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In social networks, interaction patterns typically change over time. We study opinion dynamics on tie-decay
networks in which tie strength increases instantaneously when there is an interaction and decays exponentially
between interactions. Specifically, we formulate continuous-time Laplacian dynamics and a discrete-time DeG-
root model of opinion dynamics on these tie-decay networks, and we carry out numerical computations for the
continuous-time Laplacian dynamics. We examine the speed of convergence by studying the spectral gaps of
combinatorial Laplacian matrices of tie-decay networks. First, we compare the spectral gaps of the Laplacian
matrices of tie-decay networks that we construct from empirical data with the spectral gaps for corresponding
randomized and aggregate networks. We find that the spectral gaps for the empirical networks tend to be smaller
than those for the randomized and aggregate networks. Second, we study the spectral gap as a function of
the tie-decay rate and time. Intuitively, we expect small tie-decay rates to lead to fast convergence because
the influence of each interaction between two nodes lasts longer for smaller decay rates. Moreover, as time
progresses and more interactions occur, we expect eventual convergence. However, we demonstrate that the
spectral gap need not decrease monotonically with respect to the decay rate or increase monotonically with
respect to time. Our results highlight the importance of the interplay between the times that edges strengthen and
decay in temporal networks.
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I. INTRODUCTION

One can represent the structure of many natural, societal,
and engineered systems as networks [1]. The simplest type of
network is a graph, which consists of nodes (such as individ-
ual humans) and edges, each of which connects two nodes
to each other. The qualitative dynamics of many types of
dynamical processes that consist of interacting elements (i.e.,
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nodes)—including the spread of infectious diseases, opinion
formation, synchronization, and cascading failures in power
grids—depend considerably on network structure [2–4].

In the present paper, we consider models of opinion dy-
namics. People in a social network have different opinions,
and the opinions of people can change as they influence each
other [5,6]. Examples include choosing between candidates in
an election, debating topics in online forums, and collective
decision-making in animal flocks. Models of opinion dynam-
ics aim to explore the emergence of consensus, persistent
disagreement, transitions between consensus and disagree-
ment, the influence of the heterogeneity of individuals, the
effects of media on opinion dynamics, and more [2–4,6–11].
Many previous studies have examined opinion dynamics on
time-independent networks and have explored rich phenom-
ena, such as the probability to reach consensus and the time to
reach it, the emergence of different opinion clusters, the influ-
ence of stubborn individuals on persistent disagreement, and
the effects of network structure on these phenomena [5,6,8,9].
However, most social networks change in time [12–14].
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Individuals move from one place to another during their lives,
friendships form and dissipate, interactions differ in different
times of a day (e.g., morning versus night) and different days
of a week (e.g., weekdays versus weekends), and so on. This
yields time-varying networks, which are often called “tempo-
ral networks” [12–15]. It is important to examine dynamical
processes, such as opinion dynamics [16–19], on temporal
networks. In such scenarios, both the structure of a network
and the states of its nodes and/or edges change in time.

Although many time-dependent networked systems evolve
continuously in time, it is a common practice to aggregate
interactions into homogeneous and discrete time windows to
facilitate the analysis of such systems [14,15]. If one is not
careful about examining the relative time scales of dynamical
processes on a network and temporal changes in network
structure (or if multiple time scales or burstiness are rele-
vant to one or more of these processes), then aggregating
network dynamics into discrete time windows may lead to
qualitatively incorrect conclusions. Such situations have mo-
tivated investigations of the size of aggregation time windows
and the development of methods to allow them to be het-
erogeneous [20–23]. An alternative approach that avoids the
use of discrete time windows is to consider time-stamped
events, such as conversation events, between nodes as the
objects of interest [12,13,15]. Because events between nodes
are often bursty in social networks [12,24–27], it is critical to
carefully consider both the sizes and the boundaries of time
windows.

Despite the wealth of previous studies of temporal net-
works, we still lack robust and principled frameworks to study
temporal network data that comes in the form of a list or
stream of time-stamped events. A promising framework for
studying temporal networks in continuous time is “tie-decay
networks” [28,29], in which one distinguishes the concepts of
interactions and ties. Interactions represent discrete contacts,
and ties represent relationships between entities that change
continuously in time. The strength of a tie decays in time
and increases instantaneously by some amount when there is
an interaction event. Importantly, tie-decay networks do not
impose a hard partitioning of the set of interaction events into
discrete time windows. In the context of opinion dynamics,
the use of a tie-decay network entails that the effect of each
interaction event on the opinions of the two nodes in the
interaction lasts for some time after the event.

In the present paper, we study opinion dynamics on
tie-decay networks. We examine continuous-time Laplacian
dynamics [30] and a discrete-time DeGroot model of opinion
dynamics [31] on such networks, and we conduct numerical
computations for the continuous-time Laplacian dynamics.
We examine the convergence speed of opinion dynamics that
arise from a time-varying combinatorial Laplacian matrix for
tie-decay networks that we construct from empirical data. We
also compare the convergence speed of opinion dynamics on
the original tie-decay networks to such dynamics on random-
ized and aggregate networks. We find that the convergence
speeds of opinion dynamics on the tie-decay networks that
we construct from the empirical data tend to be slower than
the convergence speeds on the associated randomized and
aggregate networks. Interestingly, we also find that the con-
vergence speed need not decrease monotonically with respect

to the decay rate and that the convergence need not proceed
monotonically with respect to time.

Our paper proceeds as follows. In Sec. II, we formulate
continuous-time Laplacian dynamics and a discrete-time De-
Groot model of opinion dynamics on tie-decay networks. In
Sec. III, we describe how we generate randomized and ag-
gregate networks from a given temporal network. In Sec. IV,
we describe the six empirical data sets that we examine. In
Sec. V, we compare the spectral gaps between these empirical
tie-decay networks, randomized tie-decay networks, and ag-
gregate networks. In Sec. VI, we examine the spectral gaps as
a function of the decay rate and decay time. In Sec. VII, we
conclude and discuss the implications of our work. We discuss
some additional details in three appendices.

II. OPINION DYNAMICS ON TIE-DECAY NETWORKS

We consider both continuous-time and discrete-time opin-
ion dynamics on tie-decay networks. Specifically, we formu-
late continuous-time Laplacian dynamics and a discrete-time
DeGroot model of opinion dynamics on tie-decay networks.
When we track observations of the continuous-time Laplacian
dynamics at the discrete times at which events occur, we
obtain a DeGroot model.

A. Tie-decay networks and opinion dynamics

We start by briefly describing tie-decay networks [28].
By using tie-decay networks, we distinguish between inter-
actions (which represent discrete contacts) and ties (which
represent relationships that change continuously in time).
Suppose that there are N nodes, and let B(t ) be an N × N
time-dependent matrix with real, non-negative entries bi j (t )
for all node pairs (vi, v j ). The entry bi j (t ) encodes the
strength of the tie from node vi to node v j at time t .
The tie strength (i.e., edge weight) bi j (t ) evolves according to
the following two rules. First, in the absence of interactions,
ties decay exponentially in time; specifically dbi j

dt = −αbi j ,
where α > 0 is the decay rate. We use the same decay rate for
all edges. Second, if an event occurs on the edge from vi to
v j at time t , then the tie strength bi j (t ) grows instantaneously
by 1.

In the following subsections, we formulate opinion dynam-
ics on tie-decay networks. We assume that each node has a
real-valued opinion that changes continuously in time. Each
node vi updates its opinion such that (1) the magnitude of
the opinion change in one unit of time is the sum of the
influence from all of its in-neighbors, (2) the influence of each
in-neighbor v j on vi depends on the difference between vi’s
opinion and v j’s opinion, and (3) the influence of v j on vi is
proportional to the tie strength bji(t ).

B. Laplacian dynamics

Let L(t ) denote the combinatorial Laplacian matrix, which
we construct from the set of the events at time t . For i �= j,
the (i, j)th entry Li j (t ) of L(t ) is −1 if there is a directed edge
from node vi to node v j ; otherwise, Li j (t ) = 0. The diagonal
element Lii(t ) is equal to the out-degree of node vi for each
i ∈ {1, . . . , N}. Let L̃(t+) denote the combinatorial Laplacian
matrix of the tie-decay network at time t+. Mathematical
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objects at times t− and t+ refer, respectively, to the situations
immediately before and immediately after the occurrence of
events at time t . Therefore, the matrix L̃(t+) includes the
effects of the events at time t and those at times t ′ < t . Given
the combinatorial Laplacian matrix of a tie-decay network at
time tn−1 and the events at time tn, the dynamics of the com-
binatorial Laplacian matrix of the tie-decay network satisfy

L̃i j (t
+
n ) = L̃i j (t

+
n−1) exp[−α(tn − tn−1)] + Li j (tn) . (1)

Suppose that the initial events in a network occur at time
t0 = 0 and that the next events (on some edges) occur at time
t1. This yields

L̃(t−) = L̃(0+)e−αt , (2)

where L̃(0+) = L(0) and 0 � t < t1.
Let x denote the N-dimensional row vector of the opinions

of the nodes in our tie-decay network. Assume that x obeys
combinatorial Laplacian dynamics in continuous time:

dx
dt

= −xL̃(t )� = −xL̃(0+)�e−αt (with 0 � t < t1) , (3)

where � represents transposition. The solution to Eq. (3) is

x(t ) = x(0) exp

[
L̃(0+)�

α
(e−αt − 1)

]
(with 0 � t < t1) .

(4)

However, we have a stream of events, so we also need to
consider other time intervals. Therefore, we need a more
general version of Eq. (4) for the time intervals t1 � t < t2,
t2 � t < t3, . . . , tn−1 � t < tn. We write

x(t ) = x(tn′−1) exp

[
L̃(t+

n′−1)�

α
(e−α(t−tn′−1 ) − 1)

]

(with tn′−1 � t < tn′ , n′ ∈ {1, 2, . . .}) . (5)

Using Eq. (5), we obtain

x(tn) = x(0)M(tn) , (6)

where

M(tn) = exp

[
L̃(0+)�

α
(e−αt1 − 1)

]

× exp

[
L̃(t+

1 )�

α
(e−α(t2−t1 ) − 1)

]
× · · ·

× exp

[
L̃(t+

n−1)�

α
(e−α(tn−tn−1 ) − 1)

]
. (7)

The matrix M(tn) has an eigenvalue of 1 because each
exponential matrix on the right-hand side of Eq. (7) has
an eigenvalue of 1 with corresponding left eigenvector
(1, . . . , 1). We do not need to distinguish between t+

n and t−
n

for x(tn) and M(tn) because these quantities are continuous in
time.

One can also express Eq. (7) in terms of streaming data.
Given the opinions of the nodes at time tn and the combina-
torial Laplacian matrix of a tie-decay network at time t+

n , the

state at time tn+1 is

x(tn+1) = x(tn) exp

[
L̃(t+

n )�

α

(
e−α(tn+1−tn ) − 1

)]
. (8)

C. DeGroot model of opinion dynamics

We use the discrete-time DeGroot model [32,33] as a
model of opinion dynamics. We consider discrete time steps
of length �t . Let y = (y1, . . . , yN ) denote the N-dimensional
row vector of the opinions of the nodes. Because time is
discrete, we examine y(n�t ) with n = 0, 1, 2, . . ..

Let A(n�t ) denote the adjacency matrix that we construct
from the set of events at time n�t , and let Ã(n�t ) denote
the adjacency matrix of the tie-decay network at time n�t .
The matrix Ã(n�t ) includes the contributions of the events
at time n�t and the effect of the exponential decay of the
ties in A(n′�t ) for n′ < n. Given the adjacency matrix at
t = (n − 1)�t and the events at time t = n�t , the dynamics
of the adjacency-matrix elements of the tie-decay network are

Ãi j (n�t ) = Ãi j[(n − 1)�t]e−α�t + Ai j (n�t ) , (9)

with the convention that Ãi j (−�t ) = 0. The update rule in the
DeGroot model is

yi[(n + 1)�t] =
N∑

j=1

y j (n�t )B̃ ji[(n + 1)�t] , (10)

where

B̃i j (n�t ) = Ãi j (n�t )∑N
i=1 Ãi j (n�t )

. (11)

Equation (10) implies that

y(n�t ) = yinitB̃(0)B̃(1) · · · B̃(n�t ) , (12)

where yinit is the initial condition before streaming network
data arrives at time t = 0.

The matrix B̃(0)B̃(1) · · · B̃(n�t ) has an eigenvalue of 1
because each matrix B̃(n′�t ) (with n′ ∈ {0, 1, . . . , n}) has
an eigenvalue of 1 with corresponding left eigenvector
(1, . . . , 1).

By writing the continuous-time Laplacian dynamics in
terms of the composite map (7), we see that it is in fact a De-
Groot model. The correspondence between Eqs. (7) and (12)
is given by

B̃(n) = exp

[
L̃(t+

n−1)�

α
(e−α(tn−tn−1 ) − 1)

]
. (13)

The column sum of the matrix on the right-hand side of
Eq. (13) is 1 for each column. This is consistent with the
normalization

∑N
i=1 B̃i j = 1 (with j ∈ {1, . . . , N}), which fol-

lows from Eq. (11).

III. GENERATION OF RANDOMIZED
AND AGGREGATE NETWORKS

We compare the convergence speeds of the opinion
dynamics on empirical temporal networks with those for
corresponding randomized temporal networks. Randomized
temporal networks are useful for investigating the effect of
the properties of empirical temporal networks. If empirical
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TABLE I. Comparison of the randomization methods. (The symbol “P” indicates that a property is preserved, and the symbol “D” indicates
that a property is destroyed.)

Temporal Distribution of inter-event Number of events Structure of
correlations times of each edge at each time step aggregate network

Interval shuffling D P D P
Shuffled time stamps D D P P
Random times D D D P
Random edge shuffling D D P D

and associated randomized temporal networks yield different
convergence speeds, we gain insight into the properties of
empirical temporal networks that are likely responsible for
such differences. We also compare the convergence speeds of
opinion dynamics on the empirical temporal networks with
those for the corresponding aggregate networks. If an empir-
ical temporal network and its associated aggregate network
yield different convergence speeds, it is likely that the aggre-
gation loses essential information about the opinion dynamics.

We now discuss how we generate randomized and aggre-
gate networks. In this section and the following sections, we
consider only undirected networks.

A. Randomized networks

We investigate the convergence speeds of continuous-
time Laplacian dynamics on several tie-decay networks and
compare them to the convergence speeds for corresponding
randomized networks. We consider four of the many ways to
randomize temporal networks [34]. We explain each random-
ization method and summarize them in Table I.

(1) Interval shuffling: For each edge of a network, we uni-
formly randomly permute the inter-event times, except that we
fix the times of the first and last events. This type of shuffling
preserves the distribution of inter-event times of each edge. It
also preserves the structure of an aggregate time-independent
network (including the weight of each edge), which we con-
struct by setting the weight of each edge to be the number of
events between its incident nodes. However, interval shuffling
destroys the temporal correlations of each edge and across
different edges.

(2) Shuffled time stamps: We replace time stamps of two
random events from different edges of a network. Specifically,
we choose two edges uniformly at random, choose one event
uniformly at random for each selected edge, and swap the
two chosen events. We repeat this procedure for the number
of event times in the network. This randomization method
preserves the number of events on each edge. It also preserves
the set of event times of the network, including the multiplicity
of each event time. However, shuffling time stamps destroys
the distribution of inter-event times of each edge.

(3) Random times: For each edge of a network, we re-
distribute the same number of events as the original number
independently according to a uniform density on the time
window [0, T ], where T is the time of the last event in the net-
work. This procedure corresponds approximately to assigning
an independent Poisson process to each edge. For each edge,
the rate of this process is equal to the number of events on the
edge divided by T .

(4) Random edge shuffling: Given a network, we rewire a
pair of edges that we choose uniformly at random. Specifi-
cally, we pick two edges, (vi, v j ) and (vi′ , v j′ ), uniformly at
random. We then replace the two edges (vi, v j ) and (vi′ , v j′ )
by the edges (vi, v j′ ) and (vi′ , v j ). This rewiring preserves the
time stamps of the two edges. We repeat this procedure for
the number of event times in the network. In contrast to the
previous three types of randomization, random edge shuffling
destroys the structure (by changing the adjacency matrix) of
the aggregate time-independent network in which the weight
of each edge is the number of events between its incident
nodes.

B. Aggregate networks

We now compare the convergence speeds of the dynamics
on tie-decay networks with those for corresponding aggregate
networks with the same mean over time of the weight of each
edge. The aggregate networks that we consider correspond
to assuming continuous-time Laplacian dynamics of the form
dx
dt = −xL�, where L is the combinatorial Laplacian matrix of
the aggregate network. Note that L is constant throughout the
time window [0, T ]. Given a temporal network, we define the
weight wi j of edge ei j of the aggregate network by

wi j = 1

T

∑
�

∫ T

t (i, j,�)
exp{−α[x − t (i, j, �)]}dx , (14)

where t (i, j, �) is the time of the �th event on edge ei j . Note
that wi j is equal to the mean over time of the weight of edge
ei j in the tie-decay network. A small decay rate α leads to a
large edge weight wi j .

IV. DATA SETS

We construct tie-decay networks from the following six
data sets.

HYPERTEXT: This data set was collected during the ACM
Hypertext 2009 conference over about 2.5 days [35,36]. We
construct a time-dependent network of face-to-face proximity
of conference attendees. The data set has a time resolution
of �t = 20 seconds. This “time resolution” is the interval
between consecutive observations of events. Each entry in the
data set has the form (t, i, j), where vi and v j are the IDs of the
people in “contact” and t is the time of the contact event. This
data set has 113 nodes, 2196 edges, and 20 818 events. One of
these nodes is an almost isolated node that has only one edge
(with two events). In Appendix A, we study the influence of
this node on the convergence speed of the opinion dynamics.
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TABLE II. Summary of the original networks from the six data sets.

Number Mean number of Time resolution
Data set Nodes Edges of events events per node (seconds)

HYPERTEXT 113 2196 20 818 368 20
WORKPLACE 92 755 9 827 214 20
HOSPITAL 75 1139 32 424 865 20
PRIMARY SCHOOL 242 8317 125 773 1039 20
HIGH SCHOOL 126 1710 28 561 453 20
REALITY MINING 64 722 13 131 410 5

WORKPLACE: This data set consists of the contacts between
individuals in an office building in France from 24 June to 3
July in 2013 [37,38]. The time resolution of the data set is
�t = 20 seconds. The network has 92 nodes, 755 edges, and
9827 events.

HOSPITAL: This data set consists of the contacts between
individuals, where the individuals are either patients or health-
care workers (HCWs), in a hospital ward in Lyon, France
from Monday 6 December 2010 at 1:00 pm to Friday 10
December 2010 at 2:00 pm [39,40]. The study includes 29
patients and 46 HCWs. The time resolution of the data set is
�t = 20 seconds. The network has 75 nodes, 1139 edges, and
32 424 events.

PRIMARY SCHOOL: This data set consists of the contacts
between 232 primary-school children and 10 teachers in
France [41–43]. The people were recorded for two consecu-
tive days in October 2009. The time resolution of the data set
is �t = 20 seconds. The network has 242 nodes, 8317 edges,
and 125 773 events.

HIGH SCHOOL: This data set consists of the contacts be-
tween students in three classes in a high school in Marseille,
France [44,45]. The people were recorded for four consecutive
days in December 2011. The time resolution of the data set is
�t = 20 seconds. The network has 126 nodes, 1710 edges,
and 28 561 events.

REALITY MINING: This is a subset of the data that were
collected in an experiment that was conducted with students
at Massachusetts Institute of Technology over nine months
from September 2004 to May 2005 [46]. This subset of the
data was also used in Refs. [47,48]. The students were given
smartphones, and their pairwise proximity was recorded via
a Bluetooth channel. The time resolution of the data set is
�t = 5 seconds. The network has 64 nodes, 722 edges, and
13 131 events.

In Table II, we summarize the number of nodes, the number
of edges, the number of events, the mean number of events per
node, and the time resolution of each of these six data sets.

V. COMPARISON OF THE SPECTRAL GAPS FOR
EMPIRICAL TIE-DECAY NETWORKS, RANDOMIZED

TIE-DECAY NETWORKS, AND AGGREGATE NETWORKS

We numerically examine the convergence speed of
continuous-time Laplacian dynamics on tie-decay networks
(see Sec. II B) that we construct from the six empirical data
sets (see Sec. IV). We compare the convergence speeds of
the Laplacian dynamics on empirical tie-decay networks with

those of Laplacian dynamics on corresponding randomized
and aggregate networks (see Sec. III).

For the continuous-time Laplacian dynamics on tie-decay
networks, we quantify the convergence speed of opinion
dynamics by the spectral gap [49] of the matrix M(tn).
The spectral gap of M(tn) is defined by the difference be-
tween the largest-magnitude eigenvalue of M(tn) and the
eigenvalue with the second-largest magnitude [49]. The
largest-magnitude eigenvalue of M(tn) is equal to 1. Be-
cause the eigenvalue 1 has the corresponding left eigenvector
(1, . . . , 1), which is associated with the nodes reaching a
consensus opinion, Eq. (6) implies that the spectral gap of
M(tn) quantifies the speed at which consensus occurs in
continuous-time Laplacian dynamics on tie-decay networks
between times 0 and tn. A large spectral gap implies a fast
approach to consensus. For the discrete-time DeGroot model
(see Sec. II C), the speed of convergence is governed by the
spectral gap of the product of the B̃ matrices in Eq. (12).

We compare the original networks and randomized net-
works by calculating the spectral gap of M(T ) for decay rates
of α = 0.01, α = 1, and α = 100. We show the results for
the six data sets in Fig. 1. When α = 0.01, the spectral gaps
of M(T ) for the randomized networks are significantly larger
than those for the original networks in all cases except for
interval shuffling applied to the HYPERTEXT, WORKPLACE,
HOSPITAL, HIGH SCHOOL, and REALITY MINING data sets
[see Figs. 1(a), 1(d), 1(g), 1(j), 1(m), and 1(p)]. When α =
1, the spectral gaps of M(T ) for the randomized networks
are significantly larger than those for the original networks
in all cases except for interval shuffling applied to the HY-
PERTEXT, WORKPLACE, HIGH SCHOOL, and REALITY MINING

data sets [see Figs. 1(b), 1(e), 1(h), 1(k), 1(n), and 1(q)].
When α = 100, the spectral gaps of M(T ) for the randomized
networks are significantly larger than those for the original
networks in all cases except for interval shuffling applied to
the HYPERTEXT, WORKPLACE, HOSPITAL, HIGH SCHOOL, and
REALITY MINING data sets and random times applied to the
WORKPLACE data set [see Figs. 1(c), 1(f), 1(i), 1(l), 1(o), and
1(r)]. Therefore, in a majority of the examined cases and for
all three values of α, the randomization increases the spectral
gap of M(T ) and thus yields faster convergence. We do not
observe any situations in which the spectral gap of M(T )
for an original network is significantly larger than that for
an associated randomized network. Figure 1 also leads to
several other observations. First, the spectral gaps of M(T ) for
the randomized networks that we obtain from random edge
shuffling tend to be larger than those for the other types of
randomization. For example, see the results for the random-
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FIG. 1. Comparison of the spectral gaps of M(T ) between the original and randomized networks. We examine decay rates of α = 0.01,
α = 1, and α = 100. We calculate the spectral gap of M(T ) for each of 1000 randomized networks for each type of randomization. The
acronyms IS, STS, RT, and RES stand for interval shuffling, shuffled time stamps, random times, and random edge shuffling, respectively. We
use box plots to show five-number summaries of the distributions; these quantities are the first quartile (Q1), the median, the third quartile (Q3),
the minimum without outliers (Q1 − 1.5×IQR), and the maximum without outliers (Q3 + 1.5×IQR), where IQR = Q3 − Q1. Open circles
indicate outliers.
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FIG. 2. Comparison of the spectral gaps of M(T ) for the tie-decay networks to those for the corresponding aggregate networks for
(a) α = 0.01, (b) α = 1, and (c) α = 100.

izations of the HOSPITAL and PRIMARY SCHOOL data sets for
α = 100. Second, most of the cases in which randomization
does not significantly increase the spectral gap of M(T ) occur
when we use the interval-shuffling method of randomization.
Third, the networks in which interval shuffling increases the
spectral gap are those with the largest number of events per
node (specifically, PRIMARY SCHOOL for α = 0.01, PRIMARY

SCHOOL and HOSPITAL for α = 1, and PRIMARY SCHOOL for
α = 100). Fourth, as we discuss further in Sec. VII, the dif-
ferences in the spectral gaps of M(T ) between the original
and randomized networks and between the different types of
randomized networks tend to be small for large decay rates.

We interpret the above results in Fig. 1 as follows. Overall,
the spectral gaps after randomizing using random times tend
to be larger than those after randomization using interval
shuffling. This result suggests that the deviations of the distri-
butions of the inter-event times from exponential distributions
decelerates the convergence (see Table I). Similarly, the spec-
tral gaps after randomizing using random edge shuffling tend
to be larger than those after applying the other randomization
methods. Random edge shuffling destroys the structure of an
aggregate network, but the other randomization methods do
not. This result suggests that the particular structures of the
aggregations of the original networks lead to slower conver-
gence than in randomized aggregate networks that preserve
the weighted degree of each node.

We now compare the spectral gaps of M(T ) for the
tie-decay networks to those for their corresponding aggregate
networks. We set the weight of each edge in an aggregate
network to be equal to the mean of the weights of that edge in
the associated tie-decay network over all times in the window
[0, T ]. In Fig. 2, we show the spectral gaps of M(T ) for the tie-
decay networks and their corresponding aggregate networks
for decay rates of α = 0.01, α = 1, and α = 100 for the six
data sets. The spectral gap is larger for progressively smaller
decay rates α. This occurs because a small decay rate results
in large edge weights [see Eq. (14)]. The figure suggests that,
for all of our data sets and all three of these decay rates, the
spectral gaps of M(T ) for the aggregate networks are larger
than those for the corresponding original networks. We also
observe that the spectral gaps for the tie-decay networks that

we construct from the HYPERTEXT data set are much smaller
than those for the other data sets. This difference appears
to arise from the almost isolated node in the HYPERTEXT

network. Indeed, as we will show in Appendix A, when we
exclude this node, the spectral gaps for the resulting tie-decay
networks are larger than 0.99 for α = 0.01 and α = 1. These
results are similar to those for the other data sets.

Our results for the aggregate networks are consistent with
those for the randomized temporal networks. This makes
intuitive sense because (like in the randomized temporal net-
works) our aggregations of the networks destroy the temporal
structures of the original networks. Recall that interval shuf-
fling, shuffled time stamps, and random times (which destroy
the temporal structures of the event sequences in the original
data sets to different extents) lead to spectral gaps of M(T )
that are larger than those for the associated empirical temporal
networks.

VI. NONMONOTONICITY OF THE SPECTRAL GAP

A. Spectral gap as a function of the decay rate α

In Fig. 3, we show the spectral gaps of M(T ) for tie-decay
networks that we construct from the aforementioned six data
sets. In accordance with our results in Fig. 2, the spectral gaps
for HYPERTEXT are much smaller than those for the other data
sets. From Fig. 3, we see that a larger value of α (i.e., faster
tie decay) tends to lead to a smaller spectral gap of M(T )
and hence to slower convergence. This makes intuitive sense
because a large decay rate implies that the ties between nodes
weaken more rapidly. Additionally, in three of the six data sets
(specifically, WORKPLACE, HOSPITAL, and REALITY MINING),
the spectral gaps of M(T ) do not decrease monotonically with
α. This is counterintuitive, so it is worth further exploration.

As a quick check, we calculate the spectral gap of each
factor of M(T ) as a function of the decay rate α. Recall that
such a factor takes the form

exp

[
L̃(t+

n−1)�

α
(e−α(tn−tn−1 ) − 1)

]
, n ∈ {1, 2, . . .} . (15)

We find that the spectral gap of each factor (15) of M(T )
decreases monotonically with α for all of the data sets. This
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FIG. 3. Comparison of the spectral gaps of M(T ) for the six data
sets for a range of values of the decay rate α. The horizontal line
segments above the main figure indicate the values of α for which
the slopes of the curves are positive for the WORKPLACE, HOSPITAL,
and REALITY MINING data sets.

makes intuitive sense, so there is nothing “strange” at the level
of any single interval between event times. Therefore, it seems
that the product of the factors of M(T ) leads to the above
counterintuitive result for three data sets. In Appendix B, we
study the spectral gap of M(T ) as a function of α for the
randomized networks for these three data sets (specifically,
WORKPLACE, HOSPITAL, and REALITY MINING). We observe
nonmonotonic dependence on α when we apply interval shuf-
fling to each of these three data sets, but we do not observe
such nonmonotonicity in these data sets when we use the other
three randomization methods.

B. Spectral gap as a function of time

To help understand the nonmonotonicity of the spectral
gap of M(T ) as a function of the decay rate α, we study the
spectral gap as a function of time. In Fig. 3, we observed such
nonmonotonicity in three data sets (WORKPLACE, HOSPITAL,

and REALITY MINING). Among these data sets, the REALITY

MINING data set has the most prominent nonmonotonicity,
which occurs between α ≈ 0.1 and α ≈ 1. Therefore, we
focus on three α values in the interval [0.1, 1]. We show
the spectral gap of M(tn) for the REALITY MINING data set
as a function of time for α = 0.1, α = 0.5, and α = 1 in
Fig. 4(a). In this figure, we also show the number of events
at each time. We observe that the magnitude of the change in
the spectral gap at each time does not depend monotonically
on the number of events. Additionally, the spectral gap of
M(tn) need not increase monotonically with time. Moreover,
the dynamics of the spectral gap of M(tn) depends on the
decay rate α. The most drastic change in the spectral gap of
M(tn) for α = 0.5 and α = 1 occurs at tn = 29,925. At this
time, the increase in the spectral gap of M(tn) is largest for
α = 1, second largest for α = 0.5, and smallest for α = 0.1.
In fact, for α = 0.1, the spectral gap of M(tn) changes little
after tn = 29 925, which is why the spectral gap of M(tn) for
α = 0.5 exceeds that for α = 0.1 after this time, whereas the
spectral gap of M(tn) for α = 0.1 is larger than that for α = 1.
This results in the nonmonotonicity of the spectral gap of
M(T ) that we observed in Fig. 3.

C. Updating the Fiedler vector of M(tn)

In Fig. 4(a), it seems that the spectral gap of M(tn) experi-
ences a sudden increase with respect to time. We hypothesize
that such a sudden increase occurs between time tn and time
tn+1 when the time-independent network that we construct
from the events at time tn is effective at shrinking the length
of the normalized Fiedler vector (i.e., the eigenvector that is
associated with the eigenvalue with the second-largest magni-
tude) of the matrix M(tn) (where we use an arbitrary norm to
calculate the length). Note that M(tn) indicates the matrix just
before the events at time tn. To try to explain this hypothesis,
we reexamine the matrix M(tn) and its spectral gap.

We rewrite Eq. (7) as

M(tn+1) = M(tn)Y (t+
n ) , n � 1 , (16)

and we define the square matrix Y (t+
n ) by

Y (t+
n ) = exp

[
L̃(t+

n )�

α
(e−α(tn+1−tn ) − 1)

]
. (17)

FIG. 4. The spectral gap of M(tn) for the REALITY MINING data set as a function of time. We also show the number of events at each time.
(a) The spectral gap. (b) The ratio ‖w2‖/‖v2‖, which indicates how much the time-independent networks that we construct from the events at
each time shrink the length of the normalized Fiedler vector of the matrix that encodes the original tie-decay network.
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Under the assumption of diagonalizability, we decompose
the matrix M(tn) as follows:

M(tn) =
N∑

i=1

λiuivi , (18)

where λi is the ith eigenvalue of M(tn) in descending order
in magnitude, ui is the associated right eigenvector, and vi

is the associated left eigenvector. Note that λ1 = 1 and v1 =
(1, . . . , 1). We normalize the eigenvectors such that viu j =
δi j , where δi j is the Kronecker delta. Let v2 denote the left
Fiedler vector of M(tn). In general, we do not expect the matri-
ces M(tn) and Y (t+

n ) to have the same eigenspace. However, to
explain the idea that underlies our hypothesis, we assume for
now the unrealistic situation in which Y (t+

n ) and M(tn) have
the same eigenspace, such that their eigenvectors are the same.
Let μi denote the eigenvalue of Y (t+

n ) with corresponding
right eigenvector ui and left eigenvector vi. We write

Y (t+
n ) =

N∑
i=1

μiuivi , (19)

and we note that μ1 = 1. Using Eqs. (16), (18), and (19), we
obtain

M(tn+1) = M(tn)Y (t+
n ) =

N∑
i=1

λiμiuivi . (20)

Equation (20) indicates that the spectral gap of M(tn+1) is 1 −
min2�i�N {λiμi}. Recall that |λ2| � · · · � |λN |. For a given
M(tn+1), the spectral gap of M(tn+1) tends to be large if |λ2μ2|
is small, which tends to be the case when |μ2| is small. Be-
cause Eq. (19) implies that v2Y (t+

n ) = μ2v2, the length of the
Fiedler vector of M(tn) decreases by a large amount as a result
of multiplication by Y (t+

n ) if |μ2| is small. Therefore, if |μ2|
is small, the spectral gap of M(tn+1) tends to be large. This
explains our hypothesis that a sudden increase in the spectral
gap of M(tn) occurs when the time-independent network that
we construct from the events at time tn is effective at shrinking
the length of the normalized Fiedler vector of M(tn).

In general, M(tn) and Y (t+
n ) have different eigenspaces. For

diagonalizable Y (t+
n ), we write

Y (t+
n ) =

N∑
i=1

uiwi , (21)

where wi is an N-dimensional row vector. The jth element of
wi is the coefficient of ui when we express the jth column of
Y (t+

n ) as a linear combination of u1, . . . , uN . Equation (21)
indicates that wi = μivi if M(tn) and Y (t+

n ) have the same
eigenspace. Using Eq. (21), we obtain

v2Y (t+
n ) = w2 (22)

because viu j = δi j . Therefore, the length of w2 represents
how much the normalized Fiedler vector v2 shrinks (or ex-
pands) in length by right-multiplying by the matrix Y (t+

n ).
Because M(tn) and Y (t+

n ) have different eigenspaces in gen-
eral, it is not true in general that w2 ∝ v2. However, if the
length of w2 is small, the situation is analogous to having
a small value of |μ2| when M(tn) and Y (t+

n ) have the same
eigenspace. Therefore, we expect the spectral gap of M(tn) to

increase by a large amount when we right-multiply M(tn) by
Y (t+

n ) if the length of w2 is small. Based on this reasoning, we
measure ‖w2‖/‖v2‖ as a function of time, where ‖ · ‖ is the
2-norm.

We show ‖w2‖/‖v2‖ for the REALITY MINING data set for
several values of the decay rate (α = 0.1, α = 0.5, and α = 1)
in Fig. 4(b). The figure indicates that ‖w2‖/‖v2‖ depends
on α in qualitatively different manners at different times tn.
For example, the decrease in ‖w2‖/‖v2‖ at tn = 29 925 is
largest for α = 1, second largest for α = 0.5, and smallest
for α = 0.1. By contrast, the decrease in ‖w2‖/‖v2‖ at tn =
24 020 is largest for α = 0.1, second largest for α = 0.5, and
smallest for α = 1. The decrease in ‖w2‖/‖v2‖ at tn = 24 115
is largest for α = 0.5. These results are consistent with the
dependence of the spectral gap on α and t in Fig. 4(a). In
other words, the spectral gap of M(tn) in Fig. 4(a) tends to
increase when the ratio ‖w2‖/‖v2‖ is small in Fig. 4(b). We
obtain the same qualitative results for the WORKPLACE and
HOSPITAL data sets (see Appendix C).

To develop intuition, we show an illustrative example of
a computation of ‖w2‖/‖v2‖ in Fig. 5. In this example, we
consider two tie-decay networks with three nodes. These two
networks have the same set of events at time t0 = 0 but dif-
ferent sets of events at time t1 = 1. Therefore, the tie-decay
networks of the two cases—which we label as case A and case
B—are the same for t ∈ [0, 1) but different for t � 1. We set
the decay rate to α = 1. Consider the spectral gap of M(2),
which is equal to M(1)Y (1+) by Eq. (16). The two tie-decay
networks have the same matrix M(1), but the matrix Y (1+)
is different for the two networks. The spectral gap of M(2) is
larger in case B than it is in case A. In accordance with this
observation, the ratio ‖w2‖/‖v2‖ is smaller in case B than
it is in case A. Consequently, we see that the event at time
t1 is more effective at shrinking the length of the normalized
Fiedler vector v2 and more effective at increasing the spectral
gap of M(2) in case B than it is in case A. Note that w2 is not
parallel to v2 in case A, because w2v2

�/(‖w2‖‖v2‖) ≈ 0.954,
which indicates that M(1) and Y (1+) do not have the same
eigenspace in case A.

VII. CONCLUSIONS AND DISCUSSION

We studied opinion dynamics on tie-decay networks.
Specifically, we formulated continuous-time Laplacican dy-
namics and a discrete-time DeGroot model of opinion dynam-
ics on tie-decay networks. Using numerical computations, we
examined the convergence speeds of continuous-time Lapla-
cian dynamics on tie-decay networks that we constructed from
empirical social-contact data by calculating the spectral gap of
the matrix M(tn), which maps the initial opinions of the nodes
of a network to the opinions of the nodes at time tn.

The randomization methods that we considered often in-
creased the spectral gaps for the temporal networks that we
examined. We also observed that aggregate networks always
have larger spectral gaps than their corresponding empirical
tie-decay networks. These results are consistent with previous
studies that illustrated that spreading dynamics can be slower
on temporal networks than on corresponding aggregate net-
works [12,16,17,19,50–52].

023249-9



KASHIN SUGISHITA et al. PHYSICAL REVIEW RESEARCH 3, 023249 (2021)

FIG. 5. Two temporal networks that have the same set of events at time t = t0 but different sets of events at time t = t1. We show the
eigenvalues and eigenvectors of the matrix M(1) on the left. Because the two cases, which we denote by A and B, have different events at
time t1 = 1, they have different matrices Y (1+), different spectral gaps of M(2), and different values of ‖w2‖/‖v2‖. We show the values of our
computations to three digits of precision.

We examined the influence of the tie-decay rate on the
spectral gap of M(tn). Intuitively, one expects a decrease in
the decay rate to accelerate convergence speed because the
influence of each event lasts longer when the decay rate is
smaller. However, for some of the data sets, the spectral gap
of M(tn) does not decrease monotonically with respect to the
decay rate. We also examined the evolution of the spectral
gap in time. As time progresses and more interactions occur,
one expects intuitively that the spectral gap will increase.
However, we showed empirically that the spectral gap need
not increase monotonically with respect to time.

We showed that the decay rate of a tie-decay network af-
fects the shrinkage of the length of the Fiedler vector of M(tn).
We observed that this dependence was often nonmonotonic
with respect to the decay rate and that it is consistent with the
behavior of the spectral gap of M(tn).

When the decay rate is large, we found that the spectral
gap is (1) similar for the original networks and their asso-
ciated random networks and (2) similar for different types
of randomized networks. [See Fig. 6(c) and the right panels
of Fig. 1.] When the decay rate is large, the effect of each
event tends to be tiny by the time the next event occurs
on the same edge. Therefore, it is reasonable to assume for
large decay rates that different events on the same edge act
independently to drive opinion dynamics. However, even in
this situation, the order of the events impacts the value of the
spectral gap of the combinatorial Laplacian matrix [17,53].
In our investigation, we saw that different randomizations
induce different orderings of the events. However, we did not
observe a notable dependency of the spectral gap on different
randomizations of the same temporal network. Therefore, the
lack of influence from the previous events when the next
event occurs on the same edge is probably not a key rea-
son that the spectral gaps tend to be similar for the original
networks and the different randomized networks for large
decay rates α. We do not have a firm understanding of this
observation.

There are many interesting future directions that build on
our results. First, it is desirable to examine how heterogeneous
decay rates for different edges influence the convergence
speed of opinion dynamics. Second, it is important to fit
decay rates to empirical data to study the time scales of
the influence of events. Third, functional forms of tie-decay
dynamics other than ones that are exponential are also worth
examining. Fourth, it is worth considering different rules for
changes in tie strengths in response to events and the impact
of such rules on opinion dynamics. For example, one can
study what happens when each event between two nodes not
only strengthens their mutual relationship but also weakens
their relationships with other nodes [54]. Fifth, it is worth
studying opinion dynamics on coevolving networks [55] using
the framework of tie-decay networks. To construct such a
model, one needs a mechanism (e.g., perhaps an adaptation
of the one in [11]) that generates discrete events in a man-
ner that depends on the nodes’ opinions. Sixth, the observed
nonmonotonicity of the spectral gap of M(tn) may be related
to community structure in temporal networks, and exploring
this idea may yield insights into bottlenecks of opinion dy-
namics between communities. Additionally, it is important
to investigate whether this nonmonotonicity is a property
of many dynamical processes or instead results from some
peculiarity of the dynamics that we investigated. More gen-
erally, we have considered a rather specific form of opinion
dynamics, and it is important to investigate the behavior of
other types of opinion models (and other types of spreading
dynamics [56]) on tie-decay networks.
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FIG. 6. Comparison between the original and randomized networks of the spectral gap of M(T ) for the HYPERTEXT network without the
almost isolated node. We use decay rates of (a) α = 0.01, (b) α = 1, and (c) α = 100.
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APPENDIX A: INFLUENCE OF THE ALMOST ISOLATED
NODE IN THE HYPERTEXT DATA SET

As we indicated in Sec. IV, the HYPERTEXT data set has
113 nodes. This includes one almost isolated node that has

FIG. 7. Comparison of the spectral gaps of M(T ) for a range of values of α, the four types of randomized networks, and three data sets
(WORKPLACE, HOSPITAL, and REALITY MINING). We show our results for randomized networks that we produce using (a) interval shuffling,
(b) shuffled time stamps, (c) random times, and (d) random edge shuffling. The horizontal line segments above the main figure in (a) indicate
the values of α for which the slopes of the curves are positive for the three data sets. In (b)–(d), the spectral gap is monotonically nonincreasing
in all cases.
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FIG. 8. The spectral gaps of M(tn) for the WORKPLACE and HOSPITAL networks as a function of time. We also show the number of events
at each time. (a) The spectral gap and (b) the ratio ‖w2‖/‖v2‖ for the WORKPLACE network. (c) The spectral gap and (d) the ratio ‖w2‖/‖v2‖
for the HOSPITAL network.

only one edge (with two events). In this appendix, we study
the influence of the almost isolated node on the spectral gap
of M(T ) by excluding it and the two events that are associated
with it. In Fig. 6, we show the spectral gap of M(T ) when
we construct tie-decay networks without the almost isolated
node and the two associated events. We again use decay
rates of α = 0.01, α = 1, and α = 100. In Figs. 1(a)–1(c), we
showed the spectral gap of M(T ) when the almost isolated
node and the two associated events are present. By comparing
Figs. 1(a)–1(c) with Fig. 6, we see that the spectral gaps of
M(T ) for the networks that include the almost isolated node
are smaller than those for the corresponding networks that
exclude that node. (See the “Original” labels in the figures.)
This indicates that the almost isolated node is a bottleneck, as
it decelerates the Laplacian dynamics on this network.

When we exclude the almost isolated node, the spectral
gaps of M(T ) for the randomized networks are significantly
larger than those for the corresponding original networks for
all three of the above decay rates and for all types of random-
izations except interval shuffling (see Fig. 6). These results are
qualitatively the same as those for the networks that include
the almost isolated node (see Fig. 1).

APPENDIX B: THE SPECTRAL GAP AS A FUNCTION OF
DECAY RATE FOR THE RANDOMIZED NETWORKS

In Sec. VI, we observed nonmonotonicity in the spectral
gap of M(T ) as a function of the decay rate α for three data
sets (WORKPLACE, HOSPITAL, and REALITY MINING). In this

appendix, we study the spectral gap of M(T ) as a function
of decay rate for the randomized networks that we construct
from these data sets.

We show our results for the four randomization methods in
Fig. 7. For each of these data sets, we observe nonmonotonic-
ity in the randomized networks that we produce using interval
shuffling [see Fig. 7(a)], but we do not observe it for the
networks that we obtain from the other three randomization
methods [see Figs. 7(b)–7(d)]. The nonmonotonic behavior
in Fig. 7(a) is similar to what we observed for the original
networks in Fig. 3. Such nonmonotonicity is consistent with
our results in Fig. 1, in which the spectral gaps of M(T ) for the
randomized networks that we obtained from interval shuffling
do not differ significantly from those for the original networks
in most cases.

APPENDIX C: NONMONOTONICITY IN THE WORKPLACE

AND HOSPITAL DATA SETS

In this appendix, we study the nonmonotonic behavior of
the spectral gap of M(T ) with respect to the decay rate α in
the WORKPLACE and HOSPITAL data sets.

From Fig. 3, we see that the spectral gap of M(T ) for the
WORKPLACE network changes nonmonotonically with respect
to α when α is between 0.01 and 0.1. We show the spectral
gap of M(tn) as a function of time for α = 0.01, α = 0.05,
and α = 0.1 in Fig. 8(a). In this figure, we also show the
number of events at each time. As in the REALITY MINING

data set, we observe that the change of the spectral gap is not
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related directly to the numbers of events. Additionally, we see
that the spectral gap of M(tn) increases suddenly from that
of M(tn−1) at a small number of times tn; the spectral gap of
M(tn) depends nonmonotonically on α at these times. In this
data set, at tn = 885 520, the spectral gap of M(tn) is largest
for α = 0.01, second largest for α = 0.05, and smallest for
α = 0.1. However, the spectral gaps of M(tn) for α = 0.05
and α = 0.1 exceed that for α = 0.01 at tn = 892 280, re-
sulting in the nonmonotonic behavior with respect to the
decay rate α that we observed in Fig. 3. We show the time
series of ‖w2‖/‖v2‖ in Fig. 8(b). The decrease in ‖w2‖/‖v2‖
at tn = 885 520 is largest for α = 0.01, second largest for
α = 0.05, and smallest for α = 0.1. By contrast, the decrease
in ‖w2‖/‖v2‖ at tn = 892 280 is largest for α = 0.1, second
largest for α = 0.05, and smallest for α = 0.01. Therefore,
the behavior of ‖w2‖/‖v2‖ suggests that the spectral gap of
M(T ) depends nonmonotonically on α in Fig. 8(a).

In Fig. 3, we also saw that the spectral gap of M(T ) for the
HOSPITAL network depends nonmonotonically on α when α is
between 0.001 and 0.005. In Fig. 8(c), we show the spectral
gap of M(tn) as a function of time for α = 0.001, α = 0.002,
and α = 0.003. We also show the number of events at each
time. In this data set, the spectral gap of M(tn) for α = 0.003
exceeds that for α = 0.002 before all nodes are in one net-
work component (this occurs at tn = 330 840), resulting in
the observed nonmonotonicity with respect to the decay rate
α. We show the time series of ‖w2‖/‖v2‖ in Fig. 8(d). The
behavior of the spectral gap of M(tn) and the behavior of
‖w2‖/‖v2‖ are consistent with each other. For example, the
increase in the spectral gap of M(tn) at tn = 331 660 is largest
for α = 0.001, second largest for α = 0.002, and smallest
for α = 0.003. The decrease in ‖w2‖/‖v2‖ at tn = 331 660
is largest for α = 0.001, second largest for α = 0.002, and
smallest for α = 0.003.
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