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Abstract

A major strategy to prevent the spread of COVID-19 is the limiting of in-person contacts.

However, limiting contacts is impractical or impossible for the many disabled people who do

not live in care facilities but still require caregivers to assist them with activities of daily living.

We seek to determine which interventions can best prevent infections of disabled people

and their caregivers. To accomplish this, we simulate COVID-19 transmission with a com-

partmental model that includes susceptible, exposed, asymptomatic, symptomatically ill,

hospitalized, and removed/recovered individuals. The networks on which we simulate dis-

ease spread incorporate heterogeneity in the risk levels of different types of interactions,

time-dependent lockdown and reopening measures, and interaction distributions for four dif-

ferent groups (caregivers, disabled people, essential workers, and the general population).

Of these groups, we find that the probability of becoming infected is largest for caregivers

and second largest for disabled people. Consistent with this finding, our analysis of network

structure illustrates that caregivers have the largest modal eigenvector centrality of the four

groups. We find that two interventions—contact-limiting by all groups and mask-wearing by

disabled people and caregivers—most reduce the number of infections in disabled and

caregiver populations. We also test which group of people spreads COVID-19 most readily

by seeding infections in a subset of each group and comparing the total number of infections

as the disease spreads. We find that caregivers are the most potent spreaders of COVID-

19, particularly to other caregivers and to disabled people. We test where to use limited

infection-blocking vaccine doses most effectively and find that (1) vaccinating caregivers

better protects disabled people from infection than vaccinating the general population or

essential workers and that (2) vaccinating caregivers protects disabled people from infection

about as effectively as vaccinating disabled people themselves. Our results highlight the

potential effectiveness of mask-wearing, contact-limiting throughout society, and strategic

vaccination for limiting the exposure of disabled people and their caregivers to COVID-19.
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Author summary

Disabled people who need help with daily life tasks, such as dressing or bathing, have fre-

quent close contacts with caregivers. This prevents disabled people and their caregivers

from physically distancing from one another, and it also significantly increases the risk of

both groups of contracting COVID-19. How can society help disabled people and caregiv-

ers avoid infections? To answer this question, we simulate infections on networks that we

model based on a city of about one million people. We find that one good strategy is for

both disabled people and their caregivers to use masks when they are together. We also

find that if only disabled people limit their contacts while other people continue their lives

normally, disabled people are not protected effectively. However, it helps disabled people

substantially if the general population also limits their contacts. We also study which vac-

cination strategies can most efficiently protect disabled people. Our simulations suggest

that vaccinating caregivers against COVID-19 protects the disabled subpopulation about

equally effectively as vaccinating a similar number of disabled people. Our findings high-

light both behavioral measures and vaccination strategies that society can take to protect

disabled people and caregivers from COVID-19.

1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has revealed major societal vulnera-

bilities in pandemic preparation and management [1]. Existing social disparities and structural

factors have led to a particularly adverse situation for the spread of COVID-19 in vulnerable

groups. Therefore, it is crucial to examine how to mitigate its spread in these vulnerable groups

[2] both to address these difficulties in the current pandemic and to prepare for future pan-

demics [3]. The effectiveness of society-wide behavioral interventions in mitigating viral

spread in the general population is now well-documented [4–8]. However, the effectiveness of

these non-pharmaceutical interventions (NPIs) has not been assessed in certain vulnerable

groups. One such group is disabled people, who may choose to live in a group-care setting

(such as a nursing home) or live independently with some caregiver support. It has been spec-

ulated that the latter arrangement increases the risk of disabled people to exposure to infec-

tions [9]. However, to the best of our knowledge, this situation has not been studied using

epidemiological modeling. Vaccinations have also been extraordinarily effective at mitigating

COVID-19; they have decreased case numbers and case rates, onset of symptomatic disease,

hospitalizations, and mortality numbers and rates [10–16]. However, strategies for how to

most efficiently use vaccines to protect independently-housed disabled people have not yet

been evaluated. In the present paper, we study a compartmental model of COVID-19 spread

on a network to examine the effectiveness of several non-pharmaceutical interventions (NPIs)

and vaccination strategies to mitigate the spread of COVID-19 among independently-housed

disabled people and their caregivers.

People with disabilities who require assistance with activities of daily living (ADLs) may

live in a long-term care facility or independently with some form of caregiving support [17,

18]. Although extensive epidemiological and modeling studies have identified risk factors and

mitigation strategies for COVID-19 outbreaks in long-term care facilities [19–25], there have

not been similar studies of independently-housed disabled people and their caregivers. Care-

givers are often indispensable for the health and independence of disabled people because they
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assist with activities such as bathing, dressing, and using the bathroom. However, in a pan-

demic, public-health concerns dictate that it is important to minimize in-person contacts. Dis-

abled people and their caregivers thus face an urgent question: How can they continue to

interact while minimizing the risk of COVID-19 transmission?

This question is especially urgent because of the high prevalence of risk factors for severe

COVID-19 in the disabled population. These risk factors, for which we give statistics for adults

of ages 45–64 in the United States (see Fig 1) [26, 27], include obesity (about 46.7% of adults

with a disability have a body mass index (BMI) that indicates obesity, compared with about

31.7% of adults without a disability), heart disease (15.0% of adults with a disability and 4.6%

of adults without one), Chronic Obstructive Pulmonary Disease (COPD) (20.5% of adults with

a disability and 3.7% of adults without one), and diabetes (25.6% of adults with a disability and

10.6% of adults without one). A recent study reported that disabled people have a roughly 60%

higher risk of death if hospitalized due to COVID-19 than people who are not disabled [28].

Additionally, whatever factor or factors initially caused a person’s disability can also compli-

cate medical management of their case if they contract COVID-19. Furthermore, isolating

while ill can be impossible for disabled people because they rely on caregivers to assist them

with essential daily tasks. This can make disabled people more prone to spread COVID-19 to

caregivers if they contract it. Consequently, preventing COVID-19 infection in disabled and

caregiver populations should be a high priority.

Caregivers also experience high risk of exposure to and death from COVID-19. Caregiving

workers are disproportionately likely to be women, immigrants, and people of color. The

median wage for in-home caregivers is $12.12 per hour, and their median annual earnings are

$17,200 (which is below the U.S. federal poverty guideline for a two-person household) [29].

Experiencing poverty or being Black or Latinx independently increase the risk because of sys-

temic disadvantages in accessing healthcare [30–32]. Furthermore, the COVID-19 pandemic

has brought immense challenges to the caregiving workforce, including frequent lack of per-

sonal protective equipment (PPE), pandemic-specific training, paid time off, and childcare

Fig 1. The comorbidity rates that predispose individuals (of ages 45–64) to severe cases of COVID-19 among

adults in the United States without (blue) and with (pink) disabilities.

https://doi.org/10.1371/journal.pcbi.1010042.g001
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[29]. Finally, much caregiving work is impossible without close physical contact, which ele-

vates caregivers’ risk of occupational exposure. In summary, caregivers are often members of

groups that are at higher risk both of COVID-19 exposure and of more severe illness from it.

According to a 2018 report [33], approximately 26% of United States adults (including

about 41% of those who are 65 or older) have some form of disability. In 2016, Lauer and Hou-

tenville [34] reported that 7.3% of the U.S. population have a cognitive or physical disability

that causes difficulty in dressing, bathing, or getting around inside their home. (We acknowl-

edge the large uncertainty in this estimate.) At least 2.4 million people in the U.S. (i.e., approxi-

mately 0.7% of the population) are employed as home-care workers, but this is likely an

underestimate because of the difficulty of accurate statistical collection [29]. An intense time

commitment and irregular hours are necessary for care, so many disabled people hire multiple

caregivers and many caregivers work for multiple disabled people [35]. Therefore, there is sig-

nificant potential for the spread of COVID-19 in and between these two vulnerable groups,

making it a high priority to identify effective methods to reduce COVID-19 spread among dis-

abled people and caregivers without compromising care.

To mitigate disease spread during a pandemic, governments may choose to implement

society-wide shutdown orders, mask mandates, and/or physical-distancing guidelines. How-

ever, governments in some regions have been reluctant to issue such orders, and some people

may not fully comply with them. This raises the issue of what disabled people and caregivers

can do to protect themselves both with and without society-wide pandemic-mitigation efforts.

With this in mind, we test how effectively mask-wearing (i.e., using PPE), limiting the care-

giver pool sizes of disabled people, and limiting contacts of disabled people can prevent

COVID-19 infections when the general population either maintains their normal contact lev-

els or limits them. To the best of our knowledge, this is the first time that mathematical model-

ing has been used to evaluate these issues for COVID-19 infections.

Multiple COVID-19 vaccines are now widely available in some countries, but vaccine sup-

plies remain scarce in other countries. As of late August 2021, only 1.6% of people in low-

income countries had received at least one dose of any COVID-19 vaccine [36]. Furthermore,

other pandemics may emerge in the future. Consequently, it is valuable to evaluate how to

most effectively allocate a small number of vaccine doses to protect vulnerable groups (such as

disabled people). Specifically, we investigate whether vaccinating disabled people or caregivers

is more effective than other vaccination strategies at reducing the total number of cases in

these two vulnerable groups.

In this paper, we simulate COVID-19 spread on model networks that represent a city. We

base the parameter values in these networks on Ottawa, Canada. Our stochastic model of dis-

ease spread incorporates several disease states (i.e., “compartments”), different occupation

types in a population, the heterogeneity of the risk levels across different interactions, and

time-dependent lockdown measures. Our disease-spread model, which we explain in Section

2, allows us to quantitatively study our various questions under our set of assumptions. Using

both calculations of structural features of our networks and simulations of the spread of a dis-

ease on our networks, we find that disabled people and caregivers are both substantially more

vulnerable to COVID-19 infection than the general population (perhaps because of their large

network centralities). We test the effectiveness of several NPIs—including limiting the number

of social contacts, wearing masks, and limiting the number of caregivers that a given disabled

person sees—at preventing COVID-19 spread in disabled and caregiver populations. By selec-

tively seeding infections or blocking infections (via a simulated vaccine) in certain groups, we

identify caregivers as major drivers of COVID-19 spread—especially for disabled people and

their caregivers—and suggest that caregivers should be prioritized in vaccination campaigns.
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Our paper proceeds as follows. We present our stochastic model of the spread of COVID-

19 in Section 2, our results and a series of case studies in Section 3, and our conclusions and

further discussion in Section 4. We describe the details of our model in the S1 Text.

2 A stochastic model of the spread of COVID-19 infections

We start by giving a rough idea of our stochastic model of the spread of COVID-19, and we

then discuss further details in Section 2.2. Readers who are interested predominantly in the

essence of our model can safely skip Section 2.2. We give a comprehensive list of our assump-

tions in Section 2.3. Readers who wish to use our code can find it at a Bitbucket repository. We

previously wrote a white paper about this topic [37]; the present manuscript gives the full

details of our study.

2.1 A brief overview of our model

Numerous researchers have used mathematical approaches to examine the spread of COVID-

19 [38, 39]. Such efforts have used a variety of frameworks, including compartmental models

[40, 41], self-exciting point processes [42, 43] (which one can also relate to some compartmen-

tal models [44]), and agent-based models [45]. Many of these models incorporate network

structure to examine how social contacts affect disease spread. Some models have incorporated

age stratification [46], mobility data and other data to help forecast the spread of COVID-19

[44, 47, 48], and/or the structure of travel networks [49]. In the present paper, we use an agent-

based approach to study COVID-19 within a single city. Our approach involves simulating a

stochastic process on time-dependent networks [50, 51]. One of the features of our model is

that different segments of the population have different degree distributions, with mixing

between these different segments. To examine networks with these features, we use generaliza-

tions of configuration models [52, 53].

In our model population, we consider three types of interactions between individuals, six

disease states, and four distinct groups (i.e., subpopulations). We encode interactions using a

network, and all interactions between different individuals involve exactly two people. We sup-

pose that strong interactions describe interactions at home within family units (or, more gener-

ally, within “household units”); that weak interactions describe social interactions and

interactions that take place at work, at a grocery store, and so on; and that caregiving interac-

tions describe interactions between caregivers and the disabled people for whom they care. We

model each of these interaction types with a different baseline risk level of disease transmis-

sion. Weak interactions have the lowest baseline risk level, strong interactions have the next-

lowest baseline risk level, and caregiving interactions have the highest baseline risk level.

We use a compartmental model of disease dynamics [54], which we study on contact net-

works [55, 56]. We assume that our population (e.g., of a single city, like Ottawa) is closed and

that each individual is in exactly one disease state (i.e., compartment). Our model includes sus-
ceptible (S) individuals, who can contract COVID-19; exposed (E) individuals, who have the

disease but are not yet infectious or symptomatic; asymptomatic (A) individuals, who do not

have symptoms but can spread the disease; ill (I) individuals, who are symptomatically ill and

contagious; hospitalized (H) individuals, who are currently in a hospital; and removed (R) indi-

viduals, who are either no longer infectious or have died from the disease. The A compartment

includes prodromal infections, asymptomatic individuals, and mildly symptomatic individu-

als; in all of these situations, an individual has been infected, but we assume that they are not

aware of it. Our model does not incorporate loss of immunity or births, and we classify both

“recovered” and removed individuals as part of the R compartment. In our study, an
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individual has been infected if they are no longer in the S compartment. Therefore, cumulative

infections include every individual that is currently in the E, A, I, H, or R compartments.

We divide our model city’s population into the following subpopulations:

• caregivers, who provide care to disabled people;

• disabled people, who receive care;

• essential workers, whose occupations prevent them from limiting contacts during lockdowns

and similar policies, but who are not already included in the caregiver subpopulation; and

• the general population, which is everyone else.

The individuals in the disabled subpopulation have two types of caregivers: weak caregivers,

who are professional caregivers, for whom a caregiving contact with a disabled person is likely

to break if either individual in the relationship becomes symptomatic; and strong caregivers,

for whom a caregiving relationship persists even if the individuals in it are symptomatic (as

long as neither individual is hospitalized). We consider these two types of caregivers to account

for family members or close friends who always provide some care to a disabled person.

Although our model includes a hospitalized compartment, we do not model doctors, nurses,

custodial services, or other hospital staff who are involved in caring for COVID-19 patients.

The caregivers in our model population refer strictly to individuals who provide supportive

assistance to members of the disabled community in their homes. We also do not model skilled

care facilities, such as nursing homes.

When an individual is symptomatic, we assume that they distance themselves from society

(by breaking contacts) with a fixed probability b 2 [0, 1]. The probability can be less than 1 to

account for a variety of situations, such as people who feel financial pressure to work anyway

[57], people who have symptoms that are so mild that they are unaware of them, and people

who ignore common decency. In our model, the breaking of contacts of an individual who

becomes ill means that they temporarily cut off all weak contacts and (if relevant) weak care-

giver–disabled relationships and only maintain contacts within their household unit and (if

relevant) their strong caregiver–disabled relationships until they recover. If an individual

becomes hospitalized, these strong contacts also break.

We seek to understand how COVID-19 spreads with time in caregiver, disabled, essential-

worker, and general populations and how different mitigation strategies, such as contact-limit-

ing and mask-wearing, affect the outcome of disease spread. Consequently, we allow the distri-

butions of the numbers of contacts to change with time and adjust the disease transmission

probability to reflect the presence of masks.

We tune our baseline model to describe the city of Ottawa from its first reported case on 10

February 2020 [58] through its closure of non-essential businesses on 24 March 2020 [59] (the

closure order occurred on 23 March) and then to understand how its “Phase 1” reopening on

6 July 2020 [60] affected disease spread. In Fig 2, we illustrate an egocentric network (i.e., “ego

network”) [61] that is centered at a single disabled person in the population before and after

closure.

2.2 Specific details of our model

We now give a detailed description of our model. One of the key features of the networks on

which a disease spreads is the numbers and distributions of the contacts of different types of

individuals. We incorporate these features by constructing networks using a generalization of

configuration-model networks. See [62] for a review of configuration models.
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To each node (i.e., individual) in a network, we assign a group (disabled, caregiver, essential

worker, or general) and then assign both weak contacts and strong contacts. Additionally, we

assign caregiver nodes to each disabled node and assign disabled nodes to each caregiver node.

No individual is both a strong contact and a weak contact of the same person, no individual is

both a caregiver for a disabled person and an ordinary weak contact of that disabled person,

and so on. We anticipate a large variance in the number of weak contacts, with some people

having many more contacts than others [63], so we assign each individual a number of weak

contacts from an approximate truncated power-law distribution (see Section B of the S1 Text).

Because strong contacts represent household units, we assign each individual a number of

strong contacts from an empirical distribution that we construct using census data of house-

hold sizes in Canada [64]. To model the pools of caregivers that are available to disabled peo-

ple, we assume that each disabled node has a fixed number of weak caregivers (this pool does

not change with time) and that this fixed number is the same for all disabled nodes. We were

unable to find reliable data about the sizes of caregiver pools, so we make an educated guess

that is consistent with the lived experience of the disabled authors of the present paper. We

also assign one strong caregiver to each disabled node.

The contact structure in our networks can change with time. For example, weak contacts

may break if a lockdown starts, both weak and strong contacts break when an individual is

hospitalized, and so on. Each day, we choose one member of a disabled individual’s caregiver

pool uniformly at random to potentially provide care to them. (It is only potential care because

that caregiver may have broken contact due to illness.) Each day, the disabled individual also

receives care from a single strong caregiver, if possible. (This occurs as long as that contact has

not been broken due to hospitalization.) In each time step, which consists of one day, the

Fig 2. An egocentric network (i.e., ego network) of an example disabled person on (A) day 43 (before the start of contact-limiting) and (B) day 45

(during contact-limiting). The two ego networks encode contacts for the same disabled person. The label ‘W1’ denotes the weak caregiver on day 43

and the label ‘W2’ denotes the weak caregiver on day 45. In this example, W1 and W2 are different caregivers. We illustrate the different groups (colors)

in our model city, the interaction strengths between individuals (line thicknesses), and distances (numbers) from the ego. The edge weights are relative

to the strong-contact weight of 1.

https://doi.org/10.1371/journal.pcbi.1010042.g002

PLOS COMPUTATIONAL BIOLOGY Networks of necessity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010042 May 18, 2022 7 / 32



disease state (i.e., compartment) of an individual can change. From one day to the next, we

compute the transition probability from susceptible to exposed using Eqs (1) and (2) and each

susceptible individual’s disease state at the start of the day. On each day, we determine transi-

tions between different disease states by generating exponential random variables for transi-

tion times. When a generated transition time occurs within a 1-day window, an individual

changes compartments. If two different transitions are possible and both exponential random

variables are less than 1 day, we use the state transition that corresponds to the shorter transi-

tion time. Individuals who break their contacts because of illness do so immediately upon

entering a new compartment. Any network restructuring occurs at the start of a day (i.e.,

before we calculate exposure risks).

In the S1 Text, we give the day-to-day time evolution of our model in Algorithms 1, 7, and

8 and the network-construction process in Algorithms 3, 4, 5, and 6. We host our code at a

Bitbucket repository.

When we construct our networks, we use three families of discrete probability

distributions:

• The distribution Pða� ; aþ; mÞ is an approximate truncated power-law distribution. If

N � Pða� ; aþ; mÞ, then N takes integer values in {a−, a− + 1, . . ., a+}. For large n, we have

that Pr(N = n) = O(1/np), where we choose p so that EðNÞ ¼ m. See the S1 Text for full

details.

• The distribution Eðp0; p1; p2; . . . ; pkÞ is a discrete distribution. If N � Eðp0; p1; p2; . . . ; pkÞ,
then Pr(N = n) = pn when n 2 {0, . . ., k} and Pr(N = n) = 0 otherwise.

• The distribution FðkÞ is a deterministic distribution that has only one attainable value. If

N � FðkÞ, then Pr(N = n) = δn,k, where δ denotes the Kronecker delta (which equals 1 if the

subscripts are equal and 0 if they are not).

Our model has three key dates: the first recorded case, which we set to be day 1 (i.e., 10 Feb-

ruary 2020), as we use day 0 for initial conditions to produce a seed case (which is in the

asymptomatic compartment) of the disease; lockdown (i.e., 24 March 2020), which is when

contact-limiting begins and some individuals start wearing masks; and reopening (i.e., 6 July

2020), which is when the city begins to reopen. In the S1 Text, see Algorithm 9 for how we

implement a lockdown and Algorithm 10 for how we implement reopening. For mask-wear-

ing, we focus on four situations:

• None (N): nobody wears a mask.

• Disabled people and caregivers wear masks (D+C): disabled people and caregivers both wear

masks when interacting with each other, but nobody else wears a mask.

• Disabled people, caregivers, and essential workers wear masks (D+C+E): all of the mask-

wearing in the (D+C) scenario occurs, and we also assume that both individuals in an inter-

action wear a mask whenever there is a weak interaction with an essential worker (to model

interactions in places like grocery stores, banks, and doctors’ offices during routine visits).

• All weak contacts wear masks (All�): the same individuals under the same conditions as in

(D+C+E) wear masks, and we also assume that both individuals wear a mask in any interac-

tion between weak contacts.

To model essential workers, we assume (except when there are symptoms of illness) that

weak contacts with essential workers are not broken. Therefore, during a lockdown, essential

workers continue to have a large number of weak contacts on average. We similarly
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characterize the caregiver subpopulation; they retain their interactions with their associated

disabled nodes. We assume that an individual’s weak contacts during a lockdown are a subset

of their weak contacts from before a lockdown. Upon a reopening, each individual is assigned

a new number of weak contacts. They retain the weak contacts that they had during a lock-

down, but they can also gain new weak contacts that they did not possess before the lockdown

if their new number of weak contacts is larger than their number of weak contacts immediately

prior to reopening. For example, if an individual has 3 weak contacts during a lockdown and is

assigned 7 weak contacts after reopening, then they need 4 weak contacts. These 4 new weak

contacts can be different from that individual’s weak contacts before the lockdown. We do this

to account for situations (such as business closures or job loss) that cause individuals to visit

different stores or workplaces after a city reopens.

We discretize time into units of ΔT = 1 day. Our model, which one can view as an agent-

based model, evolves as the individuals interact with other. Individuals who are in the S com-

partment can move into the E compartment, depending on their interactions on a given day.

Each day, the probability that susceptible individual i remains in the S compartment is

si ¼
Y

j2BðiÞ

ð1 � bwWij
w wCij

c mMij=2Þ ; ð1Þ

where β is the baseline transmission probability, ww is the edge weight of a weak contact, wc is

the weight of a caregiving contact, m is the risk reduction from mask-wearing by both individ-

uals in an interaction, B(i) is the set of all active (i.e., non-broken) contacts of individual i that

are infectious, Wij is 1 if i and j are weak contacts and 0 otherwise, Cij is 1 if i and j have a care-

giving relationship and 0 otherwise, and Mij (which can be equal to 0, 1, or 2) counts how

many of individuals i and j wear a mask during an interaction between them. The term

bwWij
w wCij

c mMij=2 gives the probability that node i becomes infected from an interaction with

node j. Given σi, we compute the probability that i transitions from the susceptible compart-

ment (S) to the exposed compartment (E) in a given day:

Prði transitions from S to EÞ ¼ 1 � si : ð2Þ

We model the outcomes of transitions from E to A, transitions from A to I, transitions from A

to R, transitions from I to H, transitions from I to R, and transitions from H to R as exponen-

tial processes with fixed rates of ν, α, η, μ, ρ, and z, respectively. In our simulations, transitions

occur in intervals of size ΔT (which we set equal to 1 day, as mentioned previously). When

multiple transitions between compartments are possible, such as from A to I and from A to R,

we treat event transitions as competing exponential processes. (See Algorithms 1, 7, and 8 of

the S1 Text.) We summarize the possible state transitions and their rates in Fig 3.

In our simulations, we uniformly-at-random initialize a fixed number A0 individuals to be

asymptomatic on day 0. To account for limited testing availability in the early stages of the

pandemic, we assume that only a fraction τ the individuals in the I compartment (i.e., they are

symptomatically ill but not hospitalized) have a positive COVID-19 test. Having a positive

COVID-19 test means that an individual has a documented case of COVID-19. At initializa-

tion, we determine whether or not an individual will test positive if they are symptomatically

ill by assigning them a true/false flag P with probability τ for true. When P is true, if that indi-

vidual becomes symptomatic (i.e., enters the I compartment), we suppose for simplicity that

they have a positive COVID-19 test immediately upon entering the I compartment (i.e., before

the next day begins). When P is false, that individual only has a positive COVID-19 test if they

are hospitalized. For simplicity, we assume that their positive test takes place immediately

upon entering the H compartment. We also assume that we do not double-count individuals
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who have a positive COVID-19 test while in the I compartment if they later enter the H com-

partment. We suppose that no asymptomatic infections are documented in the early spread of

the disease. We compute daily tallies of cumulative documented cases at the end of each day.

We need the assumption of not having positive COVID-19 tests of all infected individuals to

be able to fit our parameters to the Ottawa data, which gives the number of documented cases

(but not the cumulative number of total infections) as a function of time.

In Table 1, we present the parameters that we use in our model. We discuss and support the

values of these parameters in Section A of the S1 Text. Whenever possible, we seek to infer

parameters directly from clinical data, instead of simply adopting our parameter values from

those of existing models in the literature. The only parameter that we borrow in this way is ν,

which is the transition rate from the E compartment to the A compartment.

2.3 Summary of our assumptions

We now briefly summarize the main assumptions of our model.

Population. Our model city’s population is closed, so the city has no inflow or outflow.

Time units. We discretize time in units of ΔT = 1 day.

Composition. The population of our city consists of the following types of individuals:

7.3% are disabled, 2.1% are caregivers, 14.72% are essential workers, and 75.88% are members

of the general population. The “roles” (i.e., subpopulation memberships) of individuals do not

change.

Disease compartments. Individuals can be susceptible, exposed, asymptomatic, symp-

tomatically ill, hospitalized, or removed. All infected individuals must go through the exposed

compartment before becoming infectious.

Transitions between compartments. We model an individual’s daily infection rate

through a probability of infection per interaction with a contagious individual, with interac-

tion probabilities scaled up or down based on the types of interactions and the presence/

absence of masks. All other transitions between compartments come from exponential pro-

cesses that we consider one day at a time.

Fig 3. A schematic illustration of our compartmental model of disease transmission. Susceptible individuals (S), by

being exposed to asymptomatic (A) or symptomatically ill (I) individuals, can become exposed (E) with a baseline

transmission probability β. One can reduce the risk level of an interaction through the NPI of mask-wearing; this

multiplies the risk level by the factor m1/2 (if only one individual in the interaction wears a mask) or the factorm (if

both individuals in the interaction wear a mask). Caregiving interactions have a higher risk level (by a factor wc) than

the baseline and weak interactions have a lower risk level (by a factor ww) than the baseline. Exposed individuals are

not yet contagious; however, they can eventually transition to the asymptomatic state. From the asymptomatic state, an

individual can either become symptomatically ill or be removed (R), which encompasses recovery, death, and any

other situation in which an individual is no longer infectious. If an individual is symptomatic, they can either be

removed or become hospitalized (H). From the hospitalized state, an individual eventually transitions to the removed

state. The state-transition parameters that we have not yet mentioned are fixed rates of exponential processes.

https://doi.org/10.1371/journal.pcbi.1010042.g003
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Strong contacts. We assign the numbers of strong contacts of all individuals from the

empirical probability distribution Dstrong.

Weak contacts. Given an individual’s subpopulation membership and the status of con-

tact-limiting, we determine the individual’s number of weak contacts from an approximate

truncated power-law distribution (see Section B of the S1 Text) using Dgroup;status, where group is

one of “gen/dis” (i.e., the general and disabled subpopulations), “care” (i.e., caregivers), or

“ess” (i.e., essential workers) and status is one of “pre” (i.e., not during a lockdown) or “post”

(i.e., during a lockdown). The weak-contact distribution has the same parameter values for dis-

abled people and individuals in the general population.

Caregiving contacts. All disabled people have a pool of weak-contact caregivers of a size

that is dictated by Dpool. For each disabled person, we choose that pool uniformly at random

from the set of caregivers. Additionally, each disabled person has one strong caregiver that we

choose uniformly at random from the set of caregivers. They see that individual each day,

unless either the disabled person or that caregiver is hospitalized.

Table 1. The parameter values that we use in our study. In the “Source” column, literature indicates that we found a value directly from data in the literature, inferred
indicates that we inferred a value based on published data in the literature, by definition signifies a value that we set in our model formulation, chosen indicates that a value

is unknown but we made a choice in our model, borrowed indicates that we adopted a value directly from a model in the literature, and fit indicates that we use Ottawa

case data along with other (i.e., not fit) parameters in this table to estimate a value.

Symbol Meaning Value Reference Source

fdis fraction of population who are disabled 0.073 [34] literature

fcare fraction of population who are caregivers 0.021 [65] literature

fess fraction of population who are essential workers 0.1472 [65–67] literature

fgen fraction of population who are part of the general population 0.7588 [34, 65–67] inferred

m risk-reduction factor from mask-wearing by both individuals in an interaction 0.34 [7] literature

b probability that an ill individual breaks their weak contacts 0.92 [68] inferred

ww weak edge weight 0.473 [7, 69] inferred

ws strong edge weight 1 N/A by definition

wc caregiving edge weight 2.27 [69, 70] inferred

β baseline transmission probability 0.0112 [69] inferred

ν transition rate from E to A 1 day−1 [71] borrowed

α transition rate from A to I 0.0769 day−1 [72–75] inferred

η transition rate from A to R 0.0186 day−1 [72–75] inferred

μ transition rate from I to H 0.0163 day−1 [73, 76–78] inferred

ρ transition rate from I to R 0.0652 day−1 [73, 76–78] inferred

z transition rate from H to R 0.0781 day−1 [79] inferred

τ probability of tested if ill but not hospitalized 0.04 [58] fit

C� maximum number of contacts in approximate power law 60 [58] fit

Dstrong distribution of strong contacts Eð0:283; 0:332; 0:155; 0:148; 0:0816Þ [64] literature

Dpool distribution of pool sizes Fð10Þ n/a chosen

Dess;pre essential worker weak-contact distribution when not distancing Pð0;C�; 21:37Þ [80] inferred

Dess;post essential worker weak-contact distribution during distancing Pð0;C�; 21:37Þ [80] inferred

Dgen=dis;pre general/disabled weak-contact distribution when not distancing Pð0;C�; 10:34Þ [80] inferred

Dgen=dis;post general/disabled weak-contact distribution during distancing Pð0;C�; 7:08Þ [80] inferred

Dcare;pre caregiver weak-contact distribution when not distancing Pð0;C�; 5:14Þ [80] inferred

Dcare;post caregiver weak-contact distribution during distancing Pð0;C�; 4Þ [80] inferred

A0 number of asymptomatic individuals on day 0 341 [58] fit

POttawa population of Ottawa 994837 [81] literature

https://doi.org/10.1371/journal.pcbi.1010042.t001
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Breaking contacts. Asymptomatic individuals do not break contacts (except in the form

of contact-limiting). An ill (but not hospitalized) individual breaks their weak contacts with

probability b. If an individual is hospitalized, they break both their weak contacts and their

strong contacts until they move into the R compartment. An individual in the R compartment

does not infect others with the disease; they may be deceased or simply no longer infectious. In

our computations, those individuals regain their weak and strong contacts.

Interactions. Each day, an individual interacts with the same weak (except for caregiver–

disabled interactions) and strong contacts unless the contact has been broken due to illness or

when the contact distributions change. Each day, a disabled person interacts with their strong

caregiver, unless illness prevents it. Additionally, on each day, a disabled person interacts with

a uniformly randomly selected member of their caregiver pool, unless illness prevents it. Even

during contact-limiting stages, the weak contacts of essential workers do not break.

3 Results

We first compare the new daily documented cases and the cumulative number of documented

cases in our model with empirical case data from Ottawa (see Fig 4). We fit the parameters in

our model up to 10 May 2020 (i.e., day 90) of the epidemic in Ottawa, and we assume that the

city immediately enters a contact-limited phase on 24 March (i.e., day 44). We do the fitting

(see Section A of the S1 Text) by minimizing the ℓ2-error in the model’s count of daily docu-

mented cases. We show the 7-day mean of new daily documented cases; for each day, we

Fig 4. A comparison of a mean of 100 simulations of our stochastic model of COVID-19 spread with (left) cumulative documented case counts

and (right) the 7-day mean of new daily documented cases. For each day, we calculate the 7-day mean over a sliding window that includes the

previous three days, the current day, and the next three days. We fit the parameters by minimizing the ℓ2-error of the model’s count of daily

documented cases over the first 90 days. We show the mean of our model in blue and the Ottawa case data in red. The gray window indicates the

middle 95% of these 100 simulations. On day 44 (i.e., 24 March 2020), all subpopulations limit contacts and the (D+C+E) mask-wearing scenario

begins. The graphs terminate on day 148, when Ottawa had its first reopening.

https://doi.org/10.1371/journal.pcbi.1010042.g004
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calculate this mean over a sliding window that including the previous three days, the current

day, and the next three days. At the endpoints, we truncate the window and take the mean

over days that fill the window. We find reasonable agreement between the daily documented

case counts in our model and the reported documented cases, but our match is not perfect.

For example, the peak in daily documented case counts and the inflection point in cumulative

documented cases occurs earlier in our model than it does in documented case records. This

can arise from many possible factors, including delays in reporting cases (e.g., with differences

on weekdays versus weekends), delays in the diagnosis of symptomatic individuals, changes of

the model parameters (like testing availability) with time, or our use of only two degrees of

freedom in our fits (with most model parameters arising from sources that are not specific to

Ottawa). The daily and cumulative documented case counts in our model deviate little from

the data for the first 90 days, but our model subsequently tends to overestimate the case count.

We speculate that this may stem from overestimating the number of contacts of the Ottawans.

Our contact estimates come from survey data [80], which do not focus specifically on Ottawa.

We wish to avoid overfitting, so we accept the fit performance.

The epidemic trajectories have large variances; specifically, the 95% confidence windows

are large. We believe that one of the main factors behind these large variances is our use of an

approximate truncated power-law distribution for weak contacts. If we replace these approxi-

mate truncated power-law distributions with deterministic distributions (i.e., distributions

with 0 variance) with the same mean values, we obtain much smaller variances and the disease

also hardly spreads. We have chosen to use approximate truncated power-law distributions to

allow large variations in the numbers of contacts, but this results in large variances in the epi-

demic trajectories. See Section C of the S1 Text for further discussion.

Our baseline transmission probability β = 0.0112 is smaller than those that were employed

in some other studies [46, 82], which used β� 0.06. For the assumptions in our study, β =

0.0112 is appropriate. With β = 0.06, the disease is too infectious, and our simulations then

result in a total documented case count that greatly exceeds the number of documented cases

in Ottawa. The value β = 0.06 is also inconsistent with secondary attack-rate studies [69] when

they are combined with the durations that individuals spend in the compartments of our

model. The fact that the disease can still spread so readily with β = 0.0112 perhaps stems from

our network structure, as some individuals can be superspreaders.

To help us understand the results of simulating our stochastic model of COVID-19 spread,

we examine the structural characteristics of the networks on which we perform our simula-

tions. Because different types of contacts have different levels of disease transmission, we base

our measures on structural features of weighted networks. Additionally, our network contact

structure changes with time. We compare the structure of one network from our network

model on two days; one day is before contact-limiting and the other is during contact-limiting.

On each of the two days, for all of the nodes in the network, we compute the numbers of first-

degree contacts (i.e., direct contacts), the numbers of second-degree contacts (i.e., contacts of

direct contacts), the node strengths (i.e., the sums of the edge weights, which we interpret as

“conductances” of a disease across contacts), and the eigenvector centralities (i.e., the entries

of the leading eigenvector of the network’s adjacency matrix, where larger values of eigenvec-

tor centrality are associated with “high-traffic” nodes, which are visited often by a random

walker on the network [61, 63]). We are interested in eigenvector centrality because the largest

eigenvector-centrality value in a network plays a role in determining that network’s suscepti-

bility to a widespread outbreak of a disease under certain conditions [83]. We examine the dis-

tributions of the eigenvector centralities for different subpopulations in our model city. We

find that caregivers and essential workers tend to have the largest numbers of first-degree and

second-degree contacts, contact strengths, and eigenvector centralities (see Fig 5). The
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essential-worker subpopulation has the largest mean eigenvector centrality (because of the

heavy-tailed distribution of their contacts), whereas the caregiver subpopulation has the largest

modal eigenvector centrality. We also test the effects of contact-limiting and mask-wearing

(i.e., PPE status) strategies on the strengths (i.e., total edge weights) and eigenvector centralities

in the various subpopulations. Both NPIs reduce node strengths, and contact-limiting in par-

ticular diminishes the heavy tails of the strength distributions of caregivers, disabled people,

and members of the general population (see Fig 6). In other words, contact-limiting reduces

the probability that individuals have a large number of contacts.

We also test how much different contact-limiting and mask-wearing strategies affect the

different subpopulations in our model. We consider different mitigation strategies, which we

assume are deployed on day 44, and we compare the number of cumulative infections on day

148 for these strategies. We consider the mask-wearing strategies that we outlined in Section

2.2 and the following three contact-limiting strategies:

• No contact-limiting: all people maintain their contacts for the entirety of the 148 days.

• Only disabled people limit their contacts: disabled people reduce their number of weak con-

tacts on day 44, and all other subpopulations maintain their contacts.

• Everyone except for essential workers limits contacts: all subpopulations other than essential

workers reduce their number of weak contacts on day 44.

Fig 5. Characterization of centrality measures of subpopulations in the networks on which we run our stochastic model of COVID-19 spread. The

violin plots depict empirical probability densities. The initial situation, for which we show day 43 of one simulation, has no contact-limiting. The

distanced situation, for which we show day 45 of the same simulation, has contact-limiting in all subpopulations. For each subpopulation, we calculate

the distributions of (A) the number of neighbors (i.e., direct contacts), (B) the number of second neighbors (i.e., contacts of contacts), (C) the strength

(i.e., total edge weight) of the contacts with neighbors, and (D) eigenvector centrality.

https://doi.org/10.1371/journal.pcbi.1010042.g005
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We first consider the optimistic scenario in which all weak interactions involve mask-wear-

ing. In this case, when everyone limits contacts on day 44, our simulations yield a mean of

13,242 cumulative infections through day 148. This is approximately 11.2% lower than the

14,910 cumulative infections through day 148 when only caregivers, disabled people, essential

workers, and individuals in weak interactions with essential workers wear masks. We conclude

that universal mask-wearing (specifically, in all situations except within households) is an

effective NPI for reducing the number of COVID-19 cases. For all of our subsequent

Fig 6. Characterization of the effects of mask-wearing on centrality measures of subpopulations in the networks on which we run our stochastic

model of COVID-19 spread. The violin plots depict empirical probability densities. The initial situation, for which we show day 43 of one simulation,

has no contact-limiting. The distanced situation, for which we show day 45 of the same simulation, has contact-limiting in all subpopulations. We

modify edge weights by supposing that masks have the effectiveness that we indicated in Table 1. To indicate the mask-wearing statuses of different

scenarios, we use the notation that we defined in Section 2.2. For each subpopulation, we compute (A) the strength distribution and the (B)

eigenvector-centrality distribution.

https://doi.org/10.1371/journal.pcbi.1010042.g006
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simulations, unless we note otherwise, we assume that individuals wear masks in weak interac-

tions only when those interactions involve essential workers.

We find that contact-limiting by only the disabled subpopulation has a relatively small

effect on the number of their cumulative infections; it reduces the percent of them who

become infected from 52.3% to 43.1%. Contact-limiting by only disabled people yields a simi-

lar result for caregivers, with a reduction in the percent of infected caregivers from 70.5% to

62.4%. Contact-limiting by all subpopulations has a larger effect; it reduces the percent of

infected individuals in the disabled subpopulation to 21.0% and that of caregivers to 32.5%.

Mask usage in both the disabled and the caregiver subpopulations protects both subpopula-

tions even in the absence of any contact-limiting. The percent of disabled people who become

infected decreases from 52.3% to 35.8%, and the percent of caregivers who become infected

decreases from 70.5% to 40.3%. When essential workers, caregivers, and disabled people all

wear masks, this protection is enhanced. The percent of disabled people who become infected

decreases to 16.9%, and the percent of caregivers who become infected decreases to 19.5%.

Finally, when all weak contacts wear masks, 2.7% of disabled people and 3.8% of the caregivers

become infected. When all subpopulations limit contacts and wear masks (except within a

household), 1.8% of the disabled subpopulation and 2.7% of the caregiver subpopulation

become infected. We summarize the results of the mask-wearing interventions in Fig 7.

Because COVID-19 guidelines recommend reducing the number of contacts between indi-

viduals, we test whether or not reducing the number of weak caregiver contacts per pool

(while maintaining daily caregiving interactions) helps protect disabled people and/or caregiv-

ers. This NPI affects the total number of contacts of disabled people, but it does not reduce the

total amount of time that they are exposed to these contacts. We test caregiver pool sizes of 4,

10, and 25, and we find that reducing caregiver pool size does not reduce infections either

among caregivers or among disabled people (see Fig 8).

In our investigation, we are particularly uncertain about the values of three parameters: the

probability that individuals break weak contacts when they become ill, the effectiveness of

masks, and the fraction of caregivers in the population. Therefore, we repeat our simulations

with otherwise baseline conditions (see Table 1) for different values of these parameters. We

choose the values of m as the boundaries of the 95% confidence window in mask effectiveness

in [7]. We choose the values of b using educated guesses of reasonable best-case and worst-

case scenarios. We choose the upper bound of the fraction of caregivers in the population so

that caregivers have approximately the same mean number of occupational contacts as indi-

viduals in the general and disabled subpopulations. We choose the lower bound so that the

Fig 7. The mean number of cumulative infections in the general population (blue), essential workers (purple), caregivers

(orange), and disabled people (pink) for different contact-limiting and mask-wearing statuses. The mask-wearing statuses are

the same as in Fig 6.

https://doi.org/10.1371/journal.pcbi.1010042.g007
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ratio of the upper bound to the baseline value is the same as the ratio of the baseline value to

the lower bound. As expected, reducing the probability of breaking weak contacts when ill (see

Fig 9A) and reducing mask effectiveness (see Fig 9B) both increase the number of infections.

Importantly, however, varying these parameters does not affect the overall pattern of infec-

tions; in particular, caregivers remain the most vulnerable subpopulation. The total number of

caregivers that became infected does not change when we increase the number of caregivers,

but the fraction of caregivers that become infected decreases (see Fig 9C). A relatively large

increase in the fraction of the population that serve as caregivers (from 0.0210 to 0.0281, which

is a roughly 33% increase) leads to a relatively small decline in the number of disabled people

who become infected (from 1,494 to 1,325, which is a roughly 11% decrease). The general and

essential-worker subpopulations also experience fewer infections when we increase the frac-

tion of caregivers in the population. The order of the risk levels of the different subpopulations

remains the same for all scenarios. Overall, we find that our general conclusions are not

affected by moderately varying these three uncertain parameters.

Fig 8. The effect of the number of caregivers (4, 10, or 25) that are assigned to a given disabled person on the

mean fraction of each subpopulation that becomes infected. The label “DCE PPE” refers to the (D+C+E) mask-

wearing scenario.

https://doi.org/10.1371/journal.pcbi.1010042.g008
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Having observed that caregivers are the most likely of the four examined subpopulations to

become infected with COVID-19 across all tested parameter sets, we investigate whether or

not caregivers are also the most prone to spreading COVID-19. To do this, we seed all initial

infections in a single subpopulation, rather than distributing the initially infected individuals

uniformly at random across our model city’s entire population. We calculate the mean fraction

of each subpopulation that is infected cumulatively through 148 days. We find that the caregiv-

ers are the most potent spreaders of COVID-19, with each subpopulation reaching its highest

infection rate when only caregivers are infected initially (see Fig 10). Seeding all initial

Fig 9. The effects of (A) the probability of breaking weak contacts when ill, (B) mask effectiveness on the mean

fraction that each subpopulation becomes infected, and (C) the percent of the population that serve as caregivers.

https://doi.org/10.1371/journal.pcbi.1010042.g009
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infections only in the disabled subpopulation leads to the second-largest number of infections

in the caregiver subpopulation.

As we explain in Section A of the S1 Text, because of the intimacy of interactions between

caregivers and disabled people, the relative risk of such an interaction is likely higher than is

the case for typical household interactions. In Section C of the S1 Text, we also consider wc = 1

(i.e., the risk level of a caregiver–disabled interaction is the same as that of a household interac-

tion) and wc = 1.5 (i.e., the risk level of a caregiver–disabled interaction is only moderately

higher than that of a household interaction). When wc = 1, essential workers are the most

potent disease spreaders to all subpopulations except for the spread of the disease from caregiv-

ers to other caregivers. However, when wc = 1.5, caregivers are the most potent disease spread-

ers to the disabled subpopulation and to themselves, and essential workers are the most potent

disease spreaders to the general population and to themselves. This suggests that our conclu-

sions about the impact of the caregiver subpopulation on the disabled subpopulation are plau-

sible even if the relative risk wc is only moderately larger than 1.

Our finding that caregivers are the subpopulation that is most prone to spreading COVID-

19 has potential implications for vaccine prioritization because vaccinating caregivers can indi-

rectly protect other subpopulations. Because initial vaccine supplies are often extremely limited,

we test the efficacy of vaccinating only a small fraction of the total population. To do this, we

simulate the distribution of a very limited number of vaccines—an amount that is equivalent to

enough vaccines for half (i.e., 10,151) of the mean remaining susceptible caregivers on day 148

(this is equal to approximately 1% of the total city population)—by moving a uniformly ran-

dom subset of either susceptible caregivers, susceptible disabled people, susceptible essential

workers, or susceptible members of the general population immediately to the removed com-

partment. When there are fewer susceptible people than people to move in a subpopulation, we

move everyone in that subpopulation (and no other individuals) to the removed state. We also

simulate a scenario with no vaccination. We simulate reopening at the same time as vaccina-

tion. In a reopening, all subpopulations return to their original weak-contact distributions, but

all people wear masks during all non-household interactions. (For a timeline, see Fig 11A.) We

Fig 10. The fraction of each subpopulation that is infected through day 148 when all of the initially infected

individuals are in a single subpopulation. On day 44, all groups limit contacts and the (D+C+E) mask-wearing

scenario begins.

https://doi.org/10.1371/journal.pcbi.1010042.g010
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Fig 11. The infections that are prevented in each subpopulation when one subpopulation is vaccinated with a

limited number of vaccines. (A) Timeline of contact-limiting and reopening in our simulations. After targeted

vaccination occurs on day 148, there are no contact-limiting measures, but all individuals wear PPE during non-

household interactions. (B) The total number of infections that are avoided between day 148 and day 300 in each

subpopulation after vaccinating a limited number of individuals in a given subpopulation. (C) The percent of

infections that are avoided in each subpopulation between day 148 and day 300 after vaccinating a limited number of

individuals in a given subpopulation.

https://doi.org/10.1371/journal.pcbi.1010042.g011
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simulate our stochastic model of infections until day 300 and calculate the number of infections

that are potentially preventable through the above vaccination strategies by comparing the

results of these simulations to simulations that do not incorporate vaccination. This enables us

to evaluate the benefits that vaccinating each subpopulation confers indirectly to other

subpopulations.

Consistent with our previous findings, vaccinating caregivers prevents the largest number

of infections. In our simulated scenario, targeting limited vaccinations to the caregiver subpop-

ulation leads to a drop in total infections of 8.7% in comparison to the scenario without vacci-

nation (see Fig 11B and 11C). It is second-most effective to vaccinate essential workers (this

prevents 4.1% of the total infections) and third-most effective to vaccinate the disabled sub-

population (which prevents 3.4% of the total infections). Vaccinating the same number of indi-

viduals in the general population prevents only 0.7% of the total infections.

Vaccinating caregivers is an effective strategy to protect disabled people. When 10,151 care-

givers are vaccinated, we reduce infections in disabled people by a mean of 17.7%. Vaccinating

the same number of disabled people reduces infections by 17.9% (i.e., almost an equal number)

in the disabled subpopulation. These almost equal effect sizes may arise from the relative sizes

of the caregiver and disabled subpopulations in our model. Vaccinating 10,151 individuals

entails vaccinating exactly half of the remaining susceptible caregivers, but 10,151 individuals

constitutes only about 14% of the disabled subpopulation. Therefore, when the number of vac-

cines is extremely limited, vaccinating caregivers may be comparably effective at protecting

the disabled population as directly vaccinating disabled people.

Notably, vaccinating either the caregiver subpopulation or the disabled subpopulation is

much more effective at protecting the disabled subpopulation than vaccinating the essential-

worker subpopulation, which prevents only 1.1% of the infections in the disabled subpopula-

tion. Vaccinating caregivers even spares slightly more members of the general population than

vaccinating essential workers; about 5.8% of the general-population infections are prevented

when 10,151 caregivers are vaccinated, whereas about 3.4% of general-population infections

are prevented when 10,151 essential workers are vaccinated. In our case study, the essential-

worker subpopulation is the only subpopulation for whom the best strategy (of those that we

considered) is to vaccinate the essential-worker subpopulation. With this strategy, vaccination

prevents 9.6% of essential-worker infections, which is better than the 5.5% that are prevented

when the caregiver subpopulation is vaccinated (see Fig 11C).

In our case study, we find that vaccinating the disabled subpopulation does not protect the

caregiver subpopulation as effectively as vaccinating caregivers protects the disabled subpopula-

tion. When 10,151 disabled people are vaccinated, a mean of about 11.0% of the caregiver cases

are prevented. When the same number of caregivers are vaccinated instead, about 55.5% of the

caregiver cases are prevented (see Fig 11). This fivefold difference may arise from the relative

sizes of the caregiver and disabled subpopulations. Because a relatively small fraction of the dis-

abled people with whom any given caregiver interacts are vaccinated and caregivers are often in

the pools of multiple disabled people, our case study suggests that caregivers’ risks are mitigated

only slightly when only a small fraction of the disabled subpopulation are vaccinated.

4 Discussion

We now summarize and discuss our key results.

4.1 Our most significant findings

Caregiver and disabled populations are extremely vulnerable to COVID-19 infec-

tions. We simulated the spread of COVID-19 on networks to evaluate how vulnerable four
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interconnected subpopulations—caregivers, disabled people, essential workers, and the gen-

eral population—are to infection. Across multiple simulation conditions, we found that care-

givers have the highest risk of infection and that disabled people have the second-highest risk

of infection. This observation arises from multiple structural factors in our contact networks.

First, there are many fewer caregivers than disabled people, so each caregiver typically has con-

tact with multiple disabled people. This is reflected by caregivers having the largest number of

direct neighbors and neighbors of neighbors. Second, caregiver–disabled contacts are stronger

than other contacts, which (along with the large number of direct contacts of caregivers) con-

tributes to caregivers also having the edges with the largest mean weights. Third, some of our

simulations involved a contact-limiting phase, in which individuals reduce their number of

weak contacts; however, caregiver–disabled contacts do not break during this phase. These

structural factors render caregivers and disabled people particularly vulnerable to infection

with COVID-19. We also found that caregivers are the most potent spreaders of COVID-19

once they are infected, and we suggest that this is due to the same factors (specifically, being

well-connected in a social network) that make them most vulnerable to becoming infected.

This agrees with the observations of Gozzi et al. [84], who examined two different spread-lim-

iting strategies in an activity-driven network model and found that the most active nodes

that do not comply with a spread-limiting strategy are the major drivers of disease spread.

Reassuringly, our findings are robust to changes in the parameters—the effectiveness of masks,

the probability of breaking contacts when ill, and the fraction of the population who are

caregivers—in which we had the most uncertainty.

In our model, we assumed that the transition rate from the ill compartment to the hospital-

ized compartment is the same for all subpopulations. We also did not model death. Disabled

people are more likely than other individuals to experience accessibility barriers to receiving

healthcare and to have medical conditions that predispose them to severe cases of COVID-19

[85]. Additionally, caregivers are more likely than other individuals to belong to marginalized

groups that are at increased risk due to systemic structural barriers to accessing medical care.

Taking these factors into account may reveal an even more disproportionate disease burden

on caregivers and disabled people. Ortega Anderez et al. [86] observed that small decreases in

the exposure of medically vulnerable subpopulations significantly decreases overall mortality,

underscoring how critical it is to identify interventions that effectively protect caregivers and

disabled people.

Effective interventions. It is essential that the necessary medical services that at-home

caregivers provide to disabled people continue to be available during a pandemic. These ser-

vices are essential for survival; going without caregiving services endangers a disabled person’s

health. Therefore, we tested the effectiveness of various NPIs at preventing the spread of

COVID-19 in these subpopulations. We found that mask-wearing during contacts between

caregivers and disabled people is a very effective strategy for reducing infections in both sub-

populations. This finding agrees with recent agent-based [87, 88] and bond-percolation [89]

models of mask-wearing interventions. We recommend that home-healthcare agencies pro-

vide their employees with masks and (whenever possible) mandate their use on the job.

Additionally, we found that contact-limiting by disabled people alone only slightly reduces

their risk of contracting COVID-19 if it is not accompanied by contact-limiting in the rest of a

population. When all subpopulations limit contacts, cases of infection in the disabled and

caregiver subpopulations fall by almost 50%. This result underlines the fact that changes in

behavior in the general population can drive changes in disease spread in the disabled subpop-

ulation. Disabled people alone are not numerous enough to change large-scale epidemic

dynamics with their behaviors, and they are vulnerable to increases in disease spread that can

occur when the general population changes its behavior. In the context both of the current
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COVID-19 pandemic and possible future pandemics, we emphasize the critical influence of

behavior by the general population on disabled communities. Mitigation efforts by the general

population, such as contact-limiting (as in the present study), can protect disabled people

much more than interventions in only the disabled subpopulation.

Vaccinating caregivers shields other subpopulations, including disabled people. A

major application of modeling the spread of a disease on a network is evaluating strategies for

targeted vaccination [55, 56, 90]. Prior research suggests that, under certain conditions, the

largest eigenvector centrality of a network helps determine a network’s threshold (e.g., in the

form of a basic reproduction number) for a widespread outbreak of a disease [83]. This sug-

gests that vaccinating nodes with large eigenvector centralities may be a useful control strategy.

Several COVID-19 vaccines have been approved for use [91–94], and we sought to determine

the most effective vaccination strategy in the context of our model. As a first step, we calculated

the eigenvector centralities of the nodes in the network’s four subpopulations. We calculated

that essential workers have the largest mean eigenvector centrality in a single simulated popu-

lation and that caregivers have the largest modal eigenvector centrality in the same simulated

population. This result is a direct consequence of the contact distributions of these two sub-

populations. For example, essential workers are sometimes in very large workplaces and some-

times in very small workplaces, whereas caregivers almost always work with multiple disabled

people.

Investigating network structure alone in our model did not resolve which subpopulation is

the most efficient one to vaccinate. Therefore, we analyzed how the dynamics of disease spread

were affected by selectively vaccinating a subset of each of the subpopulations. We considered

a hypothetical vaccine that is completely effective and permanently prevents any individual

who receives it from contracting or spreading the virus SARS-CoV-2. Although this is unreal-

istic—vaccinated people can still contract SARS-CoV-2 and even spread it to others [95]—vac-

cinated people are much less likely than unvaccinated people to be diagnosed with the disease

COVID-19 [96]. They also experience a faster drop in viral load when they are infected, so

transmission periods may be shorter in vaccinated people [97]. Vaccine effectiveness against

household transmission that leads to COVID-19 infection in vaccinated individuals was esti-

mated at 71% in one study [98]. However, this study was conducted when the Alpha variant

(Pango lineage designation B.1.1.7) of SARS-CoV-2 was predominant, and it is unknown

whether this finding holds for the Delta variant (Pango lineage designation B.1.617.2) or other

variants. Because new variants emerge frequently and vaccine adherence, availability, and

manufacturers vary worldwide, we chose to examine a simplistic scenario instead of attempt-

ing to model any specific real-world situation.

We measured the effectiveness of vaccination strategies by comparing the numbers of infec-

tions in scenarios with and without vaccination. The number of infections that are avoided

includes both infections that are prevented directly (specifically, when an individual who

would have become infected had already received a vaccine) and ones that are prevented indi-

rectly (specifically, some chains of transmission do not occur because individuals who would

have spread the virus were instead vaccinated against it). Our simulations suggest that vacci-

nating caregivers (1) prevents the largest total number of infections and (2) prevents the most

infections in three of the four subpopulations. (The exception is the subpopulation of essential

workers.) In our simulations, vaccinating a specified number of caregivers protected an almost

equal number of disabled people from infection (because of indirect prevention) as vaccinating

the same number of disabled people.

It is necessary to be cautious when interpreting our findings about the relative efficiency of

vaccinating different subpopulations. To obtain our results, we assumed that vaccines prevent

the spread of COVID-19 from a vaccinated individual to other individuals. In a scenario in
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which vaccines prevent serious illness but have no effect on viral transmission from vaccinated

individuals, it is likely better to employ them in populations (e.g., disabled people) that are

more likely to experience hospitalization and death. Moreover, even if vaccinating caregivers

does turn out to be the most efficient way to reduce total case numbers of COVID-19, it may

still be more ethical to prioritize vaccinating individual disabled people, particularly those who

are elderly or have conditions that predispose them to severe disease [86]. In the real world,

vaccination campaigns must balance many factors—including medical risk, public health, and

equity—when assigning priority [99]. Additionally, we reiterate that the precise conclusions

about vaccination strategies from our model may not hold in real-world scenarios. For exam-

ple, it is important to consider a variety of local factors, including the amount of vaccine that is

available, the relative sizes of the caregiver and disabled populations, and the distributions of

ages and pre-existing conditions in these populations.

When a small number of caregivers serve a large number of disabled people who are not at

particularly high medical risk, vaccinating caregivers has several benefits: (1) it directly pro-

tects caregivers, who often are in demographic groups with an elevated risk of COVID-19

complications; (2) it indirectly shields the disabled people for whom they care; and (3) it pre-

vents the disruption of essential caregiving services to disabled people when caregivers are

infected and must quarantine. Furthermore, for disabled people who cannot gain the benefit

of vaccination—whether due to access issues with transportation or at vaccination centers,

immunosuppression, or other health challenges—our findings suggest that it may be useful to

provide caregivers with priority access to vaccines.

Our model strongly suggests that caregivers of disabled people are at increased occupational

risk of both contracting and spreading COVID-19 and that protecting caregivers also provides

substantial, quantifiable benefits to the vulnerable population that they serve. Therefore, we

suggest that it should be a high priority for caregivers to be among the groups with early access

to vaccines.

Especially when vaccines are not readily available, we emphasize the importance of con-

tinuing effective NPIs, such as mask-wearing and contact-limiting, in all subpopulations

(including the general population). Additionally, vaccination campaigns should make it a

priority to protect disabled people, and they should consider early vaccination of caregivers

and disabled people as one potential strategy among continued society-wide NPIs to accom-

plish this goal.

4.2 Limitations and future directions

In interpreting our results, we made many assumptions to construct a tractable model to

study. Accordingly, our results occur in the context of a variety of hypotheses about the epide-

miology of COVID-19 in the disabled community and optimal strategies to mitigate the spread

of the disease. Although we consider our hypotheses to be reasonable ones, we obviously did

not perfectly describe the complexity of COVID-19, how it spreads, and how human behavior

affects its spread. (See [100] for a recent review and agenda for integrating social and behav-

ioral factors into models of disease spread.) We encourage readers to look at our paper’s ref-

eree reports, which are publicly available, to examine referee comments about our paper’s

limitations, including those in the final publication.

In reflecting on our assumptions and our modeling (of both network structure and the

spread of COVID-19), there are a variety of natural steps to take to enhance our work (beyond

using disease-spread models with more compartments and reinfection). Although they are

beyond the scope of the present paper, we elaborate on some of them. We encourage careful

examination of the following ideas:

PLOS COMPUTATIONAL BIOLOGY Networks of necessity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010042 May 18, 2022 24 / 32



• Incorporating skilled nursing facilities and hospitals: We assumed that caregivers provide at-

home care to disabled people. There are many disabled people who live in skilled care facili-

ties, which have different care-giving and care-receiving networks than the ones that we

examined.

• Lack of entry into and exit from a city: We did not consider the possibility that people enter

our model city and introduce infections into its population. We also did not consider

infected people who leave the city. This type of effect was studied in [49].

• Uncertainty in the numbers of disabled people and caregivers in a population: There is a lot

of uncertainty in the proportions of disabled people and caregivers in a population. Unfortu-

nately, there is not much reliable information about how many disabled people receive assis-

tance for their activities of daily living and how many people in society serve as caregivers

(possibly in an unpaid or undocumented capacity). It is very important to obtain more data

about this and to incorporate it into modeling efforts.

• More precise distributions of weak contacts: It was very difficult for us to estimate the con-

tact distributions of people before and during a lockdown, and it was even more difficult to

estimate the level of contact-limiting. It is worthwhile to study the effects of different types of

distributions of weak contacts. We briefly explore this issue in Section C of the S1 Text.

• Incorporating daily randomness of interactions: During each phase of our model COVID-

19 pandemic, we fixed the set of potential daily contacts (they are only potential contacts

because illness can temporarily sever ties) of our population’s individuals, except for interac-

tions between disabled people and caregivers. (We assigned a random caregiver from a pool

to each disabled person.)

• Modeling contact changes during a city’s reopening: One limitation of our network model is

that when we assigned additional contacts to individuals after our model city reopens, we

did so in a random way (for simplicity), rather than having individuals resume the contacts

that they had before a lockdown. This choice mixes the contacts in the network, and it seems

important to study the consequences of this choice.

• Heterogeneity in mask effectiveness: We assumed that all masks give the same transmission-

reduction benefits. However, this is not realistic. There are a large variety of mask types and

some people do not wear masks correctly, so it seems worthwhile to examine how heteroge-

neity in mask effectiveness affects disease dynamics.

• Modeling mask-compliance probabilistically: For a given type of interaction, we assumed

that all individuals of a given subpopulation either wear masks or don’t wear masks. In real-

ity, only some fraction of a subpopulation will wear masks.

• Studying the importance of caregivers to disease spread: We speculated that the large modal

eigenvector centrality of caregivers causes them to be more potent than other subpopulations

at spreading COVID-19 infections. It seems useful to further investigate the importance of

caregivers to disease spread.

• Temporal variations in infectivity during the course of an infection: We assumed that an

infected individual has the same level of infectivity throughout their entire infectious period.

We recognize that this is not the case.

• Modeling vaccination outcomes: We assumed simplistically that vaccination fully prevents

COVID-19 infection and transmission. In reality, vaccination provides robust but incom-

plete protection from COVID-19. Vaccinated individuals can experience asymptomatic or
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symptomatic disease and can transmit the virus to others, although at lower rates than

unvaccinated individuals [12]. Our model does not account for infection of or transmission

by vaccinated individuals.

• Effects of new variants of SARS-CoV-2: The SARS-CoV-2 virus has mutated with time, and

some of our parameter estimates surely depend on specific strains of the virus and differ

across both time and geographic regions.

• Uncertainties in timing: We used the simplistic assumption that all positive tests of COVID-

19 of individuals in the I and H compartments occur at the beginning of an individual’s first

day in the relevant compartment. We also assumed that the availability of COVID-19 tests

was the same throughout the first 148 days of the COVID-19 pandemic. Neither of these

assumptions is realistic, and it seems worthwhile to consider more realistic testing scenarios.

4.3 Conclusions

We constructed a stochastic compartmental model of the spread of COVID-19 on networks

that model a city of approximately 1 million residents and used it to study the spread of the dis-

ease in disabled and caregiver communities. Our model suggests that (1) caregivers and dis-

abled people may be the most vulnerable subpopulations to exposure in a society (at least of

the four subpopulations that we considered); (2) mask-wearing appears to be extremely effec-

tive at reducing the numbers of infections in caregivers and disabled people; (3) contact-limit-

ing by an entire population appears to be far better at protecting disabled people than contact-

limiting only by disabled people; and (4) caregivers may be the most potent spreaders of

COVID-19 infections, and giving them and disabled people who need caregivers priority

access to vaccines can help protect disabled people.

Supporting information

S1 Text. This file contains the parameter estimation and specific steps that we use in our

simulations.

(PDF)

Acknowledgments

We gratefully acknowledge Deanna Needell and Sherilyn Tamagawa for making the introduc-

tions that allowed our team to form, and we thank Stephen Campbell (Data and Policy Analyst

at PHI) for directing us to useful resources and helping refine our questions.

Author Contributions

Conceptualization: Thomas E. Valles, Hannah Shoenhard, Joseph Zinski, Sarah Trick, Mason

A. Porter, Michael R. Lindstrom.

Data curation: Thomas E. Valles, Michael R. Lindstrom.

Formal analysis: Thomas E. Valles, Michael R. Lindstrom.

Funding acquisition: Mason A. Porter.

Investigation: Thomas E. Valles, Michael R. Lindstrom.

Methodology: Thomas E. Valles, Michael R. Lindstrom.

PLOS COMPUTATIONAL BIOLOGY Networks of necessity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010042 May 18, 2022 26 / 32



Project administration: Michael R. Lindstrom.

Resources: Mason A. Porter.

Software: Thomas E. Valles, Hannah Shoenhard, Joseph Zinski, Michael R. Lindstrom.

Supervision: Mason A. Porter, Michael R. Lindstrom.

Validation: Thomas E. Valles, Joseph Zinski.

Visualization: Thomas E. Valles, Hannah Shoenhard, Joseph Zinski.

Writing – original draft: Thomas E. Valles, Hannah Shoenhard, Joseph Zinski, Sarah Trick,

Mason A. Porter, Michael R. Lindstrom.

Writing – review & editing: Thomas E. Valles, Hannah Shoenhard, Joseph Zinski, Sarah

Trick, Mason A. Porter, Michael R. Lindstrom.

References
1. Maxmen A. Has COVID Taught us Anything About Pandemic Preparedness? Nature. 2021; 596:332–

5. Available from: https://www.nature.com/articles/d41586-021-02217-y PMID: 34389832

2. Tackle Coronavirus in Vulnerable Communities. Nature. 2020; 581(7808):239–40. Available from:

http://www.nature.com/articles/d41586-020-01440-3 PMID: 32427916

3. Zelner J, Masters NB, Naraharisetti R, Mojola SA, Chowkwanyun M, Malosh R. There Are No Equal

Opportunity Infectors: Epidemiological Modelers Must Rethink Our Approach to Inequality in Infection

Risk. PLoS Computational Biology. 2022; 18(2):e1009795. Available from: https://doi.org/10.1371/

journal.pcbi.1009795 PMID: 35139067

4. Flaxman S, Mishra S, Gandy A, et al. Estimating the Effects of Non-Pharmaceutical Interventions on

COVID-19 in Europe. Nature. 2020; 584(7820):257–61. Available from: https://doi.org/10.1038/

s41586-020-2405-7 PMID: 32512579

5. Dehning J, Zierenberg J, Spitzner FP, et al. Inferring Change Points in the Spread of COVID-19

Reveals the Effectiveness of Interventions. Science. 2020; 369(6500):eabb9789. Available from:

https://www.sciencemag.org/lookup/doi/10.1126/science.abb9789 PMID: 32414780

6. Alfano V, Ercolano S. The Efficacy of Lockdown Against COVID-19: A Cross-Country Panel Analysis.

Applied Health Economics and Health Policy. 2020; 18(4):509–17. Available from: http://link.springer.

com/10.1007/s40258-020-00596-3 PMID: 32495067

7. Chu DK, Akl EA, Duda S, et al. Physical Distancing, Face Masks, and Eye Protection to Prevent Per-

son-to-Person Transmission of SARS-CoV-2 and COVID-19: A Systematic Review and Meta-Analy-

sis. The Lancet. 2020; 395:1973–87. Available from: https://doi.org/10.1016/S0140-6736(20)31142-9

PMID: 32497510

8. Van Dyke ME, Rogers TM, Pevzner E, et al. Trends in County-Level COVID-19 Incidence in Counties

With and Without a Mask Mandate—Kansas, June 1–August 23, 2020. MMWR Morbidity and Mortality

Weekly Report. 2020; 69(47):1777–81. Available from: https://doi.org/10.15585/mmwr.mm6947e2

PMID: 33237889

9. Shakespeare T, Watson N, Brunner R, et al. Disabled People in Britain and the Impact of the COVID-

19 Pandemic. Social Policy & Administration. 2022; 56(1):103–17. Available from: https://

onlinelibrary.wiley.com/doi/10.1111/spol.12758

10. Chodick G, Tene L, Patalon T, et al. Assessment of Effectiveness of 1 Dose of BNT162b2 Vaccine for

SARS-CoV-2 Infection 13 to 24 Days After Immunization. JAMA Network Open. 2021; 4(6):

e2115985–5. Available from: https://doi.org/10.1001/jamanetworkopen.2021.15985 PMID: 34097044

11. Thompson MG, Burgess JL, Naleway AL, et al. Prevention and Attenuation of COVID-19 with the

BNT162b2 and mRNA-1273 Vaccines. New England Journal of Medicine. 2021; 385(4):320–9. Avail-

able from: https://doi.org/10.1056/NEJMoa2107058 PMID: 34192428

12. Griffin J, Haddix M, Danza P, et al. SARS-CoV-2 Infections and Hospitalizations Among Persons

Aged� 16 Years, by Vaccination Status—Los Angeles County, California, May 1–July 25, 2021.

MMWR Morbidity and Mortality Weekly Report. 2021; 70(34):1170–6. Available from: https://doi.org/

10.15585/mmwr.mm7034e5 PMID: 34437525

13. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vac-

cine. New England Journal of Medicine. 2020; 383(27):2603–15. Available from: https://doi.org/10.

1056/NEJMoa2034577 PMID: 33301246

PLOS COMPUTATIONAL BIOLOGY Networks of necessity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010042 May 18, 2022 27 / 32



14. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine.

New England Journal of Medicine. 2021; 384(5):403–16. Available from: https://doi.org/10.1056/

NEJMoa2035389 PMID: 33378609

15. Sadoff J, Gray G, Vandebosch A, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine

against COVID-19. New England Journal of Medicine. 2021; 384(23):2187–201. Available from:

https://doi.org/10.1056/NEJMoa2101544 PMID: 33882225

16. Voysey M, Clemens SAC, Madhi S, et al. Safety and Efficacy of the ChAdOx1 nCoV-19 Vaccine

(AZD1222) Against SARS-CoV-2: An Interim Analysis of Four Randomised Controlled Trials in Brazil,

South Africa, and the UK. The Lancet. 2021; 397(10269):99–111. Available from: https://doi.org/10.

1016/S0140-6736(20)32661-1 PMID: 33306989
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40. Zaplotnik, Žiga and Gavrić Aleksandar and Medic Luka. Simulation of the COVID-19 Epidemic on the

Social Network of Slovenia: Estimating the Intrinsic Forecast Uncertainty. PLoS ONE. 2020; 15(8):

e0238090. Available from: https://doi.org/10.1371/journal.pone.0238090

41. Sameni R. Mathematical Modeling of Epidemic Diseases; A Case Study of the COVID-19 Coronavi-

rus. ArXiv:2003.11371. 2020. Available from: https://arxiv.org/abs/2003.11371

42. Browning R, Sulem D, Mengersen K, Rivoirard V, Rousseau J. Simple Discrete-Time Self-Exciting

Models can Describe Complex Dynamic Processes: A Case Study of COVID-19. PLoS ONE; 16(4):

e0250015. Available from: https://doi.org/10.1371/journal.pone.0250015 PMID: 33836020

43. Escobar JV. A Hawkes Process Model for the Propagation of COVID-19: Simple Analytical Results.

EPL (Europhysics Letters). 2020; 131(6):68005. Available from: https://doi.org/10.1209/0295-5075/

131/68005

44. Bertozzi AL, Franco E, Mohler G, Short MB, Sledge D. The Challenges of Modeling and Forecasting

the Spread of COVID-19. Proceedings of the National Academy of Sciences of the United States of

America. 2020; 117(29):16732–8. Available from: https://doi.org/10.1073/pnas.2006520117 PMID:

32616574

45. Hoertel N, Blachier M, Blanco C, et al. A Stochastic Agent-Based Model of the SARS-CoV-2 Epidemic

in France. Nature Medicine. 2020; 26:1417–21. Available from: https://doi.org/10.1038/s41591-020-

1129-4 PMID: 32665655
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Supporting Information

A Estimates of Parameter Values

We present the assumptions and derivations that we use to estimate the parameters in our model. (See Section 2 of
the main manuscript.) These include parameters that we can obtain directly (possibly with some inference) from the
literature and ones that we fit from case data in Ottawa. In our discussion, we use log to denote the natural logarithm.

A.1 Parameters that we Infer from the Literature

A.1.1 Properties of Exponential Distributions

Because we assume that transition times between disease states come from exponential distributions, we state a few
useful properties of exponential random variables.

For a random variable X that one samples from an exponential distribution with rate λ (i.e., X ∼ Exp(λ)), the
probability density function is f(x) = λe−λx, the mean is 1/λ, and the median is log 2/λ.

Suppose that we have a random variable Y = min{Y1, Y2}, where Y1 and Y2 are random variables that we sample
from exponential distributions of rates λ1 and λ2, respectively. It then follows that Y is an exponential random variable
with rate λ1 + λ2 and the probability that Y1 < Y2 is λ1/(λ1 + λ2).

A.1.2 Parameters

Transition Rate from Exposed to Asymptomatic (ν). The rate of moving from the exposed compartment to a
contagious state (and hence to the asymptomatic compartment in our model) has been estimated to be ν = 1 day−1 [1].

Recovery Rate from Hospitalization (ζ). The mean duration of hospitalization has been estimated to be 1/ζ =
12.8 days [2], so ζ ≈ 0.0781 day−1.

1



Transition Rates from Asymptomatic to Ill (α) and Recovered (η). It has been estimated that 19.45% of
cases are entirely asymptomatic [3], so η

η+α = 0.1945. Byrne et al. [4] summarized many relevant studies that give data
about different transition rates. From these studies, the mean duration in the asymptomatic state has been estimated to
be about 1

α+η = 7.25 days [5] and the median duration has been estimated to be about log 2
α+η = 9.5 days [6]. We take the

mean of these two values to estimate 1
η+α ≈ 10.478 days, which we combine with η

η+α = 0.1945 to obtain α ≈ 0.07688

day−1 and η ≈ 0.01856 day−1.

Transition Rates from Ill to Hospitalized (µ) and Recovered (ρ). It has been estimated that approximately
µ

µ+ρ × 100 = 20% of the symptomatic cases of COVID-19 result in hospitalization [7]. In children with mild cases of

COVID-19, the median duration from the onset of symptoms to no longer being infectious is about log 2
µ+ρ = 12 days [8].

(This study was also referenced in Byrne et al. [4].) In Belgium, the median duration from the onset of symptoms to
hospitalization was estimated to be log 2

µ+ρ = 5 days [9]. We take the mean of the values from these two studies and

thereby estimate 1
µ+ρ ≈ 12.2629 days. With µ

µ+ρ = 0.2, we obtain µ ≈ 0.01631 day−1 and ρ ≈ 0.06524 day−1.

Mask Risk-Reduction Factor (m). Based on three different viruses (SARS CoV-2, SARS-CoV, and MERS-CoV),
an unadjusted relative risk of contracting an infection when wearing a face mask versus not wearing one has been
reported to be 0.34 (with a 95% confidence window of 0.26 to 0.45) [10]. These results include both healthcare settings
and non-healthcare settings. Because the three viruses are from the same family, it was argued in [10] that their
relative risks should be comparable. For the data that was reported in this paper, it is not clear if only one or both
individuals wore masks in their interactions. We use m = 0.34 to represent the risk reduction when both individuals
in an interaction wear masks, and we use

√
m ≈ 0.5831 if only one individual in an interaction wears a mask. That is,

if only one individual in an interaction wears a mask, we quantify the transmission risk as the geometric mean of the
best-case transmission reduction if both individuals wear a mask and the worst-case transmission reduction if neither
individual wears a mask. By definition, given values q1, q2, . . . , qn, their geometric mean is (q1 × q2 × · · · × qn)

1/n.
Although our choice seems arbitrary, according to [11], there is a small reduction in the chance of becoming infected in
people who wear masks within a household, and it seems plausible that one individual wearing a mask in an interaction
between two people confers some reduction in transmission.

Probability of Breaking Weak Contacts if Symptomatic (b). It was very difficult to estimate this parameter.
Ultimately, we use the fact that 92% of people in a survey reported practicing physical distancing [12] as a proxy for
the fraction of a population who would break their weak contacts if they became symptomatic. That is, b = 0.92.

Baseline Transmission Probability β and Caregiving (wc) and Weak (ww) Edge Weights. We estimate β and
these edge weights based on reported secondary attack rates in various scenarios. The secondary attack rate describes
the fraction of a contagious individual’s contacts who become infected as a result of interacting with that individual.
The secondary attack rate for weak contacts [13] appears to range from about 1% to about 6%, so we estimate it to be
3.5%. Additionally, the secondary attack rate within a household has been estimated to be approximately 20% [13] and
is much higher (about 37.8%) between spouses [14].

Caregiving work is extremely intimate and requires extended, close physical contact and potential exposure to bodily
fluids. Such a level of intimacy is not typical between housemates, so we use the secondary attack rate between spouses
as a proxy for the level of risk in an interaction between a caregiver and a disabled person.

We conduct a set of simulations to estimate the secondary attack rate for each type of contact. The secondary
attack rate is the fraction of a contagious individual’s contacts that they infect on average. In each trial, we assign a
contagiousness duration Dc (which is equal to the asymptomatic time plus any symptomatic time, depending on contact
type and on whether or not contacts are broken if an individual becomes ill) and compute the probability that that a
contagious individual infects somebody. For weak contacts1, we use a daily transmission probability of

√
mwwβ; for

strong contacts, we use a probability of β; for caregiving contacts, we use a probability of wcβ.

1We obtain the value
√
m by estimating the risk mitigation of masks as the geometric mean of the value (1) when no individual in an

interaction wears a mask and the value (m) when both individuals in an interaction wear a mask. We use the geometric mean because of the
uncertainty in whether or not people wear masks.
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In a single trial, the probability of infection via a strong contact is 1 − (1 − β)Dc . We then determine the values
of ww, β, and wc so that, when averaged over many trials, the mean probability of passing on COVID-19 matches the
above secondary attack rates. This yields β ≈ 0.0112, ww ≈ 0.473, and wc ≈ 2.268.

Subpopulation Proportions of the Total Population. By combining the fraction of the population that has a
cognitive disability with the fraction that has a physical disability that causes difficulty in dressing, bathing, or getting
around inside a home, we estimate that the fraction of our population who are disabled and receive assistance from
professional caregivers is fdis ≈ 0.073 [15]. Unfortunately, there is a paucity of readily available data, so this is a
rough estimate. From the United States Bureau of Labor Statistics, a fraction fcare ≈ 0.021 of the U.S. population
is employed as a home health/professional care aid [16]. We use this number as an estimate of the proportion of the
population that provides care. This is likely an underestimate because many people provide care in unpaid settings.
From an estimated 55,217,845 essential workers in the United States [17], whose population in July 2019 was estimated
to be 328,239,523 [18], the fraction of essential workers is approximately 0.1682. After subtracting the people who are
caregivers, we obtain that a fraction fess ≈ 0.1472 of the population are essential workers. That leaves the fraction
fgen ≈ 0.7588 for the remaining population (i.e., the general population).

Mean Numbers of Contacts. We need distributions of the numbers of family contacts, weak contacts (through
work, shopping, seeing friends, and so on), and caregiving contacts. We begin by focusing on the mean values and later
consider the distributions themselves. From the 2016 Canadian census [19], households have a mean of 2.4 members,
which implies that individuals have a mean of F̄ = 1.4 strong contacts.

From Gallup data in April 2020 [20], during pandemic lockdowns, the people who were surveyed had a mean of 5.1
contacts per day at work and a mean of 4 contacts per day outside of work and home. Additionally, 27% of working adults
completely isolated themselves except to members of their own household. In Europe in 2008, the overall population
had a mean of 13.4 daily contacts without a lockdown in place [21]. In April 2020, essential workers saw a mean of 22
contacts per day (this is a much larger number than people who are not essential workers) during the lockdown [22]. By
combining these disparate pieces of data, we are able to make some relevant estimates.

Let Ogd denote the mean number of occupational contacts of the general and disabled subpopulations on each day
without a lockdown, Oc denote the mean number of disabled people that a caregiver sees in a day, O∗

gd denote the mean
number of occupational contacts of the general and disabled subpopulations on each day during a lockdown, w denote
the mean number of weak contacts (outside of work) of any individual in a population on each day without a lockdown,
w∗ denote the mean number of weak contacts (outside of work) of any individual in a population on each day with a
lockdown, and Oe denote the mean number of occupational contacts of essential workers on each day (both with and
without a lockdown). Our parenthetical comment about Oe indicates that we are assuming that the number of work
contacts is the same for essential workers regardless of whether or not there is a lockdown. We also assume that w does
not depend on an individual’s subpopulation (disabled person, caregiver, essential worker, or member of the general
population). Likewise, we assume that w∗ does not depend on an individual’s subpopulation.

From the data that we cited two paragraphs ago, we estimate that w∗ = 4 and that each disabled person sees 2
caregivers per day. Additionally, Oc =

2fdis

fcare
≈ 6.95 and

22 ≈ fess(Oe + w∗ + F̄ ) + fcare(Oc + w∗ + F̄ )

fess + fcare

5.1 ≈ (fcare + fdis)O
∗
gd + fessOe + fcareOc

13.4 ≈ fgen(Ogd + w + F̄ ) + fdis(Ogd + w + F̄ ) + fess(Oe + w + F̄ ) + fcare(Oc + w + F̄ ) .

To close the system of equations and obtain our estimates, we require one further assumption. If 27% of workers
isolate at home, then the mean number of contacts at work is

O∗
gd ≈ [0.27× 0] + [0.73× (0.73Ogd)] ≈ 0.5329Ogd .

We obtain w ≈ 5.14, w∗ ≈ 4, Oe ≈ 16.23, Oc ≈ 6.95, Ogd ≈ 5.20, and O∗
gd ≈ 3.08. When we use approximate truncated

power-law distributions to model the possibility that some people have many contacts and others have few contacts, we
want to satisfy the following criteria:

• the general population has a mean of w +Ogd ≈ 10.34 weak contacts per day when not physically distancing and
a mean of w∗ +O∗

gd ≈ 7.08 weak contacts per day when physically distancing;
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• the disabled subpopulation has the same mean value of weak contacts as the general population whether or not
people are physically distancing;

• the caregiver subpopulation has a mean of w ≈ 5.14 weak contacts per day when not physically distancing and a
mean of w ≈ 4 weak contacts per day when physically distancing; and

• the essential-worker subpopulation has a mean of Oe + w ≈ 21.37 weak contacts per day when not physically
distancing and a mean of Oe + w∗ ≈ 20.23 contacts per day when physically distancing.

Although the caregiver subpopulation may seem to have very few weak contacts, we note that most of their daily
contacts come from Oc, which we estimate separately from the ordinary weak contacts.

Although the number of weak contacts for essential workers does decrease slightly during a lockdown, we use Oe+w
whether or not a lockdown is in place as an approximation because the difference in the numbers of weak contacts is
very small (21.37 versus 20.23). In practice, it was difficult for us to reduce the mean number of contacts by such a small
amount in this situation. Picking the minimum of two random variables from similar distributions tends to result in a
value that is much smaller than the original one and thereby results in the essential workers having far too few contacts.

Distribution of Strong Contacts: We use data from the 2016 Canadian census [19] to describe the distribution of
household sizes. According to these data, 105,750 households consist of 1 person, 124,280 households consist of 2 people,
58,010 households consist of 3 people, 55,215 households consist of 4 people, and 30,500 households consist of 5 or more
people (which we treat as exactly 5 people). From these data, we construct an empirical distribution that we use for
the entire population. It is Ds = E(0.283, 0.332, 0.155, 0.148, 0.0816).

Caregivers: To each disabled person, we assign one strong caregiver and one weak caregiver with whom they interact
each day (although they do not interact with the latter when either they or the caregiver is symptomatic). We choose
the weak caregivers from a pool of caregivers. We use 10 as the baseline caregiver-pool size, but we also consider other
sizes (4 and 25, as we discussed in Section 3 of the main manuscript).

A.2 Fits from Data

We need to estimate three other parameters in our model. Even with our many estimates from the literature that
we discussed in Section A.1, we still need to estimate the following quantities: (1) the maximum number C∗ of weak
contacts of an individual, (2) the number A0 of people who are asymptomatic on day 0, and (3) the probability τ that
an individual who is symptomatically ill but not hospitalized is counted in the cumulative number of cases.

We model the number of weak contacts using an approximate truncated power-law distribution. That is, the daily
number of weak contacts of an individual is distributed according to P(0, C∗;Oq), where Oq denotes the mean number
of weak contacts of subpopulation q.

Along with the simulation procedure that we will describe in Section B, we use a fitting procedure (along with case
data from Ottawa [23]) to estimate τ and C∗ with a grid search. We use the first 90 days as fitting data and assume
that the associated contact distributions and mask-wearing policies are instantly adopted on day 44 (i.e., the start of
the lockdown in Ottawa). We tried fitting over shorter time windows, but these yielded poorer fits. The likely reason
for the poor fits for these shorter time windows is that the parameter C∗ is smaller when fit over shorter time intervals
(because the disease has spread less at that stage). The longer time window allows us to fit C∗, which may be a key
driver in the disease dynamics, to a larger value and thereby allows extensive spreading of the disease.

We assume that there are A0 people on day 0 in the asymptomatic compartment and that all other individuals are in
the susceptible compartment. On day 1, with the first recorded case, there is 1 recorded case in expectation. Therefore,

1 =
α

α+ η︸ ︷︷ ︸
Pr(transition from asymptomatic to ill)

× e−(α+η)×1 day︸ ︷︷ ︸
Pr(leave the A compartment within 1 day)

× τ︸︷︷︸
test ill individual

× A0 . (1)

The first factor is the probability that the transition from the A compartment to the I compartment occurs before the
transition from A to the R compartment. The second factor is the probability that there is a transition out of the A
compartment in a 1-day time period. The third factor is the probability that an individual in the I compartment tests
positive for COVID-19. The fourth factor (A0) is the total number of asymptomatic people on day 0. Our choice to
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make the expected number of documented cases equal to 1 on day 1 allows us to have two parameters (rather than
three) when fitting. Using more parameters can result in overfitting.

We seek to minimize the ℓ2-error in new daily cases (i.e., the change in the daily cumulative case count). Because our
stochastic model is complicated, with variation across trials, we use a grid search (instead of a gradient-based method)
to estimate parameters. In Table A, we summarize our results. From this procedure, our “optimal” parameter values
are τ = 0.04 and C∗ = 60.

B Simulations of our Stochastic Model of COVID-19 Spread

B.1 Simulation Procedure

We summarize our simulation procedure in Algorithm 1, which uses the other algorithms that we present in this
subsection. The code is available at our Bitbucket repository.

We initially construct a network by matching ends of edges (i.e., “stubs”) in a generalization of a configuration-model
network. We assign a number of stubs to each individual in each subpopulation to encode their number of weak contacts
(see Algorithm 2). We determine this number from an associated probability distribution. We then do a so-called
“random matching” (see Algorithm 4), in which we match stubs uniformly at random. Any pair of individuals whose
stubs are matched in this way are contacts of each other. If we choose two individuals who are already contacts or
an individual is paired with themself, we discard that pairing. For strong contacts, we assign individuals to units (see
Algorithm 3) and make members of these units strong contacts with each other unless they are already contacts (see
Algorithm 5). Consequently, the number of contacts per individual does not perfectly match the desired distributions.
However, for a network with many nodes, these errors are negligible in practice. See [24] for a detailed exposition
of different types of configuration models (although we employ a generalization of a configuration model), including
different strategies for how to deal with self-edges and multi-edges. We assign weak and strong caregivers to disabled
people in a manner (see Algorithm 6) that is analogous to how we assign strong contacts.

After constructing a contact network, we place some number of individuals, who we choose uniformly at random
from the nodes in the network, into the A and/or I compartments. This number of individuals, the subpopulations
of these individuals, and the choice of these compartments (all of these individuals in A, all of these individuals in I,
or some of these individuals in A and some of them in I) depend on user input. For example, in the four simulations
that we used to generate Fig 10 in the main manuscript, all initially infected individuals are in the A compartment and
are in a single subpopulation (caregivers, disabled people, essential workers, or the general population). In all other
simulations that we discuss in the present paper, the initially infected individuals are all in the A compartment.

After initializing the contact structures and the compartments of the nodes, we execute the commands in the following
paragraphs for a user-specified number of iterations.

We check if we need to update contact structures and/or mask-wearing strategies because of a lockdown (see Algo-
rithm 9) or a reopening (see Algorithm 10). For a lockdown, we update the mask-wearing strategies and assign each
individual a number of weak contacts from the new weak-contact distribution that is associated with their subpopulation.
If the new number of weak contacts is smaller than the current number of weak contacts, we remove excess contacts
uniformly at random. For a reopening, we again update the mask-wearing strategies and assign each individual a number
of weak contacts from their subpopulation’s new weak-contact distribution. If the new number of weak contacts is larger
than the current number of weak contacts, we assign the individual a number of stubs that is equal to the difference
between the new number of contacts and the existing number of contacts and apply Algorithm 4 to connect the stubs.

On each day, we assign a weak caregiver to each disabled person uniformly at random from their pool of weak
caregivers, as long as neither is breaking their contacts. We then use Algorithm 8 to determine if each individual in
the network remains in their current compartment or moves to a new one. If an individual is in the S compartment,
we calculate the probability of infection using Algorithm 7. In this algorithm, we loop through each of this individual’s
contagious contacts (i.e., those in the A, I, or H compartments) and use Eq. (1) of the main manuscript to calculate the
probability that the individual becomes infected. For the E and H compartments, for which there is only one possible
transition to a new compartment, we draw a transition time from an exponential distribution Exp(χ) (where χ is the
associated rate constant) to determine if there is a transition between compartments. If the time is less than 1 day, then
the individual changes compartments; otherwise, the individual stays in their current compartment. For the A and I
compartments, from which an individual can move into one of two possible new compartments, we draw transition times
from Exp(χ1) and Exp(χ2), where χ1 and χ2 are the associated rate constants. If both times are less than 1 day, the
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τ C∗ Error
0.02 50 2.31× 104

0.03 50 1.82× 104

0.03 60 2.38× 104

0.04 50 2.13× 104

0.04 60 1.74× 104

0.04 70 3.05× 104

0.05 50 2.48× 104

0.05 60 1.83× 104

0.05 70 2.26× 104

0.06 50 2.80× 104

0.06 60 2.01× 104

0.06 70 1.76× 104

0.06 80 3.48× 104

0.07 50 3.16× 104

0.07 60 2.26× 104

0.07 70 1.80× 104

0.07 80 2.78× 104

0.08 50 3.32× 104

0.08 60 2.38× 104

0.08 70 1.86× 104

0.08 80 2.51× 104

0.09 50 3.55× 104

0.09 60 2.69× 104

0.09 70 1.93× 104

0.09 80 2.25× 104

0.10 50 3.61× 104

0.10 60 2.82× 104

0.10 70 2.07× 104

0.10 80 1.96× 104

0.10 90 4.40× 104

0.11 50 3.80× 104

0.11 60 2.88× 104

0.11 70 2.16× 104

0.11 80 1.99× 104

0.11 90 3.54× 104

Table A. The ℓ2-error in new daily documented cases for various values of τ and C∗. To determine A0, we use Eq. (1)
of this supplement with a specified value of τ and values of α and µ from the literature. For each set of parameters, we
conduct 96 trials and we compute the error by taking the mean of all trials in which there are at least 250 documented
cases through day 90. We only report parameter values for which the errors are smaller than 5× 104. We test all
parameter values on the lattice with coordinates
(τ, C∗) ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09.0.10, 0.11} × {50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150}. We
show our best results in bold. That is, our “optimal” parameter values (see the fifth row) are τ = 0.04 and C∗ = 60.
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individual moves to the compartment that has the smaller time. If only one of the times is less than 1 day, the individual
moves to that compartment. If neither time is less than 1 day, the individual remains in their current compartment.
When an individual enters the I compartment, they may break their weak contacts. With probability b, they break
all of their weak contacts; otherwise, they keep all of their weak contacts. Individuals in the I compartment become
documented cases with probability τ . In our pseudocode, we refer to the breaking of contacts as “deactivating” edges
and refer to the re-establishment of contacts as “reactivating” edges. If an individual moves to the H compartment, we
deactivate all of their edges with weak and strong contacts. If an individual moves to the R compartment, we reactivate
any edges that may have been deactivated because of their movement through the I and H compartments (except edges
that are not active because (1) the other individual in the interaction is in the I compartment and broke their weak
contact or (2) the other individual is in the H compartment).

B.2 Implementation of Approximate Truncated Power-Law Distributions

B.2.1 Sampling from the Distribution

Given a lower bound a−, an upper bound a+, and an exponent p, we wish to approximate a power-law distribution for
a discrete random variable N over the interval [a−, a+], where Pr(N = n) = O(n−p) as a+, n → ∞. Our procedure
amounts to (1) shifting the range to avoid the case a− = 0, (2) sampling from a continuous power-law probability
density, (3) truncating the result to an integer, and (4) shifting the range back if we shifted the original range away
from a− = 0. In our model, we use a− = 0 and a+ = C∗, but we present the approach for a general finite sequence of
nonnegative integers.

If a− = 0, we first shift to a distribution on [A,B], where A = max{a−, 1} and B = a+ + (A − a−). We define the
normalization constant

C =

∫ B+1

A

x−p dx

=

{
1

1−p ((B + 1)1−p −A1−p) , p ̸= 1

log(B+1
A ) , p = 1 .

(2)

(Note that one should not conflate C with C∗.) To choose N , we select u ∈ [0, 1) from a uniform distribution and select
x∗ such that

C−1

∫ x∗

A

x−p dx = u . (3)

We then calculate
n∗ = ⌊x∗⌋ , (4)

where ⌊z⌋ is the floor of z (i.e., the largest integer that is less than or equal to z). That is,

x∗ =

{
((1− p)uC +A1−p)1/(1−p) , p ̸= 1

A exp(uC) , p = 1 .
(5)

Finally, we shift back to set
N = n∗ − (A− a−) . (6)

Note that

Pr(N = n) ∝
∫ n+1+(A−a−)

n+(A−a−)

x−p dx =

{
log(n+1+(A−a−)

n+(A−a−) ) , p = 1∣∣(n+ 1 + (A− a−))
1−p − (n+ (A− a−))

1−p
∣∣ , p ̸= 1

=

log(1 + 1
n+(A−a−) ) , p = 1∣∣∣∣(n+ (A− a−))

1−p
(
1 + 1

N+(A−a−)

)1−p

− 1

∣∣∣∣ , p ̸= 1

= O(1/np) as n→∞ ,

thereby ensuring that asymptotically we have a power law as n→∞.
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Algorithm 1 A Simulation of the Spread of COVID-19 on a Contact Network

Input: A set of values for each parameter that we list in Table 1 of the main manuscript
Output: Daily counts of the individuals in each compartment; number of documented cases

1: Initialize Population of size POttawa with fractions fdis who are disabled, fcare who are caregivers, fess who are
essential workers, and fgen who are members of the general population. At initialization, we determine whether or
not each individual will break all of their weak contacts if they become ill (they break weak contacts with probability
b) and determine whether or not they will have a positive test result if they become ill (a positive test occurs with
probability τ).

2: Assign a unique integer ID to each individual in Population.
3: Obtain WeakStubs from Algorithm 2 with input Population.
4: Obtain PossibleHouseholdUnits from Algorithm 3 with input Population.
5: Assign weak contacts using Algorithm 4 with inputs Population, WeakStubs.
6: Assign strong contacts using Algorithm 5 with inputs Population, PossibleHouseholdUnits.
7: Match disabled people and caregivers using Algorithm 6 with input DisabledPopulation, where DisabledPopulation

refers to all individuals in Population who are in the disabled subpopulation.
8: Initialize some number of people to be asymptomatic or ill based on program inputs. (In all of our simulations in

the present paper, we initialize these individuals to be asymptomatic, but one can instead use our code to initialize
individuals as ill; one can also initialize some individuals to be asymptomatic and some individuals to be ill.)

9: day = 0, has opened = false, has closed = false
10: while day < end day do
11: Compute the number of individuals from each subpopulation in each compartment; also compute the number of

documented cases in each subpopulation.
12: for each disabled individual in DisabledPopulation do
13: Select a weak caregiver uniformly at random from their set of weak caregivers.
14: end for
15: for each individual in Population do
16: Calculate the infection probability using Algorithm 7 with input individual.
17: end for
18: for each individual in Population do
19: Advance state by 1 day using Algorithm 8 with input individual.
20: end for
21: day ← day+ 1
22: if time < close time then
23: Do nothing.
24: else if time < open time then
25: if not has closed then
26: Close down (i.e., start a lockdown) using Algorithm 9.
27: has closed ← true
28: end if
29: else
30: if not has opened then
31: Reopen (i.e., end a lockdown) using Algorithm 10.
32: has opened ← true
33: end if
34: end if
35: end while
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Algorithm 2 Weak Stubs

Input: A container of nodes (which we denote by Population)
Output: A container of IDs (which we denote by WeakStubs) in which the ID of each node in Population occurs
with a multiplicity that is equal to the number of stubs of that node.

1: for each individual in Population do
2: Let target equal the number of weak stubs that individual can potentially have; we draw this number from

Dgroup,period, where “group” is their subpopulation and “period” is the current state of the pandemic (pre-
lockdown, lockdown, or post-lockdown).

3: Let current equal the number of current weak stubs of individual.
4: if current < target then
5: needed = current− target
6: else
7: needed = 0
8: end if
9: For needed number of times, append the ID of individual to a container WeakStubs.

10: return WeakStubs
11: end for

Algorithm 3 Household Units

Input: A container of nodes (which we denote by Population)
Output: A container of containers of IDs (which we denote by PossibleHouseholdUnits)

1: Let AllIDs be a container that stores the unique ID for each individual in Population.
2: while AllIDs not empty do
3: Choose an ID, which we denote by ID1, uniformly at random from AllIDs and determine the number of household

contacts (house) of the individual with that ID by sampling from Dstrong.
4: Select house number of IDs uniformly at random from AllIDs.
5: Append ID1 and the above IDs to a container, which we denote by unit.
6: Remove all of the IDs in unit from AllIDs.
7: end while
8: return PossibleHouseholdUnits (which is a container that holds each unit)

Algorithm 4 Assigning Weak Contacts

Input: A container of nodes (which we denote by Population) and a container of IDs (which we denote by
WeakStubs)
Result: All nodes in Population are assigned weak contacts

1: while |WeakStubs| ≥ 2 do
2: Choose IDs ID1 and ID2 uniformly at random from WeakStubs.
3: if ID1 ̸= ID2 and the individuals with IDs ID1 and ID2 are not already contacts (weak, strong, or caregiving)

then
4: Make the individuals with IDs ID1 and ID2 into weak contacts of each other.
5: end if
6: Remove ID1 and ID2 from WeakStubs.
7: end while
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Algorithm 5 Assigning Strong Contacts

Input: A container of nodes (which we denote by Population) and a container of containers of IDs (which we denote
by PossibleHouseholdUnits)
Result: All nodes in Population are assigned strong contacts

1: for each unit in PossibleHouseholdUnits do
2: for each ID in unit do
3: Make the individual with ID a strong contact of each other member of unit, unless the individuals are already

contacts (weak, strong, or caregiving).
4: end for
5: end for

Algorithm 6 Matching Disabled People and Caregivers

Input: A container of nodes (which we denote by DisabledPopultion) that are in the same subpopulation
Result: All nodes in DisabledPopulation are assigned one strong caregiver and a pool of weak caregivers

1: for each disabled individual in DisabledPopulation do
2: Determine care weak num from Dpool, which is the number of weak caregivers in their pool.
3: Select care weak num number of caregivers uniformly at random from the set of caregivers and store them in

CaregiversChosen.
4: for each caregiver in CaregiversChosen do
5: if disabled individual and caregiver are not already contacts (weak, strong, or caregiving) then
6: Make their relationship a weak caregiver–disabled relationship.
7: end if
8: end for
9: end for

10: for each disabled individual in DisabledPopulation do
11: Choose 1 caregiver uniformly at random from the set of caregivers.
12: if disabled individual and the caregiver are not already contacts (weak, strong, or caregiving) then
13: Make their relationship a strong caregiver–disabled relationship.
14: end if
15: end for
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Algorithm 7 Infection Probability

Input: A node (which we denote by individual)
Output: An infection probability (which we denote by infect prob)

1: not get = 1
2: if individual is Susceptible then
3: for each weak contact in individual ’s weak contacts do
4: if the edge to weak contact is active and weak contact is contagious then
5: if both wear a mask then
6: not get ← not get × (1− βmww)
7: else
8: not get ← not get × (1− βww)
9: end if

10: end if
11: end for
12: for each strong contact in individual ’s strong contacts do
13: if the edge to strong contact is active and strong contact is contagious then
14: not get ← not get × (1− βws)
15: end if
16: end for
17: if individual is disabled then
18: for each caregiver in their set of weak caregivers for the day do
19: if the edge to caregiver is active and caregiver is contagious then
20: if both wear a mask then
21: not get ← not get × (1− βmwc)
22: else if one wears a mask then
23: not get ← not get × (1− β

√
mwc)

24: else
25: not get ← not get × (1− βwc)
26: end if
27: end if
28: end for
29: if the edge to individual ’s strong caregiver is active and the strong caregiver is contagious then
30: if both wear a mask then
31: not get ← not get × (1− βmwc)
32: else if one wears mask then
33: not get ← not get × (1− β

√
mwc)

34: else
35: not get ← not get × (1− βwc)
36: end if
37: end if
38: else if individual is a caregiver then
39: for each disabled individual in their set of disabled contacts for the day do
40: if the edge to disabled individual is active and disabled individual is contagious then
41: if both wear a mask then
42: not get ← not get × (1− βmwc)
43: else if one wears mask then
44: not get ← not get × (1− β

√
mwc)

45: else
46: not get ← not get × (1− βwc)
47: end if
48: end if
49: end for
50: end if
51: end if
52: infect prob = 1− not get
53: return infect prob
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Algorithm 8 Advancing One Day

Input: A node (which we denote by individual)
Result: individual remains in their current compartment or moves into a new one

1: if individual is in the S compartment then
2: In the time interval ∆T = 1 day, move individual into the E compartment with probability infect prob.
3: else if individual is in the E compartment then
4: Sample Tasymptomatic from the distribution Exp(ν).
5: if Tasymptomatic < 1 day then
6: Move individual to the A compartment.
7: end if
8: else if individual is in the A compartment then
9: Sample Till from Exp(α).

10: Sample Tremoved from Exp(η).
11: if Till < Tremoved then
12: if Till < 1 day then
13: Move individual to the I compartment.
14: Deactivate all of individual ’s edges to weak contacts if individual is someone who breaks their weak contacts.
15: end if
16: else
17: if Tremoved < 1 day then
18: Move individual to the R compartment.
19: Reactivate all of individual ’s edges to their weak contacts (provided, for each weak contact, either that the

weak contact has no symptoms or that they are in the I compartment but do not break weak contacts when
ill).

20: end if
21: end if
22: else if individual is in the I compartment then
23: Sample Thospital from Exp(µ).
24: Sample Tremoved from Exp(ρ).
25: if Thospital < Tremoved then
26: if Thospital < 1 day then
27: Move individual to the H compartment.
28: Deactivate all of individual ’s edges to their weak and strong contacts.
29: end if
30: else
31: if Tremoved < 1 day then
32: Move individual to the R compartment.
33: Reactivate all of individual ’s edges to their weak contacts (provided, for each weak contact, either that the

weak contact has no symptoms or that they are in the I compartment but do not break weak contacts when
ill).

34: end if
35: end if
36: else if individual is in the H compartment then
37: Sample Tremoved from Exp(ζ).
38: if Tremoved < 1 day then
39: Move individual to the R compartment.
40: Reactivate all of individual ’s edges to their weak contacts (provided, for each weak contact, either that the weak

contact has no symptoms or that they are in the I compartment but do not break weak contacts when ill).
41: end if
42: end if
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Algorithm 9 Closing Down (i.e., Starting a Lockdown)

Input: A container of nodes (which we denote by Population)
Result: Lockdown mask-wearing strategies and contact-limiting strategies are implemented for each node in Popu-

lation

1: Update mask-wearing statuses.
2: for each individual in Population do
3: Determine individual ’s new number of weak contacts by sampling new target value from Dgroup,post, where group

is the subpopulation of the individual.
4: end for
5: for each individual in Population do
6: clear = max{0, current weak contacts− new target value}
7: i = 0
8: while i < clear do
9: Select a weak contact ϖ uniformly at random.

10: if neither ϖ nor individual is an essential worker then
11: Remove the edge between the nodes.
12: end if
13: i← i+ 1
14: end while
15: end for

Algorithm 10 Reopening (i.e., Ending a Lockdown)

Input: A container of nodes (which we denote by Population)
Output: Reopening mask-wearing strategies and contact-limiting strategies are implemented for each node in
Population

1: Update mask-wearing statuses.
2: Obtain a container new weak stubs by applying Algorithm 2 with input Population.
3: Apply Algorithm 4 with inputs Population and new weak stubs.
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B.2.2 Estimating the Mean

When B − A is large, it can be computationally expensive to compute the precise mean of the random variable N =
n∗ − (A− a−) from Eq. (6) of this supplement. Additionally, when B −A is large, rounding errors and overflow errors
can lead to inaccurate estimations of the true mean. Therefore, we estimate the mean analytically. Given a−, a+, and
p, we seek to estimate the mean Ep := E(N) over the interval [a−, a+].

We have that

Ep = C−1
B∑

n=A

n

∫ n+1

n

x−p dx

=

{
C−1

∑b
n=A n log((n+ 1)/n) , p = 1

((1− p)C)−1
∑b

n=A n((n+ 1)1−p − n1−p) , p ̸= 1

=

{
C−1

∑b
n=A n log((n+ 1)/n) , p = 1

((1− p)C)−1
(
(B + 1)2−p −A2−p −

∑B+1
n=A+1 n

1−p
)
, p ̸= 1 .

To obtain the third equality, we rewrote
∑B

n=A n(n + 1)1−p as
∑B+1

n=A+1(n − 1)n1−p, whose n2−p terms cancel with∑B
n=A n2−p except at n = A and n = B + 1.
For our approximation, we consider multiple cases.

p = 1: Because {n log(n+1
n )}Bn=A is an increasing sequence of terms, we obtain

S1 := A log

(
A+ 1

A

)
+

∫ B

A

x log

(
x+ 1

x

)
dx ≤

B∑
n=A

n log

(
n+ 1

n

)
≤

∫ B+1

A

x log

(
x+ 1

x

)
dx =: S1 .

Using
∫
x log(x+1

x ) dx = 1
2 (x

2 log((x+ 1)/x) + x− log(x+ 1)) + const, we compute the integrals exactly and obtain the

estimate E1 = C−1(S1 + S1)/2.

p = 2: We need to estimate
∑B+1

n=A+1 n
−1. The sequence 1/n is decreasing, so

S2 :=

∫ B+2

A+1

1

x
dx = log

(
B + 2

A+ 1

)
≤

B+1∑
n=A+1

n−1 ≤ 1

A+ 1
+ log

(
B + 1

A+ 1

)
=

1

A+ 1
+

∫ B+1

A+1

1

x
dx =: S2 .

We obtain the estimate E2 = C−1
(
1
2 (S2 + S2)

)
, where A2−p = (B + 1)2−p = 1 allows us to cancel terms.

p /∈ {1, 2} , p > 1: We need to estimate
∑B+1

n=A+1 n
1−p, where the terms are decreasing. Therefore,

Sp> :=

∫ B+2

A+1

x1−p dx =
(B + 2)2−p − (A+ 1)2−p

2− p
≤

B+1∑
n=A+1

n1−p

≤ (A+ 1)1−p +
(B + 1)2−p − (A+ 1)2−p

2− p
= (A+ 1)1−p +

∫ B+1

A+1

x1−p dx =: Sp> .

We obtain the estimate Ep> = ((1− p)C)−1
(
(B + 1)2−p −A2−p − 1

2 (Sp> + Sp>)
)
.

p /∈ {1, 2} , p < 1: We need to estimate
∑B+1

n=A+1 n
1−p, where the terms are increasing. Therefore,

Sp< := (A+ 1)1−p +

∫ B+1

A+1

x1−p dx = (A+ 1)1−p +
(B + 1)2−p − (A+ 1)2−p

2− p
≤

B+1∑
n=A+1

n1−p

≤ (B + 2)2−p − (A+ 1)2−p

2− p
=

∫ B+2

A+1

x1−p dx =: Sp< .
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S1 Fig. (A) The estimated and exact mean values of the approximate truncated power-law distribution for various
values of the exponent p. The curves are indistinguishable. (B) The error in computing the mean for our
approximations. In both panels of this figure, we use a− = 0 and a+ = 100.

We obtain the estimate Ep< = ((1− p)C)−1
(
(B + 1)2−p −A2−p − 1

2 (Sp< + Sp<)
)
.

Our approximation is very accurate. For a− = 0 and a+ = 100, we plot the approximations and the numerically
exact values in S1 Fig.

C Additional Computational Experiments

C.1 Examining a Distribution with a Deterministic Number of Weak Contacts

The confidence windows for the cumulative documented case counts are large. To determine the cause of these large
variances, we run trials (see S2 Fig) in which each subpopulation has a deterministic number of weak contacts that
is equal to the associated mean value in Section 2.2 of the main manuscript. When the weak-contact distribution is
deterministic, we obtain much smaller variances in the numbers of documented cases than when weak contacts are
distributed according to an approximate truncated power-law. Additionally, using a deterministic distribution results
in many fewer cases of the disease, which hardly spreads.

S2 Fig. Comparison of a mean of 100 simulations when the weak contacts follow (left) an approximate truncated
power-law distribution and (right) a deterministic distribution. In both plots, the mean is in blue and the gray window
indicates the middle 95% of the 100 simulations. On day 44 (i.e., 24 March 2020), all groups limit contacts, all
individuals in caregiver–disabled interactions wear masks, and all individuals wear masks in interactions between
essential workers and their weak contacts.
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C.2 Different Values of the Caregiver–Disabled Edge Weight wc

The risk of COVID-19 infections in a caregiver–disabled interaction is larger than in an ordinary household interaction.
In S3 Fig, we compare our results for two different values of the caregiver–disabled edge weight wc. The choice wc = 1
results in essential workers, who have many weak contacts, being the most potent disease spreaders of the four examined
subpopulations (except for spreading from caregivers to other caregivers). However, even the choice wc = 1.5 (which is
smaller than the value wc = 2.27 that we used in most of our computations) results in caregivers being the most potent
spreaders of the disease to the disabled subpopulation.

S3 Fig. The fraction of each subpopulation that is infected through day 148 when all of the initially infected
individuals are in a single subpopulation for (left) wc = 1 and (right) wc = 1.5. On day 44, all groups limit contacts
and disabled people, caregivers, and essential workers wear masks.
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