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A Predator—2 Prey Fast—Slow Dynamical System for Rapid Predator Evolution*
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Abstract. We consider adaptive change of diet of a predator population that switches its feeding between two
prey populations. We develop a novel 1 fast—-3 slow dynamical system to describe the dynamics of
the three populations amidst continuous but rapid evolution of the predator’s diet choice. The two
extremes at which the predator’s diet is composed solely of one prey correspond to two branches of
the three-branch critical manifold of the fast—slow system. By calculating the points at which there
is a fast transition between these two feeding choices (i.e., branches of the critical manifold), we prove
that the system has a two-parameter family of periodic orbits for sufficiently large separation of the
time scales between the evolutionary and ecological dynamics. Using numerical simulations, we show
that these periodic orbits exist, and that their phase difference and oscillation patterns persist, when
ecological and evolutionary interactions occur on comparable time scales. Our model also exhibits
periodic orbits that agree qualitatively with oscillation patterns observed in experimental studies of
the coupling between rapid evolution and ecological interactions.
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1. Introduction. Organisms can adapt to changing environmental conditions—such as
prey availability, predation risk, or temperature—by changing their behavior. For example,
in prey switching, a predator changes its diet or habitat in response to prey abundances. This
is an example of phenotypic plasticity [37], in which the same genotype can express different
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phenotypes in different environments. However, adaptivity can also be expressed as an evol-
utionary change in traits (i.e., properties that affect how well an individual performs as an
organism [49]) via genomic changes of a predator and/or prey [21]. If such evolution occurs
on a time scale of about 1000 generations and can be observed in laboratory conditions, it
is construed to be a “rapid” evolutionary change of traits [21]. Rapid evolutionary changes
have been observed in a wide variety of organisms, ranging from mammals [54] to bacteria
[6], and both in predators (e.g., in traits that involve resource consumption [25] or the ability
to counteract prey defense mechanisms [27]) and in prey (e.g., in traits that involve predator
avoidance [35, 75]). Understanding the dependencies between rapid evolution and ecological
interactions is fundamental for making accurate predictions of a population’s ability to adapt
to, and persist under, changing environmental conditions [58, 14]. For example, rapid evolu-
tionary change of traits has been observed in a plankton predator—prey system [20, 75], which
is a good example system for studying the coupling between rapid evolution and predator—
prey interaction due to its short generation times and the tractability of genetic studies of
it [35].

Adaptive change of feeding behavior can be incorporated into a dynamical system of
predator—prey interaction in multiple ways. For example, one can represent prey switching
with a Holling type-III functional response [33], consider the densities of different prey as
system variables [2, 57], or use information on which prey type was last consumed [69, 68].
Such formulations lead to smooth dynamical systems, but one can also model a predator that
switches prey using a piecewise-smooth dynamical system [13, 7] in which continuous temporal
evolution of predator and prey populations alternates with abrupt events that correspond to
points at which the predator changes its diet or habitat [41, 42].

Rapid evolution. Several theoretical and empirical investigations have considered the effect
of rapid evolutionary change of traits on predator—prey dynamics (see [21] for a review), in-
cluding examples in which ecological and evolutionary dynamics have been assumed to occur
on (1) comparable time scales or (2) disparate time scales. An example of (1) is the occurrence
of out-of-phase cycles between small zooplankton (i.e., a predator) and genetically variable
clonal lines of algae (i.e., prey) populations observed in the experiments in [20, 75], which
were reproduced using a mathematical model with contemporaneous evolutionary and ecolo-
gical dynamics [36]. The model in [36] suggests that the cycles emerge from prey evolution,
especially when there is a small (energy) cost associated with the prey defense mechanism.
Examples of (2) include situations in which evolutionary change occurs on either a slower
[39] or on a faster [9] time scale than ecological interactions. Consequences that ecological
dynamics can have on trait evolution have also been studied using the mathematical frame-
work of adaptive dynamics [22, 76], where evolution is assumed to occur on a slower time
scale than ecological interactions. In the present paper, we aim to provide insight on how
the evolution of traits arises in population dynamics, and we thus concentrate on studying
the limit in which trait evolution occurs on a much faster time scale than predator—prey in-
teractions. When the time scales can be separated, one can use the framework of fast-slow
dynamical systems [45] to introduce and exploit a time-scale separation between evolutionary
and ecological dynamics to reduce the dimensionality of the system of equations that describe
the evolutionary and ecological interactions. For a short introduction to fast—slow dynamical
systems, see Appendix A.
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When evolutionary change is faster than ecological interactions, the fast—slow dynamical
system introduced in [9] can preserve the qualitative properties of dynamics in a predator—
evolving-prey model in which ecological changes and evolution occur on the same time scale
[36]. Additionally, similar to a model with only one time scale [36], a fast—slow dynamical
system with rapid prey evolution reproduces experimentally observed out-of-phase predator—
prey oscillations [75]. However, such oscillations are not present in the analogous model
without rapid evolution [9]. By exploiting the time-scale separation between fast evolution
and slow ecological changes, the general theory of either an evolving prey or an evolving
predator [9] has been extended to cover the case in which both predator and prey evolve [8].
There exist general conditions for determining which type of cyclic dynamics are possible in
a system of coevolving prey and predator [8]. Such dynamics involve cycles that exhibit (i)
counterclockwise or clockwise orientation in the predator—prey phase plane, (ii) a half-phase
difference between the predator and prey oscillations, and (iii) “cryptic” cycles in which the
predator population cycles while the prey population is approximately constant. Interestingly,
a situation in which both predator and prey evolve can generate clockwise cycles, which have
been identified in empirical data sets from systems such as phage—cholera, mink—muskrat,
and gyrfalcon—ptarmigan [10]. This contrasts with traditional Lotka—Volterra predator—prey
cycles, which have a counterclockwise orientation in the phase plane, with a quarter-phase lag
between the predator and prey oscillations [52].

Our approach. In the present paper, we use an approach similar to [9, 8] and develop a
novel (to our knowledge) fast—slow dynamical system for a predator switching between two
groups of prey species. In contrast to [9, 8], we make a simplifying assumption of unlimited
prey growth (e.g., because of favorable environmental conditions) and use Lotka—Volterra
functional responses between predator and prey. As a result, we can prove that there exists
a family of periodic orbits in a system of one predator and two different prey species. As
we discuss in section 7, some of our orbits agree qualitatively with patterns observed in both
laboratory experiments and field research. In addition to the potential utility of mathematical
modeling (and using fast—slow systems) for understanding the coupling between ecology and
evolution [21], our motivation for constructing our model comes from our earlier work that
suggests that adaptive prey switching of a predator is a possible mechanistic explanation for
patterns observed in data on freshwater plankton [56]. In the model in [56], the switch in the
predator’s feeding behavior is discontinuous. In the present paper, we relax this assumption
and consider a rapid but continuous change in the predator’s feeding choice.’

There exists theory both for regularizing a given piecewise-smooth dynamical system to
create a fast—slow dynamical system [61, 63] and for approximating a fast—slow system using a
piecewise-smooth system that preserves—both qualitatively and quantitatively—key charac-
teristics (such as singularities and bifurcations) of the original fast—slow system [12]. However,
we instead construct our model from a biological perspective using a concept from quantit-
ative genetics. A clear understanding of the trajectories of solutions of a fast—slow system
makes it possible to compare a fast—slow system as an “ecologically obtained” regularization
(which we construct using fitness-gradient dynamics [3, 46]) of a piecewise-smooth system

'In other work, we consider two types of regularizations of the discontinuous switch that do not introduce
a time-scale difference into the model [55].
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with a regularization obtained from a mathematical viewpoint (e.g., using a method based
on a blow-up technique [61, 63]). We aim to shed light on the differences and similarities
that phenotypic plasticity and rapid evolution, as two different mechanisms, can generate in
a model for the population dynamics of an adaptively feeding predator and its two prey. In
section 7, we compare and contrast the dynamics exhibited by the earlier piecewise-smooth
model [56] and the fast—slow system that we construct as an ecological regularization of it.

Putting aside our motivating applications in ecology, we note in passing that classical ex-
amples of fast—slow dynamical systems include the equations of Van der Pol [67] and Fitzhugh
and Nagumo (see [18, 53]). The former was used originally to describe the dynamics of an
electrical circuit with an amplifying valve (and has subsequently been used for numerous other
applications), and the latter is a simplified version of the Hodgkin—Huxley nerve-axon model
[32] from neuroscience [16]. There are several other applications of such multiple time-scale
systems, including pattern formation [23], opening and closing of plant leaves [19], ocean cir-
culation [40], critical transitions in climate change [44], and more. We also note that multiple
time-scale systems can be studied using several different techniques from singular perturbation
theory [31, 45]. Examples of such techniques include matched asymptotic expansions [38, 5]
and geometric singular perturbation theory [34, 45]. Because we are interested in construct-
ing periodic orbits and understanding their bifurcations in the fast—slow dynamical system for
prey switching (see section 2), we use the latter to analyze our model.

Outline of our paper. The rest of our paper is organized as follows. In section 2, we
formulate a 1 fast—3 slow dynamical system for a predator feeding on two prey populations in
the presence of rapid predator evolution. The three slow variables of the system correspond to
the populations of the predator and the two prey. We model a predator trait that represents
the predator’s feeding choice as the fast variable of the system. This model construction allows
us to use geometric singular perturbation theory to gain insight into the effects on population
dynamics of an evolutionary change of a predator trait that occurs on a time scale that is
comparable to that of the predator—prey interaction. In section 3, we derive expressions for
the critical manifold and the slow and fast subsystems. We then use these results in section
4 to explicitly construct periodic orbits that are exhibited by the 1 predator—2 prey fast—slow
system. We obtain these expressions for the periodic orbits by studying the singular limit
in which the ratio € of the fast to the slow time scale goes to 0. In section 5, we highlight
some ecologically relevant qualitative aspects of the constructed periodic orbits. We then use
numerical continuation in section 6 to investigate how the periodic orbits persist for € > 0 as we
perturb the system. Finally, we discuss the findings of our study in section 7. We briefly review
geometric singular perturbation theory in Appendix A, and we give additional details about
finding families of singular periodic orbits in Appendix B. In the accompanying supplementary
material (M106842_01.zip [local/web 172KB]), we provide Mathematica notebooks containing
our numerical code for finding and visualizing periodic orbits. We also provide associated
data files containing the results of our numerical computations.

2. The fast—slow 1 predator—2 prey model. We begin our formulation of a 1 predator—2
prey fast—slow system in section 2.1 by constructing an equation for the temporal evolution
of a predator population (z) that adaptively changes its diet between two prey populations
(p1 and p2). Our fast—slow model is based on four principal assumptions. We assume that the
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organisms (1) have a large population size, (2) live in a well-mixed environment, and (3) can
be aggregated into groups of similar species. Consequently, we can represent the predator—
prey interaction as a low-dimensional system of ordinary differential equations. We presume
that the predator—prey interaction is such that it is possible for evolutionary changes of traits
to occur on a time scale that is comparable to that of ecological interaction. In previous work
[56], this evolutionary change was modeled as an instantaneous switch. To bridge the gap
between this model of instantaneous evolutionary change and the ecological presumption that
ecological traits change on a time scale that is comparable to the ecological interaction of the
species, we study the limit in which (4) a predator trait undergoes rapid evolution on a faster
time scale than that of the population dynamics. This gives insight into contemporaneous
demographic and evolutionary changes. In section 2.2, we define an expression for the temporal
evolution of a predator trait (¢) that represents the predator’s desire to consume each prey. In
section 6, we examine possible insights into interactions between ecological and evolutionary
dynamics when these occur on a comparable time scale.

2.1. Ecological dynamics. We assume that the predator’s desire ¢ to consume prey is
bounded between its smallest and largest feasible values (gs and qr,, respectively). For sim-
plicity, we consider exponential prey growth and a linear functional response between the
predator growth and prey abundance [52]. We thereby obtain the following system of differ-
ential equations for the population dynamics of the 1 predator—2 prey fast—slow system:

d
7;;1 =7r1p1 — (¢ — qs)Bip12,
d
(2.1) 7(52 = 19p2 — (qr — q)Bap22 ,
dz
g = €(q - %‘)51}?12 + 6(6]L - Q)Q232p22 —mz,

where r1 and ro (with 71,79 > 0) are the respective per capita growth rates of prey p;
and po, the parameters §; and [y are the respective death rates of prey p; and ps due to
predation, e > 0 is the proportion of predation that goes into predator growth, g2 € [0, 1] is
the nondimensional parameter that represents the extent of preference towards prey po, and
m > 0 is the predator’s per capita death rate. One can also interpret the parameter gs as a
factor that scales the benefit that the predator obtains from feeding on prey ps.

For simplicity, we let 81 = 2 (which we can take to be equal to 1 by rescaling) to omit
B1 and (B2 in our calculations in section 3. In doing so, we assume that the predator exhibits
adaptive diet choice by adjusting its feeding choice (i.e., whether the predator is feeding on
prey pi1 or on prey pz) rather than its attack rate based on the prey densities. We also require
that the extreme when ¢ is at its minimum (i.e., ¢ = gg) corresponds to the case in which
the predator is feeding solely on prey ps. Similarly, we require that the extreme when ¢ is at
its maximum (i.e., ¢ = q1,) corresponds to the case in which the predator feeds solely on prey
p1- We thereby assume that ¢ is bounded between ¢;, and qg. Without loss of generality, we
choose qr, = 0 and gg = 1. These assumptions simplify the system (2.1), which represents the
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fast—slow 1 predator—2 prey population dynamics, to

dpy =7rip; — qP1%
az 1P1 — gp1<,
dp2
(2.2) — =1r2p2 — (1 — q)p2z,
dt
dz
3 = ezt e(1 — q)qop2z — mz.

2.2. Evolutionary dynamics. We assume that the adaptive change in the predator’s trait
q follows fitness-gradient dynamics. In other words, we assume that the rate of change of
the mean trait value is proportional to the fitness gradient of an individual with this mean
trait value [3]. Fitness-gradient dynamics was used for defining trait dynamics of rapid pred-
ator evolution in [9, 8, 10], wherein fast—slow dynamical systems were proposed as a general
framework for gaining insight into evolutionary and ecological dynamics that occur on a com-
parable time scale. In the original form of fitness-gradient dynamics in [3], the fitness F' of an
individual is assumed to be frequency-dependent. That is, F' = F(¢*,q), where ¢* is the trait
value of an individual and ¢ is the mean trait value of the population. In the present paper,
we determine fitness as the net per capita growth rate of the predator population. The rate
of change of the mean population trait value is then governed by fitness-gradient dynamics as
follows:

(2.3) dg 0 (1dz

dt *og \zdt

(pl,pz,z,q*,q)>
7 =q

Following ecological considerations, if adaptation occurs by genetic change, the rate constant
that describes (2.3) is the additive genetic variance [46] (i.e., genetic variance due to genes
whose alleles contribute additively to the trait value). For simplicity, we assume that the
fitness of an individual depends only on the mean trait value of the population and not on
the distribution of the individual’s trait. That is, F'(q,q*) = F(q). Note that the use of this
simplification implies that we assume the distribution of the trait to be sufficiently narrow.
Additionally, we describe the additive genetic variance of the predator’s desire to consume
each prey type by a bounding function that limits the predator trait between its smallest
(gs = 0) and largest (g = 1) feasible values. Furthermore, by assuming that the predator
trait evolves on a faster time scale than the population dynamics (where the separation of
time scales is given by ¢), we see that the temporal evolution of the predator trait takes the
following form:

e
(2.4) =q(1—q)Ve(p1 — g2p2) ,

dg 0 [(1dz
5@ = (Q*QS)(QL*Q)Va*q ( pl,pza»Z,Q))

where V is a nondimensional constant and is part of the additive genetic variance term
q(1—q)V.

When using fitness-gradient dynamics, we model evolutionary dynamics at the phenotypic
level without incorporating detailed information about genotypic processes (e.g., principles of
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Mendelian inheritance [21]). Using this simplified approach, we can incorporate an equation
for the predator trait directly into the system of 1 predator-2 prey dynamics and obtain
an analytically tractable differential-equation model for coupled ecological and evolutionary
dynamics. Because of its simplifying assumptions on genotypic processes and the laws of inher-
itance, fitness-gradient dynamics gives an incomplete understanding of interactions between
ecological and evolutionary dynamics [21]. Nevertheless, there is evidence that fitness-gradient
dynamics can still be an appropriate approximation for modeling evolutionary dynamics even
when its simplifying assumptions do not hold [24, 3].

2.3. Coupled ecological and evolutionary dynamics. By combining the ecological dy-
namics in (2.2) with the evolutionary dynamics in (2.4), we obtain the following fast—slow 1
predator—2 prey system with predator evolution:

dpy )

il 2 91(p1,p2,2,q) = T1p1 — qP12,

dpo )

(2.5) FTLL = g2(p1,p2,2,q) = rop2 — (1 — @)p2z,

dz .

i 93(p1,p2,2,q) = eqp1z + e(1 — q)qop2z — Mz,
dg .

e =47 f(p1,02,q) = q(1 — q)Ve(pr — q2p2) -

When ¢ = 1 in (2.5), the predator feeds only on prey p;. Likewise, when ¢ = 0, the vector
field of the fast—slow system (2.5) corresponds to a situation in which the predator’s diet is
composed solely of prey po. Consequently, there is exponential growth in the population of
the prey type that is not being preyed upon.

3. Analytical setup. In this section, we use geometric singular perturbation theory to aid
in the analysis of the 1 fast—3 slow model in (2.5). See Appendix A for a brief introduction
to geometric singular perturbation theory.

3.1. Rescaling of the system (2.5). To keep our analysis as clear as possible, we rescale
the system (2.5) to maximally reduce the number of parameters. Using the rescaling

t mrnry mriy
(31) t— —, p1—> —p1, p2— —pP2, 2T1Z, M—>Tr1M, re =111, € >emV,

(& e €qo
we obtain
p=(1-qz)p1,
po = (r—(1—q)z)p2,
(3.2) i=(qgpi+(1—-q@p2—1)mz,

g4 =q(1—q) (p1 —p2),

where r and m are free parameters. Without loss of generality, we can assume that 0 < r < 1
(i.e., that r; > 72).
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3.2. Linearization around the coexistence equilibrium of (3.2). The system (3.2) has a
unique coexistence steady state at (p1,pe, z,q) = (1, 1,1+, l%rr) The local behavior near
this equilibrium is characterized by the eigenvalues (\) of the linearization of (3.2) around it.

These eigenvalues obey the characteristic equation

m + 2r + mr?

AN +mr=0.
147

(3.3) M4
For allm > 0 and 0 < r < 1, equation (3.3) has four purely imaginary solutions, so the coexist-
ence equilibrium is of center—center type. For an equilibrium of this type, local analysis alone
is in general extremely complicated and intricate (see, e.g., Chapter 7.5 of [26]). Moreover,
any local periodic solution stays close to the value ¢ = l—ir, whereas our goal is to investigate
different types of periodic orbits that can arise from rapid predator evolution, which occurs
when ¢ varies between—and comes close to—the extremal values 0 and 1. We therefore aban-
don the standard linearization approach and turn to geometric singular perturbation theory
to obtain far-from-equilibrium periodic orbits (see section 4).

3.3. Analysis of the system (3.2) as a fast—slow system. In this section, we specify the
fast and slow subsystems of the full system (3.2) and compute the critical manifold Cy. We
use the symbol “ - 7 to denote derivatives with respect to the slow time ¢ and the symbol
“’7 to denote derivatives with respect to the fast time 7.

3.3.1. Slow reduced system. We obtain the slow subsystem of the full system (3.2) by
considering the singular limit € — 0. In this limit, we obtain the slow reduced system

p1=1-qz)p1,

p2=(r—(1—-q)z)p2,
i=(gpr+(1—qp2—1)mz,
0=q(1—q)(p1—p2).

(3.4)

As we describe in (A.3) in Appendix A, this is a differential-algebraic system.

3.3.2. Fast reduced system. We scale the slow time ¢ in (3.2) by ¢ and reformulate its
dynamics in terms of the fast time 7 = ¢/¢ to obtain

d
%:Pl'zs(l—w)ma
d
e == (=02,
dz ,
(3.5) 3 =2 =clap+ (A -gp2—1)mz,
dq /
g =1 =41 -q)(p1—p2)

Taking the limit ¢ — 0 yields pj = 0, p{ = 0, and 2/ = 0. The reduced fast system is
one-dimensional, and it determines the fast dynamics of ¢ through

(3.6) ¢ =q(1—q)(p1 —p2).
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We can solve (3.6) explicitly for ¢(7) because p; and ps are constant. For ¢ € (0, 1), we obtain

e(P1=p2)7 11 1
(3.7) an(T3P1,P2) = ey = 5 t g tanh (2(191 —pz)T) ,

which is gauged such that ¢, (0) = %

3.3.3. Critical manifold. The critical manifold Cj is defined by the algebraic part of the
slow reduced system (3.4). It is given by

(3-8) Co={(p1,p2.2,9) € R* | q(1 = q)(p1 — p2) = 0} = Mo UM; U My,
where

(39) MOZ {(pl,pQ,Z,Q)ERLl}q:O} ’

(310) Mlz{(plaPZazvq)ERél}q:l} )

(311) MSW = {(p17p27Z7Q) € ]R4 }pl ZPZ} .

We see that the critical manifold can be written as the union of a trio of three-dimensional
hyperplanes.?

3.3.4. Slow flow on the hyperplane M, (3.9). Observe that the hyperplane Mj (3.9)
is an invariant manifold for the slow reduced system (3.4). Indeed, any initial condition with
q(0) = 0 yields ¢(t) = 0 for all ¢ when evolved according to (3.4). This allows us to study the
flow of the slow reduced system (3.4) on the hyperplane Mg through the dynamical system

P1="p1,
(3.12) p2 = (r — 2)p2,
Z=((p2—1)mz.

The dynamics of p; decouples from the variables ps and z, and the prey p; exhibits exponential
growth. The predator z and the prey ps form a Lotka—Volterra predator—prey system around
the coexistence equilibrium (p2,z) = (1,7). We can thus introduce a conserved quantity on
My; it is given by

(3.13) Hy(p2,2) = mlogps —mps +rlogz — 2.

3.3.5. Slow flow on the hyperplane M; (3.10). By the same reasoning as in sec-
tion 3.3.4, the hyperplane M is an invariant manifold for the slow reduced system (3.4).
The flow of (3.4) on M is given by

p1=(1—2)p1,
(3.14) P2 =1p2,
=P —1)mz.

2Because the third part, May, of the critical manifold does not play a role in the orbit construction in
section 4, we omit further analysis of Mgy.
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These dynamics are very similar to those on the hyperplane M (3.12), but the roles of p;
and po are reversed. Now the dynamics of py decouples from the variables p; and z, and the
prey ps exhibits exponential growth. The predator z forms a Lotka—Volterra predator—prey
system with the prey p; around the coexistence equilibrium (p1, z) = (1,1), and the associated
conserved quantity on M is given by

(3.15) Hi(p1,z) =mlogpr —mp; +logz —z.

4. Construction of approximate periodic orbits. In this section, we use the setup from
Section 3 to provide a geometric analysis of the system (3.2) in terms of its slow (3.4) and
fast (3.5) subsystems. We also indicate how one can construct these singular orbits explicitly
using the analytical results in Section 3. We then combine these two descriptions to construct
a family of periodic orbits in the singular limit ¢ — 0. We quantify how these singular orbits
approximate solutions in the system (3.2) for sufficiently small £ > 0. In Section 6, we show
numerical simulations for the constructed approximate periodic solutions for specific values of
E.

4.1. Construction of a singular periodic orbit.

4.1.1. Geometric analysis of the fast reduced system. As we explained in section 3.3.3,
the critical manifold Cy = MoU M7 U Mgy, (3.8) consists of equilibrium points of the reduced
fast system (3.6). Geometrically, the flow defined by (3.6) connects a point (p1,p2,2,0) € My
with a point (p1, pe, z,1) € Mj by a heteroclinic connection, which is given explicitly by (3.7).
The sign of p; — po determines the direction of this heteroclinic connection. Therefore, the
hyperplane My, divides the four-dimensional phase space into two parts (see Figure 1). On
the side in which p; > pa, the heteroclinic connection g, (3.7) is directed from My to M;
(i.e., “upwards”); on the other side of Mgy, in which p; < pa, the direction of the heteroclinic
connection is reversed, going from M to My (i.e., “downwards”). The hyperplane Mg, acts
as a switching plane; when this plane is crossed, the direction of the heteroclinic flow that
connects My and M, is reversed.

4.1.2. Geometric analysis of the slow reduced system. We study the flow of the slow
reduced system (3.4) on My, as given by (3.12), from a geometric point of view. The phase
space of the flow on M is three-dimensional, and it is given in terms of the coordinates
(p1,p2,2). Projected onto the (po, z)-plane, the system (3.12) reduces to a classical Lotka—
Volterra system with conserved quantity Hy (3.13). We know [52] that every orbit of this
Lotka—Volterra system is closed and is determined uniquely by its value of Hy. Because the
p1 dynamics are decoupled from the (po, z) dynamics, every Hy level set in the (po, z) plane
extends to a cylindrical level set in the full (p1,pe,z) phase space. Because Hj is also a
conserved quantity for the full system (3.12), these cylindrical level sets of Hy are invariant
under the flow of (3.12). Therefore, we can characterize the dynamics of (3.12) by describing
the three-dimensional phase space as a concentric family of cylindrical level sets of Hy (see
Figure 2).

For the flow of the slow reduced system (3.4) on M;j, as given by (3.14), a geometric
perspective yields an equivalent construction, with the roles of p; and ps reversed. In this
case, one can characterize the dynamics of (3.14) on the same (p1, p2, 2) phase space through
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Figure 1. Flow of the fast reduced system (3.6). For visual clarity, we depict the three slow model dimen-
stons (p1,p2, z) in two dimensions, which are spanned by (p1 — p2, z); the vertical azis indicates the fast variable
q. We indicate the hyperplane Mg in green and the hyperplane M in blue. In this visualization, the switching
hyperplane M, is spanned by the z-azis and g-axis. On the right side of Mgy, the fast flow (indicated by
double arrows) is directed upwards (i.e., from Mo to M1); on the left side of Mgw, the direction of the fast
flow is reversed (i.e., it is directed downwards).

y

P2

Figure 2. Flow of the slow reduced system on Mo, as given by (3.12). The level sets (depicted by the green
concentric cylinders) of Ho (3.13) are invariant under the flow.

another concentric family of cylindrical level sets, which are determined by the conserved
quantity H; (3.15) (see Figure 3).

4.1.3. Combining the fast and slow reduced dynamics. We seek to use the geometric
insights from the fast and slow reduced limits of the full system (3.2) (see sections 4.1.1 and
4.1.2) to construct a singular periodic orbit. The idea is to exploit the heteroclinic connections
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Figure 3. Flow of the slow reduced system on M, as given by (3.14). The level sets (depicted by the blue
concentric cylinders) of Hi (3.15) are invariant under the flow.

between My and Mj on both sides of the switching plane Mgy,.

Consider a point Ay = (pi',p3,24,0) € My, with pf > pg' (see Figure 4). On this
side of the switching plane Msgy, the heteroclinic connection g, (3.7) takes us “up” to the
corresponding point A; = (p’f,p‘;,z“‘, 1) € M;. We now consider the slow reduced limit,
and we use the point 41 = (p{',p4', 24, 1) as an initial condition for the slow flow &} on M;.
We let the slow flow on M act for some time 77, so the point A; € M;j flows to the point
B, = <I>{1A1 € M;. For notational brevity, we write <I>ip1 p{‘ = pf , and we use similar notation
for p‘24 and z4, writing By = (pP, sz ,zB,1). We choose T} so that the p; coordinate is now
smaller than the ps coordinate (i.e., pP < p&).

Switching back to the case of the fast reduced limit, we see (because pP < pf) that the
slow flow on M has brought us to the other side of the switching plane Mg,. We can thus
use the heteroclinic connection gy to travel “down” from By € M to the corresponding point
By = (p{3 ,p’QB , 2B ,0) € Myp. Back on My, we again consider the slow reduced limit, and we
take the point By = (pP, pP, 25,0) as an initial condition for the slow flow ®} on M. We let
the slow flow on My act for some time Tj. Because our goal is to construct a periodic (and
hence closed) orbit, we want to choose (pi!, ps', 2) and the times Ty and T so that the slow
flow on My takes By back to the starting point Ag.

We give a schematic overview of the above construction in the following diagram:

Moi»./\/ll

q;.gOT lq:,’fl

dn
(4.1) Mo «—— My

For a sketch of the periodic orbit in different visualizations of the phase space, see Figures 4,
5, and 6.
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Figure 4. A visualization of the construction of the singular periodic orbit in section 4.1.3 in the projection
of Figures 2 and 3.

D2

Figure 5. A visualization of the construction of the singular periodic orbit in section 4.1.3 in the projection
of Figure 1.

4.2. Existence conditions and solution families. The goal of this section is to establish
(algebraic) conditions for the existence of the closed singular orbit that we described in section
4.1.3. The periodicity of the orbit in the fast g coordinate is satisfied by construction through
the heteroclinic connections between Mg and M. Therefore, we only need conditions on the
initial values of the slow coordinates (p1,p2,z) and on the slow-evolution times Ty and Tj.
We need to choose these five unknowns in a way that ensures periodicity in the three slow
coordinates. Therefore, we generically expect to obtain a (possibly empty) two-parameter
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Figure 6. A dual phase-plane picture for a singular periodic orbit, as constructed in section 4. We indicate
the dynamics on My in blue (solid curve on the left and dashed curve on the right) and the dynamics on Mo in
green (dashed curve on the left and solid curve on the right). (Compare Figures 4 and 5.) On the left, we show
the phase plane spanned by (p1,z); on the right, we show the phase plane spanned by (p2,z). In each phase
plane, we use a solid curve to indicate the orbit segment in which the displayed model variables are interacting
through Lotka—Volterra dynamics. We indicate the associated level curves of (left) Hi(p1,z) (3.15) and (right)
Ho(p2,z) (3.13) in grey. We use a dashed curve to indicate the remaining orbit segment, in which the displayed
prey variable grows exponentially. We use black dots to indicate the jump points A and B, at which the periodic
orbit “jumps” from Mo to Mi, and vice versa. The arrows on the orbit segments give the direction of time.

family of periodic orbits.> See Figure 6 for a visualization of the singular orbit that depicts
the relevant quantities that we use in the following analysis.

The expression (3.13) for the conserved quantity Ho(pe,z) of the reduced slow flow on
My provides a relation between the slow coordinates of the “take-off” point Ay and the
slow coordinates of the “touch-down” point By. We obtain the relation from Hy(pg,z4) =
Ho(pP, 2P), which yields
(4.2) m logpg1 — mp’24 +rlogzt—z4=m logp¥ — mpP + 1 log 28 — 2P .

Likewise, on M, we use the expression (3.15) for the conserved quantity Hip(pi,z) to obtain
a relation between the slow coordinates of the touch-down point A; and the take-off point Bj.
We obtain the relation from Hj(p{,z4) = Hy(p?, 2P), which yields

(4.3) m log pi —mp‘l4 +log 2 — 24 = m log pP — mpP +log 2P — 5.

3 Actually, we will establish four independent conditions on the slow coordinates of the points Ao,1 and Bo,1.
(In other words, there are six unknowns.)
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We now consider the explicit form of the slow reduced dynamics on M;. On My, we flow
the point A; to the point B using the flow (3.14) for a time 7. The flow of the py coordinate
is decoupled from the variables p; and z, and it is linear, so we solve for its dynamics directly
to obtain

(4.4) pQB = p‘;erTl )

The other two slow coordinates (p1, z) interact through Lotka—Volterra dynamics. We integ-
rate the equation for p; in (3.14) to yield

w1 d
(4.5) T :/ S
pa 1—=2(p1) p1

where we can obtain the expression z(p;) by invoking the conserved quantity H; and inverting
the relation Hy(py,z) = Hy(p{, 24). That is, we obtain z(p;) by solving the equation

(4.6) m logpy — mpy +log z(p1) — z(p1) = m logpi' — mpi' +log 2 — 24

One can treat the slow segment on Mg analogously. On M, we flow the point By back
to the point Ag using the flow (3.12) for a time Ty. The flow of the p; coordinate is decoupled
from the variables p2 and z, and it is also linear, so we can solve for its dynamics directly to
obtain

(4.7) pit =pre™.

On My, the slow coordinates (pe, z) interact through Lotka—Volterra dynamics. We integrate
the equation for py using (3.12) to yield

A
s 1 d
(4.8) Toz/ - P2
pp T —2(p2) p2

where we obtain the expression z(p2) using the conserved quantity Hy by inverting the relation
Ho(pa, 2) = Ho(p3', 24). That is, we obtain z(p2) by solving the equation
(4.9) m logpe —mps + 1 log z(p2) — 2(p2) =m 10%"]9? - mP? +rlogz?t — 24

We can use the above results on the slow flow on M and M to eliminate Ty and T7.
Combining (4.4) with (4.5) yields

1 (pf 1 dpy
(4.10) —log (A) :/p _—

r 4 1—z(p1) m

and combining (4.7) with (4.8) yields

A o1 d
(4.11) log <p}9> :/ P
pi pp T —2(p2) P2
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Together with (4.2) and (4.3), we now have four equations for six unknowns, which consist of
the slow components of Ap1 and By 1.

The relations (4.6) and (4.9), which need to be inverted to obtain the integrands of (4.5)
and (4.8), are not bijective. Therefore, the specific forms of z(p1) (4.5) and z(p2) (4.8) depend
on the characteristics of the underlying slow-orbit segment. To obtain computable expressions
for the coordinate values of (pf, pg', 24) and (p?, p¥, 2P), it is necessary to characterize these
underlying slow-orbit segments in more detail. We demonstrate this procedure in Appendix
B. We numerically evaluate the explicit expressions that we thereby obtain for the coordinate
values of (pi!,ps!, 24) and (pP,pL, 2B) for several choices of the model parameters r and m.
In the supplementary material, we show the results of these numerical evaluations, together

with visualizations of the associated singular periodic orbits.

4.3. Approximate periodic orbits for £ > 0. In section 4.1, we constructed a singular
periodic orbit by concatenating several orbit sections that we obtained by studying the reduced
slow (3.12), (3.14) and fast (3.6) limits of the full system (3.2). We now use these singular
orbits to construct an approximation of orbits in the full system (2.5).

Result 4.1 (existence of approximate periodic orbits). Lete > 0 be sufficiently small, and let
the coordinate triples (p{l, pg', z) and (pP,p%,2B) be such that a singular periodic orbit can
be constructed according to the method outlined in sections 4.1 and 4.2. Denote this singular
orbit by vo. There then exists a solution v-(t) of (2.5) and an O(1) time t. such that ~-(t)
stays O(e) close to vy for all t € (0,t).

One can obtain Result 4.1 from a mostly (though not entirely) straightforward application
of “classical” perturbation theory (see, e.g., [70]). However, because the reduced fast system
(3.6) is one-dimensional, the slow manifolds My and M lose their locally attractive/repelling
properties at the intersection with Mgy, (for which p; — pa = 0), where the system exhibits
a slow passage through a transcritical bifurcation [43]. Near My N Mgy, we can use the
standard blowup transformation t = /e, pj — ps = \/€P, ¢ = v/ to obtain, up to O(y/2),
the equations

d dz
PTAGREE) di
and
B 1
— = —(1— =0(1
5 2( r+2)(p1 + p2) (1),
dg .
a 't

It is clear that there is no exchange of stability [47, 48]. There is one canard, which is maximal
and is given by § = 0. Furthermore, using the results in [11], it follows that 0 < §(f) < G(—a)
for all —a <t < a with a € O(1). In other words, ¢(f) stays close to § = 0 for O(1) time in .
The analysis at M1 N Mgy is analogous; for more details on the local analysis near p; —p2 = 0,
see [11]. One can apply the classical theory [70], which guarantees the existence of a solution
0 (2.5) that is O(e) close to the singular approximation vy, on either side of Mgy,. The above
blowup argument shows that these classical solutions stay close to either Mgy or M; when

crossing My, .
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Remark 4.1. In the context of geometric singular perturbation theory, the standard ref-
erence for the existence of periodic orbits constructed by concatenating slow and fast orbit
segments (as outlined in section 4.1) is the seminal paper by Soto-Trevifio [60]. However, the
system (2.5) that we analyze in our current paper has only one fast component. Consequently,
one cannot use the standard notion of “normal hyperbolicity,” because its definition requires
the number of normal directions to be at least two. This, in turn, implies that one cannot
apply the theory from [60] to the case at hand. Moreover, the existence of a two-parameter
family of singular periodic orbits indicates that the intersection of the stable and unstable
manifolds of My 1 is not transversal in the singular limit ¢ — 0. Therefore, generically, a
singular orbit vy constructed as outlined in section 4.1 does not perturb to a periodic orbit in
the full system (2.5). To find a proper transversal intersection of the stable and unstable man-
ifolds of My 1, one would need to extend the leading-order analysis presented in the present
paper to higher orders in ¢ to obtain additional existence conditions to match the number of
free parameters (see section 4.2).

5. Ecologically relevant qualitative aspects of the constructed periodic orbits. In
this section, we discuss several qualitative aspects of periodic solutions that are ecologic-
ally relevant—including synchronization between predator and prey and/or between two prey
species, clockwise cycles, and counterclockwise cycles. For a summary of cyclic behavior ex-
hibited by the singular periodic orbits constructed from the model in (2.5), see Table 1. These
types of behavior occur (1) in the data collected from microscopic aquatic organisms in field
research [64, 65] and under laboratory conditions [74, 4, 30] and (2) in experimental studies
of coevolution in phage-bacteria systems [50, 72]. Importantly, such behavior also arises in
the family of periodic orbits that we constructed in section 4.

Table 1
Summary of the possible oscillatory behavior exhibited by the singular periodic orbits that we construct for
the 1 fast-3 slow system in (3.2).

Name Description Figure number
Prey—prey synchronization The two prey oscillate in antiphase 7
Predator-prey—prey synchroniza- The predator alternates between (1) being 8
tion in phase with prey 1 and in antiphase with

prey 2 and (2) being in antiphase with prey
1 and in phase with prey 2
Predator—prey synchronization The predator alternates between (1) being 9
in phase with prey 2 and (2) being in an-
tiphase with prey 2
Counterclockwise cycles Prey peaks before predator 8,9
Clockwise cycles Predator peaks before prey 10, 11

We have access to field data on microscopic aquatic organisms [64, 65], and these data
exhibit both antiphase and in-phase oscillations between the two different prey types. In terms
of the fast—slow 1 predator-2 prey system (2.5), these data can be used to obtain values for
the model parameters—in particular, the prey growth rates r; and re (which determine r in
the rescaled system in (3.2)), the predator conversion efficiency (e), and the predator death
rate (m). All values chosen in the current paper for these model parameters are within the
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range suggested in previous modeling work that used these data (see, e.g., [66, 55]). We also
take into account experimental evidence of prey preference exhibited by the predator species
in these data [51] and assume that predator z prefers p; and thus can exert more grazing
pressure on it than on its alternative prey ps. This difference in prey preference manifests in
the model in (2.5) via the parameter g2, which scales the benefit that the predator obtains from
feeding on po. Such an advantage of experiencing lower predation pressure can be explained,
for example, by a difference in the use of limited nutrients between the two different prey. The
alternative prey could, for example, invest resources in building defense mechanisms (such as
a hard silicate cover) that make it difficult for the predator to digest this alternative prey.
In this example, the preferred prey p; has a poorer defense than the alternative prey po; as
a trade-off, prey p; has more resources available than ps to be used for population growth,
as these resources are not invested in building defense mechanisms. Consequently, we follow
earlier modeling work on these data [66] and incorporate such a prey trade-off in the model
by assuming that the growth rate of the preferred prey is larger than that of the alternative
prey. That is, we assume that 71 > 79 in (2.5), which implies that 0 < r < 1 in the rescaled
system in (3.2).

Although there are several experimental studies of coevolution in microscopic aquatic
organisms [20, 75, 30] (and in phage—bacteria systems [72, 50, 28], which is another type of
exploiter-resource system that translates to a model of predator—prey interaction), we have not
yet encountered empirical observations of evolutionary and demographic dynamics in a system
of one predator and two different prey species. In the bacterium—phage system studied in [71],
a bacterial (i.e., prey) subpopulation that replicates slowly and is phenotypically resistant to
the phage (i.e., predator) was suggested as a possible mechanistic explanation for the observed
dynamics. This is an example of our model assumption of the growth rate of the alternative
prey being less than that of the preferred prey (i.e., 0 < r < 1 in the rescaled system in (3.2)).

5.1. Synchronization.

5.1.1. Prey—prey synchronization. When two populations oscillate in phase or in anti-
phase, local extrema of two species occur at exactly the same instances in time. Because
p1 increases monotonically on My and po increases monotonically on My, it follows that p;
does not have an extremum during the slow dynamics on Mg and that ps does not have an
extremum during the slow dynamics on Mj. Therefore, for p; and p2 to oscillate in phase or
in antiphase, we need their local, aligned extrema to occur at the jump points—i.e., where
q jumps from 0 to 1, or vice versa. Because p; increases from jump point B towards jump
point A, it follows that p; has a local maximum at A and a local minimum at B. By the
same reasoning, ps must have a local minimum at A and a local maximum at B. Therefore,
we can conclude that the only type of prey—prey synchronization that occurs in the singular
periodic solutions that we have constructed is when the two prey species oscillate in antiphase.
Therefore, based on the above considerations, the dual phase-plane picture associated with
prey—prey synchronization must be as depicted in Figure 7. As is clear from this figure, the
z coordinates of both jump points A and B must lie above the z = 1 nullcline. That is,
24 > 1 and 28 > 1. Our numerical calculations show that there exists a two-parameter family
of periodic orbits in which both prey species oscillate in antiphase for a range of the model
parameters (r,m); see Figure 15 in Appendix B for a visualization of such a solution family.
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Figure 7. The dual phase-plane picture for a singular periodic orbit with prey—prey synchronization. In
this example, (r,m) = (0.5,0.4). The local extrema of p1 and p2 are located at the jump points A and B. We
indicate the dynamics on Mo in green (dashed curve on the left and solid curve on the right) and the dynamics
on M1 in blue (solid curve on the left and dashed curve on the right). (Compare Figures 4 and 5.)

See the supplementary material for visualizations of the associated singular periodic orbits
and for our numerically obtained values of (p{', p3', z4) and (p?, pZ, 25).

5.1.2. Predator—prey synchronization. Because our model includes two prey species,
predator—prey synchronization can potentially arise either through synchronization between
the predator and prey 1 or though synchronization between the predator and prey 2. Pred-
ator and prey densities that oscillate almost exactly out of phase with each other have been
observed in experimental studies on the effects of rapid prey evolution on ecological dynamics
[4, 75]. In this section, we examine the conditions under which there is a jump from one slow
manifold to the other, and we thereby show that our model exhibits oscillations in which the
predator is in phase with a prey at one jump point and out of phase with the same prey at
the other jump point.

Synchronization between all three species. The predator cannot oscillate either in phase or
in antiphase with both prey species simultaneously, because this would imply that the aligned
local extrema of the prey species are the same type (i.e., both maxima or both minima). In
other words, the two prey species would exhibit in-phase oscillations, and we showed in section
5.1.1 that this cannot occur. However, it is still possible for the predator to oscillate in phase
with one prey and in antiphase with the other prey. Suppose that the two prey oscillate in
antiphase, as described in section 5.1.1. If the predator is in phase with one prey and in
antiphase with the other, then the predator density has local extrema located at the jump
points. The nature of these extrema is dictated by the “jump conditions” on p; 2 at the jump
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Figure 8. Rescaled abundances of the preferred prey p1 (solid blue curve), alternative prey p2 (dashed blue
curve), the predator z (dotted red curve), and predator trait q (dot-dashed black lines) as a function of the
rescaled time t (on the horizontal axis) for a singular orbit exhibiting predator—prey—prey synchronization in the
system in (3.2) withr = 0.8, m =1, and e = 0. The jump points are located at (pi',p5, z*) ~ (2.41,0.33,1.18)
and (pP,p%, 2%) ~ (0.29,2.27,1.39).

points A and B in the following manner. Suppose that the predator density z has a local
maximum at A. From the slow flow on My (3.12) and the slow flow on M;j (3.14), we infer
that this implies that (pé4 —1)mz? > 0 and (pi! — 1)mz4 < 0. However, this violates the jump
condition that p{' > pg' (see section 4.1.3). Therefore, z cannot have a local maximum at A.
By an analogous argument, we see that z cannot have a local maximum at B. Therefore, if the
predator density has local extrema at both jump points A and B, then both of these extrema
are local minima. We conclude that the only way in which the predator is synchronized with
both prey species is if the predator is alternating between (1) being in phase with prey 1 and
in antiphase with prey 2 and (2) being in antiphase with prey 1 and in phase with prey 2.
For an example of such predator—prey—prey synchronization, see Figure 8.

Synchronization between predator and one prey. Suppose that the predator z oscillates in
phase (or in antiphase) with one prey only, which we assume is p; without loss of generality.
From the slow dynamics of p; on M; (3.14) and on My (3.12), it is clear that during the
slow dynamics, the local extrema of z and p; are unable to align. On Mg, the prey p;
changes monotonically; on M7, the prey p; and predator z are related through Lotka—Volterra
dynamics, which forbids alignment of local extrema of the participating predator and prey.
We thus conclude that the local extrema of the predator z and the prey species p; with
which it oscillates in phase (or in antiphase) must occur at the jump points A and B. From
the fact that p; increases monotonically during the slow dynamics on My, we conclude that
p1 must be a maximum if it has a local extremum at A. This, in turn, implies that the
derivative of p; on M;j at the jump point A must be negative. Therefore, (1 — z4)pi! < 0
(see (3.14)), so z# > 1. For the other prey species py, we see using (3.14) that the derivative
of po on M; at A is (trivially) positive and that the derivative of py on My at A is given
by (r — zA)p‘24. However, we have already concluded that z4 > 1, and because we have also
assumed that 0 < 7 < 1 (see section 3.1), the derivative of po on My at A must be negative.
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Figure 9. Rescaled abundances of the preferred prey p1 (solid blue curve), alternative prey p2 (dashed blue
curve), the predator z (dotted red curve), and predator trait q (dot-dashed black lines) as a function of the
rescaled time t (on the horizontal azis) for a singular orbit exhibiting synchronization between predator and
prey 2 in the system in (3.2) with r = 0.5, m = 0.4, and € = 0. The jump points are located at (pi*,p4, z*)
(4.27,0.19,0.7) and (p?,p¥, 2P) =~ (0.06,2.69,0.85). Note that the local mazima for p1 occur just after the jump
point, where p2 and z have a synchronous local minimum. On closer inspection, one can see a sudden change

in the slope of p1 at that jump point. Compare this figure with Figure 8, in which all species are synchronized.

~
~

Therefore, if p; has a local extremum at A (which must be a maximum), then ps has a local
minimum at A. This violates the assumption that the predator z oscillates in phase (or in
antiphase) with one prey only. We therefore conclude that the predator z cannot oscillate in
phase (or in antiphase) with prey 1 only. Any synchronization between the predator and prey
1 necessarily implies synchronization between the predator and prey 2 (as discussed in the
previous paragraph). It is worthwhile to note that the simultaneous synchronization of both
prey is a direct consequence of the asymmetry between the dynamics of p; and ps, manifested
through the parameter r € (0,1) in (3.14) and (3.12).

Now suppose that the predator z oscillates in phase (or in antiphase) with one prey only,
and suppose that that prey is po. By the same arguments as above, we can conclude that if po
has local extrema at A and B, then ps must have a local minimum at A and a local maximum
at B. Therefore, from (3.14) and (3.12), it follows that » < z4 and r < zP. Because we
assumed that z does not oscillate in phase (or in antiphase) with prey p1, the derivative of p;
must be positive on both sides of jump point A, and it must also be positive on both sides of
jump point B. This implies that z4 < 1 and 2P < 1. We can conclude that it is possible for
the predator z to synchronize with one prey only, and this prey must be prey 2. This situation
occurs if and only if 7 < 24 < 1 and r < 28 < 1. However, from the previous paragraph,
we know that the local extrema of the predator z at the jump points A and B can only be
minima. Therefore, the predator z and prey ps cannot oscillate in phase or in antiphase. The
only synchronization possible between z and po is of an “alternating” type: if z and ps are
synchronized, then they are in phase at jump point A and in antiphase at jump point B. For
an example of this type of synchronization, see Figure 9.

Based on the above analysis, we see that the only phase-locking mode available for the
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periodic orbits that we have constructed in this paper is a “hybrid” phase in which the predator
is in phase with one prey at one jump point and out of phase with the same prey at the other
jump point. In summary, the above analysis on synchronization types yields the following
insights:
1. Alignment of local extrema of the model species (p1,p2,z) can occur only at a jump
point.
2. If the predator z has a local extremum at a jump point, then this extremum must be
a local minimum.
3. When 24 > r and 2B > r, the predator z and prey p, are in phase at A and in
antiphase at B.
4. When z4 > 1 and 28 > 1, the predator z and prey p; are in antiphase at A and in
phase at B.
5. Therefore, the only two types of synchronization between the predator z and prey pj 2
are those in Figures 8 and 9.

5.2. Clockwise and counterclockwise cycles. In this section, we discuss the ordering
of the peak abundances of the predator and prey populations in cycles exhibited by the
model in (3.2). In particular, we describe two types of situations: (1) a peak in the predator
abundance precedes that in the prey population (so the cycles have a “clockwise” orientation
when depicted on a predator—prey phase plane), and (2) a peak in the prey abundance is
followed by that in the predator population (so the flow travels “counterclockwise” in that
phase plane).

The nomenclature “clockwise” and “counterclockwise” stems from the orientation of the
flow in a classical Lotka—Volterra system, which describes one prey species and one predator
species. In the traditional phase-plane depiction of the Lotka—Volterra system, the prey is
placed on the horizontal axis, and the predator is placed on the vertical axis. In this case,
the Lotka—Volterra flow has a counterclockwise orientation. In the solution time series, this
dynamical behavior is characterized by the fact that a peak in the prey population is relatively
close (i.e., a quarter of a period with a small perturbation from the equilibrium point) to a
peak in the predator population. Moreover, in Lotka—Volterra dynamics, the prey peaks first
and the predator peaks shortly thereafter.

The prediction of counterclockwise cycles due to density-dependent predator—prey inter-
actions in the Lotka—Volterra model is supported by empirical observations collected from
hare and lynx populations [15]. As is also the case for several other traditional predator—prey
models, the Lotka—Volterra system assumes that the behavior and characteristics of the or-
ganisms remain fixed on the time scale of ecological interactions. As we discussed in section
1 and will discuss further in section 5.1, rapid evolution alters the population dynamics and,
in particular, it can generate cycles in which the peak in the predator abundance follows the
peak in the prey population with a phase lag that is larger than a quarter of a period [4].

In contrast to the counterclockwise cycles, clockwise cycles are characterized by a negative
phase lag between the peak abundances and a reversed ordering of the predator and prey
maxima. Recently, Cortez and Weitz [10] analyzed ecological data sets collected from various
predator—prey systems and identified regions in them that have a clockwise orientation. In [10],
a peak in the predator population is construed to precede a peak in the prey abundance if the
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time between a predator peak and the following prey peak is less than the distance between the
predator peak and the preceding prey peak. Modeling suggests that evolutionary changes on a
time scale comparable to that of the ecological interactions and occurring in both predator and
prey offer a possible mechanistic explanation for the reversed ordering of the peak abundances
[10]. In other words, a small population of a prey type that has invested in predator defense
mechanisms and a large population of a predator that is ineffective in counteracting the prey’s
defense can yield low predator abundance and high prey abundance because of the effective
prey defense. Consequently, selection favors predators that are effective in counteracting
prey defense, so that the prey population starts to decrease. Simultaneously, the predator
population remains low because of the high cost of counteracting prey defense. However,
due to low predator population, there is room for the prey population with low predator
defense to increase. The predator population then increases because of a high abundance of
more vulnerable prey. In this reversed situation, the predator peaks first, and the prey peaks
shortly thereafter.

In the predator—prey-prey system that we study in the present paper, the answer to the
question of whether clockwise cycles occur seems to be straightforward. Using the orbit
visualization in Figure 7, we immediately see that both the interaction between the predator
and prey 1 and the interaction between the predator and prey 2 occur in a counterclockwise
fashion. Such orientations are inherent to the construction of the (singular) periodic orbits in
question (see also Figure 5). However, from such phase portraits, one is unable to draw any
conclusion about the difference in time between predator and prey extrema. In particular,
using a phase-space perspective, one cannot readily deduce whether a prey peak is shortly
followed by a predator peak (the time-series hallmark of a counterclockwise cycle), or vice
versa.

To obtain more insight on the relative time difference between predator and prey peaks,
we use the analysis of section 5.1. The slow dynamics on My (see (3.12)) and M; (see (3.14))
show that on either slow manifold, one prey species increases monotonically and the other
prey species interacts with the predator through Lotka—Volterra dynamics. In Lotka—Volterra
dynamics, a peak in prey density always precedes a predator peak. Therefore, the situation
in which a predator peak is shortly followed by a prey peak cannot occur during the slow
dynamics on either My or M;. However, as we saw in section 5.1, local prey maxima can
also occur at the jump points A and B. (The predator can only have local minima at the
jump points; see subsection 5.1.1.) In Figure 10, we show an example of a singular periodic
orbit in which the prey density p; has a local maximum at A, where ¢ jumps from 0 to 1.
The predator peak occurs shortly before this instance in time. In Figure 11, we show another
singular periodic orbit, in which the predator peak occurs almost exactly in between the peak
of prey 1 and the peak of prey 2. We can therefore conclude that the dynamics of our model
(2.5) admits (singular) periodic solutions whose time series exhibit an ordering of predator
and prey peaks that can be interpreted as “clockwise” in the sense that a prey peak is shortly
preceded by a predator peak. In section 6, we will show that the localization in time of these
local maxima persists when we increase the value of the small parameter ¢.

6. Numerical continuation of the singular periodic orbits. In this section, we use direct
numerical simulations of the model system (3.2) to illustrate our theoretical results from
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Figure 10. Rescaled abundances of the preferred prey p1 (solid blue curve), alternative prey p2 (dashed
blue curve), the predator z (dotted red curve), and predator trait q (dot-dashed black lines) as a function of the
rescaled time t (on the horizontal azis) for a singular orbit exhibiting “clockwise” behavior (i.e., the peak in the
predator density occurs just before the peak in prey 1) in the system in (3.2) with r = 0.5, m = 0.4, and € = 0.
The jump points are located at (pt*,p3, z) ~ (0.97,0.81,2.0) and (p¥,p%, 27) ~ (0.22,4.28,0.85).

Figure 11. Rescaled abundances of the preferred prey p1 (solid blue curve), alternative prey p2 (dashed
blue curve), the predator z (dotted red curve), and predator trait q¢ (dot-dashed black lines) as a function of the
rescaled time t (on the horizontal azis) for a singular orbit exhibiting neither clockwise nor counterclockwise
behavior (i.e., the peak in the predator density occurs almost exactly in between the two prey peaks) in the system
in (3.2) with r = 0.5, m = 0.4, and € = 0. The jump points are located at (pi', p4,z*) ~ (1.81,0.49,1.35) and
(pP,pF, 2%) =~ (0.51,1.59, 1.40).

section 4. The goal of this section is to highlight the role of the small parameter €. We
demonstrate that we can numerically find approximations to the singular periodic orbits that
we constructed in section 4, which we proved to exist for “sufficiently small” e (see Result
4.1). We also demonstrate that these approximate periodic orbits persist as ¢ is increased to
larger values (even ones for which we no longer have a theoretical guarantee that such an orbit
exists). In other words, we perform a numerical continuation in e starting from a singular
periodic orbit in which € = 0.
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To initiate the numerical-continuation procedure, we use the explicit analytical solution
of the singular periodic orbit, which is characterized by the slow coordinates of the jump
points A and B. For a specific choice of (r,m), we find the values of (pf!,p3,24) and
(pP,pP, 2B) that satisfy the existence conditions (4.2), (4.3), (4.10), and (4.11). We con-
sider a singular periodic orbit for which a peak in the predator population lies between the
peaks in the two prey populations (for a singular orbit of this kind, see Figure 11), and we
use the parameter values (r,m) = (0.5,0.4). After several numerical simulations, we obtain
(p1,p2,2,q) ~ (1.18,0.87,1.50,0.99) and use these values as an initial condition, simulate the
system (3.2) with ¢ = 0.025, and find a numerical solution that is nearby the corresponding
singular orbit (see panel (a) of Figure 12). We carry out the continuation of this solution for
increasing values of ¢ as follows. We simulate the rescaled system (3.2) (for 50 time units
when 0.025 < e < 0.5 and for 30 time units when 0.5 < e < 1) and use the final value of each
simulation as an initial value for the next simulation in three sequences of 10 simulations with
¢ linearly spaced between 0.025 and 0.2 (for the simulation with e = 0.2, which we show in
panel (b) of Figure 12), between 0.2 and 0.5 (for the simulation with ¢ = 0.5, in which we
show in panel (c) of Figure 12), and between 0.5 and 1 (for the simulation with ¢ = 1, which
we show in panel (d) of Figure 12).

One can clearly observe that, as the value of ¢ increases, the transition in ¢ between its
minimum and maximum values is increasingly gradual. Moreover, in our numerical simu-
lations, we see that the theoretical minimal value of ¢ (i.e., ¢ = 0) is not attained by the
solutions in panels (b), (c), and (d) of Figure 12. From numerical continuation, we see that
choosing the small parameter ¢ = 0.025 allows us to numerically find periodic orbits that
are O(e) close to the singular limit. That is, for the parameter choice (r,m) = (0.5,0.4),
the value € = 0.025 can be construed as “sufficiently small” in Result 4.1. Additionally, we
see that certain quantitative features of the singular periodic orbit persist as € is increased.
These include the antiphase oscillation between the two prey species and the occurrence of the
predator peak between the prey peaks. Thus, the analytical results that we obtained through
geometric singular perturbation theory, which we established for sufficiently small values of ¢
(see Result 4.1), are also meaningful for “unreasonably large” values of €.

7. Conclusions and discussion.

Summary and time scales. We have modeled adaptive feeding behavior of a predator that
switches between two prey types. In our model (see (2.5)), we assumed that the predator
gradually changes its diet from one prey to another depending on the prey densities and
that the predator feeds only on one prey type at a time at the extremes. The change of
diet is continuous, but it is fast compared to the time scale of population dynamics, so we
introduced a time-scale difference between the dynamics of a predator trait (which represents
the predator’s desire to consume each prey) and the population dynamics. The resulting 1
fast—3 slow dynamical system exhibits periodic orbits that we can construct analytically when
the parameter € that represents the separation of time scales is equal to 0, and we showed that
these orbits can be used to find approximate periodic solutions for small but nonzero values
of . We also demonstrated, using numerical computations, that such approximate periodic
solutions persist for (nonsmall) values of ¢ from ¢ = 0.025 up to € = 1.
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Figure 12. Rescaled abundances of the preferred prey p1 (solid blue curve), alternative prey p2 (dashed
blue curve), the predator z (dotted red curve), and predator trait q (dot-dashed black curve) as a function of
the rescaled time t (on the horizontal axis) for simulations of the system in (3.2) with r = 0.5, m = 0.4, and
e > 0. We show the associated singular solution in Figure 11.

Beyond piecewise-smooth formulations: Various ways to smoothen a jump. Part of our motiv-
ation to construct a fast—slow dynamical system for a predator adaptively switching between
two prey comes from the desire to relax the assumption of a “discontinuous” predator that
was made in earlier work [56]. The discontinuity in this previous model, which successfully
reproduces the periodicity in the ratio between the two prey groups exhibited in data collec-
ted from freshwater plankton [56], comes from the assumption that a predator chooses a diet
that maximizes its growth [62]. Because it is not clear whether there exist predators that
switch their feeding strategy instantaneously, our work includes two other ways in which we
“smooth out” the 1 predator—2 prey piecewise-smooth system from [55]. One can regularize
a piecewise-smooth dynamical system into a singular perturbation problem by “blowing up”
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the discontinuity boundary. This method was developed originally in [61] and later surveyed
in [63]. In the present paper, we combined these ideas with the ecological concept of fitness-
gradient dynamics [46, 3] to relate this discontinuity smoothening to a biological phenomenon.
Fitness-gradient dynamics was used previously to represent trait dynamics of a predator—prey
interaction in a fast—slow system for studying rapid evolution and ecological dynamics [9].
Note, however, that the fast—slow system in [9] was not obtained as a result of regularizing a
given piecewise-smooth system. Instead, the rate of change of a predator (or prey) trait was
assumed to be governed by fitness-gradient dynamics [46, 3] and was assumed to evolve on a
faster time scale than that of the predator—prey interaction [9]; we have used both of these
assumptions in the present paper.

Obtaining analytical results using time-scale separation. An important feature of our model
(3.2) is the presence of the parameter ¢, which introduces a time-scale separation between
the (fast) model component ¢ and the (slow) model components (pi, p2,z). The inclusion of
this time-scale separation enables us to not only include a biological mechanism (i.e., natural
selection) directly into the model, but also to prove the existence of approximate periodic
orbits for sufficiently small values of this time-scale separation parameter €. Using numerical
calculations, we demonstrated that these “sufficiently small” values of ¢ are within numerical
reach, as we are able to find values for € for which direct numerical simulation of the model
(3.2) yields periodic orbits that are O(e) close to their singular counterparts. By using nu-
merical continuation, we have also shown that these orbits persist for increasing values of ¢.
Therefore, the method that we outlined in this paper can be used not only to study periodic
solutions to (3.2) in the presence of a time-scale separation, but also (using numerical continu-
ation of the singular periodic solution) to investigate the existence and behavior of periodic
solutions to (3.2) when the time scale of the rate of change of the trait ¢ is comparable to that
of the predator—prey interaction. The periodic solutions that we constructed in this paper
are far-from-equilibrium solutions, so the model variables do not stay close to the system’s
coexistence equilibrium. As we mentioned in section 3.2, this equilibrium is of center—center
type. In general, the use of local analysis around this equilibrium to study periodic solutions
is extremely complicated and intricate, and the nature of this type of analysis excludes the
study of far-from-equilibrium solutions and, in particular, it excludes ones in which the trait
variable ¢ switches between 0 and 1.

As we stated in Remark 4.1, the presence of only one fast component prohibits the use
of “standard” existence results from the literature on geometric singular perturbation theory.
In particular, the number of slow directions is related directly to the lack of transversality of
the intersection of the stable and unstable manifolds of the invariant manifolds Mg and M;.
The existence problem would have to be unfolded to higher orders in € to obtain a subset
of singular periodic solutions that persist for all time as fully periodic solutions. Numerical
simulations of the system (3.2) indeed show that not every approximate periodic solution
remains bounded for long times, and several numerical periodic solutions exhibit a slowly
modulated amplitude. These phenomena, and the problem of “true” persistence of periodic
orbits, are interesting subjects for future research.

It is worth noting that the method that we employed in this paper to construct (singular)
periodic orbits is not confined to orbits with two slow segments (one on each slow hyperplane
Mo, 1, as in Figure 4). Using the same methods, our analysis can be extended to study periodic
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orbits with two slow segments on each slow hyperplane by concatenating them using four fast
transitions. This would lead to an extension of the family of possible periodic orbits. This
larger class of periodic orbits, which exhibit a wider range of qualitative features, can also be
fit to experimental data. For more discussion on comparison with experimental data, see the
last paragraph of this discussion section.

Rapid evolution versus phenotypic plasticity. The two mechanisms of adaptivity—i.e., phen-
otypic plasticity and rapid evolution—cause rapid adaptation and affect population dynamics
[59, 73]. Although it is not clear precisely how these different mechanisms affect population
dynamics, it has been suggested that models that account for phenotypic plasticity exhibit a
stable equilibrium more often than models that account for rapid evolution [73]. It has also
been suggested that this situation can arise from a faster response time of plastic genotypes
than that of nonplastic genotypes to fluctuating environmental conditions [73]. Indeed, our
model (2.5), which describes the population dynamics of a predator and its two prey in the
presence of rapid evolutionary change in a predator trait, does not contain stable steady states.
In contrast, the model in [56], which considers an adaptive change of diet in response to prey
abundance, exhibits convergence to a steady state for a large parameter range.

Cryptic and out-of-phase cycles. Empirical evidence suggests that rapid evolution is a pos-
sible mechanistic explanation for cyclic dynamics that differ from those in traditional predator—
prey systems. For an evolving prey, such dynamics include (1) large-amplitude cycles in a
predator population while a prey population remains nearly constant [74, 6], (2) predator and
prey oscillating almost exactly out of phase [4, 75], and (3) oscillations in which a peak in a
prey population follows that in a predator population [4]. Oscillations of types (1) and (2)
also arise in predator—prey models with rapid predator evolution [9]. It has also been demon-
strated that rapid predator evolution as a response to an evolving prey can generate cyclic
dynamics both in experiments [30] and in models [8] of coevolution. Our model (2.5) repres-
ents an evolving predator that feeds on two different types of prey and exhibits different types
of periodic orbits—including ones in which the predator and prey populations oscillate out of
phase, total prey density remains approximately constant, and a peak in the prey population
follows that in the predator populations.

Future work and comparison with experiments and field observations. To identify orbits that
exist in an ecologically reasonable parameter range, our ongoing work includes comparing our
model simulations with data collected from freshwater plankton in the field [64, 65]. Our
principal model assumptions (i.e., large population size, short generation times, and well-
mixed environment) hold for these data. However, similar models can be formulated for
any other organisms that satisfy these assumptions, including the microorganisms used in
the laboratory experiments in [30]. The insight into rapid evolution gained from studying
a tractable plankton system can be used as an example for understanding rapid evolution
of larger organisms and their abilities to adapt to changing environmental conditions (such
as climate change or species introductions). Moreover, one of the major applications of the
understanding of coevolution in microorganisms is resistance to antimicrobial drugs. By fitting
parameters of prey growth rates and predator mortality to data, we expect to be able to
distinguish parameter regimes to determine which members of periodic-orbit families best
describe the data, and one can thereby gain insights into a system of one evolving predator
that feeds on two different types of prey. In particular, we expect such comparisons between
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models and data to help determine ecological trade-offs and their possible influence on rapid
predator evolution. Empirical evidence from a study of coevolving predator and prey suggests
that a predator pays a low fitness cost (or no cost at all) for counteracting antipredatory prey
evolution [30]. However, in addition to the unknown mechanism of the predator response, the
trade-off(s) that constrain rapid predator evolution remain unknown if one only looks at data
without doing any modeling.

Appendix A. Geometric singular perturbation theory. In the present paper, we gained
insight into how the evolution of traits that occur on a comparable time scale to that of
ecological interactions arises in population dynamics by studying the limit in which trait
evolution occurs on a much faster time scale than that of the predator—prey interactions.
Consequently, our goal in choosing a geometric approach was to create solution trajectories
for a parameter € > 0 by concatenating segments of curves that are determined by either the
fast reduced dynamics or the slow reduced dynamics when € = 0. In this appendix, we give a
brief introduction to this kind of procedure. See [34, 45, 29] for further details.

Following the notation in [45], a fast—slow dynamical system with m fast variables and n
slow variables (and time as the only independent variable) is expressed as

d
e =st = f(x.y.),
dy .

A.l —_— = pr—

(A1) =Y g(z,y,€),

where f: R" X R" xR - R™, g: R™ x R" x R — R", and ¢ (with 0 < ¢ < 1) is the ratio
of the two time scales. We rescale the slow time t by ¢ and obtain an equivalent system that
evolves on the fast time scale 7 = t/c. We thus write

& = = frp9),
d
(AQ) diy :y,:€g($,y,5)-
T

We can take the (singular) limit ¢ — 0 in (A.1), which describes the dynamics evolving on
the slow time scale ¢, to obtain the reduced slow vector field

0= f(mayvo)a
(A3) Y= g(:ﬂ,y, 0) .

We call (A.3) the slow reduced problem. Similarly, we can take the limit ¢ — 0 in (A.2), which

describes the dynamics evolving on the fast time scale 7, to obtain the reduced fast vector
field

a = f(i',y,O),
(A.4) y =0,

which is called the fast reduced problem. The fast and slow reduced problems are connected
through the critical manifold Cy = {(z,y) € R™ x R™ : f(x,y,0) = 0}, a sufficiently smooth
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submanifold of R™ xR"™. The critical manifold Cy determines the equilibrium points of the fast
reduced problem (A.4), and the differential-algebraic slow reduced problem (A.3) determines
a (slow) dynamical system on C.

By using geometric singular perturbation theory, one studies the critical manifold and
the slow (A.3) and fast (A.4) reduced problems to obtain information about the behavior of
the full system (A.1). This approach builds on the work of Fenichel [17], which guarantees
that, under some general conditions, several geometric objects (e.g., the critical manifold Cp)
defined in the reduced slow and fast problems persist for sufficiently small ¢ > 0 as similar
geometric objects in the full system (A.1). Hence, for example, (singular) orbits that are
constructed by concatenating orbit pieces from the slow reduced problem (A.3) and the fast
reduced problem (A.4) persist for sufficiently small ¢ > 0 in the sense that such a singular
orbit is a good approximation of a “true” orbit of the full system (A.1).

For an introduction to geometric singular perturbation theory and its concepts, see [29].
For a comprehensive overview of singular perturbation theory, see [45].

Appendix B. Finding solution families.  To find singular periodic orbits to (3.2), we
seek values for (pf, pg', 24) and (pP, pZ, 2P) that satisfy (4.2), (4.3), (4.10), and (4.11). We
highlight aspects of the procedure by analyzing these equations in detail, starting with (4.10).

We obtain the integral in (4.10) by integrating the slow dynamics on M (see (4.5)). As
we mentioned in section 3.3, the slow coordinates (pi,z) form a Lotka—Volterra system (see
(3.14)). Because all orbits in the (p1, z)-system are closed, the function z(p;) needed for the
integrand of (4.10) cannot be determined uniquely. Indeed, a full (closed) Lotka—Volterra
orbit in the (p1,z) system consists of two branches of z(p1). As we illustrated in Figure 13,
there is both an upper branch and a lower branch. Using (4.6) to solve z(p1), we use the
Lambert W-function W;(z) [1] to explicitly write the two branches as

A pr m
(B.1) 2 (pispf, 2) = —W_y (—ZAE_ZA <plel) ) :

ple—Pl

A 7pA m
(B.2) 2 (pispi, =) = —Wo <—er—ZA <p1€> ) :

pie~ P

where z; indicates the upper branch and z_ indicates the lower branch of the associated
Lotka—Volterra orbit. The branches connect at the left and right extrema, which are given,
respectively, by (pi®, 1) and (pi"®*, 1); again see Figure 13.

The final expression of the integrand (4.10) depends on the path followed by the orbit on
M. In Figure 14, we show two examples of such paths. In the first example, the initial point
(p}, 24) is in the upper left quadrant (i.e., pj! < 1 and 2% > 1). The final point (p?, 2P) is in
the lower left quadrant (i.e., pP < 1 and 2” < 1). For this path, the slow travel time 77 (4.5)
is given by

1 d w1 d
(B.3) / 1 / 1 P
pa l—zy(m) p1 Jpmin 1—2-(p1) p1

In the second example, the initial point lies in the lower right quadrant (i.e., pf > 1 and
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z_(p1)

pqnm pqﬂax P1

Figure 13. A Lotka—Volterra orbit in the (p1,z) phase plane. The orbit is closed and consists of two
branches, z1 (dotted blue curve) and z— (solid blue curve); see (B.1). The branches connect at the left and
right extrema, which are located at (p7*", 1) and (p***, 1), respectively; see (B.6).

z z

P1

PT‘"” 1 p?“ax Pwm“" 1 pT‘aX .

Figure 14. Ezxample paths of the slow dynamics on Mi. The travel time T1 for the left path is given by
(B.3), and the travel time for the right path is given by (B.4).

24 < 1). The slow travel time T} is then

max

min B
P1 1 d P1 1 d P1 1 d
w | n N —TY
vt 1—2-(p1) m pmax 1=z (p1) p1 pmin 1 —2_(p1) p1

Taking into account all possible combinations of initial and final points, a methodical
analysis yields the following explicit expression for condition (4.10):

(B.5) ( /”{Ee L v dm ey
B B poin L—z_(p1)  1—24(p1) p1 ’
Liog <p2 ) - / R N 1 d
— = _— 1
Py pd 1—21(p1) M / - DL,
pd 1—z2-(p1) 1—21(p) M
0 otherwise,
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where z1 are defined in (B.1). One can use the Lambert W-function to give explicit expres-
sions for the extremal values pmm X vielding

1
PR (pi, ) = - Wy <—p1146_p114 (erl_ZA) m) ;

1
pmax(pl ) 2 ) = _W—l <—p‘14619f1 (ZAelsz) m> '

A detailed analysis of (4.11) on My is analogous to that of (4.10). Similar to (B.1), we
introduce

(B.6)

m

A P, B
2% A [ pyeTP2
B7 , A, A = — Wi [ r ,
(B.7) C+(p2p2 Z) rW-1 - C <p2e p2>
A A A —pA %
A AN _F = [ Ppae 2
(B-S) - (p27p2 y % )— r Wo , e (er_pQ )
to explicitly express condition (4.11) as
(B.9)
1
/ dps if 24 <7,
min T — 1 —=Ci(p2) po
p 1 dp2 max
log + 1 dp2 .. B
B r—Cy(p2) p2 if 27 <r,
pY ) r—C+(p2) p2
0 otherwise,

min,max

where the extremal values py are given by

A AN
_pA [ Z _z7
PE™ (pg, ) = ~Wh (—pé‘e " ( ) ) |
A AN m
A _A A —pg [ Z 1-=
Py (py,27) = -W <—p26 P2 <r€1 " ) ) .

Finally, we use the conserved-quantity conditions (4.2) and (4.3) to eliminate p¥ and p¥
from (B.5) and (B.9). Again using the Lambert W-function, we obtain

A B_aA\m
_ LA V4 22—z
(B.11) Py =Wy 1 (—per P2 (zBe v ) ) ,

1

A, —z m
B A —pA Z e
(B'12) pr = _Wovfl —pre " (ZBe_zB>

(B.10)

Substituting (B.11) and (B.12) into (4.2) and (4.3) yields a pair of rather lengthy conditions
that must be satisfied by (pf,pé“,zA) (i.e., the three slow coordinates of Ap ;) and 2B, In
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Figure 15. The coordinates of (pf,p3,2*) and (p¥,p¥,2P) for singular periodic orbits with prey—prey
synchronization for (r,m) = (0.5,0.4). Fach dot represents a numerical solution of the existence conditions
(4.2), (4.3), (4.10), and (4.11) using the explicit formulation in Appendiz B. Each such numerical solution is
thus given as a siz-tuple ((pit, p3, z%), (2,0, 2P)). In the panels of this figure, we show the projections of
these siz-tuples onto different coordinate planes.

Figure 15, we show numerical computations of these solutions for the parameter values (r,m) =
(0.5,0.4).
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