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There has been a great deal of effort to try to model social influence—including the spread of

behavior, norms, and ideas—on networks. Most models of social influence tend to assume that

individuals react to changes in the states of their neighbors without any time delay, but this is often

not true in social contexts, where (for various reasons) different agents can have different response

times. To examine such situations, we introduce the idea of a timer into threshold models of social

influence. The presence of timers on nodes delays adoptions—i.e., changes of state—by the agents,

which in turn delays the adoptions of their neighbors. With a homogeneously-distributed timer, in

which all nodes have the same amount of delay, the adoption order of nodes remains the same.

However, heterogeneously-distributed timers can change the adoption order of nodes and hence the

“adoption paths” through which state changes spread in a network. Using a threshold model of

social contagions, we illustrate that heterogeneous timers can either accelerate or decelerate the

spread of adoptions compared to an analogous situation with homogeneous timers, and we

investigate the relationship of such acceleration or deceleration with respect to the timer

distribution and network structure. We derive an analytical approximation for the temporal

evolution of the fraction of adopters by modifying a pair approximation for the Watts threshold

model, and we find good agreement with numerical simulations. We also examine our new timer

model on networks constructed from empirical data. Published by AIP Publishing.
https://doi.org/10.1063/1.4990038

Mathematical modeling of social contagions is a useful

framework for studying the spread of phenomena such as

ideas, memes, misinformation, and “alternative facts” on

networks.1–3 In most models, including classical threshold

models
4–6

and their generalizations, the rules for updat-

ing node states depend only on the states of the nodes’

nearest neighbors. We introduce a temporal element into

such update rules by incorporating a timer into our

spreading condition to model the tendency of individuals

to wait for some amount of time before they adopt a

behavior. This idea is relevant for numerous models for

social contagions (and other spreading processes), but for

concreteness, we incorporate timers into the popular

Watts threshold model (WTM)4,5 of social influence. We

investigate the dynamics of the WTM with timers for

both homogeneously-distributed and heterogeneously-

distributed timers. We derive a pair approximation that

gives good agreement with numerical simulations for the

temporal evolution of adoptions.

I. INTRODUCTION

Over the decades, and especially recently amidst the surge

in data availability and richness, it has become increasingly

popular to take quantitative approaches when studying socio-

logical questions.7–11 Modeling efforts have drawn from mathe-

matical, statistical, and computational frameworks;12 and the

study of mechanistic models that incorporate data in a meaning-

ful way (see Ref. 13 for an example of data-driven mechanistic

modeling) can give insights into both existing observations and

the forecasting of future dynamics. Indeed, there have been

numerous studies of the spread of opinions, actions, memes,

information, misinformation, “alternative facts,” and other phe-

nomena in populations in disciplines such as sociology, eco-

nomics, computer science, physics, and many others.2,3,14–17

By analogy with the spread of infectious diseases in a popula-

tion, spreading phenomena—including the spread of defaults of

banks, norms in populations, and products or new practices in

populations—are often modeled as contagions on a network.

To distinguish between different mechanisms in social and bio-

logical contagions, the former are often construed as examples

of “complex contagions,” and the latter are often construed as

examples of “simple contagions.”14,18–22

The quantitative study of spreading phenomena in social

networks has a long history.4,23–27 In recent years, studies of

social influence have tended to focus on large social and/or

communication networks; they have taken advantage of the

increased availability of microblogging data sets (e.g., using

data from Twitter) with relational information that enables one

to incorporate network effects into models.28,29 In studying

social influence, one often explores what conditions yield cas-
cades,30 in which a small seed of activity leads to a large

change in a network. In the study of spreading models, a com-

mon way to quantify cascades is to examine when an infinitesi-

mally small seed fraction of adopted nodes generates a

nonvanishing mean cascade size (of adopted nodes) as the total

number N of nodes in a network becomes infinite.3,31 In practi-

cal applications with empirical data, one often measures
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cascade sizes in other ways (such as by calculating how long it

takes for a given fraction of the nodes in a network to adopt).

See the discussion of cascade conditions in Ref. 3.

A particularly popular framework for studying the spread

of behavior in social networks are threshold models, in which

nodes update their states if the amount of peer pressure from

their neighboring nodes (usually just nearest neighbors)

matches or exceeds some personal threshold. The simplest

such model is the Watts threshold model (WTM),5 which uses

a linear update rule that is very similar32 to the one introduced

by Granovetter27 and which was previously examined on net-

works by Valente.4,33 (It is also related to bootstrap percola-

tion.34) The WTM uses a “threshold” to represent the latent

tendency of an individual to adopt an innovation (or become

infected, if one wants to use more biological terminology)

when at least some fraction of its neighbors has adopted the

innovation.6 Threshold models of adoption were first studied

by sociologists, and the notion of a threshold incorporates a

sociological idea27 that articulates that people exhibit inertia

in adopting innovations as a way to reduce cost in making

decisions. The WTM is appealing to study in part because of

its mathematical tractability3,35 and in part because it incorpo-

rates simple notions of peer pressure, social reinforcement

(because multiple neighbors having adopted an idea increases

the peer pressure for a node to adopt), and personal resistance

to peer pressure.36 It thereby provides a simple model of

social influence in a network.

The WTM and its generalizations have been studied from

many perspectives. Such research includes a considerable

amount of work—both analytical and numerical—on WTM

dynamics on random networks with various characteristics,

including local clustering,37–39 community structure,31

degree–degree correlations,40 and communities with intercom-

munity correlations.41 The WTM has also been generalized to

dynamics on temporal networks42 and multiplex net-

works.43,44 In the study of networks constructed from empiri-

cal data, the WTM has been used to examine phenomena such

as protest recruitment28 and adoption of technology.4

There are also many variants of the WTM that caricature

adoption behavior in different ways. These variants include

thresholds that rely on the total number of neighbors,45 a

multi-stage threshold model,46 on–off thresholds,47 threshold

models with memory,48–50 and a threshold model that incor-

porates synergistic effects into the rule for updating node

states.51 Different variants of the WTM have adoption rules

that codify behavioral latency (i.e., a delay before adopting a

behavior) in different ways, and different adoption rules can

generate distinct patterns of temporal growth of the fraction

of adopters.28,52,53

In the present paper, we incorporate response times into

a threshold model. Even if a threshold is met or exceeded,

there is often a delay until a behavior is adopted. There are

many possible reasons why somebody may wait before

adopting an idea, buying a product, etc. Possibilities include

unawareness of an innovation, awareness but not yet decid-

ing to adopt something due to personal inertia or other fac-

tors, a “decision” to adopt something but laziness before

changing behavior,54 and so on. In this paper, we introduce a

timer to model the tendency of individuals to wait for some

amount of time between deciding to adopt a behavior and

actually adopting it, and we investigate how the incorpora-

tion of timers (especially ones that are heterogeneous in a

population) changes the qualitative dynamics of the WTM.

The rest of our paper is organized as follows. In Sec. II,

we generalize the WTM so that nodes have both an associ-

ated adoption threshold and an associated timer. We illus-

trate the effects of incorporating timers on small networks in

Sec. III and on large networks in Sec. IV. In Sec. V, we use a

pair approximation to analyze the temporal evolution of

adoptions in the WTM with timers. In Sec. VI, we examine

“adoption paths” for our model on large networks. We con-

clude in Sec. VII and include further discussions and calcula-

tions in appendices.

II. TIMER MODELS

According to the Oxford English Dictionary, a “timer” is

an automatic mechanism for activating an object at a preset

time.55 We apply this concept to a discrete-stage social-influ-

ence model on a network by defining a “timer model” as a

model in which a node adopts an innovation after a preset

number of discrete time steps, where a countdown starts after

some other condition (e.g., the peer pressure on the node

matching or exceeding the node’s stubbornness threshold) has

been met. In a timer model, each node in a network has an

associated timer that is drawn from some probability distribu-

tion. Once the timer of a node is “triggered” (e.g., when the

node meets some adoption condition), its counter starts count-

ing down to 0 the next time the node is updated, and the node

changes its state when its timer hits 0. We use a discrete-time

setting, so each timer starts decrementing one time unit after

all other adoption conditions are satisfied. For example, if

node vi’s timer svi
2 Z�0 is triggered at time t0vi

, it changes its

state at time tvi
¼ t0vi

þ svi
þ 1, as that is when its timer count-

down reaches 0.

If there is no adoption condition other than a timer-

adoption condition, the timers of all nodes are triggered at

time step t¼ 0 (so they start decrementing at t¼ 1), and the

adoption process terminates when the largest timer hits 0.

Therefore, the timer of a node is equal to the time of adoption

of the node, and the cumulative distribution function of the

timer distribution describes the adoption process; the network

structure plays no role in this case. Such a naive timer model

already illustrates Everett Rogers’s ideas about the spread of

innovations,1,56 in which different adopter categories (innova-

tors, early adopters, early majority, late majority, and lag-

gards) are determined only by their different adoption times.

We are interested in incorporating the idea of timers

(especially heterogeneous ones) into models of spreading.

For concreteness, we use the WTM.

A. WTM with timers

One can add a timing mechanism to any existing social-

influence model in which nodes adopt an innovation based

on the states of other nodes in a network. Let us consider

what happens if we add such a mechanism to the WTM. The

WTM is a binary-state model,5,35 so a node can be in state

s 2 f0; 1g. The WTM has monotonic dynamics, as a node’s
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state can change from 0 to 1, but any node that attains state 1

remains at that state forever. When a node changes its state

from 0 to 1, we say that it “adopts” some behavior or idea.

The adoption condition of a node in the WTM is that at least a

fraction /vi
of its neighbors have previously adopted the

behavior. The parameter /vi
is the “threshold” for node vi, and

the condition that at least this fraction of vi’s neighbors have

adopted is the threshold-adoption condition. In the WTM with

timers, a node vi must meet its threshold-adoption condition as

well as its timer-adoption condition to adopt a behavior: the

fraction of adopted neighbors of node vi must be at least its

threshold /vi
, and then its timer svi

must hit 0. Update rules

for nodes can be either synchronous or asynchronous.3 In our

study, we use synchronous updating, in which all nodes are

updated simultaneously during each discrete time step.

B. Adoption paths

We study the WTM with timers on undirected,

unweighted networks; and we trace what we call adoption
paths, which are acyclic directed paths in a network through

which an adoption is transmitted (see Fig. 1). A directed path

in a network is a sequence ðv1; v2;…; vnÞ of nodes in which

all nodes are distinct, and for i 2 f1;…; n� 1g, node vi is

adjacent to node viþ1 via an edge from vi. The length l ¼
n� 1 of a path is the number of edges that comprise the

path. In an adoption path, node vi is adjacent to node viþ1 if

and only if the adoption of vi triggers the timer sviþ1
of viþ1.

We call v1 the “root” of the adoption path, as it initiates the

spread of adoptions.57 The time t0vi
at which the timer of a

node vi is triggered is the sum of the timers of all preceding

nodes in the adoption path plus the number of synchronous

time steps to trigger the timers of the preceding nodes:

t0vi
¼
Xi�1

j¼1

svj
þ i� 1: (1)

In Sec. VI, we use the unidirectional property of adoption

paths to scrutinize how adoptions spread on large networks

for the WTM with timers.

We examine the adoption paths in an adopted component,
which is a component in a network that consists of nodes that

adopt at steady state and the edges between those nodes. An

adoption path in the WTM with timers terminates when its

last node adopts; no other nodes can be triggered as a result

this node adopting. In Fig. 1, we show an example of different

adoption paths, which can terminate either with an adopted

node that has degree 1 or simply because it does not trigger

any of its neighbors. The dark brown node v0 in the center is a

seed node that has state 1 at time t¼ 0, and the other nodes

are in state 0 at t¼ 0. Each node vi is assigned a timer svi
and

a threshold /vi
, where i 2 f1;…; 5g. Node v0 is the seed

node, so it starts in the adopted state (and does not need a

timer or threshold value). Nodes vi, for i 2 f1;…; 5g, have

threshold / ¼ 0:5, so v1;…; v5 are triggered once even one of

their neighbors adopts. In Fig. 1, the number written above

each node indicates its timer value. If we run the WTM with

timers on this network, we obtain three adoption paths:

ðv0; v1; v2Þ; ðv0; v3; v4Þ, and (v0, v5). The lengths of these paths

are 2, 2, and 1, respectively. All adoption paths grow from the

seed v0, so it is the root of all adoption paths. Each arrow rep-

resents the spread of an adoption through a distinct adoption

path. The orange adoption path ðv0; v1; v2Þ terminates at time

Tðv0;v1;v2Þ ¼ 4; the last node in the path has degree k¼ 1, so it

has no more neighboring nodes to influence. The green adop-

tion path ðv0; v3; v4Þ terminates at time Tðv0;v3;v4Þ ¼ 5, and the

blue adoption path (v0, v5) terminates at time Tðv0;v5Þ ¼ 6.

Each of these adoption paths illustrates one of two possible

scenarios: in the blue adoption path, all neighbors of the last

node are in state 1 before the last node adopts; in the green

adoption path, all neighbors of the last node are in state 0, but

the timers of all neighbors have already been triggered. The

former scenario is also a condition for the termination of an

adoption path in the original WTM, but the latter scenario is a

novel feature of the WTM with timers.

III. WTM WITH TIMERS ON SMALL NETWORKS

Clearly, adding timers to the WTM delays adoption pro-

cesses. The presence of a homogeneous timer merely delays

the adoption of each node for exactly the same number of

time steps. Suppose that we run the WTM without timers on

an arbitrary network and that it takes TWTM time steps to

reach a steady state, in which no more nodes can adopt. On

the same network, if we run the WTM with homogeneous

timers shom, it now takes TWTMðshom þ 1Þ time steps to reach

a steady state. However, if timers are heterogeneous, the

adoptions of different nodes are delayed by different

amounts of time, and it is less straightforward to calculate

the time to attain steady state in relation to TWTM.

We calculate the time Thom to reach steady state for the

WTM with homogeneous timers and the mean time hTheti to

reach steady state for the WTM with heterogeneous timers

for the three small example networks in Fig. 2. Suppose that

all nodes have a homogeneous threshold of / ¼ 0:1, which

is small enough so that any node in Fig. 2 is going to adopt

the state s¼ 1 once even one of its neighbors adopts. Using a

homogeneous threshold enables us to disentangle the effect

of timers from the effect of a heterogeneous threshold.

Because all nodes have the same positive threshold, we need

a seed node (labeled v0 in Fig. 2) in state 1 at time t¼ 0 to

initiate the spread of adoptions.

FIG. 1. Illustration of different adoption paths in the Watts threshold model

(WTM) with timers. Each node vi is assigned a timer svi
and a threshold /vi

,

where i 2 f1;…; 5g. We initiate node v0 in state 1, so we do not need to

assign it a threshold or a timer. Suppose that all nodes vi (with

i 2 f1;…; 5g) have the same threshold / ¼ 0:5. Any node among v1;…; v5

is triggered once even one of its neighbors adopts.
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In Fig. 2(a), we show a one-dimensional (1D) lattice

with a seed node at its left end, so adoption occurs from left

to right. The time T to reach the steady state (in which all

nodes adopt) is

T ¼ 3þ sv1
þ sv2

þ sv3
; (2)

where svi
is the timer of node vi. We need to add 3 because

there are 3 nodes other than the seed, and it takes 1 synchro-

nous time step to start a countdown after a timer is triggered.

In Table I, we show results for this network when the nodes

have a homogeneous timer with shom ¼ 4 and heterogeneous

timers shet 2 f2; 4; 6g (note that the mean timer value is the

same as in the homogeneous case), and we compare the time

Thom to reach steady state for the WTM with homogeneous

timers to the mean time hTheti to reach steady state over all

possible timer configurations of the WTM with heteroge-

neous timers. In this example, the time to reach steady state

is simply a function of the sum of the timers of all nodes,

because adoptions spread from each node to its neighbor on

the right. Therefore, for a given mean timer value, the time

to reach steady state is the same regardless of whether the

timer values are distributed homogeneously or heteroge-

neously. That is, the ratio hTheti=Thom ¼ 1. Note that neither

the adoption order of the nodes nor the adoption path

ðv0; v1; v2; v3Þ can change even if the timers are distributed

heterogeneously in the 1D lattice. Adoption always starts

from the left end, and it spreads to the right one node at a

time, regardless of how the timers are distributed.

Using the same homogeneous threshold value / ¼ 0:1
as above, let us now consider what happens in a 4-clique

[see Fig. 2(b)]. In a 4-clique, all nodes are adjacent to each

other, so v1, v2, and v3 are triggered simultaneously by the

seed node v0 at t¼ 0. Therefore, with timers, the time T to

reach steady state is

T ¼ 1þmaxðsv1
; sv2

; sv3
Þ: (3)

We need to add 1 because it takes 1 synchronous time step to

start a countdown after a timer is triggered. In a 4-clique, the

adoption paths (v0, v1), (v0, v2), and (v0, v3) do not change for

any assignment of timers. Moreover, the spread of adoptions

in different adoption paths are independent of each other.

Therefore, the adoption path that includes the node with the

largest timer terminates last, determining the time to reach

steady state. Consequently, Thet is always larger than Thom

for a 4-clique if the mean of the timer distributions is the

same for the homogeneous and heterogeneous timers [so

hTheti=Thom > 1 for row (b) in Table I]. This result holds for

k-cliques with any value of k� 3. The time to reach steady

state in a k-clique is determined by the largest timer, so

hTheti=Thom > 1 if the mean of the timer distributions is the

same.

The example in Fig. 2(c) has a seed node adjacent to a

square. The adoption of node v1 triggers the timers of nodes v2

and v3 simultaneously, and whichever one adopts earlier trig-

gers the timer of node v4. The time T to reach steady state is

T ¼ sv1
þmaxð2þ sv3

; 3þ sv2
þ sv4

Þ; if sv2
� sv3

;
sv1
þmaxð2þ sv2

; 3þ sv3
þ sv4

Þ; if sv2
> sv3

:

�

We need to add 2 if adoption paths ðv0; v1; v3Þ or ðv0; v1; v2Þ
determine the time to reach steady state, and we need to add

3 if adoption paths ðv0; v1; v2; v4Þ or ðv0; v1; v3; v4Þ determine

the time to reach steady state. If the timers are homogeneous,

the adoption of node v1 triggers the timers of both nodes v2

and v3 simultaneously, and the simultaneous adoption of v2

and v3 triggers the timer of v4, so the adoption paths are

ðv0; v1; v2; v4Þ and ðv0; v1; v3; v4Þ. However, if the timers are

heterogeneous and the timers of v2 and v3 are different, there

are changes in both the adoption order of the nodes and the

adoption paths. Suppose, for example, that the timer of node

v2 is smaller than that of node v3. In this case, node v2 adopts

before v3, and it triggers the timer of v4; therefore, the

FIG. 2. Small examples to illustrate the effect of incorporating timers in the

WTM. The dark brown node v0 is the seed node (so it is in state s¼ 1 at

t¼ 0), and all other nodes are in state s¼ 0 at t¼ 0. The thresholds are

homogeneous, with / ¼ 0:1 for each node.

TABLE I. The time that it takes for all nodes to adopt (i.e., for a network to

reach the fully-adopted state, which is the steady state) for the small net-

works in Fig. 2 for the WTM with homogeneous timers shom ¼ 4, heteroge-

neous timers shet 2 f2; 4; 6g for the non-seed nodes in Fig. 2(a), and

heterogeneous timers shet 2 f1; 3; 5; 7g for the non-seed nodes in Figs. 2(b)

and 2(c). The mean value of the heterogeneous timers is hsheti ¼ 4 ¼ shom.

We calculate the mean time hTheti to reach steady state for heterogeneous

timers by averaging over all possible configurations of timers with the given

set of heterogeneous timers. In comparing results from homogeneous and

heterogeneous timers in these networks, we also indicate if the adoption

orders of nodes and/or adoption paths can change (i.e., if they can be differ-

ent in the two scenarios) from what occurs in the WTM without timers.

TWTM
a Thom

b hThetic
hTheti
Thom

Change of

adoption order

Change

of adoption paths

(a) 3 15 15 1 3 3

(b) 1 5 7 1.4 � 3

(c) 3 15 13.33 0.89 � �

aTime to reach the fully-adopted state in the original WTM (i.e., without

timers).
bMean time to reach the fully-adopted state when the timers are homogeneous.
cMean time to reach the fully-adopted state averaged over all possible con-

figurations of heterogeneous timers.
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adoption paths are ðv0; v1; v2; v4Þ and ðv0; v1; v3Þ, and the one

that takes a longer time to terminate determines the time to

reach steady state. In Table I, we compare the time Thom to

reach steady state for a homogeneous timer shom ¼ 4 and the

mean time hTheti to reach steady state for heterogeneous

timers shet 2 f1; 3; 5; 7g. We see that hTheti < Thom, in con-

trast to the other examples in Fig. 2.

A network with a fixed seed node and fixed threshold

assignments has different adoption paths for different distri-

butions of timers only if the network includes at least one

cycle with 4 or more nodes. Consider a node vi that is trig-

gered by the adoption of node vj in adoption path X for one

timer distribution and by the adoption of node vk (with

vk 6¼ vj) in adoption path Y for another timer distribution. All

adoption paths—regardless of the timer distribution—must

share the same root (i.e., the seed node), because all adop-

tions spread from the seed. Therefore, adoption paths X and

Y must share at least two nodes: vi and the seed node. The

network must have a cycle that includes node vj from X,

node vk from Y, the seed node, and node vi. Therefore, a net-

work that has different adoption paths for different distribu-

tions of timers must have a cycle of length at least 4.

If the thresholds of all nodes in a network are suffi-

ciently small so that any node will adopt if at least one of its

neighbors has adopted, an adoption path with nodes that

have small timers tends to be long, and one with nodes with

large timers tends to be short. Suppose that a node vi adopts

if any one of its neighbors vj 2 CðviÞ adopts, and suppose

further that each neighbor belongs to a different adoption

path of the same length. The time t00vi
at which node vi’s timer

is triggered is then

t00vi
¼ min

vj2CðviÞ
ðt0vj
þ svj
Þ þ 1; (4)

where t0vj
is the time that the timer of vj is triggered [see Eq.

(1)]. Node vi thereby becomes a part of the adoption path that

has the smallest sum of node timers, and this adoption path

becomes longer than the other ones. Therefore, in networks

with cycles of length at least 4 and heterogeneous timers,

adoption paths with small mean timers tend to be long and

adoption paths with large mean timers tend to be short. For

example, in Fig. 2(c), if v2 has a smaller timer than v3, then v2

is part of a longer adoption path than v3. We will use the rela-

tionship between the length of an adoption path and the timer

values of its nodes in Sec. VI B when we investigate long

adoption paths with small mean timer values in large random

networks. To compel nodes with small timers to be part of

long adoption paths, it is useful for their thresholds to be suffi-

ciently small to adopt if at least one of their neighbors adopts.

Otherwise, nodes with large timers can be part of longer adop-

tion paths. See Appendix A for more details.

IV. TIMERS ON LARGE RANDOM NETWORKS

We now incorporate both homogeneous and heteroge-

neous timers into a spreading process on large networks.

Specifically, we examine the WTM with a timer on the larg-

est connected component (LCC) of random networks with

N¼ 10 000 nodes (i.e., of “size” 10 000). For many of our

random networks, we use a homogeneous threshold / in

which any node whose degree is larger than or equal to the

graph’s mean degree needs only a single adopted neighbor to

be triggered (as in the small networks in Fig. 2). Because all

nodes have the same threshold, we choose a seed adopted

node uniformly at random at t¼ 0 to initiate the spread of

adoptions. For our simulations, we report sample means of

many realizations to give an idea of ensemble expectations

in the N !1 limit.

A. Timer distributions and dynamics of the WTM
with timers

We first consider the WTM with timers on the LCC of

G(N, p) Erd}os–R�enyi (ER) networks with N¼ 10 000 nodes

and edge probability p¼ 0.0006 (and thus an expected mean

degree of z¼ 6). We also suppose that all nodes have a

homogeneous threshold of / ¼ 0:1. We compare the adop-

tion curves—the progress of the adopted fraction qðtÞ of

nodes at time t—for homogeneous and heterogeneous timers.

Note that the results that we illustrate in this section also

arise when we use other values of p and /.

In Fig. 3(a), the pink curve (marked with plus signs)

shows the adoption process of the WTM without timers, and

the green curve (marked with crosses) shows the adoption

process of the WTM with a homogeneous timer s¼ 4. Let

tq�;WTM denote the time to reach a fraction q� of adopted

nodes for the WTM without timers. The time to reach a frac-

tion q� of adopted nodes for the WTM with a homogeneous

timer is ðsþ 1Þtq�;WTM, and the presence of a homogeneous

FIG. 3. (a) Adoption curves of the WTM with timers. Different markers

indicate the results of numerical simulations of the WTM with different dis-

tributions of timers: pink plus signs indicate no timers, green crosses indi-

cate a homogeneous timer with s¼ 4, orange squares indicate heterogeneous

timers that are distributed uniformly at random from the set f0; 1;…; 8g,
and blue diamonds indicate heterogeneous timers given by integers that we

obtain by rounding down from a random variable that follows a Gamma dis-

tribution with mean ls ¼ 4 and standard deviation rs ¼ 4. The solid curves

are results from an analytical approximation (see Sec. V) for the adoption

process of the corresponding color, and we can see that the analytical

approximation agrees reasonably well with our numerical simulations. We

thicken the solid orange curve to make it more easily distinguishable from

the blue curve. The dashed lines mark the times at which the adoption pro-

cess of the corresponding color reaches a steady state. (b, c) Change of the

times to reach steady state (Tunif and TGam, respectively) by increasing the

standard deviation r when timers are distributed (b) uniformly at random

and (c) approximately according to a Gamma distribution. Our simulation

results are means over 1000 realizations of the WTM with timers on the

largest connected component of G(N, p) ER networks with N¼ 10 000 nodes

and edge probability p¼ 0.0006. To isolate the effects of incorporating

timers, we use the same 1000 ER networks for each of the 4 different cases.
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timer leads to homogeneous gaps between sets of adoptions

as new nodes are triggered. Therefore, as one can see in Fig.

3(a), the green adoption curve has a stair-like shape. If we

employ asynchronous updating rather than synchronous

updating (so that we choose some number of nodes uni-

formly at random at each time step to update their states3),

the change in dynamics is not simply a delay for each adop-

tion, as the randomness in node choice changes the adoption

order.58 See Ref. 59 for a discussion of discrete versus con-

tinuous dynamics in contagion models on networks. (One

models continuous spreading dynamics by using asynchro-

nous updating.)

The orange curve (marked with squares) in Fig. 3(a) is

the adoption curve of the WTM with heterogeneous timers

on ER networks of size N¼ 10 000 in which we select timers

s 2 f0; 1;…; 8g uniformly at random. The expected mean ls

of the timers is 4, which is the same as for the homogeneous

timer in the figure. The obvious difference for the case of het-

erogeneous timers is that the adoption curve is now much

smoother than it is for a homogeneous timer. (Compare the

orange and green curves.) This arises amidst the change in the

adoption order from the heterogeneous timers; nodes that

adopt simultaneously when timers are homogeneous now

adopt at different times, and there are now fewer nodes that

adopt simultaneously. (We also expect that some nodes that

adopt at different times with a homogeneous timer now adopt

simultaneously.) We also see that the time Tunif to reach

steady state (vertical orange dashed line) when the heteroge-

neous timers are distributed uniformly at random occurs ear-

lier than the time Thom to reach steady state (vertical green

dashed line) for homogeneous timers. In ER networks, we

thus see that uniformly random heterogeneous timers yield a

faster adoption process than homogeneous timers. Increasing

the heterogeneity in the distribution of the timers accelerates

the adoption process even further [see Fig. 3(b)].

Importantly, heterogeneously-distributed timers do not

necessarily yield a faster adoption process than homoge-

neous timers. For example, the blue curve (marked with dia-

monds) in Fig. 3(a) shows the adoption process of the WTM

with timers given by integers that we determine by rounding

down from numbers drawn uniformly at random from a

Gamma distribution60 with the same mean ls ¼ 4 as the uni-

formly-randomly-distributed timers and with standard devia-

tion rs ¼ 4. The vertical blue dashed line marks the time

TGam at which the blue adoption curve reaches a steady state,

and we observe that it is located to the right of the green

dashed line Thom. In Fig. 3(c), we show that increasing the

standard deviation of the Gamma distribution decelerates the

time to reach steady state for ER networks, in stark contrast

to our observations in Fig. 3(b) for timers that are distributed

uniformly at random.

Although the time Thet to reach a steady state for hetero-

geneous timers can become either larger or smaller than

Thom, depending on the timer distribution, we observe that

the majority of nodes adopt noticeably earlier when the

timers are distributed either uniformly at random or using a

Gamma distribution (and then rounded down to an integer)61

than they do for homogeneous timers. In Table II, we com-

pare the time t when the adopted fraction qðtÞ reaches at least

a certain fraction q� of nodes in networks when incorporat-

ing a homogeneous timer (thom), heterogeneous timers dis-

tributed uniformly at random (tunif ), and heterogeneous

timers determined using a Gamma distribution (tGam). We

update nodes synchronously, so we do not in general have

exactly the adoption fraction qðtÞ ¼ q� at any time. In this

case, we calculate the time T0 at which the fraction qðT0Þ of

adopted nodes first exceeds q�, and we then estimate the

time tq¼q� at which the fraction of adopted nodes reaches q�

to be

tq� :¼ tq¼q� ¼ T0 � 1þ q� � qðT0 � 1Þ
qðT0Þ � qðT0 � 1Þ : (5)

As we show in Table II, the fraction qðtÞ of adopted

nodes tends to increase faster when incorporating either uni-

formly-randomly-distributed timers or Gamma-distributed

timers than for homogeneous timers, although Gamma-

distributed timers take a longer time to reach the steady-state

adoption fraction q1. This illustrates that a cascade—the

spread of adoptions from a small seed fraction of a network’s

nodes to a much larger fraction of nodes—can occur earlier

for heterogeneous timers than for homogeneous timers. In

Sec. VI, we investigate adoption paths and give evidence for

how incorporating heterogeneous timers in the WTM can

make the majority of nodes adopt earlier than when consider-

ing homogeneous timers.

V. ANALYSIS

We present an analytical approximation for the temporal

evolution of the fraction of adopted nodes of the WTM with

timers. To do this, we use a pair approximation, which has

often been applied to the WTM and its variants.3,31,38,46,62 A

pair approximation of the WTM was first developed by

Gleeson and Cahalane,62 who built on a method to study the

zero-temperature random-field Ising model on Bethe latti-

ces.63 Gleeson and Cahalane’s pair approximation agrees

well with the temporal evolution of the WTM, and it takes

into account pairwise interactions between nodes.64 We

TABLE II. Time to reach certain fractions of adopted nodes for the WTM

on ER networks with homogeneous timers, heterogeneous timers distributed

uniformly at random, and heterogeneous timers determined using a Gamma

distribution and then rounded down to an integer. This table uses our simula-

tion results from Fig. 3.

q�a thom
b tunif

c
tunif

thom
tGam

d
tGam

thom

0.5 29.31 21.97 0.75 20.05 0.68

0.6 29.52 23.18 0.79 21.21 0.72

0.7 29.74 24.48 0.82 22.59 0.76

0.8 29.95 25.97 0.87 24.43 0.82

0.9 34.48 28.10 0.81 27.56 0.80

q1
e 42.41 40.21 0.95 60.44 1.43

aFraction of adopted nodes.
bTime to reach q� when timers are homogeneous.
cTime to reach q� when the timers are distributed uniformly at random.
dTime to reach q� when the timers are determined using a Gamma distribu-

tion and then rounded down to an integer.
eFraction of adopted nodes at steady state.
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generalize their pair approximation to examine the temporal

evolution of the adopted fraction of nodes in the WTM with

timers.

A. Pair approximation for the WTM

We consider a pair approximation of the WTM for

undirected, unweighted networks. We assume that our net-

works are locally tree-like, so that, asymptotically, cycles

can be ignored (and there should be few short cycles in

empirical networks).65 Using these assumptions, it has been

shown35,62 that one can approximate the evolution of the

fraction qðtÞ of adopted nodes in a network by calculating

the probability that a node chosen uniformly at random is in

the adopted state at time t.
To calculate the probability of a node to adopt, we first

rearrange a network into a tree with the chosen node at the

top level (i.e., level 1) and its neighbors on the next level

(see Fig. 4). The position of a node in the tree is determined

by the distance between it and the top-level node. A node’s

“parent” is a neighbor located one level higher, and its

“children” are its neighbors located one level lower.

Because the threshold-adoption condition is that there

are at least the threshold fraction of adopted neighbors, the

probability of the top-level node to adopt is determined by

the fraction of adopted children, whose probability of adop-

tion is in turn determined by their children’ adoption status,

and so on. We thus write

qðtÞ ¼ q0 þ ð1� q0Þ
X1
k¼1

Pk

Xk

m¼0

k

m

 !

� q1ðtÞm 1� q1ðtÞ½ �k�mFðm; kÞ ; (6)

where q0 is the fraction of seed nodes, k is degree, Pk is the

probability that the node degree is k (i.e., fPkg is the degree

distribution), m is the number of adopted children, and F(m, k)

is the (neighborhood-influence) response function,38,66,67

which corresponds to the probability that a node satisfies the

threshold-adoption condition for given values of m and k. As

we discussed in Sec. II, the threshold-adoption condition of a

node vi is that the fraction m=k of adopted neighbors is at least

its threshold /i. Therefore, for the WTM, the response func-

tion F(m, k) is the probability for a node to have a threshold

lower than m=k; we can calculate this probability from the

cumulative distribution function of the thresholds. Finally, the

term qnðtÞ is

qnðtÞ ¼ q0 þ ð1� q0Þ
X1
k¼1

k

z
Pk

Xk�1

m¼0

k � 1

m

 !

� qn�1ðtÞm 1� qn�1ðtÞ½ �k�1�mFðm; kÞ ; (7)

where z is the mean degree of a network. Equation (7) gives

the probability that a node at level n of the tree has adopted

at or before time t (i.e., that it is in the adopted state at time

t), conditional on its parent node at level ðnþ 1Þ being unad-

opted (i.e., not having adopted). The rationale behind the for-

mula for qnðtÞ is as follows. A node vi chosen uniformly at

random at level n is in the adopted state if either

• the node is a seed, which occurs with probability q0;
• or the node is not a seed, which occurs with probability

ð1� q0Þ, but it meets the threshold-adoption condition at

or before time t.

The factor k – 1 comes from the fact the node has an

unadopted parent at level ðnþ 1Þ, so a node with degree k and

threshold m=k should have m adopted nodes among the k – 1

child nodes at level n – 1; this yields the term

k � 1

m

� �
qn�1ðtÞm½1� qn�1ðtÞ�k�1�m

. Finally, we need to sum

over all possible k, because the nodes at level n have various

degrees that follow the degree distribution fPkg. One reaches

a node at level ðn� 1Þ by following an edge from a node at

level n to a child at level ðn� 1Þ, so we use the excess degree

distribution fkPk=zg.
The above pair approximation shows good agreement

with numerical simulations of the WTM,35,62 especially in

large networks that are locally tree-like. This pair approxi-

mation has been generalized to several situations, including

the WTM on networks with community structure (including

with heterogeneous communities)31,41 or other forms of

clustering.38,68

B. Pair approximation for the WTM with timers

We cannot simply use (6) and (7) for the WTM with

timers, as a timer affects the time that a node adopts.

Therefore, we need to understand the effect of timers on

node adoptions and modify the pair-approximation equations

accordingly. In the WTM with timers, a node with timer s
waits s time steps after its threshold fraction of neighbors

have adopted before it adopts (where the countdown starts

one time step after its threshold-adoption condition is satis-

fied). In other words, the adoption of a node is determined by

both (i) its timer s and (ii) the fraction of its neighbors that

are in the adopted state s time steps before the current time.

We need to consider both of these facets to derive a pair

approximation for the WTM with timers.FIG. 4. An illustration of level-by-level spreading of adoptions in a network.
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The condition associated with (i) is determined by

the response function Gðm; k; sÞ, which indicates whether a

node satisfies both its threshold-adoption condition and its

timer-adoption condition. The response function Gðm; k; sÞ
is the probability that a node has a threshold less than m=k
and has timer s. It is given by

Gðm; k; sÞ ¼ Fðm; kÞ CsðsÞ � Csðs� 1Þ½ �; (8)

where F(m, k) is the response function of the WTM and Cs is

the cumulative distribution function of the timers.

One satisfies the condition associated with (ii) if at least

a fraction m=k of the children at level ðn� 1Þ are in the

adopted state s time steps before the current time t. The prob-

ability that a child at level n – 1 is in the adopted state s time

steps ago is qnðt� sÞ. Combining the conditions from (i) and

(ii), we can express the adoption condition of a node with

degree k, threshold m=k, and timer s at time t as

k
m

� �
qnðt� sÞm 1� qnðt� sÞ½ �k�mGðm; k; sÞ: (9)

Similar to Eqs. (6) and (7), we need to sum over all m, k,

and s. We thereby obtain

qðtÞ ¼ q0 þ
Xt

s¼0

ð1� q0Þ
X1
k¼1

Xk

m¼0

k

m

 !
q1ðt� sÞm

"

� 1� q1ðt� sÞ½ �k�mGðm; k; sÞ
#
; (10)

qnþ1ðtÞ¼q0þ
Xt

s¼0

ð1�q0Þ
X1
k¼1

k

z
Pk

Xk�1

m¼0

k�1

m

 !
qnðt�sÞm

"

� 1�qnðt�sÞ½ �k�1�mGðm;k;sÞ
#
: (11)

As shown in Fig. 3(a), a numerical evaluation (solid

curve) of the algebraic equations (6) and (7) derived from our

theory agrees reasonably well with direct numerical simula-

tions (points) of the WTM with timers for ER networks. We

also perform our approximation for the WTM with timers on

real-world networks. We use two FACEBOOK100 networks69,70

in Appendix B. Note that our assumption for the pair approxi-

mation that a network has a locally tree-like structure often

does not hold for real-world networks, which routinely have

significant local clustering and community structure. The

FACEBOOK100 networks have both of these features,70 although

the aforementioned pair approximation for the WTM without

timers nevertheless often yields good agreement with direct

numerical simulations on most of these networks.65

One can determine a cascade condition5 by linearizing

Eq. (11). For a given mean threshold and mean degree in a

network, a cascade condition gives a criterion for when one

expects to observe a global cascade,5,62 in which a small

seed fraction q0 of adopted nodes results in a large value of

q1 ¼ limt!1 qðtÞ. Because the WTM dynamics are mono-

tonic, if a node adopts in the limit t!1, the node also

adopts in the WTM with timers in the limit t!1.

Consequently, in the t!1 limit, qnðtÞ of the WTM with

timers and qnðtÞ of the WTM yield the same value qnð1Þ.
Therefore, the cascade condition for the WTM with timers is

identical to that for the WTM without timers. In Appendix

C, we show a detailed calculation of the cascade condition

for the WTM with timers.

VI. ADOPTION PATHS IN LARGE NETWORKS

In Sec. II, we argued that the WTM with a homogeneous

timer shom has exactly the same adoption paths as in the WTM

without timers, because a homogeneous timer does not change

the adoption order of nodes, but instead merely delays adop-

tion times (once the threshold-adoption condition is satisfied)

uniformly by shom. Therefore, the time Thom to achieve a

steady state is delayed to Thom ¼ TWTMð1þ shomÞ, where

TWTM is the time to reach steady state when there are no

timers. However, if the timers are distributed heterogeneously,

the adoption order of nodes can change, so adoption paths

can also change (depending on the network structure).

Furthermore, the relationship between the time Thet to reach

steady state for heterogeneous timers and TWTM is more com-

plicated than that between Thom and TWTM. In Sec. IV A, we

observed from simulations on ER networks that the WTM

with timers distributed uniformly at random and timers deter-

mined using a Gamma distribution yield earlier adoptions for

the majority of nodes than is the case for a homogeneous timer

with the same mean (see Table II). In this section, we explore

this issue in depth by investigating adoption paths in the

WTM with timers for both synthetic and real-world networks.

A. Stems and branches

As we discussed in Sec. II, all adoption paths grow from

the seed, so the seed is the root of all adoption paths. Among

the adoption paths, which have various lengths, we pick a

longest adoption path at steady state. We use the term stem
to indicate a longest adoption path, where we exclude the

seed node from the stem. The nodes in a stem of adoption

spreading are called stem nodes. If there are two or more

adoption paths that both have the largest length, we consider

all of them to be stems. The other adoption paths terminate

at the ends of branches. In our terminology, we exclude stem

nodes and the seed node from the branches. The nodes in a

branch of adoption spreading are called branch nodes. The

main difference between stems and branches is that stems

grow from a seed node, whereas branches can grow from

either a stem or a seed node.

We give an example of a stem and branches in Fig. 5.

Suppose that we run the WTM with timers on the network in

Fig. 5(a) with node v0 as a seed and that we obtain five adop-

tion paths: ðv0; v1; v2; v3; v4Þ; ðv0; v5; v6; v7Þ; ðv0; v1; v8; v7Þ;
ðv0; v1; v8; v9Þ, and ðv0; v1; v2; v10Þ. Among the adoption paths,

ðv0; v1; v2; v3; v4Þ has the largest length, so the stem is

ðv1; v2; v3; v4Þ. The branches are ðv5; v6; v7Þ, (v8, v7), (v8, v9),

and ðv10Þ. Note that v7 and v8 each appear in two different

adoption paths, because the adoption of v8 triggers the timers

of v7 and v9, and the timer of v7 is triggered simultaneously by

the adoptions of v6 and v8.

From the adoption paths, we construct a tree [see Fig.

5(b)] that demonstrates how adoptions spread in the network
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in Fig. 5(a). We use the term dissemination tree for a network

composed of adoption paths.71,77–80 Because an adoption path

is directed, a dissemination tree does not have a path back to

the root (or to any other node), so it is a directed acyclic graph

(DAG).72 However, as one can see in Fig. 5(b), the underlying

undirected graph of a dissemination tree can have a cycle of

length at least 4. In Fig. 5(b), this cycle is

ðv0; v1; v8; v7; v6; v5; v0Þ. However, a dissemination tree’s

underlying undirected graph cannot have triangular clustering

(i.e., 3-node cycles). See Appendix D for further discussion.

B. Dissemination trees in synthetic networks

In Fig. 6, we show dissemination trees that we obtain

from running the WTM with timers on the LCC of an ER

network of size N¼ 100, expected mean degree z¼ 6, and a

homogeneous threshold of / ¼ 0:1 for each node. We give

examples with both homogeneous and heterogeneous timers,

and we then examine adoption paths and combine them to

create a dissemination tree. We place the root of the stem

(i.e., the seed node) at the top of the tree, and we place the

rest of the nodes in the subsequent levels based on their dis-

tance from the root. In Fig. 6(a), we show a dissemination

tree when timers are distributed homogeneously with s¼ 4.

In Fig. 6(b), we show a dissemination tree when the timers

are distributed heterogeneously (and, in particular, drawn

uniformly at random from f0; 1;…; 8g). We color the nodes

based on their timer values, which range from 0 (white) to

8 (black). We use stars for nodes in stems and disks for

nodes in branches. The thick blue edges are part of a stem,

and the thin gray edges are part of a branch. When the timers

are homogeneous [see Fig. 6(a)], there are more stems

(many different ones with the same maximal length), whose

length is smaller than the stems in the example with hetero-

geneous timers [see Fig. 6(b)]. When the timers are heteroge-

neous, we also observe that the timers of stem nodes tend to

be small (lighter colors). As we discussed in Sec. II B, the

time that an adoption path terminates is determined by the

sum of the timers of the nodes in the adoption path [see Eq.

(1)]. Consequently, the mean timer value of the nodes in an

adoption path helps determine how fast an adoption spreads

in that path. Therefore, the mean timer value of stem nodes

being smaller than the mean timer value of branch nodes

suggests that an adoption should tend to spread at a faster

rate through stems than through branches.

We now consider networks that we obtain from a config-

uration model73 and generalized configuration models that

include cliques. We construct configuration-model networks

by specifying a degree distribution Pk and then connecting

stubs (i.e., ends of edges) uniformly at random. We then

remove all self-edges and replace multi-edges by single edges.

To construct networks using a generalized configuration

model, we embellish the above configuration model by incor-

porating cliques. These models, which are modified versions

of the ones in Refs. 38 and 68, are specified by Pk and a joint

distribution cðk; cÞ that indicates the probability that a node

chosen uniformly at random has degree k and is used to con-

struct a clique of c nodes (i.e., a c-clique) with c�1 of its

neighbors. We use a node chosen from the set of degree-k
nodes to form a c-clique with probability cðk; cÞ=Pk. Note that

cðk; cÞ ¼ 0 for k < c� 1, as a node with degree k can only be

a member of a c-clique if its degree is large enough to link to

all c – 1 neighbors in the clique. The difference between our

generalized configuration models and those in Refs. 36 and 68

is that we allow a degree-k node that we have already used to

construct a c-clique to form an additional c-clique with

FIG. 5. (a) An example network on which we run the WTM with timers.

The arrows illustrate the spread of adoptions in the stem and branches. The

brown arrow indicates the stem ðv1; v2; v3; v4Þ, and the green arrows indicate

the branches ðv5; v6; v7Þ, (v8, v7), (v8, v9), and ðv10Þ. (b) Graphical illustration

of the dissemination tree from the spread of adoptions in panel (a). The root

of the stem ðv1; v2; v3; v4Þ is the seed node v0. Nodes v0, v1, and v2 initiate

the adoptions in branches.

FIG. 6. Dissemination trees for the WTM on the LCC of a 100-node ER network with (a) homogeneous timers and (b) heterogeneous timers. The edges are

directed from higher levels to lower levels. The thick blue edges are part of a stem, and the thin gray edges are part of a branch. To represent the timer values

of the nodes, we use the same color scale—ranging from 0 (white) to 8 (black)—in the two panels. We use stars for nodes in stems and disks for nodes in

branches. The number of levels in the dissemination tree with homogeneous timers is 5, and the number of levels in the tree with heterogeneous timers is 8.
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probability cðk; cÞ if it has enough remaining neighbors. (That

is, it is possible to choose the same node two or more times.)

In Table III, we show the results of computations in

which we examine whether adoptions spread faster through

stems or branches in several families of random networks.

We consider both configuration-model networks and net-

work families in which we augment configuration-model net-

works to incorporate local clustering. For all networks in

Table III, we start by considering the LCC of configuration-

model networks with N¼ 10 000 nodes and degrees drawn

from the Poisson distribution Pk ¼ zke�z=k! with mean z¼ 6.

In the networks, each node has a homogeneous adoption

threshold of / ¼ 0:1, so a node with the mean degree adopts

if one of its neighbors adopts. We use “Config” to denote a

standard configuration model; “Congen-3” to denote a gener-

alized configuration model with 3-cliques and with joint dis-

tribution cðk; cÞ ¼ ½ð1� aÞdc;1 þ adc;3�Pk for k � 3 (where

the parameter a determines the edge–clique ratio for a node

of degree k � 3); and “Congen-4” to denote a generalized

configuration model with 4-cliques and with joint distribu-

tion cðk; cÞ ¼ ½ð1� bÞdc;1 þ bdc;4�Pk for k � 4 (where b
determines the edge–clique ratio for a node of degree k � 4).

As we discussed in Sec. IV, the time T to reach steady

state for the WTM with heterogeneous timers can be either

shorter (e.g., for timers distributed uniformly at random) or

longer (e.g., for Gamma-distributed timers) than for a homo-

geneous timer, but both of our choices of heterogeneous

timer distributions have a smaller value than a homogeneous

timer for the time t0:9 for at least 90% of the nodes to adopt.

Additionally, for both distributions of heterogeneous timers,

we observe a smaller mean number n of adoption paths at

steady state than for a homogeneous timer. This, in turn,

results in a shorter mean adoption-path length ll for homoge-

neous timers than for heterogeneous ones, because for a fixed

network size N, having a larger number of adoption paths

leads to shorter mean adoption-path lengths.

The number of adoption paths increases when a node

triggers the timers of multiple neighbors. Suppose that a

TABLE III. Comparison between the characteristics of stems and branches from running the WTM with timers on configuration-model networks (“Config”),

generalized configuration-model networks with 3-cliques (“Congen-3”), and generalized configuration-model networks with 4-cliques (“Congen-4”). For all

networks in this table, we start with the LCC of a configuration-model network with N¼ 10 000 nodes and degrees drawn from a Poisson distribution Pk ¼
zke�z=k! with mean z¼ 6. All nodes have a homogeneous threshold of / ¼ 0:1, so a node with the mean degree adopts if one of its neighbors adopts. For the

generalized configuration models, we consider different values of the edge–clique ratios a and b, where a determines the edge–clique ratio for a node of degree

k � 3 in Congen-3 and b determines the edge–clique ratio for a node of degree k � 4 in Congen-4. The subscript hom corresponds to homogeneous timers, the

subscript unif corresponds to timers that are distributed uniformly at random (from the set f0,…,8g), and the subscript Gam corresponds to timers that are deter-

mined using a Gamma distribution (with mean 4 and standard deviation 4) and then rounded down to the nearest integer. The quantity T is the time to reach

steady state, and tq� is the time that it takes to achieve an adopted fraction of q�. (In this table, we use q� ¼ 0:9.) All other quantities give steady-state measure-

ments. The quantity r is the mean number of adopted nodes at steady state, a is the mean number of adoption paths, ll is the mean adoption-path length, rl is

the standard deviation of the lengths of adoption paths, v is structural virality (which is defined as the mean shortest-path length in a dissemination tree), frs
is

the mean percentage of adopted nodes that are stem nodes, frb
is the mean percentage of adopted nodes that are branch nodes, fas

is the mean percentage of

adoption paths that are stems, fab
is the mean percentage of adoption paths that terminate at the end of a branch, ls is the mean stem length, and lb is the mean

branch length. To compare the effects of different timer distributions, in a given realization, we augment the WTM with these timer distributions on the same

network with the same seed node and the same adoption-threshold distribution (i.e., / ¼ 0:1 for all nodes). Each reported value is a mean over 100 simulations

of the WTM with timers on networks generated independently for each simulation.

Homogeneous timer

Thom t0:9;hom rhom ahom ll;hom rl;hom vhom frs
(%) frb

(%) fas
ð%Þ fab

ð%Þ ls;hom lb;hom

Config 42.76 32.97 9999.43 17505.69 7.72 0.36 7.15 4.44 95.56 1.07 98.93 9.55 4.13

Congen-3 (a ¼ 0:5) 44.06 34.30 9998.99 16754.55 7.91 0.37 7.31 4.70 95.30 1.25 98.75 9.81 4.30

Congen-3 (a ¼ 1:0) 46.32 35.43 9993.95 15770.20 8.16 0.37 7.54 3.02 96.98 0.62 99.38 10.26 4.57

Congen-4 (b ¼ 0:5) 45.41 35.03 9987.32 17316.51 8.05 0.41 7.48 3.46 96.54 0.88 99.12 10.08 4.56

Congen-4 (b ¼ 1:0) 52.17 38.78 9996.23 17250.30 8.72 0.43 8.17 1.66 98.34 0.31 99.69 11.43 5.57

Uniformly random distribution of timers

Tunif t0:9;unif runif aunif ll;unif rl;unif vunif frs
(%) frb

(%) fas
ð%Þ fab

ð%Þ ls;unif lb;unif

Config 40.39 27.26 9999.43 7935.59 9.02 0.46 10.52 0.34 99.66 0.05 99.95 15.90 6.57

Congen-3 (a ¼ 0:5) 41.76 28.34 9998.99 7763.81 9.19 0.49 10.79 0.35 99.65 0.35 99.65 16.13 6.75

Congen-3 (a ¼ 1:0) 44.10 29.77 9993.95 7511.16 9.38 0.47 11.16 0.35 99.65 0.06 99.94 16.53 6.92

Congen-4 (b ¼ 0:5) 42.81 27.13 9987.32 7798.33 9.29 0.54 11.03 0.35 99.65 0.06 99.94 16.30 6.84

Congen-4 (b ¼ 1:0) 49.60 32.81 9996.23 7500.79 9.87 0.54 12.05 0.34 99.66 0.05 99.95 17.35 7.36

Gamma distribution (and then rounded down to an integer) of timers

TGam t0:9;Gam rGam aGam ll;Gam rl;Gam vGam frs
(%) frb

(%) fas
ð%Þ fab

ð%Þ ls;Gam lb;Gam

Config 61.19 29.89 9999.43 7786.92 8.51 0.44 10.45 0.50 99.50 0.09 99.91 13.15 6.13

Congen-3 (a ¼ 0:5) 61.92 30.93 9998.99 7630.97 8.72 0.47 10.75 0.48 99.52 0.08 99.92 13.52 6.32

Congen-3 (a ¼ 1:0) 63.67 32.23 9993.95 7400.31 8.98 0.47 11.14 0.44 99.56 0.07 99.93 14.09 6.60

Congen-4 (b ¼ 0:5) 62.69 31.75 9987.32 7701.32 8.88 0.52 11.00 0.45 99.55 0.08 99.92 13.85 6.46

Congen-4 (b ¼ 1:0) 66.99 35.23 9996.23 7493.46 9.60 0.53 12.08 0.41 99.59 0.07 99.93 15.26 7.12
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node vi adopts at time tvi
, and that it becomes the latest node

of avi
adoption paths. If vi triggers kvi

neighbors at the next

time step tvi
þ 1, the number of adoption paths with node vi

increases to kvi
avi

. In this way, the number of adoption paths

that include a node increases by a factor of the number of

neighbors that the node triggers. Therefore, ahom > aunif and

ahom > aGam, and in general we expect a node to trigger

more neighbors for the WTM with a homogeneous timer

than for the WTM with heterogeneous timers. Note that it is

possible for the mean number a of adoption paths in a net-

work to be larger than the mean number r of adopted nodes

in a network.

If timers are homogeneous, adoptions spread at the same

rate for every adoption path, and adoption paths that terminate

at the same time have the same length. However, for heteroge-

neous timers, adoption paths that terminate at the same time

can have different lengths, because adoptions can spread at

different rates. Therefore, one expects the lengths of adoption

paths to be more diverse for heterogeneous timers than for

homogeneous ones. As we see in Table III, the standard devia-

tion rl of adoption-path lengths is larger for the WTM with

heterogeneous timers than with homogeneous timers. That is,

rl;unif > rl;hom and rl;Gam > rl;hom in our simulations.

Goel et al.74 studied how viral content in large networks

tends to have a different spreading pattern from content that

does not go viral, and they introduced the idea of “structural

virality” to try quantify the virality of content from its

spreading pattern. They defined structural virality v as the

mean shortest-path length in a dissemination tree,75 where a

larger v signifies a larger mean distance between two nodes

chosen uniformly at random from a dissemination tree. If a

meme goes viral, it is reasonable that the mean distance

between randomly chosen nodes should be larger than for

memes that do not become viral. We give the structural viral-

ities of dissemination trees in Table III, and our results pro-

vide evidence that v is larger for the WTM with

heterogeneous timers than with homogeneous ones.

In Table III, we also show steady-state calculations for

several stem-specific and branch-specific diagnostics: the

mean percentage frs
of stem nodes and mean percentage frb

of branch nodes among the adopted nodes, the mean percent-

age fas
of stems and mean percentage fab

of branches within

the adoption paths, and the mean stem length ls and mean

branch length lb. Among these quantities, the stem-specific

quantities frs
and fas

are smaller than the branch-specific

quantities frb
and fab

for all families of random networks in

Table III. In particular, both frs
and fas

for the two types of

heterogeneous timers in Table III are less than 1, and they

are smaller than the corresponding quantities for a homoge-

neous timer. For a homogeneous timer, all adoption paths

grow at the same rate, so the adoption path (or paths, if there

is a tie) that grows for the longest time is the longest adop-

tion path at steady state. Consequently, in this situation, all

adoption paths that grow until steady state are stems.

However, adoption paths grow at different rates for heteroge-

neous timers. Therefore, even if a stem terminates when a

simulation reaches a steady state, not all adoption paths that

grow until a steady state need to be stems. (A stem can ter-

minate before a branch if the sum of the timers of the stem

nodes is smaller than the sum of the branch-node timers.)

We believe that this is why the stem percentage fas
is smaller

for the WTM with heterogeneous timers than it is for a

homogeneous timer in our results in Table III.

In Table IV, we show (1) the ratio ss=hsi of the mean ss

of the timer values of nodes in stems to the mean hsi of the

timer values of all nodes and (2) the ratio sb=hsi of the mean

sb of the timer values of nodes in branches to hsi. For the

WTM with a homogeneous timer, both
ss;hom

hsi ¼ 1 and
sb;hom

hsi ¼ 1, so stems and branches grow at the same rate.

When the timers are distributed uniformly at random, stems

tend to grow at faster rates than the mean rate because
ss;unif

hsi < 1, whereas branches grow at slower rates than the

mean rate because
sb;unif

hsi is (slightly) larger than 1. Similarly,

when the timers are determined using a Gamma distribution,
ss;Gam

hsi < 1 and
sb;Gam

hsi is slightly larger than 1. The reason that

there is only a very small difference between sb and hsi for

the heterogeneous timers that we study is that more than 99%

of all adopted nodes in these networks are branch nodes (see

Table III).

To better understand why the mean sb is larger than hsi
and the mean ss is smaller than hsi, it is useful to revisit our

discussion from the end of Sec. III about the relationship

between the mean timer values of the nodes in an adoption

path and the length of that path. In Sec. III, we used Fig. 2(c)

to argue that nodes with small timers tend to be part of long

adoption paths and that nodes with large timers tend to be

part of short adoption paths if (i) a network has a cycle of

length at least 4 and (ii) nodes in the network adopt if a

TABLE IV. Comparison between the mean timers of stems and branches for the WTM model with a homogeneous timer, uniformly-randomly-distributed

timers, and timers determined using a Gamma distribution. The networks that we use for this table are the same as those in Table III. We also use the same

seed nodes and the same values for node thresholds and timers. As in Table III, we use the subscript hom to indicate quantities for homogeneous timers, unif to

indicate quantities for timers that are distributed uniformly at random, and Gam to indicate quantities for timers that are determined using a Gamma distribution.

The quantity ss is the mean stem-node timer, sb is the mean branch-node timer, and hsi is the mean of all timers.

Homogeneous timer Uniformly-randomly-distributed timers Gamma-distributed timers

ss;hom

hsi
sb;hom

hsi
ss;unif

hsi
sb;unif

hsi
ss;Gam

hsi
sb;Gam

hsi

Config 1.0 1.0 0.29 1.00 0.42 1.01

Congen-3 (a ¼ 0:5) 1.0 1.0 0.30 1.00 0.40 1.01

Congen-3 (a ¼ 1:0) 1.0 1.0 0.33 1.00 0.40 1.00

Congen-4 (b ¼ 0:5) 1.0 1.0 0.32 1.00 0.39 1.00

Congen-4 (b ¼ 1:0) 1.0 1.0 0.35 1.00 0.44 1.00
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single neighbor adopts. The network families in Table III

almost always yield networks that satisfy condition (i), and

most of the nodes in the networks satisfy condition (ii).

Because both conditions tend to be satisfied, we observe for

the WTM with heterogeneous timers that stem nodes in the

dissemination trees (see Table III) are more likely than other

nodes to have timers that are smaller than the mean.

Therefore, the ratio ss=hsi of the mean timer value of stem

nodes to the mean timer value hsi of all nodes is smaller than

1 for the WTM with heterogeneous timers (see Table IV).

Depending on the network structure, it is possible for a stem

to have nodes with large timers; see Appendix E for details.

In our calculations, stems seem to play a significant role

in spreading adoptions to the majority of nodes faster for het-

erogeneous timers than for a homogeneous timer. To examine

the role of stems in the dynamics of the WTM with timers, we

conduct the following experiment on the dissemination trees

in Tables III and IV. Suppose that we change the timers of the

stem nodes of the dissemination tree to the mean value hsi of

the timers (which is ls ¼ 4 in our example) without changing

the dissemination tree, thus preserving the adoption paths.

The times that the stem nodes’ neighbors in the dissemination

tree adopt also change, as the time of adoption of a node in an

adoption path is determined by the sum of its timer and the

time of adoption of its predecessor node. (Note that we are not

rerunning the WTM dynamics; instead, we are adjusting an

adoption curve after a simulation.)

In Fig. 7, we illustrate how the adoption curves change as

a result of changing the stem-node timers. The dark orange

and dark blue curves are both adoption curves for the WTM

with heterogeneous timers on configuration-model networks

with a Poisson degree distribution with mean z¼ 6. The dark

orange curve is for uniformly-randomly-distributed timers,

and the dark blue curve is for Gamma-distributed timers. We

change the stem-node timers for these curves, and we show

the resulting adoption curves with corresponding light colors.

To facilitate our comparison, we include the green adoption

curve (marked with crosses) for a homogeneous timer. We

observe that intersections between the light-colored curves

and the green curve occur earlier than the corresponding ones

between the dark-colored curves and the green curve. We also

show in Table V how much the times to reach certain frac-

tions q� of nodes, calculated using Eq. (5), change when we

adjust the timers of the stem nodes. From both Fig. 7 and

Table V, we observe that the adoption processes for the WTM

with heterogeneous timers are delayed by changing the timers

of stem nodes, even though they constitute a tiny fraction of

all nodes in the networks. See Appendix F for further discus-

sion. Although we have examined this feature for specific

families of networks, we believe that it is relevant much more

broadly. For example, see our discussion of dissemination

trees on real-world networks in Sec. VI C.

C. Dissemination trees on real-world networks

We now investigate dissemination trees for the WTM

with timers on the LCC of five FACEBOOK100 networks.69,70

Each network represents a Facebook friendship network at

one university in the United States. In each of these net-

works, a node is an individual, and an unweighted, undi-

rected edge represents a Facebook friendship between a pair

of individuals. The networks in Table VI have different

mean degrees, but they all have heavy-tailed degree distribu-

tions. To ensure that a node with degree equal to the mean

degree adopts if a single one of its neighbors has adopted, we

consider a homogeneous adoption threshold of / ¼ 0:01.

FIG. 7. Adoption curves of the WTM with timers along with their adoption

curves after we change the timers of the stem nodes of the dissemination

trees. The green crosses are results of simulations of the WTM with homo-

geneous timers with s¼ 4, the orange squares are for heterogeneous timers s
that are distributed uniformly at random from the set f0; 1;…; 8g, and the

blue diamonds are for heterogeneous timers determined from a Gamma dis-

tribution with mean ls ¼ 4 and standard deviation rs ¼ 4 and then rounded

down to an integer. To isolate the effects of different distributions of timers,

in each case, we run the WTM using the same networks with the same seed

nodes. The dark orange and dark blue curves are before we change the

timers in dissemination trees, and the corresponding light-colored curves are

after we change those timer values. The dashed vertical lines mark the times

at which the adoption process of the corresponding color reaches a steady

state. Our simulation results are means over 1000 realizations of the WTM

with timers on the LCC of configuration-model networks with N¼ 10 000

nodes and a Poisson degree distribution with expected mean z¼ 6. For each

realization, we generate an independent network. We also determine the

seed node (uniformly at random) and timer values separately for each reali-

zation. The dashed lines in the adoption curves are for visual guidance.

TABLE V. Time to reach certain fractions of adopted nodes for the adoption

curves in Fig. 7.

q�a thom
b tunif;WTM

c tunif;dis
d tGam;WTM

e tGam;dis
f

0.5 29.02 22.01 25.17 22.76 25.70

0.6 29.82 23.10 26.71 23.89 27.24

0.7 30.42 24.24 28.48 25.21 29.04

0.8 31.26 25.54 30.79 26.97 31.36

0.9 32.97 27.26 34.59 29.88 35.01

q1
g 42.76 40.40 74.55 61.19 67.55

aFraction of adopted nodes.
bTime to reach q� for the WTM with a homogeneous timer (green curve in

Fig. 7).
cTime to reach q� for the WTM with timers distributed uniformly at random

(dark orange curve in Fig. 7).
dTime to reach q� after we change the timers of the stem nodes for timers

that are distributed uniformly at random (light orange curve in Fig. 7).
eTime to reach q� for the WTM with timers determined using a Gamma dis-

tribution (dark blue curve in Fig. 7).
fTime to reach q� after we change the timers of the stem nodes for timers

determined using a Gamma distribution (light blue curve in Fig. 7).
gFraction of adopted nodes at steady state.
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Although the FACEBOOK100 networks have different struc-

tural characteristics (e.g., in terms of local clustering and com-

munity structure) than the random-graph models, in each of

the five networks, we obtain qualitatively similar results as in

the random-graph ensembles (see Table VI). For example, the

numbers n of adoption paths are larger for the WTM with

homogeneous timers than with heterogeneous timers.

Moreover, for heterogeneous timers, the lengths ls of the stems

and the lengths lb of the branches are both larger than for

homogeneous timers. Additionally, the mean timers ss for

stems are smaller than those (sb) for branches, and the mean

percentage fas
of adoption paths that are stems is smaller than

that (fab
) of those that terminate at the end of a branch.

Because of the small timer values, stems (which constitute a

small percentage of adoption paths) tend to grow faster than

branches. The observed characteristics of the stems and

branches for the five FACEBOOK100 networks are similar to

those of the random networks that we studied previously.

Importantly, when timers are heterogeneous, stems grow faster

and become longer, initiating adoption spreading in branches

earlier than if the timers are homogeneous. Consequently, a

majority of nodes adopt earlier for the WTM model with

heterogeneous timers than with a homogeneous one (e.g.,

t0:9;unif < t0:9;Gam < t0:9;hom). See Table VIII.

VII. CONCLUSIONS

In this paper, we investigated how adoption delays of

individuals can affect the spread of adoptions in a network.

We explored this idea by augmenting the Watts threshold

model (WTM) with timers on the nodes of a network, and we

examined how incorporating homogeneous and heterogeneous

timers can affect the dynamics of a contagion. For the WTM

with homogeneous timers, neither the adoption order of nodes

nor adoption paths change, because a homogeneous timer sim-

ply delays the adoption of each individual by the same amount

of time (once it has decided to adopt). However, heteroge-

neous timers can change both the adoption order of nodes and

adoption paths, and the precise effects depend in an interesting

way on both network structure and timer distribution. For

example, we observed that incorporating heterogeneous timers

into the WTM can either accelerate or decelerate the time to

steady state in comparison to incorporating a homogeneous

timer. However, in our calculations using two different types

of heterogeneous timer distributions (specifically, uniformly

random timers and timers determined using a Gamma distri-

bution and then rounded down to an integer), we found that

the majority of nodes in networks adopt earlier with heteroge-

neous timers than with homogeneous ones. We speculate that,

for heterogeneous timers, the stems—the longest adoption

paths in a dissemination tree—play a significant role for the

fast spread of adoptions to the majority of nodes, even though

there are many more branch nodes than stem nodes. To sup-

port our hypothesis, we examined what happens to our adop-

tion processes when we change the timers of stem nodes to

the mean value of the timers, and we found that they are

delayed noticeably, even though these nodes constitute a tiny

fraction of the adopted nodes in the examined networks. We

also developed a pair approximation for the WTM with timers

that agrees reasonably well with our numerical simulations of

the temporal evolution of the fraction of adopted nodes.

In future work, we seek to investigate real-world observa-

tions of the spread of information, memes, innovations, misin-

formation, and other phenomena on networks using models

that include latencies (i.e., timers) in addition to influence

thresholds. People can be late adopters for a variety of reasons

(e.g., hard to convince, easy to convince but lazy, and so on),

and incorporating timers into contagion models should be

helpful for exploring different mechanisms of late adoption

and their possible consequences for forecasting virality. In

these studies, it will be important to augment a variety of dif-

ferent spreading models with timers and to incorporate timers

into spreading models in different ways. (For example,

insights from Ref. 76 suggest other possibilities for how to

incorporate timers.) The deterministic update rule in the WTM

makes it particularly suitable for a first foray into studying

timers in spreading processes, and that is why we used it in the

present paper. It will be especially interesting to incorporate

timers into stochastic spreading processes to examine how

they change spreading behavior and virality forecasts.
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APPENDIX A: ADOPTION PATHS WHEN NODES HAVE
LARGE ADOPTION THRESHOLDS

When most node timers are small, we saw in Sec. III

that we tend to obtain long adoption paths only when the

adoption thresholds are sufficiently small (e.g., so that only

one neighbor needs to adopt for a node to adopt). In this

FIG. 8. Example of adoption paths when there is a node with a large adop-

tion threshold.
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appendix, we consider adoption paths when some nodes

have large adoption thresholds. In Fig. 8, we illustrate an

example network in which the last node to adopt (v2 in this

case) has a sufficiently large threshold so that it adopts after

both nodes v1 and v3 adopt. In this scenario, when the timers

of v1 and v3 are different, the node that adopts later triggers

the adoption of node v2 and becomes part of the longer adop-

tion path. In our example in Fig. 8, node v2 has a larger timer

than v3, so v2 yields a longer adoption path [given by

ðv0; v1; v2Þ] than v3. Accordingly, if we abandon scenarios in

which most nodes adopt if one neighbor adopts, nodes with

large timers can more readily become part of long adoption

paths.

APPENDIX B: ADOPTION CURVES FOR THE WTM
WITH TIMERS ON FACEBOOK100 NETWORKS

In Fig. 9, we use (the LCC of) two FACEBOOK100 networks

to examine adoption curves for the WTM with homogeneous

timers (green crosses), timers distributed uniformly at random

from the set f0; 1;…; 8g (orange squares), and timers deter-

mined using a Gamma distribution with mean ls ¼ 4 and stan-

dard deviation rs ¼ 4 and then rounded down to an integer.

The solid curves are the results of our pair approximation (see

Sec. V).

Although the FACEBOOK100 networks do not have a

locally tree-like structure, the results of our pair approxima-

tion agree reasonably well with the results of our numerical

simulations for the WTM with heterogeneous timers. (See the

orange and blue curves in Fig. 9.) For homogeneous timers

(see the green crosses in Fig. 9), the pair approximation is

able to capture when the adoption fractions change (though

not the magnitudes of these changes). The adoption curves’

different growth patterns arise from different distributions of

timers as well as from different network structures. For exam-

ple, the WTM with uniformly-randomly-distributed timers on

the two FACEBOOK100 networks (i.e., the orange squares in

Fig. 9) has adoption curves that increase at an approximately

steady (and seemingly linear) rate from time t¼ 5 to t¼ 11

for Fig. 9(b) and from t¼ 7 to t¼ 14 for Fig. 9(e). In contrast,

when we draw the timers from a Gamma distribution [see

Figs. 9(c) and 9(f)], the adoption curves do not exhibit such

seemingly linear growth during any extended period.

APPENDIX C: CASCADE CONDITION FOR THE WTM
WITH TIMERS

As we saw in Sec. V, a global cascade occurs when a

small seed fraction q0 of adopters leads to a much larger

steady-state adoption fraction q1. In this appendix, we show

TABLE VI. Comparison between stem and branch characteristics for the WTM model with timers on the LCC of FACEBOOK100 networks. The quantity N is

the number of nodes, z is a network’s mean degree, and hli is the mean shortest-path length between pairs of nodes. Each node has a homogeneous adoption

threshold of / ¼ 0:01. The subscript hom indicates homogeneous timers, the subscript unif indicates timers that are distributed uniformly at random from the set

f0,…,8g, and the subscript Gam indicates timers determined using a Gamma distribution (with mean 4 and standard deviation 4). The quantity T is the time that

it takes to reach steady state, and tq� is the time that it takes for a fraction q� of nodes to adopt. (We use q� ¼ 0:9 in this table; see Table VIII for other values

of q�.) All other quantities give steady-state measurements. The quantity a is the mean number of adoption paths at steady state, ll is the mean adoption-path

length, rl is the standard deviation of the adoption-path lengths, and v is structural virality. The quantity fas
is the mean percentage of adoption paths that are

stems, fab
is the mean percentage of adoption paths that terminate at the end of a branch, ls is the mean stem length, lb is the mean branch length, ss is the mean

timer value of stem nodes, sb is the mean timer value of branch nodes, and hsi is the mean value of all timers. Each quantity is a mean over 100 realizations

with different timers and seed nodes (which are determined uniformly at random).

Homogeneous timer

N z hli Thom t0:9;hom ahom ll;hom rl;hom vhom fas
ð%Þ fab

ð%Þ ls;hom lb;hom
ss;hom

hsi
sb;hom

hsi

Reed 962 39 1.62 23.38 16.03 18329.97 4.36 0.40 3.29 5.75 94.25 5.68 1.71 1.0 1.0

Simmons 1510 43 2.57 25.14 16.64 36247.05 4.53 0.39 3.40 3.79 96.21 6.03 1.93 1.0 1.0

Caltech 762 43 1.54 21.94 15.55 17083.39 4.25 0.36 3.13 7.15 92.85 5.39 1.54 1.0 1.0

Haverford 1446 82 1.50 25.86 15.60 78135.33 4.31 0.38 2.98 2.63 97.37 6.17 2.46 1.0 1.0

Swarthmore 1657 73 2.32 24.39 15.97 83141.94 4.40 0.39 3.10 3.12 96.88 5.88 1.98 1.0 1.0

Uniformly random distribution of timers

N z hli Tunif t0:9;unif aunif ll;unif rl;unif vunif fas
ð%Þ fab

ð%Þ ls;unif lb;unif
ss;unif

hsi
sb;unif

hsi

Reed 962 39 1.62 21.92 11.96 3223.54 5.01 0.60 4.11 0.95 99.05 8.00 2.43 0.28 1.02

Simmons 1510 43 2.57 23.34 12.13 6516.15 5.40 0.57 4.31 1.30 98.70 8.19 2.45 0.24 1.02

Caltech 762 43 1.54 21.19 11.85 2721.44 4.83 0.52 3.89 1.55 98.45 7.30 2.10 0.28 1.03

Haverford 1446 82 1.50 22.04 11.50 13573.66 5.33 0.57 3.79 0.83 99.17 8.11 2.51 0.21 1.02

Swarthmore 1657 73 2.32 21.02 11.66 14358.79 5.41 0.56 3.94 0.95 99.05 8.13 2.38 0.18 1.02

Gamma distribution (and then rounded down to an integer) of timers

N z hli TGam t0:9;Gam aGam ll;Gam rl;Gam vGam fas
ð%Þ fab

ð%Þ ls;Gam lb;Gam
ss;Gam

hsi
sb;Gam

hsi

Reed 962 39 1.62 37.60 15.57 2902.57 4.40 0.47 4.23 1.89 98.11 6.55 2.12 0.45 1.02

Simmons 1510 43 2.57 39.84 15.86 5069.47 4.62 0.46 4.48 1.78 98.22 6.72 2.17 0.43 1.02

Caltech 762 43 1.54 36.15 15.39 2586.5 4.29 0.44 4.01 2.32 97.68 6.20 1.96 0.45 1.03

Haverford 1446 82 1.50 38.24 15.15 8664.29 4.51 0.43 4.11 1.03 98.97 6.88 2.59 0.47 1.01

Swarthmore 1657 73 2.32 38.71 15.28 9306.55 4.58 0.44 4.24 1.50 98.50 6.62 2.19 0.38 1.02
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FIG. 9. Adoption curves of the WTM with timers on the LCC of two FACEBOOK100 networks: (a)–(c) Swarthmore and (d)–(f) Michigan. In each simulation,

each node has a homogeneous threshold value of / ¼ 0:01, and we use different timer distributions for differently-colored curves. The green crosses indicate

the results of numerical simulations of the WTM with homogeneous timers with s¼ 4, the orange squares are for heterogeneous timers s that are distributed

uniformly at random from the set f0; 1;…; 8g, and the blue diamonds are for heterogeneous timers determined from a Gamma distribution with mean ls ¼ 4

and standard deviation rs ¼ 4 and then rounded down to an integer. The dashed lines mark the times at which each adoption process reaches a steady state.

The solid curves are results of our pair approximation, and we can see that the approximations agree reasonably well with our numerical simulations for hetero-

geneous timers and are able to capture when the adoption fractions change (though not the magnitudes of these changes) for homogeneous timers. To isolate

the effects of different distributions of timers, in each case, we run the WTM using the same seed nodes. For each realization, we determine the seed node (uni-

formly at random) and timer values separately. Our numerical simulations are means over 100 realizations.
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that the cascade condition for the WTM with timers is the

same as that for the WTM without a timer.

As one can see from Eq. (10), one can determine q1 from

q1, which is the fixed point of Eq. (11). In this appendix, we

calculate the condition for a small seed fraction q0 ¼ qnð0Þ to

result in a global cascade [i.e., q1 � q0 ¼ qnð0Þ].
We rewrite Eq. (11) as

qnþ1ðtÞ ¼ q0 þ ð1� q0ÞKðqnðtÞÞ; (C1)

where

KðqnðtÞÞ¼
Xt

s¼0

X1
k¼1

k

z
Pk

Xk�1

m¼0

k�1

m

 !

�qnðt�sÞm 1�qnðt�sÞ½ �k�1�mGðm;k;sÞ ; (C2)

where we note that Kð0Þ ¼ Fð0Þ.
We examine the t!1 limit, because we are interested

in steady-state behavior of the WTM with timers. For a

fixed timer s	 t, the probability qnðt� sÞ 
 qnðtÞ as

t!1, and both qnðt� sÞ and qnðtÞ approach the same

limit q1. Additionally,
P

sGðm; k; sÞ ¼ Fðm; kÞ, becauseP
s½CsðsÞ � Csðs� 1Þ� ¼ 1. (Note that Cs(�1) ¼ 0, because

there are no negative timers.) For s 
 t, the response func-

tion Gðm; k; sÞ 
 0, because lims!t½CsðsÞ � Csðs� 1Þ� 
 0

as t!1. Therefore, as t!1, we write

K qnðtÞ½ � 

X1
k¼1

k

z
Pk

Xk�1

m¼0

k � 1

m

 !

� qnðtÞm 1� qnðtÞ½ �k�1�mFðm; kÞ: (C3)

We linearize Eq. (C1) near q¼ 0 to obtain

q1 
 q0 þ ð1� q0Þ Kð0Þ þ q1K0ð0Þ
� �

; (C4)

where

K0ð0Þ ¼
X1
k¼1

k

z
Pkðk � 1Þ F

1

k

� �
� Fð0Þ

� �
(C5)

is the coefficient of the linear term of the Taylor expansion

around q¼ 0. We now rearrange Eq. (C4) to obtain

q1 
 �
ð1� q0ÞKð0Þ þ q0

ð1� q0ÞK0ð0Þ � 1
: (C6)

If the denominator of (C6) is negative, the approximate

value of q1 is positive. (With Kð0Þ > 0 and at least one seed

adopted node, the numerator is always positive.)

Additionally, the order of magnitude of q1 is the same as

that of q0, so the resulting steady-state value q1 cannot be

much larger than q0, so we do not obtain a global cascade.

Therefore, the condition to observe a global cascade is

ð1� q0ÞK0ð0Þ � 1 > 0: (C7)

The cascade condition (C7) for the WTM with timers is

the same as that for the WTM without a timer. We obtain

this result because WTM dynamics are monotonic: if a node

adopts in the WTM without a timer in the limit t!1, then

it must also adopt in the WTM with timers in the limit

t!1. Consequently, in the t!1 limit, qnðtÞ for the

WTM with timers and qnðtÞ of the WTM must yield the

same value qnð1Þ. Therefore, the cascade condition (C7) for

the WTM with timers is identical to that for the WTM with-

out timers.

APPENDIX D: CYCLES IN THE UNDERLYING
UNDIRECTED NETWORKS OF DISSEMINATION
TREES

For a 3-cycle to exist in a dissemination tree’s underly-

ing undirected graph, a node’s timer needs to be triggered by

the simultaneous adoption of two neighbors. However, these

neighbors cannot be adjacent to each other in a dissemination

tree, as adjacent nodes in a dissemination tree cannot adopt

simultaneously. A pair of nodes becomes neighbors in a dis-

semination tree if and only if one triggers the timer of the

FIG. 10. Illustration of a cycle in (the underlying undirected network of) a

dissemination tree. (Recall that a dissemination tree is actually a directed

acyclic graph.)

FIG. 11. Examples of networks with larger mean stem-node timers than

mean branch-node timers.
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TABLE VII. Time tWTM to reach certain fractions of adopted nodes for the dark-colored curves (i.e., the WTM with timers) in Fig. 12 and the time tdis to reach

certain fractions of adopted nodes for the light-colored curves (i.e., after we adjust the timers of stem nodes of the dissemination tree to the mean timer value).

The subscript hom indicates homogeneous timers, the subscript unif indicates timers that are distributed uniformly at random, and the subscript Gam indicates

timers that are determined using a Gamma distribution and then rounded down to an integer.

Congen-3

a ¼ 0:5 a ¼ 1:0

q� tWTM;hom tWTM;unif tdis;unif tWTM;Gam tdis;Gam tWTM;hom tWTM;unif tdis;unif tWTM;Gam tdis;Gam

0.5 29.82 22.94 26.05 23.71 26.63 30.56 24.17 27.18 24.87 27.67

0.6 30.43 24.05 27.37 24.87 28.19 31.52 25.32 28.76 26.07 29.26

0.7 31.27 25.23 29.37 26.22 30.02 32.70 26.53 30.58 27.46 31.19

0.8 32.53 26.56 31.67 27.99 32.37 34.25 27.91 32.95 29.27 33.49

0.9 34.30 28.34 35.47 30.93 36.07 35.43 29.77 36.88 32.23 37.49

1.0 44.06 41.76 75.70 61.92 69.01 46.32 44.10 77.67 63.67 70.87

Congen-4

b ¼ 0:5 b ¼ 1:0

q� tWTM;hom tWTM;unif tdis;unif tWTM;Gam tdis;Gam tWTM;hom tWTM;unif tdis;unif tWTM;Gam tdis;Gam

0.5 30.26 23.60 26.75 24.47 27.39 33.57 26.81 29.81 27.58 30.38

0.6 31.08 24.74 28.32 25.65 28.96 34.71 28.04 31.45 28.87 32.05

0.7 32.14 25.93 30.12 27.02 30.80 35.69 29.33 33.32 30.33 33.98

0.8 33.62 27.29 32.46 28.81 33.18 36.83 30.81 35.72 32.21 36.46

0.9 35.05 29.11 36.35 31.75 36.91 38.78 32.81 39.68 35.23 40.35

1.0 45.43 42.79 76.63 62.86 70.14 52.17 49.60 81.77 66.99 75.53

TABLE VIII. Time to reach certain fractions of adopted nodes in the WTM with homogeneous and heterogeneous timers on the LCC of FACEBOOK100 net-

works. The quantity N is the number of nodes, z is a network’s mean degree, and hli is its mean shortest-path length between pairs of nodes. All nodes have a

homogeneous adoption threshold of / ¼ 0:01. The subscript hom indicates homogeneous timers, the subscript unif indicates timers that are distributed uniformly

at random, and the subscript Gam indicates timers determined using a Gamma distribution. (We use the same timer distributions as in Table VI.) The quantity T
is the time that it takes to reach a steady state and tq� is the time that it takes for the fraction qðtÞ of adopted nodes to reach q�. Each quantity is a mean over

100 realizations, and we use a different distribution of timers for each realization. We also choose the seed node uniformly at random for each realization.

Homogeneous timer

N z hli Thom t0:9;hom t0:8;hom t0:7;hom t0:6;hom t0:5;hom

Reed 962 39 1.62 23.40 16.19 15.22 14.40 13.44 12.55

Simmons 1510 43 2.57 25.34 16.90 15.71 15.27 14.44 13.69

Caltech 762 43 1.54 21.95 15.60 14.75 14.01 12.91 12.07

Haverford 1446 82 1.50 25.83 15.38 14.96 14.51 13.71 13.17

Swarthmore 1657 73 2.32 24.35 15.91 15.17 14.69 14.20 13.37

Timers distributed uniformly at random

N z hli Tunif t0:9;unif t0:8;unif t0:7;unif t0:6;unif t0:5;unif

Reed 962 39 1.62 22.00 12.08 10.92 9.96 9.03 8.10

Simmons 1510 43 2.57 23.47 12.22 11.07 10.11 9.18 8.26

Caltech 762 43 1.54 21.24 11.84 10.69 9.72 8.80 7.86

Haverford 1446 82 1.50 22.36 11.45 10.43 9.50 8.59 7.68

Swarthmore 1657 73 2.32 21.01 11.61 10.58 9.65 8.73 7.82

Timers determined from a Gamma distribution and then rounded down to an integer

N z hli TGam t0:9;Gam t0:8;Gam t0:7;Gam t0:6;Gam t0:5;Gam

Reed 962 39 1.62 37.33 15.58 12.63 10.90 9.66 8.66

Simmons 1510 43 2.57 39.92 15.95 13.02 11.30 10.06 9.07

Caltech 762 43 1.54 37.04 15.58 13.20 11.42 10.15 9.15

Haverford 1446 82 1.50 38.44 15.12 12.28 10.62 9.44 8.50

Swarthmore 1657 73 2.32 38.63 15.27 12.45 10.79 9.60 8.68
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other. Therefore, there cannot exist a 3-cycle in the underly-

ing undirected network of a dissemination tree.

In contrast, a dissemination tree can have cycles with 4

or more nodes in its underlying undirected graph. This

occurs when nodes in different adoption paths have a com-

mon predecessor. Specifically, for the WTM with heteroge-

neous timers, any k-cycle with k � 4 can exist; for a

homogeneous timer, k must be even. Assume that there is a

cycle in the underlying undirected network of a dissemina-

tion tree (see Fig. 10). This implies that there exist two dif-

ferent adoption paths (X and Y in Fig. 10) with at least two

common nodes (vi and vj). Suppose that vi adopts before vj. If

the timers are homogeneous, the adoption spreads from vi to

vj at the same rate in X and Y. Therefore, the cycle sizes for a

homogeneous timer can only be even. However, for hetero-

geneous timers, the rates of adoption spreading in X and Y
can be different. Therefore, any k-cycle with k � 4 can exist

for the WTM with heterogeneous timers.

APPENDIX E: STEMS WITH LARGE TIMERS

In this appendix, we discuss situations in which a stem

in a network includes nodes with large timers, in contrast to

those that we investigated in Sec. VI. The characteristics of

stems and branches depend on both network structure and

the timers. Previously, we focused on examining homoge-

neous adoption thresholds in which nodes whose degree is

equal to a network’s mean degree satisfy the threshold-adop-

tion condition if even a single neighbor has adopted, and we

observed that stem nodes tend to have smaller mean timers

than branch nodes.

However, depending on the network structure [see Fig.

11(a)] and the assignments of timers [see Fig. 11(b)], it is

possible for the mean of the stem-node timers to be larger

than the mean of the branch-node timers. In Fig. 11(a), the

adoption paths do not change, regardless of the assignments

of thresholds and timers, because the seed node is not

FIG. 12. Adoption curves of the WTM with timers and adoption curves after we adjust the timers of stem nodes of dissemination trees on the LCC of generalized

configuration-model networks with (a, b) 3-cliques and (c, d) 4-cliques. These networks (see Table III in the main text) have N¼ 10 000 nodes, and the underlying

configuration-model networks have a Poisson degree distribution with expected mean degree z¼ 6. We use the edge–clique ratios a ¼ 0:5 in panel (a), a¼ 1 in

panel (b), b ¼ 0:5 in panel (c), and b¼ 1 in panel (d). For all networks, each node has a homogeneous threshold value of / ¼ 0:1. The green crosses indicate the

results of numerical simulations of the WTM with homogeneous timers with s¼ 4, the orange squares are for heterogeneous timers s that are distributed uniformly

at random from the set f0; 1;…; 8g, and the blue diamonds are for heterogeneous timers determined from a Gamma distribution with mean ls ¼ 4 and standard

deviation rs ¼ 4 and then rounded down to an integer. The dark orange and dark blue curves are before we change the timers in dissemination trees, and the corre-

sponding light-colored curves are after we change those timer values. The vertical dashed lines mark the times at which the adoption process of the corresponding

color reaches a steady state. Our simulation results are means over 1000 realizations. For each realization, we generate an independent network. We also determine

the seed node (uniformly at random) and timer values separately for each realization. To isolate the effects of different distributions of timers, in each scenario, we

run the WTM using the same networks with the same seed nodes.
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adjacent to any node in a cycle of length 4 or more (see Sec.

III). Therefore, in Fig. 11(a), the stems ðv3; v4; v5; v6Þ and

ðv7; v8; v9; v10Þ have larger mean timers than the branches.

Even if a network includes a cycle with 4 or more nodes,

stem nodes can still have a larger mean timer than branch

nodes, depending on the network structure and timer assign-

ments. With the given timer assignment, the network in Fig.

11(b) has the stem ðv1; v6; v5; v7; v8Þ, which has a larger

mean timer than the branch ðv2; v3; v4Þ.

APPENDIX F: CHANGE OF ADOPTION CURVES
AFTER ADJUSTING THE TIMERS OF STEM NODES IN
DISSEMINATION TREES

As in Sec. VI B, we change the timers of stem nodes of

dissemination trees to the mean value hsi of the timers

(which is ls ¼ 4 in our example). The times that the stem

nodes’ neighbors in a tree adopt then also change, as the

adoption time of a node in an adoption path is determined by

the sum of its timer and the adoption time of its predecessor

node. (Note that we are not rerunning the WTM dynamics.)

In Fig. 12, we illustrate how the adoption curves change

because of the changes in the timers of stem nodes. We use

generalized configuration-model networks with either 3-

cliques or 4-cliques (as in Table III). For the networks with 3-

cliques, we use the edge–clique ratios a ¼ 0:5 [see Fig. 12(a)]

and a ¼ 1:0 [see Fig. 12(b)]. For the networks with 4-cliques,

we use the edge–clique ratios b ¼ 0:5 [see Fig. 12(c)] and b
¼ 1:0 [see Fig. 12(d)]. In each figure, the dark orange and dark

blue curves represent adoption curves for the WTM with het-

erogeneous timers. The orange curves (marked with squares)

indicate results for timers that are distributed uniformly at ran-

dom from the set f0; 1;…; 8g. The blue curves (marked with

diamonds) indicate results for timers that are determined from

a Gamma distribution with mean ls ¼ 4 and standard devia-

tion rs ¼ 4 (and are then rounded down to an integer). The

curves with lighter colors are the adoption curves after we

change the timers of the stem nodes of the dissemination trees.

The light orange curve is for uniformly-randomly-distributed

timers, and the light blue curve is for Gamma-distributed

timers. The green curve (marked with crosses), which we

include for comparison, is for a WTM with a homogeneous

timer. We observe that the light-colored curves intersect the

green curve earlier than do the dark-colored curves.

In Table VII, we show the times to achieve certain adop-

tion fractions q� of nodes—calculated with Eq. (6) from the

main text—after adjusting the timers of stem nodes. From

both Fig. 12 and Table VII, we observe that adoptions for

heterogeneous timers are delayed noticeably by changing the

timers of the stem nodes, even though they constitute a tiny

fraction of all nodes in the networks.

APPENDIX G: TIME TO REACH CERTAIN FRACTIONS
OF ADOPTED NODES FOR FACEBOOK100 NETWORKS

In Table VIII, we give the times to reach certain frac-

tions q� of adopted nodes for FACEBOOK100 networks when

timers are homogeneous, distributed uniformly at random,

and determined using a Gamma distribution and then

rounded down to an integer.
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