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Abstract
We use methods from computational algebraic topology to study functional brain networks in
which nodes represent brain regions and weighted edges encode the similarity of functional
magnetic resonance imaging (fMRI) time series from each region. With these tools, which allow
one to characterize topological invariants such as loops in high-dimensional data, we are able to
gain understanding of low-dimensional structures in networks in a way that complements
traditional approaches that are based on pairwise interactions. In the present paper, we use
persistent homology to analyze networks that we construct from task-based fMRI data from
schizophrenia patients, healthy controls, and healthy siblings of schizophrenia patients. We thereby
explore the persistence of topological structures such as loops at different scales in these networks.
We use persistence landscapes and persistence images to represent the output of our
persistent-homology calculations, and we study the persistence landscapes and persistence images
using k-means clustering and community detection. Based on our analysis of persistence
landscapes, we find that the members of the sibling cohort have topological features (specifically,
their one-dimensional loops) that are distinct from the other two cohorts. From the persistence
images, we are able to distinguish all three subject groups and to determine the brain regions in the
loops (with four or more edges) that allow us to make these distinctions.

1. Introduction

Schizophrenia is a chronic psychiatric disorder that affects more than 21 million people worldwide [1]. Up
to 80% of the risk factors appear to be genetic, although it is difficult to identify the specific genes that are
involved in the disease [2]. The disease usually commences in early adulthood, and symptoms range from
hallucinations and avolition to cognitive deficits (such as impaired working memory) [1, 3]. It is believed that
the cognitive deficits arise from compromised functional integration between neural subsystems [3–6].

There can be significant differences in the properties of the time series from imaging measurements of
healthy versus schizophrenic individuals, although different studies have found seemingly contradictory results
when comparing functional magnetic resonance imaging (fMRI) time series from two distinct brain regions
in a schizophrenia patient and a healthy control. The majority of studies have concluded that schizophrenia
patients have less-similar time series than healthy controls across different brain regions [7]. Zalesky et al
[8] suggested that such reduced similarity may arise from an altered coupling between brain regions and
local decoherence within brain regions in schizophrenia patients. However, some studies have observed that
schizophrenia patients have more-similar series than healthy controls across brain regions. For a detailed dis-
cussion of these seemingly contradictory findings, see [9]. In some cases, methodological steps in fMRI analyses
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Figure 1. Pipeline to construct functional networks from imaging data (e.g., fMRI data).

seem to yield increases in these similarities, but abnormal neurodevelopment or drug treatment may play a
role in increasing them in other cases [9].

One approach for studying the human brain is to construct a (possibly time-dependent) neuronal net-
work based on experimental data and then analyze the network’s structure and dynamics to gain insights
into its properties [10–17]. One can form a so-called functional network [10, 11, 18–20], in which each node
represents a brain region and one weights the edges between them based on some measure of the similarity
between the nodes’ fMRI time series. (Researchers also employ time series from other imaging modalities to
construct functional networks.) In figure 1, we show a pipeline of how to construct a functional network from
fMRI time-series data. When interpreting functional networks in fMRI studies, it is very important to consider
the cautionary notes in [21].

Studies of functional networks of schizophrenia patients have revealed that such networks differ signifi-
cantly from the functional networks of healthy controls [6, 7, 22–26]. For example, schizophrenia patients
can have rather different community structure than controls [24, 27]. In one study, Alexander-Bloch et al
[24] observed significant differences (due to a small number of brain regions) in the community structures
in schizophrenia patients, whereas the community structures in healthy subjects appeared to be consistent
with each other. Moreover, in some studies, the maximum modularity of functional networks was smaller for
schizophrenia patients than for healthy controls [24, 28]. Two recent papers, Flanagan et al [27] and Towlson
et al [29], compared the network structures of schizophrenia patients and healthy controls under the effects of
different drugs and a placebo.

An increasingly popular approach for the analysis of functional networks is to use ideas from computational
algebraic topology, as these approaches allow one to characterize topological invariants (such as connect-
edness and loops) in high-dimensional data [30–36]. In contrast to standard methods of network analysis
[37], employing computational topology allows one to explicitly go beyond pairwise connections; this is help-
ful for gaining global understanding of low-dimensional structures in networks. Although one can also use
frameworks such as hypergraphs [38] to study higher-order network structures (see, e.g., [39]), such a formal-
ism does not by itself give direct information about the shape or scale of mesoscale features in networks. By
contrast, persistent homology (PH), the most prominent approach in topological data analysis, allows one to
explore the persistence of features (such as connectedness and loops) in data sets [40, 41]. PH has led to inter-
esting insights in a variety of fields (for examples, see [42–48]), and it has been used increasingly in studies of
neuronal networks, leading to several promising insights [20, 49–64].

In the present paper, we construct functional networks using fMRI data from schizophrenia patients,
healthy controls, and siblings of schizophrenia patients. We create a nested sequence of networks in which we
add edges, one by one, to the networks in order from the largest edge weights to the smallest. (In the unlikely
case of two edges having the exact same weight, we add both edges simultaneously in one step.) We then con-
struct a weight rank clique filtration (WRCF) [51] by determining cliques and tracking their changes in each
step of the network sequence. We then compute PH and Betti numbers [34, 65] of the WRCF and examine the
results by applying tools from statistics and machine learning, respectively, on the persistence landscapes (PLs)
and persistence images (PIs) that result from our computation of PH. We compare our findings from these two
approaches. We focus on loops (with four or more edges)5 in the networks in our nested sequence, rather than
on connected components, because one can also study the latter using more conventional approaches (such as
by computing the spectrum of the combinatorial graph Laplacian matrix [37, 38]). Although it is interesting

5 We use the term ‘loop’ to refer to at least four edges in a network that are connected in a way that forms a cycle. Conventionally, loops
(other than self-loops) in undirected graphs must have at least 3 edges, and loops in directed graphs must have at least 2 edges. In our
paper, we adapt this terminology for the salient topological features that we examine in simplicial complexes.

2



J.Phys.Complex. 2 (2021) 035006 (26pp) B J Stolz et al

to also consider higher-dimensional topological features in functional networks, the computational cost of PH
is very high [40] (especially in higher dimensions), and we therefore focus on the analysis of loops.

Our paper proceeds as follows. We introduce the data set and the mathematical methods in an intuitive
way in section 2, present our findings in section 3, and discuss our comparisons in the context of current
biological research in section 4. We give some additional details about a few results and report the results of
our computation of Betti curves in appendix A.

2. Methods

2.1. Data set: fMRI data of schizophrenia patients, siblings of schizophrenia patients, and healthy
controls
We use a data set that consists of time series from blood oxygen level-dependent (BOLD) fMRI data that
was collected from 281 subjects (encompassing 54 schizophrenia patients, 50 healthy siblings of schizophrenia
patients, and 177 healthy controls) with 120 time steps (where the length of 1 time step corresponds to Δt =
2 s). The brain regions were determined according to the Montreal neurological institute template [66]. Prior
to obtaining the time series, the fMRI data were corrected for head motion, and they were normalized and
smoothed with a Gaussian filter. The voxel-wise signal intensities were normalized to the whole-brain global
mean. The data set was acquired by Bertolino, Blasi, and their collaborators as part of a larger fMRI data set
over a period of approximately 10 years. Subsets of the data set have been studied previously [67–69], although
these previous studies of the data did not include the data for siblings.

The experimentalists obtained fMRI images while subjects were performing a block paradigm of a so-
called ‘n-back task’. During an n-back task, subjects are presented with a sequence of stimuli (such as num-
bers). In each step m of the sequence, subjects are first shown a number and then asked to recall the num-
ber from step m − n of the sequence. For example, during a 2-back task, subjects are shown a sequence
{. . . , xi−1, xi, xi+1, xi+2, . . .} and are asked to recall number xi−1 while being shown number xi+1, recall num-
ber xi while being shown number xi+2, and so on. For the present data set, the block paradigm consisted of
alternating blocks of four 0-back tasks and four 2-back tasks.

We preprocess the data to remove noise that arises due to (1) contributions from brain white matter
[70] and cerebrospinal fluid [70, 71] (in these areas, one does not expect a response that is related to neu-
ronal processes), (2) spontaneous global signal fluctuations [70, 72, 73], and (3) signal mismatches between
images from the head motion of subjects [74]. For each subject and time step, we calculate the mean signal
for white-matter brain regions, the mean signal for regions that consist of cerebrospinal fluid, and the mean
of the global signal. In addition to these mean values, we also include the squares and cubes of the global-
signal means, as well as head-motion parameters (3 translation and 3 rotation parameters), as rows in our
11 × 120 subject-specific design matrices. We then perform linear regression for each time series using
MATLAB’s command (PINV()) for the Moore–Penrose pseudoinverse6; we exclude brain regions without gray
matter from our calculations. We then use the residuals from the regression as our time series for the 120 brain
regions that we list in tables A1–A5. Such preprocessing steps are common when working with fMRI data, but
they are not uncontroversial. In particular, the effects of global signal regression can alter correlations between
time series [9, 75, 76].

2.2. Functional connectivity
We construct functional networks from the fMRI time series for each subject by using the 120 distinct brain
regions (see tables A1–A5) as the nodes of the networks and calculating Pearson correlations7 (without a time
lag) between the nodes’ time series as a measure of pairwise functional connectivity. The values of the pairwise
functional connectivity give the edge weights between the brain regions (i.e., nodes) in the functional networks.

In our key computations in the present paper, we consider four contiguous time regimes of 30 time points
each; this yields four functional networks per subject. (The lone exception to this approach is in appendix A.1,
in which we use each subject’s full time series, which consists of 120 time points, to construct a single func-
tional network for each subject.) Although the four time regimes each overlap temporally with times during
which subjects performed one 0-back and one 2-back task, our separation into time regimes is motivated by
an interest in potential developments in the dynamics over time, rather than in relating the fMRI response
to the task. We represent each functional network using an adjacency matrix A = A(subject, time regime),
where the element Aij (for each i and j) encodes the edge weight between node i and node j. Due to the high

6 Because some of the matrices are ill-conditioned, the resulting networks differ across different runs of the preprocessing. However, in
our observations, the matrices differ by only up to 0.2% of their elements between two separate realizations of preprocessing.
7 There are numerous ways to measure functional connectivity [11, 77, 78]. For a discussion in the context of schizophrenia research, see
[7].
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Figure 2. Steps that we perform on the preprocessed time series of each brain region to construct a functional network for each
subject during each of four time regimes. We study the positive parts of the resulting networks using PH.

Figure 3. An example of two topologically-different objects. Homology highlights topological differences by counting the
numbers of holes in the cheeses.

computational cost of PH calculations [40], we reduce the number of edges in the networks that we analyze
to enable computations. We apply a statistical threshold, which is described in [79], to the weighted adjacency
matrices without modifying the remaining edge weights. To obtain the thresholded adjacency matrices, we
estimate p-values for the correlations using the MATLAB function CORRCOEF and retain only those elements
whose p-value is less than 0.05. Using this type of thresholding, we retain at most 44% of the edges in a net-
work and retain a mean of 20%–30% of the edges in each subject group. We then separate each adjacency
matrix into a positive and a negative part, A = A+ + A−, and study only the positive part A+ of the adjacency
matrix8. In discarding negative edge weights, we retain a mean of slightly more than 50% of the elements of
our thresholded adjacency matrices. In figure 2, we show a diagram of the steps that we perform to construct
our functional networks. Although we consider the four time regimes separately, we treat all subjects and all
time regimes together as one data set.

2.3. Persistent homology
Persistent homology is a technique from topological data analysis, which aims to understand the ‘shape’ of
data [40]. PH is based on the topological concept of homology, which is used to study the shape of objects in a
way that disregards changes from stretching and bending.

We motivate our use of PH for brain networks by considering different types of cheese and how they differ
in their homology. Calculating homology allows one to differentiate between the shape of a stereotypical Swiss
cheese (of the Emmental sort) with holes and the shape of a mozzarella cheese by providing information about
the presence or absence of holes in the cheeses. (See figure 3 for examples of the aforementioned cheeses.) One
can thereby consider the space that surrounds the holes; these are the so-called loops. However, homology does
not give information about the geometry of the cheeses; for example, it does not ‘see’ that the Swiss cheese
is a cube or that the mozzarella cheese is a sphere (unless it happens to be hollow), as it only characterizes
differences in the numbers of holes.

We now give a brief intuitive introduction to a few concepts behind homology and PH for network data.
For more mathematical introductions, see [20, 31, 32, 34, 40, 65].

2.3.1. Simplicial complexes
To study the characteristics of topological spaces [80], such as the Swiss cheese and the mozzarella cheese, we
consider small pieces (‘morsels’), on which we can perform computations more easily. When reassembled, the

8 We choose to include only positive edge weights to avoid the need to interpret negative correlations between time series.
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Figure 4. Simplicial complexes approximate topological spaces and capture their properties. (In the cross section of the
Emmental cheese, all holes are topologically the same in the original object. However, we only visualize parts of the simplicial
complex in which one of the holes is tiled with triangles but the others are merely surrounded by edges.)

morsels carry the same overall topological information as the original space. We begin building these morsels
(i.e., ‘spaces’, to be more formal) using a discrete set of points, which we call ‘nodes’. We then add ‘edges’ to
connect pairs of nodes; ‘triangles’, which consist of three nodes, three edges, and a face; ‘tetrahedra’; and so
on. Formally, each of these elements is called a ‘k-simplex’, where k indicates the dimension of the simplex. A
point is a 0-simplex, an edge is a 1-simplex, a triangle is a 2-simplex, and a tetrahedron is a 3-simplex.

We can combine different simplices to capture different aspects of a topological space. For example, to
capture the holes in the Emmental cheese, we glue together a collection of triangles and edges around the
holes; we enclose the same number of holes as in the original cheese. Note that we can only capture the holes
that are enclosed inside the cheese (using the triangles), as one can deform the visible holes on the surface into
a smooth surface of the cheese. For the purpose of demonstration, we therefore assume that the Emmental
cheese in figure 3 is a cross section of a larger cheese that encloses the holes that are visible in the image.

One can combine simplices to obtain a simplicial complex Σ, and we take the dimension of Σ to be the
dimension of its highest-dimensional simplex. We show examples of simplicial complexes in figure 4, where
we again note that we are assuming that the Emmental cheese is a cross section of a larger hunk of cheese.

2.3.2. Homology and Betti numbers
Homology assigns a family of vector spaces (called homology groups in more general settings) to a simpli-
cial complex. For a given dimension, the vector spaces capture the topological features in that dimension.
For example, for dimension 0, homology gives a vector space whose elements are connected components; for
dimension 1, homology gives a vector space that has loops as its elements. The dimensions of these vector spaces
are called Betti numbers, where βD denotes the Betti number for dimension D. The first three Betti numbers
(β0, β1, and β2) count, respectively, the number of connected components, the number of one-dimensional
(1D) holes (i.e., loops), and the number of two-dimensional (2D) holes (i.e., voids) in a simplicial complex.

2.3.3. Weight rank clique filtration (WRCF)
Similarly to being able to distinguish between two types of cheese, we are interested in whether we can use
homology (and specifically PH) to distinguish between functional networks of schizophrenia patients, siblings
of schizophrenia patients, and healthy controls.

In a network, we take a loop to consist of a sequence of four or more nodes and edges that begins and ends
at the same node. If two loops surround the same hole and can be deformed into one another in the space
without tearing open either of the loops, then one counts the loops only once, and we interpret them to be
different representatives (i.e., generators) of a loop.

To obtain simplicial complexes from a weighted network, we construct a so-called filtration. A filtration is
a sequence of embedded simplicial complexes that starts with the empty complex:

∅ = Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ · · · ⊆ Σmax = Σ .

One can obtain a filtration from data in various ways [81]. When given data in the form of a weighted net-
work, the easiest method to construct a filtration is to filter by weights [82]. In the first filtration step, one
includes all nodes and the edge(s) with the largest weight in the simplicial complex. In the second step of the
filtration, one adds the edge(s) with the second-largest weight to the simplicial complex from step one, and
so on. In this way, one obtains a sequence of embedded simplicial complexes that satisfies the properties of a
filtration. To construct a WRCF [51], one performs one additional step: whenever three edges in a simplicial
complex of a filtration form a triangle, one fills in the associated face and interprets the triangle as a 2-simplex.
Similarly, when four nodes are all connected pairwise by edges, the nodes form a (filled) tetrahedron (i.e., a
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Figure 5. Example of a WRCF of a neuronal network and the corresponding (a) barcodes and (b) PDs in dimensions 0 and 1.
The neuronal network consists of different brain regions (indicated by circles), which we interpret as the nodes (indicated by
dots) of a network, and weighted edges between the nodes. To construct the filtration, we add the nodes in step 0, followed by the
edge with the largest weight in step 1, the edge with the second-largest weight in step 2, and so on. As soon as three nodes are all
connected pairwise by edges, we cover the resulting region with a triangle. When four nodes are all connected pairwise, we fill in a
tetrahedron. In a dimension-0 barcode, we represent each connected component by a bar that starts when the component is born
and ends when it dies (e.g., when two components combine with each other). In a dimension-1 barcode, each bar represents a
loop, which consists of 4 or more edges and starts and ends at the same node. In a PD, one represents topological features by
points, rather than by bars. The distance of a point to the diagonal (the purple line) indicates the persistence of the corresponding
feature in the filtration.

3-simplex). We use the WRCF to analyze our weighted networks. The WRCF has been applied to weighted
neuronal networks in several previous studies, including [20, 51, 53, 83].

One can use homology to study topological features, such as loops, in every step of a filtration and deter-
mine the extent to which a feature persists with respect to the filtration [40]. We say that a topological feature
h in a given dimension is born at filtration step m if the homology group of Σm is the first homology group
of a simplicial complex in the filtration to include that feature. Similarly, we say that a topological feature dies
at filtration step n if it is present in the homology group of Σn−1 but not in the homology group of Σn. The
lifetime of a feature in a filtration is the persistence p, which is defined by the equation

p = n − m . (1)

If a feature persists until the last filtration step, we say that it has infinite persistence. Persistence was first used
as a measure to rank topological features based on their lifetimes in a filtration in [30].

Ideally, one performs a WRCF on a fully connected functional network. However, because of the high
computational cost of doing so, this is often impossible in practice. We avoid this issue by thresholding our
weighted networks before analyzing them.

2.4. Representations of PH
There are multiple ways to represent the output of PH calculations and to visualize the persistence of topologi-
cal features that one obtains from a filtration. The most common representations are barcodes and persistence
diagrams (PDs). In recent years, a desire to leverage the output of PH computations for machine-learning and
data-mining tasks has resulted in the development of alternative representations to both barcodes and PDs
[40]. Two of these alternative representations are persistence landscapes (PLs) [84, 85] and persistence images
(PIs) [86]. In the following subsubsections, we describe barcodes, PDs, PLs, and PIs.

2.4.1. Barcodes
A common representation of the output of PH calculations is a barcode [32, 87]. See figure 5 for an example. A
D-dimensional barcode is a plot of a collection of filtration parameter intervals {[birth, death)l}t

l=1 that indi-
cate the births and deaths of topological features of dimension D. The horizontal axis represents the filtration
steps, and each D-dimensional topological feature in a filtration is represented by a bar that starts at the filtra-
tion step at which the feature is born and ends at the filtration step at which it dies. In a dimension-0 barcode,
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Figure 6. Schematic illustration of the steps for converting a barcode into a persistence landscape (PL). We use an example based
on a WRCF in dimension 1. (a) Example barcode. (b) One defines peak functions on the bars of the barcode. (c) One collapses
the peak functions onto the horizontal axis. (d) The PL consists of the collection of layers q (with q = 0, q = 1, and q = 2 in this
example), which indicate the qth-largest values of the collection of peak-function values. To visualize the third dimension, we
show the different layers using different colors. (This figure is a modified version of a figure in [20].)

each bar corresponds to a connected component, and the length of a bar indicates how long a particular com-
ponent is disconnected from other components in a simplicial complex. Similarly, in a dimension-1 barcode,
each bar corresponds to a loop in a simplicial complex.

2.4.2. Persistence diagrams
As an alternative to a barcode, one can use a persistence diagram (PD) [88], which is a planar representa-
tion of a barcode that conveys the same information. One maps each [birth, death) interval in a barcode to
birth–death coordinates, where the horizontal coordinate of a point represents the birth time of a feature in
the associated filtration and its vertical coordinate represents the death time of that feature. Alternatively, one
can use a birth–persistence coordinate system, which is particularly useful when examining PIs (which we will
discuss shortly). Points that are farther away from the diagonal identity line represent more-persistent topo-
logical features in a filtration. We show an example of a PD in figure 5. As with barcodes, one can treat PDs as
mathematical objects, and one can endow the space of PDs with a distance.

2.4.3. Persistence landscapes
A persistence landscape (PL) [84, 85], which we often will call simply a ‘landscape’, is a sequence of piecewise-
linear functions that one can use to visualize and analyze the information in a barcode or PD. Instead of using
a bar and its length to represent a feature and its persistence, one now interprets each topological feature as a
peak, whose height is determined by the feature’s persistence and whose location corresponds to the feature’s
location in the filtration. In contrast to a barcode or a PD, a PL has three dimensions. As in a barcode, the
horizontal axis represents the filtration step. The other two dimensions of a PL are the persistence of a feature
and the different layers of the PL.

To create a PL from a barcode, one first defines a peak function for each bar. For a given [birth, death)
interval in a barcode, one constructs the function

f[birth,death)(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 , if x /∈ (birth, death)

x − birth , if x ∈
(

birth,
birth + death

2

]

−x + death , if x ∈
(

birth + death

2
, death

)
.

(2)

One then collapses the collection of peak functions onto the horizontal axis of the barcode. For a barcode that
consists of the collection {[birth, death)l}t

l=1 of intervals, the qth layer (with q � 0) of the PL (i.e., the qth PL)
is the following set of functions:

λq : R→ R ,

λq(x) = qth-largest value of
{

f[birth,death)l
(x)

}t

l=1
. (3)

If the qth-largest value does not exist, then λq(x) = 0. The 0th layer of a PL consists of the maximum function
values among the collection of functions that one evaluates across a filtration. Similarly, the 1st layer of a PL
consists of the second-largest values of the collection of functions that one evaluates across a filtration. One
defines other layers in an analogous way. Formally, the persistence landscape λ of a barcode {[birth, death)l}t

l=1

is defined as the sequence {λq} of the functions λq. We illustrate the pipeline to go from a barcode to a PL in
figure 6.
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Figure 7. Schematic illustration of the primary steps for converting a PD to a PI. (a) A sample point cloud in R
3. (b) A PD in

birth–death coordinates (i.e., the standard choice); we also show the diagonal identity line. (c) A PD in birth–persistence
coordinates. (d) The ‘persistence surface’ that is generated by centering 2D Gaussian distributions at each point in panel (c). (e)
One generates a PI by summing the volumes under the 2D Gaussian distributions on the pixels (specifically, on the squares in a
uniformly-spaced overlaid grid).

An advantage of PLs is that one can construct a mean PL for a set of landscapes. A mean landscape no longer
corresponds to a barcode or a PD. However, one can define pairwise distances between two or more mean land-
scapes and use them to quantify the difference between two sets of barcodes. We use the L2 distance. One can
also use a variety of statistical tools on PLs [84]. Such calculations have been used for applications like confor-
mational changes in protein binding sites [89], the origin of seizures in electroencephalographic (EEG) data
from epileptic patients [90], phase separation in binary metal alloys [91], brain geometry in neurodegenerative
diseases [92], audio signals in music [93], and motor learning in humans [20].

2.4.4. Persistence images
Another representation of topological features in PH calculations are persistence images (PIs), which are based
on PDs and take the form of real-valued vectors9 that one can use as an input to a variety of machine-learning
approaches. The transformation from a PD to a PI is stable with respect to the 1-Wasserstein distance and
maintains a clear and interpretable connection to the original PD [86]. In recent work, PIs were used to classify
different types of neurons [94, 95].

We show a schematic illustration of the mapping from a PD to a PI in figure 7, which depicts the various
stages that are involved in the transformation. Recall that the output of a PH computation is a set of points (or
intervals) that correspond to the birth and death times of each topological feature for a specified homological
dimension. In figure 7(b), we show a PD for the point cloud in figure 7(a). In figure 7(c), we show the PD in
the birth–persistence coordinate system. In figure 7(d), we show an overlay of the surface that is generated by
centering a 2D Gaussian on each point in the PD in figure 7(c). Finally, in figure 7(e), we show an example PI
that is produced by computing the volume under the surface in figure 7(d) over a uniformly-spaced grid. (We
set the resolution so that we have a 20 × 20 grid of elements.) One can then reshape this final PI into a vector
by stacking the columns (or, alternatively, the rows), as is often done in image processing. As described in [86],
the generation of a PI involves the choice of (1) a 2D probability density function to center at each point in
the birth–persistence PD, (2) a resolution, and (3) a weighting function. The role of the weighting function is,
when necessary, to suppress points in a PD that lie very close to the diagonal and are often construed as ‘noisy’
features. For all of the PIs that we examine in the present paper, we use the default settings for the code: 2D
Gaussian probability density functions, a linear weighting function, and a 50 × 50 grid of elements. We choose
additional parameters that are associated with these choices (e.g., the variance of the Gaussians) according to
the defaults in [96]. When analyzing and comparing multiple PIs, there is an additional pair of values that one
must choose based on the data; these are the maximum birth time and maximum persistence value. We will
see in section 3.3 that this pair of values can influence our results.

2.4.5. Software employed
For our PH calculations, we implement MATLAB code that we construct using JAVAPLEX [97], a software package
for PH10. For a given filtration of a simplicial complex, JAVAPLEX can output [birth, death) barcode intervals,
representatives for each topological feature, and PDs. It outputs PDs in standard birth–death coordinates,
from which one computes birth–persistence coordinates as (birth, death − birth). For the WRCF, we also use
a maximal clique-finding algorithm (that is based on the Bron–Kerbosch algorithm [98]) from the Mathworks
library [99]. For the analysis and interpretation of our barcodes, we use the PERSISTENCE LANDSCAPE TOOLBOX

[85]. We create PIs using the code at [96] with the default parameters.

9 We use the term ‘vectorization’ for the production of such a vector from a PD. One PD produces one PI, which yields one vector after it
is reshaped.
10 For an overview of available PH software and additional references, see [40].
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2.5. Clustering methods from data mining and network analysis
Given the output of PH calculations, it can be insightful to use clustering methods to compare the PHs of
different networks. There are myriad ways to proceed. In the present paper, we use a few different approaches.
First, we apply the k-means clustering algorithm and community detection to examine whether we can separate
the three subject groups based on the topological features of their functional networks. Second, we apply a
linear sparse support vector machine (SSVM) to identify pixels in PIs to discriminate between the subject
groups and examine which brain regions are generators of loops that help discriminate between groups. We
describe these techniques in the following subsubsections.

2.5.1. Employing k-means clustering for subject-group separation
The method of k-means clustering aims to produce a partition of a metric space into k clusters of points
[100]. Suppose that there are μ data points in a metric space. One selects k of the μ points of a data set as
‘centers’ and assigns all other points of the data set into clusters based on their closest center point. The ‘score’
of such a clustering is the sum of the distances from each point to its nearest center. The desired output of
k-means clustering is an assignment of points to clusters with the minimum clustering score. However, an
exhaustive search for a global minimum is often prohibitively expensive. A typical approach to search for a
global minimum is to choose a large selection of k initial centers uniformly at random, iteratively improve
each selection of centers until the clustering score stabilizes, and then return the identified final clustering with
the lowest score for each initialization. One iteratively updates the centers by setting each new center to be the
mean of the points that are assigned to the associated center in the current iteration. One can apply k-means
clustering either to a distance matrix (which one can calculate for the set of PDs or for the set of PLs) or to a
set of input vectors (such as those that one obtains from a PI).

2.5.2. Community detection for PL classification
Community detection is a method from network analysis that attempts to partition a network into sets
(called ‘communities’) of nodes that are more densely connected to themselves than to other sets of nodes
[37, 101, 102]. One can detect communities in either weighted or unweighted networks. In a weighted network,
the sums of the edge weights are larger within communities than between them.

One can also use community detection to partition data (e.g., for classification) by studying a distance
matrix of data objects (such as mean PLs). We interpret the n PLs as n nodes of a network and convert the
pairwise distances between them into edge weights, where a large edge weight signifies a short distance between
two PLs and a small edge weight signifies a long distance between two PLs. We convert the distance d(i, j)
between landscapes i and j into an edge weight Aij between nodes i and j with the following formula:

Aij = 1.01 − d(i, j)

maxi,j∈{1,...,n}{d(i, j)} . (4)

This yields an adjacency matrix A with elements Aij. There are many choices for converting from pairwise
distances to pairwise weights, and one has to be careful about how that influences community structure and
other network computations.

There are numerous methods that one can use for community detection in networks [102]. One approach
for decomposing a network into communities (i.e., for performing a ‘hard partitioning’) is to seek a partition
that maximizes an objective function Q. The objective function that we use is modularity

Q =
∑

i,j

[Aij − γPij]δ(gi, gj) , (5)

where P (with elements Pij) is a null-model matrix (which specifies the expected edge weight between nodes
i and j), the resolution parameter γ is a factor that determines how much weight one gives to the null model,
and δ(gi, gj) = 1 if nodes i and j are in the same community (i.e., if gi = gj) and δ(gi, gj) = 0 otherwise
[101, 102].

For our computations, we use the GENLOUVAIN package [103, 104], which maximizes Q using a variant of
the Louvain algorithm [105] to algorithmically detect communities in the adjacency matrix that we construct
from our mean PLs. We vary the resolution parameter γ to compare results for different values of γ.

2.5.3. Linear SSVMs for discriminatory feature selection
The 1-norm, regularized, linear support vector machine (i.e., the SSVM) classifies data by generating a separat-
ing hyperplane between data points in a way that depends on very few input features [106–108]. A hyperplane
is a flat surface that cuts an ambient space into two parts. One can use an SSVM to identify discriminatory fea-
tures between different groups of data points. One implements linear SSVM feature selection on data points in
the form of vectors, so we can use it on our PIs to select ‘distinguishing pixels’ during classification. In a PI, a
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distinguishing pixel is a bounded region in the birth–persistence coordinate system. For clarity, we use the term
‘distinguishing pixel’ to signify a region that is selected by SSVM and a ‘feature’ to refer to a topological feature
from a PH computation. During the analysis of our results (see section 3.3), we aim to match distinguishing
pixels to their corresponding features.

We apply a ‘one-against-all’ SSVM to PIs that we generate from dimension-1 output of WRCF compu-
tations from each subject to identify pixels in the PIs that can discriminate between the subject groups. In
a one-against-all SSVM, there is one binary SSVM for each group to separate members of that group from
the members of all other groups. In our case, this amounts to defining three hyperplanes: one that sepa-
rates patients from controls and siblings, one that separates siblings from patients and controls, and one that
separates controls from patients and siblings. We use a 5-fold cross-validated SSVM. We specify an optimal sep-
arating hyperplane by a normal vector, and we use the term ‘SSVM weights’ for the values of the elements of
the normal vector. We select distinguishing pixels for each classifier by retaining the vector elements (which are
pixels in this application) with nonzero SSVM weights, ordering the nonzero SSVM weights by decreasing mag-
nitude, and discarding SSVM weights when the ratio of successive SSVM weights drops below a user-specified
tolerance. For details, see [109].

Given a set of distinguishing pixels, we can see for each subject whether its associated functional net-
works have any loops that are born and persist in the corresponding bounded PI regions. If there are loops
in a bounded PI region, we can identify a set of representative brain regions for each of these loops in a
subject’s network. We are thereby able to leverage PIs to obtain biologically interpretable information about
the involvement of different brain regions in the task (as measured with fMRI) for different subject types.

3. Results

We now present the results of our PH computations to examine loops in functional brain networks. We focus
exclusively on topological features in dimension 1. We perform our computations on all four time regimes as
part of one data set, rather than separating the data for each time regime. We run our PH computations on
four functional networks per subject. From the PH output, we create either PLs or PIs. We then perform our
computations either on (1) the full data set of PLs or PIs of 281 subjects and four time regimes (which gives
1124 landscapes or PIs, respectively, for the data set) or on (2) the 12 subject-group means of the landscapes
or PIs (from three subject groups with four time regimes each). We indicate which of the two cases we are
examining in the relevant subsections.

For both PLs and PIs, we find that there seem to be differences in the topological features of the func-
tional networks between subject groups, although we only observe these for PLs when examining means across
groups. To illustrate limitations of the methods, we also discuss results in which we were unable to discern
differences between subject groups.

3.1. Results of k-means clustering on PLs
By applying k-means clustering to the mean PLs, we are able to separate siblings of schizophrenia patients from
controls and patients. Recall that we use all four time regimes for each of the 12 mean landscapes.

We construct mean PLs from the dimension-1 barcodes (i.e., the barcodes that represent loops in the
networks) for each time regime and each subject group. We obtain 12 mean landscapes and exclude infinitely-
persisting bars, because all of our landscapes include such features and these tend to dominate the first several
layers of the landscapes. Other researchers have excluded layers of landscapes (e.g., the first twenty) to filter
out ‘topological noise’ [110]. Although we threshold our weighted networks prior to analyzing them, this does
not necessarily imply that we lose significant information by disregarding the infinitely-persisting features.
Additionally, such features do not necessarily correspond to the most-persistent features in barcodes, as even
features that are born in the last filtration steps are infinitely persisting if they do not die during the filtration.
In our case, the presence of infinitely-persisting features prevented us from discriminating between landscapes
based on the pairwise distances between them. When we examined the distributions of the infinitely-persisting
features in each subject group without the other features, we did not observe any noticeable differences between
the three subject groups.

We calculate a pairwise L2 distance matrix of the mean landscapes, and we then perform k-means clustering
on this landscape distance matrix (which has 12 × 12 elements). For k = 3, we obtain the expected division
of the mean landscapes into patients, controls, and siblings. Although the fact that one can separate the three
cohorts based on fMRI data is not a new finding—see, for example, [6, 7, 22–26] for patients versus controls
and [111] for patients versus siblings—the novelty of our calculation is that k-means clustering successfully
distinguishes between the three different cohorts based on topological information (in the form of loops) in
the functional networks.
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Figure 8. Mean PLs for each of the four time regimes and subject groups. Using k-means clustering with k = 2 on the set of
12 PLs (which consists of all subject-group means and time regimes as one data set) assigns patients and controls to one group.

Table 1. Using a permutation test, we calculate p-values for the mean
landscape distances between the three subject groups in each time regime.

Controls versus
patients

Controls versus
siblings

Patients versus
siblings

Time regime 1 0.302 0.200 0.051
Time regime 2 0.460 0.009 0.052
Time regime 3 0.477 0.102 0.270
Time regime 4 0.736 0.110 0.229

We also perform k-means clustering with k = 2. Surprisingly, we find that the patients and controls are
grouped into one cluster and that the siblings are in a separate cluster. We show the mean landscapes and
clusters in figure 8. For k � 4, we do not observe a clear subject-group separation.

To compare our results with ones from other clustering methods, we also apply average linkage clustering
to the mean landscape distance matrix and perform community detection on a network that we construct
from it (see section 2.5.2). We obtain the same qualitative result for these two methods as we did for k-means
clustering. For community detection, we observe a clear separation for resolution-parameter values of γ =

0.82, 0.83, . . . , 1.14 into two communities (the siblings versus the patients and controls). These results appear
to support our prior observation that the sibling cohort is particularly distinct from the other two cohorts, as
compared to any other pairwise comparison of the three cohorts, with respect to the PH of the loops in their
functional networks.

We also perform a permutation test (as suggested in [85]) on the mean PLs for each time regime to deter-
mine the significance of the landscape distances. In this permutation test, we regroup the individual landscapes
into three groups uniformly at random, create a new mean landscape for each of the new groups, and calculate
the pairwise L2 distances between the mean landscapes of the regrouped subjects. We then count how many of
these L2 distances are larger than the ones that we observe when using the mean landscapes of the three subject
groups. We use 10 000 permutations to obtain our results, which we summarize in table 1.

Interestingly, for time regimes 1 and 2, we find almost significant distances (i.e., the p-values are slightly
larger than 0.05) between the mean landscapes of the patients and those of the siblings, whereas the p-values
for time regime 3 and 4 suggest that the distance is not significant (even though the p-values are small in com-
parison to the p-values that we observe for controls versus patients). The distance between the mean landscapes
of the controls and the siblings appears to be significant for time regime 2, but this does not appear to be the
case for the other time regimes, although the p-values are again much smaller than they are for the distances
between the mean landscapes of the patients and those of the controls. For the controls and the patients, there
are many other divisions into two groups that lead to more extreme distances between the mean landscapes
than what one obtains by simply assigning them to a control group and a patient group.

To see if we can further support our result from k-means clustering with k = 2, we artificially group the
controls and patients into one group to create a mean landscape and again perform a permutation test to verify
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Table 2. Using a permutation test, we calculate p-values for the
controls-and-patients mean landscape versus the mean landscape of the
siblings.

Time regime 1 Time regime 2 Time regime 3 Time regime 4

0.112 0.008 0.092 0.110

Table 3. Number of subjects from each subject group that are assigned to the
two communities that we obtain using modularity maximization of a network
that we construct using a distance matrix from individual PLs.

Subject group
Number of subjects

in community 1
Number of subjects

in community 2

Patients 122 94
Controls 418 290
Siblings 93 107

whether the distance between the mean landscapes for the two groups is significant. In table 2, we show the
p-values that we obtain with 10 000 permutations.

For time regime 2, we obtain a significant distance, but the p-values for time regimes 1, 3, and 4 are about
0.1. Given the artificial grouping of the two subject groups, we interpret these values as small, although they
are not statistically significant.

3.2. Results of community detection using a distance matrix from individual PLs
We construct PLs from each of the dimension-1 barcodes, which we calculate by examining each subject in
each of the four time regimes, and we calculate the L2 distance matrix for the resulting 1124 PLs. We again use
the distance matrix to construct a network between the PLs, and we detect communities in this network by
maximizing modularity. Forγ = 0.92, 0.93, . . . , 1, we obtain a separation into two communities. The partition
that is closest to what we observe for 2-means clustering of the mean-landscape distance matrix occurs for the
resolution-parameter value γ = 0.93. We summarize our results in table 3.

We also apply k-means clustering and average linkage clustering to the distance matrix from the individual
PLs (results not shown). Of all of the classification methods that we use for these distance matrices, community
detection appears to perform best at ‘separating’ the subject groups, although we do not observe a very clear
separation.

3.3. Results from our analysis of PIs
We find that PIs can identify discriminatory topological features across the three subject groups that we con-
sider. We generate PIs for each of the subjects for each of the four time regimes for the dimension-1 PDs. We
set the resolution, probability density function, and weighting function to the defaults in the PI code at [96].

There are additional values—the maximum birth times and maximum persistence values—that one must
choose from the data that one is analyzing using PIs. These values determine the discretization of the pixel
boundaries in the PIs once one sets the resolution. Possibilities include taking the maximum birth time and
maximum persistence value across all PDs or normalizing each PD relative to its individual maxima. The
original paper on PIs [86] took maximum values across all PDs under consideration, although no theoretical
rationale was provided for this choice. We were unable to obtain clear results using either of the above two
approaches for calculating the maximum birth times and maximum persistence values. For example, in the
left image of figure 9, we show the mean vectorized PI for each subject group when we generate the PIs using
the maximum birth time and maximum persistence value across all subjects. (We create the mean vectorized
PI for each subject group by taking the mean of each vector element. We take the mean across all four time
regimes to ensure that we have enough data to make a meaningful comparison.) Observe that the means look
very similar, aside from slight differences in their amplitudes. For each group, the mean PI is the mean of the
vectorized PIs for all of the individuals in the group. In the top row of figure 10, we show the mean PIs (in
image form) when we select the maximum birth time and maximum persistence value across all subjects.

Alternatively, if we use a priori knowledge of subject-group membership and fix the maximum birth times
and maximum persistence values separately for each subject group (based on the collection of PDs that we
compute separately for each subject group), we can discriminate between the three subject groups. This pro-
vides a first interesting observation from the PIs: there appears to be nontrivial information in the maximum
birth time that corresponds—or almost corresponds, in exceptional cases in which multiple edges have exactly
the same weight—to the number of pairs of regions in the brain with positive functional connectivity. (Recall
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Figure 9. (a) The mean vectorized PI that we generate for each subject group when we use the maximum birth time and
maximum persistence value across all subjects to create the PIs. We then calculate the means of the PIs in each group. The
horizontal axis corresponds to individual pixels in the PIs, and the vertical axis indicates their intensity values. (b) The mean
vectorized PI that we generate for each subject group using the maximum birth times and maximum persistence values that we
determine by calculating the maxima for each of the three groups separately. After calculating these maxima, we use this
group-specific information to create the PIs for each subject (with one PI for each time regime) within its group. We then
calculate the means of the PIs in each group.

Figure 10. The mean PI for each subject group. We generate panels (a)–(c) using the maximum birth time and maximum
persistence value across all subjects to compute all PIs before calculating the depicted means of the PIs in each subject group. We
generate panels (d)–(f) using the maximum birth times and maximum persistence values by calculating the maxima separately
for each subject group to compute PIs within each group before calculating the depicted means of the PIs in each group. The color
axis is the same across rows. From left to right in each row, we show the mean PIs for siblings, controls, and patients.

that we do not add edges that correspond to negative Pearson correlations.) In figure 9(b), we show the mean
vectorized PI for each subject group, where we calculate the maximum birth times and maximum persistence
values separately for each subject group (instead of setting the maximum birth time and the maximum persis-
tence value to be the same for all subjects). Observe that the sibling and control means both have two humps,
whereas the patients have one hump that is clearly discernible. Similarly, in figure 10, we observe two patches
along the prominent diagonal with high intensity for the means of the siblings and the controls. However, in
the bottom row, we only observe one clear (and elongated) hot spot for the mean of the patients. Therefore,
there are multiple, smaller regions in which loops often occur in the filtrations of the functional networks of
the siblings and controls, whereas there is seemingly a single, larger region of loops in the filtrations of the
networks of the patients.

It is also worth commenting on the locations of the local maxima for each subject group. Relative to the
maximum values across each subject type, groupings of loops occur at different locations. From the values of
the vector elements, we see that the controls and patients have more similar maximum magnitudes than do
the patients and their siblings. Therefore, we conclude that we are able to accurately separate the populations
using PIs. Surprisingly, despite the pronounced difference in SSVM performance based on the PIs when we use
different maximum values for each subject group, the distributions of the maximum birth times and maximum
persistence values for each subject type are not statistically-significantly different from each other. In figure 11,
we show Gaussian fits to the sets of maximum birth times and maximum persistence values for each subject
type. Observe the strong similarity across all subject groups and the especially close similarity between the
control and patient distributions. Because the maximum values are linked closely to the preprocessing of the
data, it is important to conduct further research into how to account for these observations. One can also
normalize PIs in other ways, such as by normalizing each PI individually by its own maximum value. However,
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Figure 11. The distribution of (a) the maximum birth times across all samples for each subject type and (b) the maximum
persistence values across all samples for each subject type.

Figure 12. The set of 41 distinguishing pixels (of 625 pixels in total) that we determine via SSVM to be critical for obtaining
100% classification accuracy on the testing set of PIs.

we find that such individual normalization of PIs obscures information (specifically, the maximum birth time
of each subject group) that appears to be relevant. The results that we now present are based on the PIs that
we generated using the maximum values that we determined based on subject-group membership.

As we discussed in section 2.5.3, it is possible to apply a linear SSVM to the set of PIs to identify dis-
tinguishing pixels to help us interpret our classification results. Using a one-against-all SSVM with 5-fold
cross-validation, we obtain a 100% classification accuracy. In figure 12, we show the distinguishing pixels from
each of the three binary classifiers. By taking the union of these pixels, we obtain 41 distinct pixels from the
total of 625 pixels in the PIs. We again emphasize that each of these pixels corresponds to a bounded region in
the birth–persistence plane.

Interpreting the distinguishing pixels requires discussing their relationships with particular regions of the
brain. We make these connections as follows. For each subject, it is possible to determine whether a topological
feature (in our case, a loop) in a filtration of a network exists in the bounded region of the birth–persistence
plane that corresponds to a particular distinguishing pixel. If a loop does exist, one can identify a set of brain
regions that comprise the loop (i.e., representatives of this loop, as we discuss briefly in section 4). We are
particularly interested in brain regions that are consistently involved in the generation of particular loops across
subjects. We identify the set of nodes, which we call top node(s)11, that are involved in the generation of one or
more loops in each distinguishing pixel across all four time regimes for each subject. We then create histograms
of the union of the nodes that we select in this fashion to examine the relative importances of top nodes across
each subject type.

In figure 13, we give the relative importances of different brain regions for each pixel. In figure 13(a), we
show the top nodes for each subject type based the proportion of the subject types for which that top node is
involved in the generation of a loop in the distinguishing-pixel region. In figure 13(b), we show the proportion
of the subjects for which the top node(s) is (are) present. The vertical gaps in each plot signify that there are
no nodes that are consistently involved in loops for that distinguishing pixel. We make several observations
from figure 13(a). First, there are only five distinguishing pixels for which we find top nodes for the patients.
Therefore, we are unable to infer which brain regions are involved in loops in the functional networks during
the given task for schizophrenia patients. By contrast, there are many distinguishing pixels for which we find
top nodes for the siblings. The control group lies between the other two in terms of its number of distinguishing
pixels with top nodes, but there are still few top nodes in comparison to the number of distinguishing pixels
that have top nodes. In tables 4–7 (see also figures A2–A4 of appendix A), we indicate which brain regions (as

11 One can interpret our calculation of top nodes in a similar spirit as calculations of node centralities [37].
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Figure 13. (a) The index (indices) of the top node(s) that are associated with each distinguishing pixel that we determine via
SSVM. (b) A stacked bar graph of the proportion of each subject type for which there is a topological feature that includes at least
one top node. Pale green indicates siblings, greenish blue indicates controls, and gray indicates patients.

well as their locations) we identify as top nodes. We include only the distinguishing pixels for which top nodes
exist within a cohort.

An equivalent way to identify a top node is to calculate the percentage of a given subject group that has
a topological feature in the corresponding pixel region (see the bar graph in figure 13) and determine if a
specific node is in the group of representative generators for all of the subjects that have a topological feature
in the pixel region. We identify a node as a top node if it occurs in the list of representative generators of a
topological feature for every subject within the group for which we detect a topological feature in the pixel
region. Therefore, when considering tables 4–7, it is possible for the same brain regions to be listed for more
than one distinguishing-pixel index. This is also reflected in figure 13 by the occurrence of multiple markers
along the same horizontal line.

4. Discussion

We applied methods from persistent homology to analyze loops in functional brain networks of schizophrenia
patients, siblings of schizophrenia patients, and healthy controls. We constructed both persistence landscapes
and persistence images for these networks, and we compared them to each other using several clustering
techniques.

We observed topological differences in the functional brain networks of schizophrenia patients, siblings of
schizophrenia patients, and healthy controls with respect to the loops in their networks. We also found that
PLs and PIs have different practical advantages and disadvantages when applied to the same data set; these
insights may be useful for interpreting the results of PH computations in networks in diverse applications.

Computing PLs gave interesting results when comparing the mean PLs of the cohorts but not when com-
paring the individual PLs of the subjects. Using mean PLs, we were able to separate the sibling cohort from the
other two subject groups in each of the four time regimes. This is supported by the p-values that we obtained
for the distances between the mean landscapes of the sibling cohort versus those that we obtained for the con-
trol and patient cohorts, although not all of our p-values are statistically significant. The shape of the mean
PLs seems to suggest that loops that occur in the functional brain networks of siblings are more persistent on
average than those in the functional networks of controls or patients. This may imply either that (1) loops in
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Table 4. Top nodes that are involved in loop representatives within the bounds of
distinguishing pixel birth–persistence regions (part I). We include only
distinguishing pixels for which there is (are) top node(s) within a cohort. ‘Left’ and
‘Right’ refer to the hemispheres of the brain. We use the following abbreviations:
superior frontal gyrus medial segment (MSFG), superior temporal gyrus (STG),
opercular part of the inferior frontal gyrus (OpIFG), transverse temporal gyrus
(TTG), frontal operculum (FO), gyrus rectus (GRe), middle frontal gyrus (MFG),
orbital part of the inferior frontal gyrus (OrIFG), precuneus (PCu), cuneus (CC),
amygdala (Amyg.), anterior insula (AIns), superior parietal lobule (SPL), lingual
gyrus (LiG), cerebellum exterior (CE), parahippocampal gyrus (PHG), medial
frontal cortex (MFC), medial orbital gyrus (MOrG), and posterior cingulate gyrus
(PCgG).

Pixel index
Siblings Controls Patients

Node Location Node Location Node Location

1 70 Left MSFG — — — —
114 Left STG — — — —

2 70 Left MSFG 77 Left OpIFG 40 Left FO
114 Left STG 120 Left TTG — —

3 45 Right GRe — — — —
119 Right TTG — — — —

5 45 Right GRe 60 Left MFG 80 Left OrIFG
119 Right TTG — — — —

6 84 Left PCu 60 Left MFG — —
8 84 Left PCu 60 Left MFG 35 Right CC
9 120 Left TTG 60 Left MFG — —
11 120 Left TTG 60 Left MFG 26 Left AIns
12 45 Right GRe 60 Left MFG — —

Table 5. Top nodes that are involved in loop representatives within the bounds of
distinguishing pixel birth–persistence regions (part II). We include only
distinguishing pixels for which there is (are) top node(s) within a cohort. ‘Left’ and
‘Right’ refer to the hemispheres of the brain. We use the following abbreviations:
superior frontal gyrus medial segment (MSFG), superior temporal gyrus (STG),
opercular part of the inferior frontal gyrus (OpIFG), transverse temporal gyrus
(TTG), frontal operculum (FO), gyrus rectus (GRe), middle frontal gyrus (MFG),
orbital part of the inferior frontal gyrus (OrIFG), precuneus (PCu), cuneus (CC),
amygdala (Amyg.), anterior insula (AIns), superior parietal lobule (SPL), lingual
gyrus (LiG), cerebellum exterior (CE), parahippocampal gyrus (PHG), medial
frontal cortex (MFC), medial orbital gyrus (MOrG), and posterior cingulate gyrus
(PCgG).

Pixel index
Siblings Controls Patients

Node Location Node Location Node Location

14 84 Left PCu 112 Left SPL — —
112 Left SPL — — — —

15 51 Right LiG — — — —
17 — — 112 Left SPL 26 Left AIns
18 51 Right LiG 69 Right MSFG — —
19 3 Right Amyg. — — — —
21 3 Right Amyg. 8 Left CE — —

— — 112 Left SPL — —
22 80 Left OrIFG — — — —

112 Left SPL — — — —
24 80 Left OrIFG 59 Right MFG — —

112 Left SPL — — — —
25 112 Left SPL — — — —

the networks of siblings tend to be longer or that (2) one of the three edges between three mutually-adjacent
nodes has a substantially smaller edge weight than the other two. Because of the second possible scenario, we
see that the occurrence of three brain regions with a large pairwise Pearson correlation between one region
and each of the two other regions does not necessarily imply that there is a large correlation between the other
two brain regions; such an edge facilitates the formation of a loop structure in a filtration. (Recall that we need
at least four nodes for our loops.) To examine this issue further, it may be useful to analyze cross-links in the
functional networks, as in [112]. For the above computations and our interpretations of them, we need to take
into account that we did not include infinitely-persisting loops (which persist until the end of a filtration).
We also include only positive edge weights in our networks, so we only analyzed loops that arise from brain
regions with positive pairwise Pearson correlations.
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Table 6. Top nodes that are involved in loop representatives within the bounds
of distinguishing pixel birth–persistence regions (part III). We include only
distinguishing pixels for which there is (are) top node(s) within a cohort. ‘Left’
and ‘Right’ refer to the hemispheres of the brain. We use the following
abbreviations: superior frontal gyrus medial segment (MSFG), superior temporal
gyrus (STG), opercular part of the inferior frontal gyrus (OpIFG), transverse
temporal gyrus (TTG), frontal operculum (FO), gyrus rectus (GRe), middle
frontal gyrus (MFG), orbital part of the inferior frontal gyrus (OrIFG),
precuneus (PCu), cuneus (CC), amygdala (Amyg.), anterior insula (AIns),
superior parietal lobule (SPL), lingual gyrus (LiG), cerebellum exterior (CE),
parahippocampal gyrus (PHG), medial frontal cortex (MFC), medial orbital
gyrus (MOrG), and posterior cingulate gyrus (PCgG).

Pixel index
Siblings Controls Patients

Node Location Node Location Node Location

27 112 Left SPL 60 Left MFG — —
28 119 Right TTG — — — —
30 119 Right TTG 59 Right MFG — —
31 119 Right TTG 59 Right MFG — —
32 120 Left TTG — — — —
33 — — 59 Right MFG — —
34 120 Left TTG 8 Left CE — —

— — 85 Right PHG — —
36 — — 8 Left CE — —

— — 85 Right PHG — —

Table 7. Top nodes that are involved in loop representatives within the bounds of
distinguishing pixel birth–persistence regions (part IV). We include only
distinguishing pixels for which there is (are) top node(s) within a cohort. ‘Left’
and ‘Right’ refer to the hemispheres of the brain. We use the following
abbreviations: superior frontal gyrus medial segment (MSFG), superior temporal
gyrus (STG), opercular part of the inferior frontal gyrus (OpIFG), transverse
temporal gyrus (TTG), frontal operculum (FO), gyrus rectus (GRe), middle
frontal gyrus (MFG), orbital part of the inferior frontal gyrus (OrIFG),
precuneus (PCu), cuneus (CC), amygdala (Amyg.), anterior insula (AIns),
superior parietal lobule (SPL), lingual gyrus (LiG), cerebellum exterior (CE),
parahippocampal gyrus (PHG), medial frontal cortex (MFC), medial orbital
gyrus (MOrG), and posterior cingulate gyrus (PCgG).

Pixel index
Siblings Controls Patients

Node Location Node Location Node Location

37 57 Right MFC 59 Right MFG — —
58 Left MFC — — — —

119 Right TTG — — — —
39 111 Right SPL 26 Left AIns — —

— — 52 Left LiG — —
40 46 Left GRe — — — —

57 Right MFC — — — —
58 Left MFC — — — —
64 Left MOrG — — — —

41 82 Left PCgG — — — —

Although we were able to obtain interesting insights using mean PLs, we did not find interpretable results
from comparing individual landscapes, and using only the mean landscapes reduces the amount of informa-
tion that one can obtain from this approach. By contrast, using individual PIs and SSVMs allowed us to separate
the entire set of subjects (with 100% accuracy) in each of the four time regimes. In previous work, Anderson
and Cohen [113] obtained 65% accuracy for schizophrenia classification by applying machine-learning tech-
niques to functional brain networks. It is important to note, however, that our results are based on using a
priori knowledge of group membership (specifically, by including the maximum birth times of loops within
subject groups). These birth times seem to include nontrivial information that is important to examine fur-
ther in future studies. Moreover, such a priori knowledge is tied closely to the choice of statistical thresholding
when preprocessing fMRI data. Consequently, developing a statistical model that can classify a novel subject
based on a PI representation also requires further explorations of how to choose such a threshold.

Computing PIs also allowed us to identify brain regions with consistent involvement in loops in the func-
tional networks within subject cohorts. Of the three cohorts, we found that siblings have the most consistent
brain-region involvement across the four time regimes when performing the mental task in this study. That
is, brain regions that are involved in loops for siblings in one of the time regimes are more likely to also be
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involved in loops in other time regimes than is the case for patients or controls. It is particularly noteworthy
that siblings have more brain regions than controls with consistent involvement in loops that are relevant for
our SSVM classification of the three cohorts. We view heterogeneous involvement of brain regions in loops as
a notion of neurological ‘flexibility’. Various works have studied concepts of brain flexibility using community
structure [79, 114]. In those studies, flexibility was defined differently—based on how often a brain region
(i.e., a node) changes its allegiance to a community of nodes over time, so it does not use loops directly—than
in the above characterization, but it is noteworthy that Braun et al [114] observed that relatives of schizophre-
nia patients tend to have larger brain flexibilities than healthy controls. In our work, we found that a specific
group of brain regions leads to the separation of the three subject groups when using PIs and observed for the
schizophrenia patients that the regions that lead to a separation consistently in each of the four time regimes
are fewer in number than for the siblings and the controls. Braun et al [114] reported that there is larger
node flexibility in the network architecture of schizophrenia patients than in healthy controls. Additionally,
Siebenhühner et al [115] observed a greater variability in temporal networks that were constructed from mag-
netoencephalographic (MEG) data of schizophrenia patients than in those that were constructed from the
MEG data of healthy controls.

We observed four time regimes, which each consist of fMRI signals that were recorded during one block
of a 0-back task and a 2-back task. For time regime 2, we obtained very small and statistically significant p-
values in our mean PL computations when comparing siblings to controls and when comparing siblings to a
group that consists of all patients and all controls. We did not observe this for any of the other time regimes.
We conclude that time regime 2 appears to capture significant changes in the persistence and/or appearance
of loops in the networks of siblings during the working-memory task. It will be useful to conduct further
laboratory experiments to draw biological conclusions from such computational findings.

Schizophrenia has a high genetic determinism, so siblings of schizophrenia patients have a significant
genetic risk of developing the disease themselves [116], and it has been demonstrated that they have abnor-
malities in their structural neuronal networks [117]. Although our results that functional brain networks that
are constructed from fMRI measurements of siblings differ both from those of patients and from those of
healthy controls do not agree completely with the current scientific literature, other studies have also reported
that the features of fMRIs of siblings of schizophrenia patients differ both from schizophrenia patients and
from controls. For example, Callicott et al [118] observed in an fMRI study that there was no difference in
task performance between healthy siblings of schizophrenia patients and healthy controls, yet they detected
a physiological similarity between the sibling cohort and the schizophrenia patients in the associated fMRI
data. Similarly, Sepede et al [111] observed using fMRI data from a different data set that healthy siblings of
schizophrenia patients exhibit differences in brain function from schizophrenia patients, although they did
not differ significantly in task performance. Additionally, it was demonstrated recently that schizophrenia
patients undergo a cortical normalization process over the course of the disease [119]. However, one needs
further phenotypic information to assess whether it is possible to directly connect the results of such a study
to observations like ours.

Because our results are somewhat inconsistent with prior observations, it is also possible that our data set
contains experimental noise that is beyond our control. When we used standard network-analysis techniques
(specifically, community detection) on the functional brain networks, we did not observe meaningful differ-
ences between the three subject groups. Nevertheless, we believe that our comparison of PLs to PIs (along with
our examination of the different results from these techniques) is a useful illustration of topological data anal-
ysis in the study of functional brain networks. To give another cautionary note, one needs to take into account
that there are difficulties when interpreting the information about node participation in loops from compu-
tations of PH, as the software that is used for such computations (including, specifically, JAVAPLEX, which is
what we used) only finds representatives of the loops. These representatives are not determined in an optimal
way, and they need not be ‘geometrically nice’ [120]. For example, in such calculations, one often encoun-
ters double loops or even triple loops as generators for one loop in a functional network. Selecting a basis of
homology generators that behaves in a biologically representative way corresponds mathematically to solving a
problem known as the ‘optimal homology-basis problem’, which is difficult (and is NP-hard in the worst case)
[121]. Despite these difficulties, our list of discriminating nodes provides a useful starting point for further
investigations into neuronal abnormalities in functional networks of schizophrenia patients.

Another important issue is that we preprocessed the data for our study. This is very common when working
with fMRI data, but such steps are not uncontroversial; studies of functional connectivity in schizophrenia
patients have found contradictory results, which depend on whether one performs global signal correction [9,
76]. It is also relevant to keep in mind that the choice of functional connectivity measure can influence results
[77]. We used the Pearson correlation because of its simplicity and the fact that it is a widely used measure of
functional connectivity [122, 123]. Many other choices are also available.
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Finally, we chose to threshold our networks and removed edges whose weights were below a certain amount.
However, it has been observed previously [123] that edges with small weights can be important when compar-
ing functional brain networks of schizophrenia patients to those of healthy controls. However, such missing
edges—depending on their locations—can result in loops in a network, our analysis indirectly includes some
of this information. In future work, it seems interesting to consider only the parts of the functions networks
that are below the threshold value that we employed in our present study and analyze them with PH and
examine the ensuing classification of controls, patients, and siblings of patients.
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Appendix A

We now give some additional details about a few of our calculations and results.

A.1. Betti curves
We also study Betti curves, which were introduced in [53] and describe how Betti numbers change across
a filtration. We use each subject’s full time series, which consists of 120 time points, to construct a single
functional network for each subject (i.e., one time regime, rather than four separate ones). In all other respects,
we construct the functional networks as we described in section 2.2. We compute the mean and standard
deviation across the Betti numbers for dimension 1 (i.e., we compute the number of loops) for each cohort
in each filtration step. Aside from a slightly larger standard deviation in the patient cohort, we find that the
Betti curves of the three groups look essentially the same. We show our results of computing Betti curves in
figure A1.

A.2. Top brain regions in the distinguishing-pixel birth–persistence bounds
In this section, we illustrate the top nodes (i.e., top brain regions) within the bounds of the distinguishing-pixel
birth–persistence regions for the three cohorts. Recall that each pixel in the birth–persistence plane corre-
sponds to a bounded region of the original PD (i.e., in the birth–death plane). We show results for siblings in
figure A2, controls in figure A3, and patients in figure A4.

A.3. Supplementary tables
In tables A1–A5, we give the numbering of the brain regions and their corresponding IDs.
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Figure A1. (a) Mean Betti curves for the patients, controls, and siblings. (b) Mean Betti curves and their standard deviations for
patients, controls, and siblings.

Figure A2. The top nodes in representatives of the loops that are present within the birth–persistence bounds of the
distinguishing pixels for siblings.
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Figure A3. The top nodes in representatives of the loops that are present within the birth–persistence bounds of the
distinguishing pixels for controls.

Figure A4. The top nodes in representatives of the loops that are present within the birth–persistence bounds of the
distinguishing pixels for patients.
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Table A1. Node numbers (NNs) of brain regions (BRs) and their corresponding IDs (part I).

NN 1 2 3 4 5 6

ID 23 30 31 32 36 37
BR Right accumbens Left accumbens Right amygdala Left amygdala Right caudate Left caudate

area area

NN 7 8 9 10 11 12

ID 38 39 47 48 55 56
BR Right cerebellum Left cerebellum Right hippocampus Left hippocampus Right pallidum Left pallidum

exterior exterior

NN 13 14 15 16 17 18

ID 57 58 59 60 61 62
BR Right putamen Left putamen Right thalamus Left thalamus Right ventral Left ventral

proper proper diencephalon diencephalon

NN 19 20 21 22 23 24

ID 71 72 75 76 100 101
BR Cerebellar vermal Cerebellar vermal Left basal forebrain Right basal forebrain Right anterior Left anterior

lobules I–V lobules VI–VII cingulate gyrus cingulate gyrus

NN 25 26 27 28 29 30

ID 102 103 104 105 106 107
BR Right anterior insula Left anterior insula Right anterior Left anterior Right angular Left angular

orbital gyrus orbital gyrus gyrus gyrus

Table A2. Node numbers (NNs) of brain regions (BRs) and their corresponding IDs (part II).

NN 31 32 33 34 35 36

ID 108 109 112 113 114 115
BR Right calcarine Left calcarine Right central Left central Right cuneus Left cuneus

cortex cortex operculum operculum

NN 37 38 39 40 41 42

ID 116 117 118 119 120 121
BR Right entorhinal Left entorhinal Right frontal Left frontal Right frontal pole Left frontal pole

area area operculum operculum

NN 43 44 45 46 47 48

ID 122 123 124 125 128 129
BR Right fusiform gyrus Left fusiform gyrus Right gyrus rectus Left gyrus rectus Right inferior Left inferior

occipital gyrus occipital gyrus

NN 49 50 51 52 53 54

ID 132 133 134 135 136 137
BR Right inferior Left inferior Right lingual Left lingual Right lateral Left lateral

temporal gyrus temporal gyrus gyrus gyrus orbital gyrus orbital gyrus
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Table A3. Node numbers (NNs) of brain regions (BRs) and their corresponding IDs (part III).

NN 55 56 57 58 59 60

ID 138 139 140 141 142 143
BR Right middle Left middle Right medial Left medial Right middle Left middle

cingulate gyrus cingulate gyrus frontal cortex frontal cortex frontal gyrus frontal gyrus

NN 61 62 63 64 65 66

ID 144 145 146 147 148 149
BR Right middle Left middle Right medial Left medial Right postcentral Left postcentral

occipital gyrus occipital gyrus orbital gyrus orbital gyrus gyrus medial segment gyrus medial segment

NN 67 68 69 70 71 72

ID 150 151 152 153 154 155
BR Right precentral Left precentral Right superior Left superior Right middle Left middle

gyrus medial gyrus medial frontal gyrus frontal gyrus temporal gyrus temporal gyrus
segment segment medial segment medial segment

NN 73 74 75 76 77 78

ID 156 157 160 161 162 163
BR Right occipital Left occipital Right occipital Left occipital Right opercular Left opercular

pole pole fusiform gyrus fusiform gyrus part of the inferior part of the inferior
frontal gyrus frontal gyrus

Table A4. Node numbers (NNs) of brain regions (BRs) and their corresponding IDs (part IV).

NN 79 80 81 82 83 84

ID 164 165 166 167 168 169
BR Right orbital Left orbital Right posterior Left posterior Right precuneus Left precuneus

part of the inferior part of the inferior cingulate gyrus cingulate gyrus
frontal gyrus frontal gyrus

NN 85 86 87 88 89 90

ID 170 171 172 173 174 175
BR Right parahipp- Left parahipp- Right post- Left post- Right parietal Left parietal

ocampal gyrus ocampal gyrus erior insula erior insula operculum operculum

NN 91 92 93 94 95 96

ID 176 177 178 179 180 181
BR Right postcentral Left postcentral Right posterior Left posterior Right planum Left planum

gyrus gyrus orbital gyrus orbital gyrus polare polare

NN 97 98 99 100 101 102

ID 182 183 184 185 186 187
BR Right precentral Left precentral Right planum Left planum Right Left

gyrus gyrus temporale temporale subcallosal area subcallosal area
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Table A5. Node numbers (NNs) of brain regions (BRs) and their corresponding IDs (part V).

NN 103 104 105 106 107 108

ID 190 191 192 193 194 195
BR Right superior Left superior Right supplementary Left supplementary Right supramarginal Left supramarginal

frontal gyrus frontal gyrus motor cortex motor cortex gyrus gyrus

NN 109 110 111 112 113 114

ID 196 197 198 199 200 201
BR Right superior Left superior Right superior Left superior Right superior Left superior

occipital gyrus occipital gyrus parietal lobule parietal lobule temporal gyrus temporal gyrus

NN 115 116 117 118 119 120

ID 202 203 204 205 206 207
BR Right temporal Left temporal Right triangular part of the Left triangular Right transverse Left transverse

pole pole inferior frontal gyrus part of the temporal gyrus temporal gyrus
inferior frontal gyrus
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