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a b s t r a c t

We study the community structure of networks representing voting on resolutions in
the United Nations General Assembly. We construct networks from the voting records
of the separate annual sessions between 1946 and 2008 in three different ways: (1) by
considering voting similarities as weighted unipartite networks; (2) by considering voting
similarities as weighted, signed unipartite networks; and (3) by examining signed bipartite
networks in which countries are connected to resolutions. For each formulation, we
detect communities by optimizing network modularity using an appropriate null model.
We compare and contrast the results that we obtain for these three different network
representations.We thereby illustrate the need to considermultiple resolution parameters
and explore the effectiveness of each network representation for identifying voting groups
amidst the large amount of agreement typical in General Assembly votes.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The study of networks has a long history in both the mathematical and social sciences [1], and recent investigations
have underscored their vibrant interdisciplinary applications and development [2–7]. The large-scale organization of real-
world networks typically includes coexisting modular (horizontal) and hierarchical (vertical) organizational structures.
Various attempts to interpret such organization have included the computational identification of structural modules called
communities [8–10], which are obtained by finding groups of nodes such that there are more (or a denser collection of)
connections between pairs of nodes in the same group than there are between pairs of nodes assigned to different groups.
In principle, communities are not merely structural modules but can have functional importance in network processes.
For example, communities in social networks (‘‘cohesive groups’’ [11]) might correspond to circles of friends or business
associates, communities in the World Wide Web might encompass pages on closely related topics, and some communities
in biological networks have been shown to be related to functional modules [12,13].

As discussed at length in two recent review articles [8,9] and in references therein, the classes of techniques available to
detect communities are both voluminous and diverse. They include hierarchical clustering methods such as single linkage
clustering, centrality-based methods, local methods, optimization of quality functions such as modularity and similar
quantities, spectral partitioning, likelihood-based methods, and more. Investigations of network community structure
have been remarkably successful on benchmark examples [8,14,15] and have led to interesting insights in several
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applications, including the role of college football conferences [16] in affecting algorithmic rankings [17]; committee
assignments [18–20], legislation cosponsorship [21], and voting blocs [22] in the US Congress; the examination of functional
groups in metabolic [12] and protein interaction [13] networks; the study of ethnic preferences in school friendship
networks [23]; the organization of online social networks [24,25], and the study of social structures in mobile-phone
conversation networks [26].

With the newfound wealth of longitudinal data sets on various types of human activity patterns, it has become possible
to investigate the temporal dynamics of communities, and this issue has started to attract an increasing amount of
attention [26–30]. It is also potentially useful to study community structure in similarity and correlation networks [31],
such as those determined by common voting or legislation-cosponsorship patterns [21,22], alliances and disputes among
nations [32], or more general coupled time series [28,29]. In such cases, one is faced with numerous choices for how to
actually construct the network from the original data – an important issue that has received surprisingly little attention.
(An old discussion of some of the available methods is presented in Ref. [33].) In the present paper, we focus on this
network construction issue by examining the community structure of networks defined in different ways from roll-call
voting patterns in the United Nations General Assembly (UNGA).

The primary goal of this paper is to conduct a comparative investigation of different ways to turn voting data (and similar
relational data) into network representations in order to use community detection tools. Community detection can then be
used to complement existing approaches such as multidimensional scaling and other data clustering techniques [34,35]. As
we discuss in detail below, there aremanyways to turn voting data into networks. In this paper, wewill compare threeways
of doing so using roll-call voting in the UNGA as an illustrative example. For each network representation, we will examine
community structure in the UNGA and how it changes over time, and wewill compare the results that we obtain using each
network representation. Studying community structure entails partitioning a network, and it might be helpful to do so at
different network scales [8,9]. We consider different scales using resolution parameters and identify results that are robust
with respect to different choices of such parameters.

As discussed in a recent review [36], network analysis has led to interesting insights in the field of international relations
– just as it has in numerous other fields in the social, physical, biological, and information sciences [1,3,4,7]. For example,
a networks perspective has proven to be important for political studies of social balance [37–39]. Additionally, elements
of the Correlates of War (CoW) data [40,41] have been studied using network methods [32,42], and we expect that other
available data can also be studied insightfully. Previous studies of UNGA roll-call data have been successful at grouping
countries using NOMINATE scores, which assign ideological coordinates to voting members and can be used to introduce
partitions in policy space [34,43]. Empirical investigation of UNGA voting behavior has become readily accessible due to
Voeten’s organization of the UNGA voting data [44]. Voeten analyzed this data using NOMINATE scores to study Cold War
and Post-Cold-War voting behavior [43]. Lloyd applied network analysis and correspondence analysis to similar data to
show that the so-called ‘‘Clash of Civilizations’’ does not occur along civilizational lines (as one might have expected from
its name) but rather via a North–South division that arises from economic differences; Lloyd concluded that this division
has resulted in varying levels of support for human-rights treaties [45]. Motivated by the previously demonstrated utility
of studying community structure in network representations of voting data [22] and legislation cosponsorship data [21] for
the United States Congress, we investigate in this paper the community structure of network representations of the UNGA
(based on the patterns of roll-call voting on resolutions) to see if such methodologies can help to identify and understand
international voting blocs.

The rest of this paper is organized as follows. In Section 2, we give a brief introduction to the United Nations General
Assembly voting data and discuss the different ways that we will represent this data in the form of networks. In particular,
we construct (1) weighted networks defined by the numbers of voting agreements between pairs of countries; (2) weighted,
signed networks in which we separately consider voting agreements and disagreements between countries; and (3) signed
bipartite networks between countries and resolutions that directly indicate yes (+1) and no (−1) votes. In Section 3, we
briefly review community detection via optimization of modularity and its generalizations, and we emphasize the use of
appropriate null models with resolution parameters for each of the three network representations that we consider. We
then investigate community structure in the UNGA using each of these three formulations and compare our three sets of
results. In Section 4, we study the set of resolutions in each session using voting agreements and use our computations
to identify historical trends and changes in the UNGA’s community structure. We then discuss case studies by going into
further detail in one session from each of three different periods in the UNGA’s history. We investigate these three sessions
(the 11th, 36th, and 58th Sessions) in terms of voting agreements and disagreements in Section 5 and as bipartite networks
with positive and negative edges in Section 6. We close with concluding observations in Section 7.

2. Network representations of UNGA voting data

Unlike the other component bodies of the United Nations (UN), the United Nations General Assembly (UNGA) provides
equal representation to all member nations [46]. Each nation gets one vote, and UNGA representatives can debate
international issues and non-binding resolutions. In recent years, this setting hasmotivated collaboration among developing
countries to create a ‘‘North–South’’ division. However, it is unclear how applicable this grouping is in other settings or how
cohesive it is on individual issues [43,45,47]. The voting record of the UNGA thereby provides an interesting application for
the investigation of network community structure. The UNGA roll call also provides a useful setting for testing the effects
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Fig. 1. (Color online) (Left) Numbers of countries (blue) and resolutions (red) in each annual United Nations General Assembly session during 1946–2008.
(Session 1 occurred in 1946, etc.) (Right) Fractions of non-unanimous votes cast in each annual session in favor of a resolution (‘‘yes’’), against a resolution
(‘‘no’’), and abstaining.

of different network representations of data for determining voting blocs, in part because one must pay particularly close
attention to the baseline level of agreement that is typical in UNGA resolutions that reach a recorded vote. This baseline
tendency toward agreement in the datamakes theUNGA roll call different from, e.g., studies of roll-call voting and legislation
cosponsorship in the United States Congress [21,22,34,48,49].

The UNGA was founded in 1946. As indicated in Fig. 1, the number of member countries has increased steadily since
then, but the number of recorded votes has varied from session to session. In this study, we consider every annual session
from 1946 to 2008 except for the 19th session (1964), which we exclude because voting occurred on only one resolution in
that session. We removed unanimous votes from the data, as they do not provide information about the network structure
of voting agreements and disagreements between countries. We note the large amount of agreement in UNGA voting
illustrated in the right panel of Fig. 1, indicating the large fraction of ‘‘yes’’ votes among the non-unanimous votes that
were cast. Importantly, we do keep all votes that are not 100% unanimous, so a significant majority of the remaining votes
are still ‘‘yes’’ votes. This bias toward agreement skews the simplest measures of voting similarity, so an important area of
investigation in the present paper is the consideration of such bias.

Within each session, we determine edge weights between pairs of countries using a measure of the level of their voting
agreement. For example, Gartzke’s ‘‘The Affinity of Nations’’ data set [50] uses a well-known (in the international-relations
literature) diagnostic called ‘‘S’’ to measure the relative similarity between UNGA votes (the quantity S first converts the
voting information to column vectors and then calculates a similarity score between each pair of vectors), with different
calculations depending on whether one includes or omits abstentions [51,52]. Assigning numerical values to the types of
possible votes – yes, no, abstain, and absent – requires choosing arbitrary relative magnitudes and spacings between these
values. For instance, onemight assign±1 to yes/no votes and choose some intermediate value for abstentions and absences.
In doing this, one also must employ some argument as to whether an abstention should be interpreted as closer to a yes or
to a no vote. (See the discussions in Refs. [33,43].) Contingency-table statistics also provide a possible way to measure the
agreement between voting countries. They avoid the use of a numerical scale but instead require one to assume an expected
distribution of votes [33,53].

Motivated by Lijphart’s Index of Agreement [33], we define a unipartite network of voting similarities in which the
strength of connection between a pair of countries is given by the number of agreements on resolutions (yes–yes, no–no,
or abstain–abstain). To avoid assigning artificially high agreement scores to countries with low attendance, we do not
normalize by the number of times both countries were present and voting. (This contrasts with the norm when studying
voting in legislative networks such as the United States Congress [18,22,34].) Onemight instead uniformly normalize counts
of agreement by the total number of votes in a session, so that an edge of unit strength indicates perfect agreement on all
resolutions in a session. However, detecting communities on voting agreement networks when using such a constant intra-
session normalization is equivalent to detecting communities on such networks without the normalization. We therefore
use the direct count of agreements as the weight of connections in the UN voting agreement networks. We denote the
(weighted, unipartite) adjacency matrix of such a network by A+

ij , and we ignore the artificial self-edges imposed by this
definition of voting similarity by setting all diagonal entries equal to zero. This is frequently done for correlation networks
and is a standard procedure when studying voting similarities [22,28,29,54].

In contrast to a recent study of Congressional roll-call networks [22], the preponderance of ‘‘yes’’ votes in the UNGA
(see Fig. 1) leads to a wealth of large weights in the voting agreement adjacency matrices A+

ij , and many of these weights
are close to the total number of votes in the session. In this environment of significant agreement in voting results, it is
unclear how one should best treat abstentions without additional information that details the causes for each such vote. In
particular, the relative weight of disagreement between two countries in a yes–abstain pair of votes on a given resolution
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should presumably be treated differently from that in a yes–nopair or in an abstain–nopair. In order to include the possibility
of treating some of these forms of disagreement differently, we count the occasions of direct yes–no disagreement between
two countries in the elements of the (symmetric) matrix A−

ij to supplement the (also symmetric) A+

ij agreement matrix. As
we discuss in more detail in Section 3, this will entail performing community detection on signed adjacency matrices.

Finally, to ensure that we are not inappropriately discarding too much information about the particular resolutions on
which countries vote in agreement (or on yes–no disagreement), we will detect communities in a third class of networks.
Each such network (one per UNGA session) consists of a signed bipartite (two-mode) network of countries voting in favor
of or against individual resolutions. That is, for each session, we will consider the signed adjacency matrix V encoding a
bipartite network between countries and resolutions. Taking abstentions as zero-valued entries in the absence of other
information, we define the matrix elements by

Vij =

1, if country i voted yes on resolution j,
−1, if country i voted no on resolution j,
0, otherwise (absences and abstentions).

(1)

A pair of countries that both vote in favor of a proposed resolution constitutes some actual agreement between those
countries on the resolution (though, of course, such agreement can arise due to various reasons, such as compromise),
whereas there might be multiple reasons for two countries to both vote against a resolution [33]. Importantly, community
detection on the signed bipartite network representation respects and quantifies this distinction. Countries are more likely
to have positive edges to resolutions (i.e., yes votes) within their community and are therefore more likely to be grouped
with other countries that vote in favor of many of the same resolutions. In contrast, common votes against a resolution only
discourage the placement of the involved no-voting countries in the community containing that resolution.

By investigating community structure using each of these three representations – the A+ network of agreements alone,
the A+ agreement network together with the A− disagreement network, and the underlying bipartite network V of votes
on resolutions – we aim for a more complete picture of the communities present in the UNGA roll call than any one
network representation might uncover by itself. More generally, comparing and contrasting these approaches should
provide valuable insight about the network treatment of voting and correlation data.

3. Community detection by optimization of generalized modularity

We detect communities by optimizing the quality function known as modularity [55–57], and we also consider some of
its generalizations. (Numerous other graph partitioning methods can of course be employed [8,9].) We take the partition
with the highest quality value that we can obtain from among three computational heuristics – spectral bipartitioning [57,
58], spectral tripartitioning [59], and the locally greedy ‘‘Louvain’’ method [60] – which we subsequently follow in each
case by Kernighan–Lin node-swapping steps [57,61] in order to find a partition of the network that has an even higher
value of the quality function. Of course, other heuristics (including other greedy methods, extremal optimization, and
simulated annealing) can also be employed [8,9,15]. Because modularity (and any similar quality function) has a complex
energy landscape that is expected to include a large number of good local optima, one must take care in interpreting
results when using it to study the community structure of real networks [62]. Additionally, modularity optimization has
a resolution limit [63], so it is important to include resolution parameters to investigate community structure at multiple
scales. Exploring the resolution parameter space in each type of network representation is a major focus of the present
investigation.

In detecting communities by optimizing modularity (or its generalizations), one partitions a network so that the total
strength of intra-community edges is optimized relative to a baseline expectation indicated by an appropriate null model.
The quality Q of a partition of the network is a function of the modularity matrix B = A − γP, where the adjacency matrix
A encodes the network, the matrix P encodes the null model, and incorporating a resolution parameter γ allows one to
identify communities at different scales [8,9,64]. The quality is given by

Q =

−
i,j

Bijδ(ci, cj), (2)

where δ(ci, cj) equals 1 if i and j have been assigned to the same community and 0 if they have been assigned to
different communities. (The community index ck identifies the community to which node k has been assigned.) Finding
the community assignments that maximize Q is an NP-hard problem that requires the use of computational heuristics to
obtain a good local optimum [8,9,65]. Importantly, one must select a null model P that is appropriate for the network under
consideration. In particular, we need to use a different null model for each of the three different network representations of
UNGA voting thatwe consider (which, we recall, are the unipartite network of agreements between countries, the unipartite
signed network of agreements and disagreements between countries, and the bipartite signed network of yes/no votes
by countries on resolutions). After selecting a null model appropriate to a particular network representation, we consider
different values of resolution parameters in order to identify communities that persist robustly for a range of resolution
parameter values [66].
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The unipartite network of agreements, encoded by A = A+, is the simplest case to consider. One can employ the
standard null model for modularity [56], which is given by Pij = kikj/(2m), where ki =

∑
j Aij is the strength of node i

and 2m =
∑

i ki =
∑

ij Aij is the sum of all node strengths. The elements of the modularity matrix are then

Bij =
1
2m


Aij − γ

kikj
2m


. (3)

When γ = 1, Eq. (3) reduces to the standard definition of modularity [9,56]. The standard null model for modularity gives
the expected edge weights in an unsigned unipartite random graph with independent edges, conditional on having the
same expected node strengths as those in the observed network. The standard null model is clearly inappropriate for signed
networks and bipartite networks, so other null models must be used instead. In the signed case, the standard null model
ignores the potentially important distinction between agreements and disagreements. In the bipartite case, an appropriate
null model must respect the constraint that each edge connects nodes of two different types.

Graphs with signed edges can be used to study social networks with both sympathetic (positive) and antagonistic
(negative) interactions [67]. This is potentially relevant, for example, for investigations of social balance [68]. A recent paper
introduced a generalization of modularity for signed networks and used it to study a network of international alliances and
disputes [32]. In our consideration of signed networks, we include the A− representation of yes–no disagreements between
countries in addition to the A+ network of agreements. Recall that the absence of agreements indicated in A+ might include
unpaired abstentions or yes–no disagreement, but we include only the latter of these in the specification of A− (with such
disagreements encoded as A−

ij > 0 elements), providing an opportunity toweigh their effectsmore heavily. Using the signed
null model developed in Ref. [32], the modularity matrix becomes

Bij =
1

2m+ + 2m−


A+

ij − A−

ij − γ
k+

i k
+

j

2m+
+ λ

k−

i k
−

j

2m−


, (4)

where k±

i =
∑

j A
±

ij are the signed strengths for node i and 2m±
=
∑

i k
±

i =
∑

ij A
±

ij are the corresponding total edgeweights
of the network’s two kinds of edges. By using separate resolution parameters for agreements and disagreements, one can
investigate and separately examine the effects of these two different types of connections on the community structure. In
particular, the resolution parameters separately control the importances of the two types of edges in determining the sizes
of the communities (see, e.g., the Laplacian-dynamics interpretation of this signed null model in Ref. [30]).

The extent to which a signed network is socially balanced is strongly related to its community structure [1,68]. In
particular, if a network is perfectly socially balanced (in the strong form, so that a triad of nodes with positive edges is
considered to be balanced and a triad of nodes with negative edges is considered to be unbalanced [68,69]), then the
communities that one finds for γ = λ = 0 in (4) themselves form a socially balanced partition of the network, as all
antagonistic interactions (i.e., negative edges) occur between pairs of nodes assigned to different communities. That is,
all intra-community edges are non-negative in this extreme scenario. In the presence of incomplete social balance in the
network, the communities that one finds for signed networks seek to appropriately optimize the relative numbers of positive
and negative edges, connecting the ‘‘modern’’ consideration of community detection to the ‘‘classical’’ one of social balance.

To detect communities in each signed bipartite voting matrix V, we need to generalize the bipartite modularity of
Ref. [70] to incorporate both positive and negative edges. A bipartite network consists of two types of nodes – countries
and resolutions – and each edge connects a node of one type to a node of the other. The matrix V encodes connections
between countries and resolutions. After ordering the nodes according to type (with the convention that all countries are
listed before the resolutions), the corresponding modularity matrix B in bipartite form consists of off-diagonal blocks:

B =

[
0 B̃
B̃T 0

]
. (5)

Recalling our definition of V with elements {0, ±1} encoding votes, the non-zero components of B then become

B̃ij = Vij − γ
k+

i d
+

j

2m+
+ λ

k−

i d
−

j

2m−
, (6)

where k±

i and d±

j , respectively, denote the positive and negative degrees (total yes and no votes, respectively) for country
i and for resolution j, and 2m±

=
∑

i k
±

i =
∑

j d
±

j gives the total number of positive [(+) superscript] and negative [(−)
superscript] connections in this network representation [71].

Now that we have described the three network representations of the UNGA roll call that we will consider, we are faced
with the dilemma of setting values for the resolution parameters γ and λ. Given some theoretical justification for expected
or desired group sizes, one might reasonably study the partitions that one obtains for specific values of the resolution
parameters. In the absence of any such additional information, we will instead explore the space of possible resolution
parameter values. In doing so, we will focus on communities that appear robustly across a range of different values.
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Fig. 2. (Color online) (Left) Maximummodularity obtained by partitioning the (unipartite) voting similarity network of each session. For comparison, we
also show the modularity of the partition into G77 and non-G77 countries, revealing the increasing fraction over time (solid curve) of modularity that can
be explained by this division of the network. Observe in particular the sharp increase after the end of the Cold War. (Right) Communities identified in
each UNGA session using the network of voting similarities. We labeled the dominant countries geographically in each session by tracking the identities
of specific countries (e.g., the United Kingdom is typically assigned to the West in every session during the Cold War and to the North group after the Cold
War). We list the countries assigned to the North and South communities in Tables 1 and 2, respectively.

Table 1
39 Countries assigned to the ‘‘North’’ community consistently in Sessions 46–63 (see Fig. 2). These countries are colored orange in Fig. 3.

Albania Estonia Israel Marshall Islands Spain
Armenia Finland Italy Netherlands Sweden
Australia France Japan New Zealand Turkey
Austria Germany Latvia Norway Ukraine
Belgium Greece Liechtenstein Poland United Kingdom
Bulgaria Hungary Lithuania Portugal United States of America
Canada Iceland Luxembourg Romania Western Samoa
Denmark Ireland Malta South Korea

4. Networks of voting agreements

We first consider the weighted, unipartite UNGA networks that we constructed by considering the level of agreement
between countries. We maximize Newman–Girvan modularity, which is given by Eq. (3) with the default resolution
parameter value γ = 1, for each of the UNGA sessions. To provide additional context for our discussion, we remark that
modularity can be used as a measure of polarization among voting parties [21,22].

In Fig. 2, we show that beginning near the 1964 declaration of the Group of 77 (G77), the fraction of the maximum
modularity value that is captured by partitioning on the basis of G77 membership tends to increase over time. In this
figure, we also show the modularity value that we calculated for the two-group G77 partition (G77 members versus non-
members [72]) for each session. Observe in particular a recent sharp rise in modularity in the Post-Cold-War era that was
accompanied by an increase in the fraction of modularity corresponding to the G77 partition. In the right panel of the figure,
we show the sizes of the communities thatwe found by optimizing theNewman–Girvanmodularity in each session. Observe
that we typically find a small number of large communities. Prior to the end of the Cold War, the dominant split appears to
be along an East–West axis, which we identified by tracking specific countries (e.g., by comparing the placement of the UK
and the USSR). In contrast, in the Post-Cold-War sessions, the two-community split appears to be along a ‘‘North–South’’
axis, illustrating the cooperation between developing countries in the dominant North–South division of the UNGA [45,47].
(In these sessions, the UK is typically assigned to the Northern bloc.) In Tables 1 and 2, respectively, we list the countries
that were consistently assigned to the communities labeled ‘‘North’’ and ‘‘South’’ in Sessions 46–63 (1991–2008). In Table 1,
the Marshall Islands is the only member of the G77 [73]. In Table 2, Mexico is the only non-member of the G77 (it left the
organization in 1994). We depict these communities visually in Fig. 3.

Because one has to be careful with modularity’s resolution limit [63], we will examine these observations more carefully
in single-session case studies by incorporating resolution parameters in the appropriate null models described above.
In examining the UNGA community structure over time, we consider three key eras: the early years of the Cold War
(Sessions 1–25; 1946–1970), a transitional period (Sessions 26–45; 1971–1990), and the Post-Cold-War era (Sessions 46–63;
1991–2008). We consider one case study from each era – Sessions 11, 36, and 58 – and start by optimizing modularity using
the nullmodel fromEq. (3) for a large range of values of the resolution parameter γ .We start approximately from the value at
which network begins to split up and endwhenwe obtain a set of communities that consist of individual countries. We seek
regions of resolution parameter values that have identical or very similar community partitions, which in turn suggests that
we have detected robust mesoscopic features of the network [8,9,28,64,74]. The sizes of such regions can also potentially
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Fig. 3. (Color online) Depiction of the ‘‘North’’ community listed in Table 1 (orange) and the ‘‘South’’ community listed in Table 2 (dark red). (For
interpretation of the references to color in this figure legend, the reader is referred to the online version of this article.)

Table 2
84 Countries assigned to the ‘‘South’’ community consistently in Sessions 46–63 (see Fig. 2). These countries are colored dark red in Fig. 3.

Afghanistan Chile Guinea Maldives Qatar Trinidad and Tobago
Algeria China Guyana Mali Rwanda Tunisia
Angola Colombia India Mauritius Saudi Arabia Uganda
Bahrain Comoros Indonesia Mexico Senegal United Arab Emirates
Bangladesh Congo Iran Morocco Sierra Leone Venezuela
Belize Costa Rica Jamaica Mozambique Singapore Vietnam
Benin Côte d’Ivoire Jordan Myanmar Sri Lanka Yemen
Bhutan Cuba Kenya Namibia St. Lucia Zambia
Bolivia Djibouti Kuwait Nepal Sudan Zimbabwe
Botswana Ecuador Laos Nigeria Surinam
Brazil Egypt Lebanon North Korea Swaziland
Brunei El Salvador Lesotho Oman Syria
Burkina Faso Ethiopia Libya Pakistan Tanzania
Cameroon Gabon Madagascar Peru Thailand
Cape Verde Ghana Malaysia Philippines Togo

provide hints about the extent of such robustness. To find meaningful values of γ , we track changes between the numbers
of communities obtained at ‘‘neighboring’’ parameter values and seek large regions (that is, plateaus) in which the network
is partitioned into the same number of communities. (We define ‘‘neighboring’’ parameter values using a granularity 1γ
between the consecutive values of γ that we consider.) We also quantify changes between neighboring partitions using the
Jaccard distance, although other quantities (such as variation of information) can also be used [8,24,75].We show the Jaccard
distance between neighboring values of γ for Session 11 in the top left panel of Fig. 4. When the Jaccard distance between
the partitions obtained at two nearby resolution parameter values is small, then one has obtained a similar partitioning at
those two values. We use such figures to indicate ‘‘robust’’ communities, and we seek similar partitions at nearby resolution
parameter values. (It is important that they need not be the same.) Accordingly, the identification of a ‘‘robust’’ feature
necessarily maintains an element of arbitrariness.

To assist in the visualization of common associations, we sorted the UNGAmember countries using the set of community
assignments in the network partitions that we computed. We color-coded the community assignments of the (sorted)
countries at each resolution parameter value in order to highlight the sizes and similarities of communities that we obtained
for different values of the resolution parameter. In the bottom left panel of Fig. 4, we illustrate the communities that we
obtained for Session 11. There is a large region (0.8 . γ . 1) of two-community partitions that differ only in the placement
of five countries (Finland, Cambodia, Ethiopia, Iraq, and Japan). The persistent reddish orange community in this parameter
value range is the ‘‘East’’ group of countries, and the persistent yellow group of countries is the ‘‘West’’ community.
Importantly, we have not sought to algorithmically identify correspondences between communities that we obtained at
different resolution parameter values, so the similar coloring arises only because of the ordering of the communities after
the sorting of the countries. Increasing the resolution parameter value splits the Western community into several much
smaller communities (including some that consist of individual countries), leaving a small core bloc (see Table 3 and Fig. 5)
of countries that are robustly placed together for values of γ up to and including the plateau observed for γ ∈ (1.353, 1.388).
That is, at a given value of the resolution parameter, these countries have similar colors, but the precise color of this bloc
is in general different for different values of γ . Countries in the core group inside the Western bloc agree more with each
other than they do with the rest of the Western bloc. Meanwhile, the Eastern community splits into two groups, which we
list in Table 3 and show in the map in Fig. 5. There is a group that votes ‘‘no’’ on 43% of the resolutions (and abstains on 10%
of them) and another that abstains on 34% of the resolutions (and votes ‘‘no’’ on 9% of them). The group of countries that
votes ‘‘no’’ also tends to agree less with the West than the countries in the ‘‘abstain’’ group.
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Table 3
Countries in the large robust groups of the Session 11 voting agreement network (highlighted in Fig. 4 using dashed lines). We show these three blocs in
Fig. 5.
Western core community Eastern community

‘‘No’’-voting community Abstaining community
United Kingdom Poland Yugoslavia Morocco
Netherlands Hungary Libya Sudan
Belgium Czechoslovakia Egypt Syria
Luxembourg Albania Lebanon Jordan
France Bulgaria Saudi Arabia Yemen
Portugal Romania Afghanistan India
South Africa Russia Myanmar Sri Lanka
Israel Ukraine Indonesia
Australia Belarus
New Zealand

Table 4
Countries in the two large robust groups of the Session 36 voting agreement network (highlighted in Fig. 4 using dashed lines). We show these countries
in Fig. 6.
Western community Eastern community
USA Canada UK Cuba East Germany
Guatemala Paraguay Belize Poland Hungary
Ireland Netherlands Belgium Czechoslovakia Albania
Luxembourg France Spain Bulgaria Russia
Portugal West Germany Austria Ukraine Belarus
Italy Greece Turkey Seychelles
Sweden Norway Denmark Mongolia
Finland Iceland Malawi Vietnam
Israel New Zealand Australia Laos
Japan Afghanistan

Table 5
Countries in the large robust group of the Session 58 voting agreement network
(highlighted in Fig. 4 using dashed lines). We show these countries in Fig. 7.

North community

United States of America Canada United Kingdom
Ireland Netherlands Belgium
Luxembourg France Monaco
Liechtenstein Switzerland Spain
Andorra Portugal German Federal Republic
Poland Austria Hungary
Czech Republic Slovakia Italy
San Marino Malta Albania
Macedonia Croatia Yugoslavia
Bosnia–Herzegovina Slovenia Greece
Cyprus Bulgaria Moldova
Romania Estonia Latvia
Lithuania Georgia Finland
Sweden Norway Denmark
Iceland Turkey Israel
South Korea Japan Australia
New Zealand Marshall Islands Palau
Federated States of Micronesia

Although the community sizes in Session 36 and Session 58 drop off faster as the resolution parameter value increases
(see, respectively, the center and right panels of Fig. 4) than is the case in Session 11, we again find a dominant two-
community region for both sessions. This region starts when γ is below 0.9 and extends slightly above γ ≈ 1. For Session 36,
we list the countries in the Eastern-bloc andWestern-bloc communities in Table 4 and show them on amap in Fig. 6. Session
36 also has a small plateauwith three communitieswhen γ is just above 1. In Session 58, the dominant two-community split
divides countries intoNorth and South groups (aswe indicated previously for γ = 1), andwe similarly find a small plateau in
which the network is partitioned into three communities for γ just above 1. After these communities split up with a further
increase of γ , we do not find any plateaus of reasonable size that correspond to network partitions with more communities,
and only one group of countries (the North group listed in Table 5 and depicted in Fig. 7) appears to be robust throughout
this range of γ values. As indicated by the dashed lines in Fig. 4, we have not required all countries in such a ‘‘robust’’ group
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Fig. 4. (Color online) Results of community detection in (left) Session 11, (center) Session 36, and (right) Session 58 of the UNGA by optimizing the
modularity in (3) for the network of voting similarities. (Top) Number of communities (Nc ; blue) that we obtained at each value of the resolution parameter
γ and the Jaccard distance (green) between partitions obtained at neighboring values of γ (which differ by 1γ ≈ 0.007, 0.002, and 0.003, respectively,
in Sessions 11, 36, and 58). (Bottom) Community assignments at each value of γ . We sort countries vertically according to their community assignments
for the range of γ values in order to keep countries that are commonly grouped together close to each other in the sorting. We use color to visualize each
community at a given resolution parameter valuewithout explicit identification of correspondence between communities at different resolution parameter
values. (Hence, the color that corresponds to a commonly-grouped community can be different for different values of the resolution parameter.) In Table 3,
we indicate the three sets of countries in Session 11 that we identify as grouped together robustly for the plotted range of resolution parameter values: (1)
theWestern core of countries that are commonly grouped together and an Eastern community containing groups of (2) abstaining countries and (3) ‘‘No’’-
voting countries. In Table 4, we similarly indicate the two groups of countries that we identify as arising robustly in Session 36: (4) aWestern group and (5)
an Eastern group. In Table 5, we identify a robust group of countries in Session 58 as (6) a ‘‘North’’ community. (Note that our visualization repeats some
of the community colors for countries that do not appear near each other in these plots when the number of communities is large; this has no additional
significance.)

Fig. 5. (Color online) Depiction of the community cores for the Session 11 voting agreement network. We list the countries in these cores in Table 3:
Western-bloc core (yellowish orange), Eastern ‘‘abstain’’ group (bright red), and Eastern ‘‘no’’ subgroup (dark red). (The 1958 map data available to us for
plotting was incomplete, so wemade all of our Session 11 maps with 1958 data overlaid on uncolored 2000 map data. This way, the holes in the 1958 map
are filled by current data, and the coloring of countries that we highlight are accurate for the time period.) (For interpretation of the references to color in
this figure legend, the reader is referred to the online version of this article.)

to always appear together. Rather, we have demarcated these groups within the plots according to their preponderance
in the partitions that we considered. Other, less arbitrary, means of identifying robust groups can be used (e.g., one might
require a minimum number of common pairwise assignments), and this would be necessary for investigations of larger
systems.



352 K.T. Macon et al. / Physica A 391 (2012) 343–361

Fig. 6. (Color online) Depiction of the two large robust groups that we identified in the Session 36 voting agreement network. We list the countries in
these groups in Table 4: West (orange) and East (dark red). (For interpretation of the references to color in this figure legend, the reader is referred to the
online version of this article.)

Fig. 7. (Color online) The robust ‘‘North’’ group that we identified in the Session 58 voting agreement network. We list the countries in this group in
Table 5.

5. Networks of voting agreements and disagreements

In this section, we study the signed unipartite networks that we obtain by treating the positive and negative edges
separately. As indicated in Section 3, this yields a null model with two terms and a resolution parameter (γ and λ) for
each of them. Using the network of agreements and disagreements described in Section 2, we sweep over different values
of the two resolution parameters and plot surfaces for the numbers of communities in Fig. 8. In these plots, we have color-
coded each surface by the mean Jaccard distances between each partition and its nearest neighbors in resolution parameter
space. That is, given the square grid of sampled resolution parameter values that we explore, we compare each partition
with its four nearest neighbors.

In this two-dimensional resolution parameter space, one can no longer easily visualize all of the community assignments
at each resolution parameter value. Because we seek robust community assignments, we avoid parameter values near
which the number of communities (indicated by the height in the left panels of Fig. 8) changes rapidly. In order to ensure
similarities in nearby partitions (as it is insufficient to only consider the same numbers of communities), we calculate the
Jaccard distances between the partitions that we obtained at nearest-neighbor points on a square grid in the (γ , λ) plane.
We consider γ , λ ∈ [0, 2] and discretize both parameters using 101 uniformly-spaced points. We have color-coded the
left panels of Fig. 8 at each grid point according to the mean Jaccard distance between that partition and its four nearest
neighbors. We then select points on this grid by hand that yield partitions that persist over a range of resolution parameter
values. For each of our three case studies (Sessions 11, 36, and 58), we show the number of communities and mean Jaccard
distance at the selected points in resolution parameter space. In Fig. 8, we have also tabulated the resolution parameter
values and the partitions that we found at the selected points in parameter space. In agreement with the results in Section 4,
we recover the dominant two-way split in the UNGA that spans a large portion of the parameter space. In the far right
of the figure, we identify groups of countries that are placed together at all of the selected resolution parameter values,
thereby finding some smaller robust groups. Observe in Sessions 11 and 58 (and to a lesser extent in Session 36) that some
communities of moderate and even large size persist robustly even when each of the countries not in those communities is
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Fig. 8. (Color online) Exploration of the space of resolution parameters for the signed unipartite network of countries in (top) Session 11, (middle) Session
36, and (bottom) Session 58 of the UNGA. (Left) Number of communities identified at each pair of resolution parameter values. We have color-coded these
plots according to the mean Jaccard distance between a partition and its four nearest neighbors in resolution parameter space. We consider γ , λ ∈ [0, 2]
and discretize both parameters using 101 uniformly-spaced points. (Center) Resolution parameter values (selected by hand) in different robust regions of
the resolution parameter space. (Right) Color-coded visualization of the communities obtained at each indexed point in resolution parameter space. The
column at the far right color-codes the blocks of countries that are grouped together robustly for all of the indexed partitions. (As in prior figures, there is
no correspondence between the colors that we used for different resolution parameter values.)

assigned to its own individual community or to some tiny community.We identify the countries in these robust communities
for Session 11, 36, and 58 in Tables 6–8, and we show them on maps in Figs. 9–11.

6. Bipartite voting networks with positive and negative edges

In this section, we use the signed bipartite modularity from Section 3 to study networks of yes and no votes, which we
represent using positive and negative edges between UNGA countries and the resolutions on which they voted. (We do not
include abstentions in this representation.) As before, we seek robust communities by exploring the two-dimensional space
of resolution parameter values, examining the numbers of communities at neighboring points in the space, and calculating
the mean Jaccard distances between the partitions obtained at nearest-neighbor resolution parameter values on a uniform
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Fig. 9. (Color online) Depiction of the three robust groups of countries in Table 6 for the Session 11 network of voting agreements and disagreements. We
show group 1 in yellowish orange, group 2 in red, and group 3 in dark red. (For interpretation of the references to color in this figure legend, the reader is
referred to the online version of this article.)

Fig. 10. (Color online) Depiction of the two robust groups of countries in Table 7 for the Session 36 network of voting agreements and disagreements.
We show group 1 in dark red and group 2 in orange. (For interpretation of the references to color in this figure legend, the reader is referred to the online
version of this article.)

Fig. 11. (Color online) Depiction of the robust group of countries in Table 8 for the Session 58 network of voting agreements and disagreements.

grid with γ , λ ∈ [0, 2]. We calculate the Jaccard distances that we used for these partitions with respect to the full bipartite
networks (rather than restricting to the partitions of countries).

We show the results of our numerical exploration of the signed bipartite networks in Fig. 12. Amajor difference between
our results for these networks and those reported in the previous sections is that community detection on the bipartite
networks also includes UNGA resolutions in the groups with the countries that predominantly supported such sets of
resolutions.We find that the UNGA sessions in each of our three case studies include numerous resolution parameter values
(indicated in Fig. 12) in which there are large, robust communities (in agreement with our observations using the other
network formulations). Session 11 contains resolution parameter values in which one of these two robust communities is
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Table 6
Countries in the robust groups of the Session 11 network of
voting agreements and disagreements (see Figs. 8 and 9).

1 2 3

Yugoslavia United Kingdom Poland
Morocco Netherlands Hungary
Libya Belgium Czechoslovakia
Sudan Luxembourg Albania
Egypt France Bulgaria
Syria Portugal Romania
Jordan South Africa Russia
Saudi Arabia Israel Ukraine
Yemen Australia Belarus
Afghanistan New Zealand
India
Indonesia

Table 7
Countries in the robust groups of the Session 36 network of voting agreements and
disagreements (see Figs. 8 and 10).
1 2
United States of America German Federal Republic German Democratic Republic
Canada Italy Poland
United Kingdom Norway Hungary
Ireland Denmark Czechoslovakia
Netherlands Iceland Bulgaria
Belgium Israel Russia
Luxembourg Japan Ukraine
France Australia Belarus
Portugal New Zealand Mongolia

Table 8
Countries appearing in the single robust group of the Session 58 network of voting agreements and disagreements (see Figs. 8 and 11).

Canada Spain San Marino Bulgaria Denmark
United Kingdom Andorra Malta Moldova Iceland
Ireland Portugal Albania Romania Turkey
Netherlands Germany Macedonia Estonia South Korea
Belgium Poland Croatia Latvia Japan
Luxembourg Austria Yugoslavia Lithuania Australia
France Hungary Bosnia–Herzegovina Georgia New Zealand
Monaco Czech Republic Slovenia Finland
Liechtenstein Slovakia Greece Sweden
Switzerland Italy Cyprus Norway

much larger than the other one. Sessions 36 and 58 both contain regions in which there is one dominant community that
contains almost every country. In contrast to the other network representations, we note that there do not appear to be any
robust plateau regions for γ > 1. This feature is illustrated in Fig. 12 and should be compared to the results we showed
in Figs. 4 and 8. Each of the robust partitions indicated in Fig. 12 consists of two large groups, and only a few countries
are assigned to other groups. Although the network partitions in Fig. 12 differ from one another for different resolution
parameter values, many of the community assignments in these partitions nevertheless remain the same for many points
in resolution parameter space. In the far right of the figure, we identify groups of countries and resolutions that are placed
together at all of the indexed resolution parameter values in Fig. 12. We list the countries in the larger such groups for
Sessions 11, 36, and 58 in Tables 9, 10 and 11, respectively. We show these same groups of countries onmaps in Figs. 13–15,
respectively.

7. Conclusions and discussion

We have studied community structure in networks formed by voting on resolutions in individual sessions of the United
Nations General Assembly. The UNGA voting record provides a fascinating example of a very general problem: How can one
use network methods such as community detection to examine data such as voting records? Accordingly, our focus is not
on attempting a sociological or political study of the UNGA but rather on using it as an interesting and potentially valuable
example for which we consider different network representations that are each reasonable and subsequently compare our
results fromeachof them. Todo this,we constructednetworks from theUNGAvoting records of sixty-three separate sessions
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Fig. 12. (Color online) Exploration of the resolution parameter space for the signed bipartite network of countries and resolutions in (top) Session 11,
(middle) Session 36, and (bottom) Session 58 of the UNGA. (Left) Number of communities that we identified for each value of the pair of resolution
parameters. We have color-coded these plots according to the mean Jaccard distance (which we computed for the full bipartite network) between the
partition and its four nearest neighbors in resolution parameter space.We again consider γ , λ ∈ [0, 2] and discretize both parameters using 101 uniformly-
spaced points. (Center) Resolution parameter values (selected by hand) for different robust regions in the resolution parameter space. (Right) Color-coded
visualization of the communities that we obtained at each indexed point in resolution parameter space. The far right column color-codes the blocks of
countries and resolutions that are grouped together robustly for all of the indexed partitions. (As in prior figures, there is no correspondence between the
colors that we used for different resolution parameter values.)

between 1946 and 2008 in three different ways: (1) by considering voting similarities as weighted unipartite networks by
counting agreements, (2) by considering voting similarities as weighted unipartite networks in a manner that separately
counts agreements and disagreements, and (3) as signed bipartite networks inwhich countries are connected to resolutions.
For each formulation, we detected communities by optimizing network modularity using an appropriate null model. In
optimizing a quality function such asmodularity, the consideration ofmultiple resolution parameters enables us to examine
different ‘‘background’’ levels of agreement between nations.

In Fig. 16, we compare the community detection results that we obtained by partitioning the countries using the three
different network representations on each of our ‘‘case-study’’ sessions of the UNGA (Sessions 11, 36, and 58). We consider
modularity-optimizing partitions of the network of agreements at two different values of the resolution parameter (γ1 = 1
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Fig. 13. (Color online) Depiction of the three groups in the Session 11 signed bipartite voting network. We list these countries in Table 9 and show group
1 in dark red, group 2 in red, and group 3 in orange. (For interpretation of the references to color in this figure legend, the reader is referred to the online
version of this article.)

Fig. 14. (Color online) Depiction of the four groups in the Session 36 signed bipartite voting network. We list these countries in Table 10 and show group
1 in dark red, group 2 in red, group 3 in yellowish orange, and group 4 in yellow. (For interpretation of the references to color in this figure legend, the
reader is referred to the online version of this article.)

Fig. 15. (Color online) Depiction of the two groups of the Session 58 signed bipartite voting network. We list these countries in Table 11 and show group
1 in orange and group 2 in dark red. (For interpretation of the references to color in this figure legend, the reader is referred to the online version of this
article.)

and γ2 > 1; see the figure caption for the values of γ2 for each session) and illustrate the robust groups that we identified
for the indexed points in the resolution parameter spaces of the signed unipartite network representation and the signed
bipartite network representation. (For the latter, we only show the groups of countries, but there are resolutions that go
with them.) For each network representation, we find a dominant voting pattern that includes two large communities
corresponding to majority and minority groups. We observed this feature for each of the three UNGA sessions in our case
studies. This split appears most clearly for the partitions that we obtained using modularity optimization of the agreement
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Table 9
Countries in the three largest robust groups of the Session 11 bipartite network (see Figs. 12 and 13). We grouped resolutions (not listed) with these
countries by detecting communities in the signed bipartite network of countries and resolutions.

1 2 3

Poland Finland United States of America Bolivia Sweden
Hungary Ethiopia Canada Paraguay Norway
Czechoslovakia Morocco Cuba Chile Denmark
Albania Tunisia Haiti Argentina Iceland
Bulgaria Libya Dominican Republic Uruguay Liberia
Romania Lebanon Mexico United Kingdom South Africa
Russia Jordan Guatemala Ireland Iran
Ukraine Saudi Arabia Honduras Netherlands Turkey
Belarus Afghanistan El Salvador Belgium Israel

India Nicaragua Luxembourg Taiwan
Myanmar Costa Rica France Pakistan
Sri Lanka Panama Spain Thailand
Nepal Colombia Portugal Laos
Cambodia Venezuela Austria Philippines
Indonesia Ecuador Italy Australia

Peru Greece New Zealand
Brazil

Table 10
Countries in the four largest robust groups of the Session 36 bipartite network (see Figs. 12 and 14; resolutions not listed).

1 2 3 4

Guatemala Canada Bahamas Cuba Guinea-Bissau Algeria
Spain Ireland Dominican Republic Haiti Gambia Libya
Austria Netherlands Jamaica Trinidad and Tobago Mali Sudan
Greece Belgium Belize Barbados Senegal Iran
Finland Luxembourg Honduras Grenada Benin Iraq
Sweden Portugal Costa Rica St. Lucia Mauritania Syria
Malawi Italy Colombia St. Vincent and the Grenadines Guinea Lebanon

Norway Bolivia Antiqua and Barbuda Burkina Faso Jordan
Denmark Paraguay Mexico Sierra Leone Saudi Arabia
Iceland Chile Nicaragua Ghana Arab Republic of Yemen
Japan Uruguay Panama Togo Peoples Republic of Yemen
Australia Equatorial Guinea Venezuela Cameroon Kuwait
New Zealand Côte d’Ivoire Guyana Nigeria Bahrain

Liberia Surinam Chad Qatar
Congo Ecuador Congo United Arab Emirates
Swaziland Peru Uganda Oman
Morocco Brazil Kenya Afghanistan
Turkey German Democratic Republic Tanzania Mongolia
Myanmar Poland Burundi India
Nepal Hungary Rwanda Bhutan
Cambodia Czechoslovakia Somalia Pakistan
Singapore Malta Djibouti Bangladesh
Papua New Guinea Albania Ethiopia Sri Lanka
Solomon Islands Yugoslavia Angola Maldives
Fiji Cyprus Mozambique Thailand
Western Samoa Bulgaria Zambia Laos

Romania Zimbabwe Vietnam
Russia Botswana Malaysia
Ukraine Madagascar Philippines
Belarus Comoros Indonesia
Cape Verde Mauritius
Sao Tome & Principe Seychelles

networks at the standard resolution parameter value γ1 = 1 (first column) and those that we obtained using modularity
optimization of the bipartite networks (fourth column). Additionally, one can see (by comparing the first column to the
second column) small and medium-size cores of groups in the networks of agreements that persist for γ2 > 1. For all three
case-study sessions, we find such core groups in the second column that arise from each of the large communities in the first
column. In each of the sessions, large portions of these core communities remain intact when considering networks of both
agreements and disagreements (third column). These observations appear to be consistent with the expected East–West
split of the Cold War and the North–South division of recent sessions that has been described by Lloyd using qualitative
methods [45].
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Table 11
Countries in the two large robust groups of the Session 58 bipartite network (see Figs. 12 and 15; resolutions not listed).
1 2
Canada Greece Bahamas Senegal Lesotho Myanmar
St. Vincent & the Grenadines Cyprus Cuba Benin Botswana Sri Lanka
St. Kitts-Nevis Bulgaria Haiti Mauritania Swaziland Maldives
Guatemala Moldova Dominican Republic Niger Madagascar Nepal
Argentina Romania Jamaica Côte d’Ivoire Comoros Thailand
United Kingdom Russia Trinidad and Tobago Guinea Mauritius Cambodia
Ireland Estonia Barbados Burkina Faso Morocco Laos
Netherlands Latvia Dominica Sierra Leone Algeria Vietnam
Belgium Lithuania Grenada Ghana Tunisia Malaysia
Luxembourg Ukraine St. Lucia Togo Libya Singapore
France Armenia Antiqua and Barbuda Cameroon Sudan Brunei
Monaco Georgia Mexico Nigeria Iran Philippines
Liechtenstein Finland Belize Gabon Egypt Indonesia
Switzerland Sweden Honduras Central African Rep. Syria Papua New Guinea
Spain Norway El Salvador Congo Lebanon Vanuatu
Andorra Denmark Nicaragua Dem. Rep. of Congo Jordan Fiji
Portugal Iceland Costa Rica Uganda Saudi Arabia Nauru
German Fed. Rep. Sao Tome & Principe Panama Kenya Arab Rep. of Yemen Tonga
Poland Equatorial Guinea Colombia Tanzania Kuwait
Austria Chad Venezuela Burundi Bahrain
Hungary Turkey Guyana Rwanda Qatar
Czech Republic Tajikistan Surinam Somalia United Arab Emirates
Slovakia Uzbekistan Ecuador Djibouti Oman
Italy Kazakhstan Brazil Ethiopia Afghanistan
San Marino South Korea Bolivia Eritrea Turkmenistan
Malta Japan Paraguay Angola China
Albania Australia Belarus Mozambique Mongolia
Macedonia New Zealand Azerbaijan Zambia North Korea
Croatia Solomon Islands Cape Verde Zimbabwe India
Yugoslavia Kiribati Guinea-Bissau Malawi Bhutan
Bosnia–Herzegovina Tuvalu Gambia South Africa Pakistan
Slovenia Western Samoa Mali Namibia Bangladesh

In the present paper, we chose to examine the robustness of network partitions with respect to perturbations of
resolution parameters. Because we had two such parameters, this entailed extensive numerical calculation, but it does not
exhaust the types of partition robustness that one might want to consider. For example, one could perturb the networks
themselves by randomizing links and then study the stability of partitions with respect to such perturbations [76]. Similarly,
one could usemultiple runs of a single community detectionmethod (e.g., by randomizing the order of nodes in the Louvain
method [60]), as this would provide an ensemble of slightly different results that could be used to measure partition
robustness [77]. Alternatively, one could use multiple such runs or use multiple quality-optimization methods to quantify
statistics of the nearly-optimal landscape of partitions (as opposed to selecting the highest-quality partition obtained using
multiple computational heuristics, which is what we have done).

In principle, the bipartite network representation would seem to be better than our other representations for
investigations of voting, as it contains the complete record of votes cast on resolutions. However, we have observed in our
comparison of the communities that we identified that the predominant groupings of countries also appear prominently
when employing the other network representations. Moreover, in our examples, community detection on the bipartite
voting network tends to only return large groups – and few partitions seem to be robust at higher resolution parameter
values – whereas the other network representations uncovered a more diverse set of robust groups, including small groups
of countries, which complements the information contained in the large-group partitions. These differences illustrate the
importance of considering multiple network representations in the investigation of voting networks and, more generally,
that it is crucial to be cognizant of multiple possible network representations when applying network methods.

In this paper, we considered individual UNGA sessions as static networks and investigated how their community
structure changes over time. This investigation serves as a crucial preparatory step for employing our new method of
multislice modularity optimization [30], which would allow one to examine community structure in this time-dependent
data without examining different sessions as separate, static objects. The present investigation – whose goal was the
comparison of different ways to turn voting data into network representations – is a necessary precursor for themeaningful
application of techniques such asmultislice community detection, as it allows one to carefully probe the data representation
and resolution parameter values to be used in such calculations in the future.
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in the network of voting similarities; (2) the partition that we obtained by modularity optimization of the same network at resolution parameter values
γ ≈ 1.360 (Session 11), γ ≈ 1.180 (Session 36), and γ ≈ 1.259 (Session 58), where we note that each of these values is near the respective right edges of
the ranges plotted in Fig. 4; (3) the robust groups that we identified at the indexed points in resolution parameter space in the signed unipartite network
of voting agreements and disagreements (Fig. 8); and (4) the robust groups of countries that we identified at the indexed points in resolution parameter
space in the signed bipartite network of countries and votes (see Fig. 12).

Undergraduate Research. PJM & KTM were also funded by the NSF (DMS-0645369). MAP acknowledges a research award
(#220020177) from the James S. McDonnell Foundation. The map visualizations in this article were generated using the
CShapes package in R [79].

References
[1] S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications, Cambridge University Press, Cambridge, UK, 1994.
[2] S.H. Strogatz, Nature 410 (2001) 268.



K.T. Macon et al. / Physica A 391 (2012) 343–361 361

[3] M.E.J. Newman, SIAM Review 45 (2003) 167.
[4] M.E.J. Newman, Networks: An Introduction, Oxford University Press, Oxford, UK, 2010.
[5] R. Albert, A.-L. Barabási, Reviews of Modern Physics 74 (2002) 47.
[6] S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Reviews of Modern Physics 80 (2008) 1275.
[7] G. Caldarelli, Scale-Free Networks: Complex Webs in Nature and Technology, Oxford University Press, Oxford, UK, 2007.
[8] S. Fortunato, Physics Reports 486 (2010) 75.
[9] M.A. Porter, J.-P. Onnela, P.J. Mucha, Notices of the American Mathematical Society 56 (2009) 1082.

[10] S.E. Schaeffer, Computer Science Review 1 (2007) 27.
[11] J. Moody, D.R. White, American Sociological Review 68 (2003) 103.
[12] R. Guimerà, L.A.N. Amaral, Nature 433 (2005) 895.
[13] A.C.F. Lewis, N.S. Jones, M.A. Porter, C.M. Deane, BMC Systems Biology 4 (2010) 100.
[14] A. Lancichinetti, S. Fortunato, Physical Review E 80 (2010) 056117.
[15] L. Danon, A. Diaz-Guilera, J. Duch, A. Arenas, Journal of Statistical Mechanics (2005) P09008.
[16] M. Girvan, M.E.J. Newman, Proceedings of the National Academy of Sciences 99 (2002) 7821.
[17] T. Callaghan, P.J. Mucha, M.A. Porter, American Mathematical Monthly 114 (2007) 761.
[18] M.A. Porter, P.J. Mucha, M.E.J. Newman, C.M. Warmbrand, Proceedings of the National Academy of Sciences 102 (2005) 7057.
[19] M.A. Porter, P.J. Mucha, M.E.J. Newman, A.J. Friend, Physica A 386 (2007) 414.
[20] M.A. Porter, A.J. Friend, P.J. Mucha, M.E.J. Newman, Chaos 16 (2006) 041106.
[21] Y. Zhang, A.J. Friend, A.L. Traud, M.A. Porter, J.H. Fowler, P.J. Mucha, Physica A 387 (2008) 1705.
[22] A.S. Waugh, L. Pei, J.H. Fowler, P.J. Mucha, M.A. Porter, 2011. arXiv:0907.3509.
[23] M.C. González, H.J. Herrmann, J. Kertész, T. Vicsek, Physica A 379 (2007) 307.
[24] A.L. Traud, E.D. Kelsic, P.J. Mucha, M.A. Porter, SIAM Review 53 (2011) 526.
[25] A.L. Traud, P.J. Mucha, M.A. Porter, 2011. arXiv:1102.2166.
[26] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész, A.-L. Barabási, Proceedings of the National Academy of Sciences 104 (2007)

7332.
[27] G. Palla, A.-L. Barabási, T. Vicsek, Nature 446 (2007) 664.
[28] D.J. Fenn, M.A. Porter, M. McDonald, S. Williams, N.F. Johnson, N.S. Jones, Chaos 19 (2009) 033119.
[29] D.J. Fenn, M.A. Porter, P.J. Mucha, M. McDonald, S. Williams, N.F. Johnson, N.S. Jones, 2010. arXiv:0905.4912.
[30] P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.-P. Onnela, Science 328 (2010) 876.
[31] S. Gómez, P. Jensen, A. Arenas, Physical Review E 80 (2009) 016114.
[32] V.A. Traag, J. Bruggeman, Physical Review E 80 (2009) 036115.
[33] A. Lijphart, American Political Science Review 57 (1963) 902.
[34] K.T. Poole, H. Rosenthal, Congress: A Political-Economic History of Roll Call Voting, Oxford University Press, Oxford, UK, 1997.
[35] G. Gan, C. Ma, J. Wu, Data Clustering: Theory, Algorithms, and Applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2007.
[36] E.M. Hafner-Burton, M. Kahler, A.H. Montgomery, International Organizations 63 (2009) 559.
[37] Z. Maoz, Journal of Peace Research 43 (2006) 391.
[38] Z. Maoz, L.G. Terris, R.D. Kuperman, I. Talmud, Journal of Politics 69 (2007) 100.
[39] Z. Maoz, The Evolution, Structure, and Impact of International Networks, 1816–2001, Cambridge University Press, Cambridge, UK, 2011.
[40] J. Pevehouse, T. Nordstrom, K. Warnke, Conflict Management and Peace Science 21 (2004) 101.
[41] P. Diehl, 2009. Available at: http://www.correlatesofwar.org/.
[42] S.J. Cranmer, R.M. Siverson, Journal of Politics 70 (2008) 794.
[43] E. Voeten, International Organizations (2000) 185.
[44] H. Riss, 2010. http://voteworld.berkeley.edu/.
[45] P. Lloyd, Mapping the world order: A reassessment of Huntington’s Clash of Civilizations thesis, 2008 (unpublished).
[46] United Nations, 2009. Available at: http://www.un.org/ga/.
[47] B.M. Russet, American Political Science Review 60 (1966) 327.
[48] J.H. Fowler, Social Networks 28 (2006) 456.
[49] J.H. Fowler, Political Analysis 14 (2006) 454.
[50] E. Gartzke, 2009. Available at: http://dss.ucsd.edu/~egartzke.
[51] S. Signorino, J. Ritter, International Studies Quarterly 43 (1999) 115.
[52] K. Sweeney, O.M.G. Keshk, Conflict Management and Peace Science 22 (2009) 165.
[53] J. Cohen, Educational and Psychological Measurement 20 (1960) 37.
[54] T. Heimo, J.S. Kumpula, K. Kaski, J. Saramäki, Journal of Statistical Physics (2008) P08007.
[55] M.E.J. Newman, M. Girvan, in: R. Pastor-Satorras, J. Rubi, A. Diaz-Guilera (Eds.), Statistical Mechanics of Complex Networks, Springer-Verlag, Berlin,

Germany, 2003.
[56] M.E.J. Newman, M. Girvan, Physical Review E 69 (2004) 026113.
[57] M.E.J. Newman, Physical Review E 74 (2006) 036104.
[58] M.E.J. Newman, Proceedings of the National Academy of Sciences 103 (2006) 8577.
[59] T. Richardson, P.J. Mucha, M.A. Porter, Physical Review E 80 (2009) 036111.
[60] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Journal of Statistical Mechanics (2008) P10008.
[61] B.W. Kernighan, S. Lin, The Bell System Technical Journal 49 (1970) 291.
[62] B.H. Good, Y.-A. de Montjoye, A. Clauset, Physical Review E 81 (2010) 046106.
[63] S. Fortunato, M. Barthélemy, Proceedings of the National Academy of Sciences 104 (2007) 36.
[64] J. Reichardt, S. Bornholdt, Physical Review E 74 (2006) 016110.
[65] U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski, D. Wagner, IEEE Transactions on Knowledge and Data Engineering 20 (2008)

172.
[66] The use of resolution parameters to help identify communities that persist across a range of values is very useful for small networks such as the

UNGA resolution networks but can be very problematic for larger systems because of the presence of numerous near-degeneracies in the modularity
landscape [62], so the identification of appropriate resolution parameter values might be addressed statistically in such cases. See Ref. [13] for an
illustration of this using protein-protein interaction networks.

[67] P. Bonacich, P. Lloyd, Social Networks 26 (2004) 331.
[68] M. Szell, R. Lambiotte, S. Thurner, Proceedings of the National Academy of Sciences 107 (2010) 13636.
[69] D. Cartwright, F. Harary, The Psychological Review 63 (1956) 277.
[70] M.J. Barber, Physical Review E 76 (2007) 066102.
[71] For clarity, we emphasize that we have repeated notation in the equations that define the modularity matrices corresponding to each network

representation. Thismeans that we have included symbols with different definitions in the different representations (e.g.,m+ , k+

i , and Bij). The correct
interpretation of the notation within each modularity-matrix definition is self-contained in the appropriate paragraphs of the above discussion.

[72] We identified G77-member countries using current G77 membership status. We did not take into account changes in membership over time.
[73] The Group of 77. 2009. Available at: http://www.g77.org/doc/members.html.
[74] J.-P. Onnela, D.J. Fenn, S. Reid, M.A. Porter, P.J. Mucha, M.D. Fricker, N.S. Jones, 2010. arXiv:1006.5731.
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