studies have considered examples such as immune
nodes in compartmental models [34], media nodes in opinion models [6], and (as in the present
work) stubborn entities in opinion models [18].

We consider the parameter values \mu = 0.2, \mu = 1, and \mu = 5 for the minority nodes as
example scenarios with open-minded nodes, normal nodes, and stubborn nodes, respectively.
We generate one complete graph with random weights (see Figure 2(c)) and examine the
above three scenarios on this graph. All three scenarios have the same initial opinions, which
we draw independently from the uniform distribution on [0,1] for each node. We show the
opinion trajectories in Figure 6. Open-minded nodes tend to converge quickly to their steady-
state opinions, whereas stubborn nodes change their opinions slowly and attract the mean
opinion toward their opinions.

In our second example, we examine the effect of WTD heterogeneity on steady-state
opinion clusters when nodes have different types of WTDs. We consider both a 90-10 decom-
position and an 80-20 decomposition of the node WTD types. The majority of the nodes have
one WTD (which we call the ``majority WTD"") and the remaining nodes have another WTD
(which we call the ``minority WTD""). The nodes with the largest initial opinion values---either
90\% of the nodes or 80\% of the nodes---have the majority WTD. We suppose that the majority
WTD is either an exponential distribution (3.1d) with \mu = 1 or a Pareto distribution (3.1f)
with \alpha = 2, so the majority WTD always has a mean of 1. We suppose that the minority
WTD is one of the six distributions in (3.1). We vary the mean of the minority distribution
and examine the steady-state opinion clusters of (2.9) on a complete graph with random edge
weights (see Figure 2(c)).

We plot the steady-state opinion clusters in Figure 7. For each steady-state opinion in
Figure 7, we examine 100 realizations and compute the mean steady-state opinions of the
nodes across the realizations. In each realization, we generate a new complete weighted graph
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Figure 7. Steady-state opinions when a majority of the nodes of a network have (left) an exponential WTD
with a mean of 1 and (right) a Pareto WTD with a mean of 1. The horizontal axis is the mean value of the
minority WTD, and the vertical axis gives the mean steady-state opinions across 100 realizations of complete
graphs with random edge weights. In each realization, we generate a new graph and new initial opinions, which
we draw independently from the uniform distribution on [0,1]. We use black curves for the mean steady-state
opinions in scenarios with a 90-10 population decomposition (in which 90\% of the nodes have the majority
WTD and 10\% of the nodes have the minority WTD) and blue curves for the mean steady-state opinions in
scenarios with an 80-20 population decomposition.

and new initial opinions, which we draw independently from the uniform distribution on [0,1].
We terminate each simulation of the models (2.9) once the opinion variance is less than 10 - 7,
and we assume that the system has reached a steady state.

In all of the combinations of WTDs, when the minor nodes are stubborn (i.e., their mean
waiting time is longer than that of the normal nodes), the steady-state opinions are smaller
than 0.5, which is the expected value of the initial mean opinion. The steady-state opinion
decreases as we increase the mean waiting time of the stubborn nodes. Of the examined
WTDs, stubborn nodes exert the least influence when they have heavy-tailed WTDs and exert
the most influence when they have a Dirac delta WTD. The homogeneous model in which
all nodes have the same WTD (either an exponential distribution or a Pareto distribution),
which has a mean of 1, has an expected steady-state mean opinion of 0.5. When we increase
the percentage of special nodes (whether they are stubborn or open-minded) from 10\% to
20\%, the heterogeneous models deviate more from their corresponding homogeneous models
than when only 10\% of the nodes are special.

3.3. A short remark about polarized and fragmented steady states. In our numerical
simulations of both homogeneous opinion models (see section 3.1) and heterogeneous opinion
models (see section 3.2), we studied examples that converge to a consensus state. However,
one can construct examples that converge to a polarized state (which has two distinct opinion
clusters) or to a fragmented state (which has three or more distinct opinion clusters) by using
graphs whose row-normalized adjacency matrices have more eigenvalues that are equal to 1.

4. Conclusions and discussion. We proposed a family of memory-dependent models of
opinion dynamics that depend on the waiting-time distributions (WTDs) of the nodes of a
network. Our models have continuous-valued opinions and account for memory effects in
opinion dynamics. By contrast, to the best of our knowledge, all existing opinion models with
continuous-valued opinions yield Markovian descriptions of the time evolution of opinions. In
our models, the effects of memory emerge naturally from the non-Poisson interevent statistics
of the edges of a network. We illustrate our memory-dependent opinion models using several
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2644 WEIQI CHU AND MASON A. PORTER

examples of common WTDs (specifically, Dirac delta distributions, exponential distributions,
gamma distributions, and heavy-tailed distributions). When the nodes have a Dirac delta
WTD or an exponential WTD, our models have Markovian dynamics and are equivalent to
the DeGroot model. When the nodes have a gamma WTD, we obtain a non-Markovian model
in which each entity of a network tries to maintain the self-consistency of its opinion as it
interacts with other entities. We also approximated heavy-tailed continuous-time WTDs with
sums of Dirac delta functions and derived an associated set of discrete-time opinion models.

We examined the convergence to steady states in our models both theoretically and nu-
merically for both homogeneous and heterogeneous scenarios. In homogeneous scenarios, in
which all nodes of a network have the same WTD, the time-independent adjacency matrix
of the network determines the steady-state opinion. However, the WTD affects the transient
dynamics and the rate of convergence to a steady state. We also observed that models with
heavy-tailed WTDs converge more slowly than models with exponentially decaying WTDs. In
heterogeneous scenarios, in which nodes have different WTDs (either the same type of WTD
with different parameter values or WTDs of different types), ``stubborn"" nodes (i.e., nodes
with longer mean waiting times than normal nodes) dominate the dynamics by attracting the
mean opinion in a network toward their opinions.

In the present paper, we proposed non-Markovian models of opinion dynamics with
continuous-valued opinions, and we studied some of the properties of these models. There
are many interesting ways to extend our investigation. We considered WTDs that do not
depend on the states (i.e., opinions) of the nodes, and we also assumed that the weights Aij

are time-independent. It seems fruitful to examine state-dependent weights (i.e., Aij(t) =
w(xi(t), xj(t))) and other time-dependent weights. For example, one can generalize bounded-
confidence models of opinion dynamics [10, 22] to incorporate memory effects. In particular,
after an interaction, one can suppose that entity i updates its opinion to that of entity j only if
their opinions differ from each other by no more than some threshold. In our study, we also as-
sumed that all entities of a network have independent interevent-time statistics, so we did not
account for interactions that affect multiple entities at once. One can relax this independence
assumption and examine the interdependence that results from coupled stochastic processes.
It is also worth considering interdependence between entity opinions and network structure in
the form of adaptive (i.e., coevolving) networks [5]. In our memory-dependent model that was
induced by the gamma WTD, a damping term arose naturally; it promotes self-consistency of
the opinion of each entity. It is also worthwhile to explore other memory-dependent models
that account for the self-consistency of individual opinions. In our study, we examined some
scenarios in which the entities of a network have heterogeneous WTDs. However, we only
allowed nodes to have one of two different WTDs. It is important to investigate more diverse
types of heterogeneity, such as systems with several WTD types or systems with WTDs with
randomly determined parameter values.

Acknowledgments. We thank Mikko Kivel\"a, Renaud Lambiotte, Naoki Masuda, and our
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