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We study a two-particle circular billiard containing two finite-size circular particles that collide

elastically with the billiard boundary and with each other. Such a two-particle circular billiard

provides a clean example of an “intermittent” system. This billiard system behaves chaotically,

but the time scale on which chaos manifests can become arbitrarily long as the sizes of the

confined particles become smaller. The finite-time dynamics of this system depends on the

relative frequencies of (chaotic) particle-particle collisions versus (integrable) particle-boundary

collisions, and investigating these dynamics is computationally intensive because of the long

time scales involved. To help improve understanding of such two-particle dynamics, we

compare the results of diagnostics used to measure chaotic dynamics for a two-particle circular

billiard with those computed for two types of one-particle circular billiards in which a confined

particle undergoes random perturbations. Importantly, such one-particle approximations are

much less computationally demanding than the original two-particle system, and we expect

them to yield reasonable estimates of the extent of chaotic behavior in the two-particle system

when the sizes of confined particles are small. Our computations of recurrence-rate coefficients,

finite-time Lyapunov exponents, and autocorrelation coefficients support this hypothesis and

suggest that studying randomly perturbed one-particle billiards has the potential to yield insights

into the aggregate properties of two-particle billiards, which are difficult to investigate directly

without enormous computation times (especially when the sizes of the confined particles are

small). VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4775756]

A traditional billiard system consists of a point particle

confined in some domain (which is usually a subset of R2
)

and colliding perfectly elastically against the boundary of

that domain.11,28 Such billiards can have chaotic, regular

(i.e., integrable), or mixed dynamics.7,8,26 For example, a

finite-size circular particle confined within a circular

boundary is integrable, but two circular particles confined

in a circular domain yields chaotic dynamics, though reg-

ular behavior can persist for extremely long times.
21

The chaotic dynamics in two-particle billiards

appears via the dispersive mechanism28 as a result of

particle-particle collisions, whereas particle-boundary

collisions lead to regular dynamics when the boundary is

circular. Consequently, although the long-time dynamics

is chaotic, the regular transients can become arbitrarily

long as one considers confined particles with progressively

smaller radii. It is desirable to find means to simplify

investigations of the statistical properties arising from

long-time transient dynamics in two-particle billiards,

whose dynamics are not well understood and which

require very long computations to simulate. In this paper,

we take a step in this direction by considering one-particle

billiards with random perturbations and comparing diag-

nostics for measuring aggregate levels of chaotic dynamics

in two-particle versus perturbed one-particle billiards. In

particular, we consider two circular particles confined in

a circular table and one-particle circular billiards with

two types of random perturbations: one in which random

perturbations are applied at times determined via a

Poisson process and another in which random perturba-

tions are applied at times given by actual particle-particle

collision times from the two-particle system. The two-

particle circular billiard considered in the present paper

provides a clean example of an “intermittent” system.

There continues to be considerable interest in intermittent

billiards,
10

and this example in particular deserves many

future investigations.

I. INTRODUCTION

Systems of hard particles interacting via perfectly elastic

collisions provide paradigm examples for studying the foun-

dations of statistical mechanics.15 In particular, among the

primary examples used to study classical and quantum chaos

in conservative systems are billiard systems,11,28 which can

be implemented experimentally in both classical and quan-

tum settings.12,20,24

Billiards are one of the most important types of Hamilto-

nian systems.28 Typical classical Hamiltonian systems are nei-

ther fully chaotic nor fully regular (i.e., integrable) but instead

have “mixed” dynamics.12 That is, their phase space has both

regular and chaotic regions. However, generic mixed systems

are very difficult to analyze, so it is important to study Hamil-

tonian systems with simpler but non-generic mixed dynamics

that allow more thorough analysis.7,14,21,26,27 Billiard systems

are among the most important systems for such pursuits.
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The most commonly studied type of billiard system con-

sists of a single point particle confined in a closed planar

region. The particle collides against the boundary of the

region such that its angle of incidence equals its angle of

reflection. More general types of billiards have also been

investigated. For example, the study of open billiards, which

contain a hole through which particles can escape, has

become increasingly prominent.3,9 However, it is much less

common—but nevertheless extremely interesting—to study

few-particle billiards, in which a small number of finite-size

confined particles collide elastically both against a billiard

boundary and against each other.21 The balls move freely

between collisions.

Depending on the geometry of the billiard boundary and

the confined particles, it is possible for a few-particle billiard

to exhibit both regular and chaotic features. This situation,

however, is somewhat different from the idea of mixed dy-

namics mentioned above. Namely, although the dynamics of

few-particle billiards are fully chaotic in the infinite-time

limit, it is possible to construct systems such that integrable

dynamics last for arbitrarily long periods of time. In particu-

lar, this can occur as one considers confined particles with

progressively smaller radii in two-particle billiard systems in

which both the billiard balls and the billiard table are shaped

like circles.21 This example thereby provides a clean exam-

ple of an “intermittent” system.12 Intermittent systems con-

tain “sticky” regions near which typical trajectories can get

trapped for very long times, and they can be notoriously dif-

ficult to study in detail. Accordingly, it is useful to examine

“simple” (relatively speaking) examples of such systems,

and studying intermittency in billiards provides a good ave-

nue for such investigations.10

A circular billiard table with a confined finite-size

circular particle is integrable, and every particle-boundary

collision in a two-particle circular billiard leads to regular

dynamics. However, particle-particle collisions in this two-

particle system ultimately lead to chaotic dynamics (via

the dispersive mechanism) in the infinite-time limit. The

dynamics of this system arise from a competition between

the integrable particle-boundary collisions and the chaotic

particle-particle collisions. The relative frequency of the

latter versus the former becomes smaller as the radii of the

confined particles become smaller, and the integrable transi-

ents can therefore last for arbitrarily long times. Conse-

quently, although the dynamics are eventually chaotic if one

waits long enough, one must examine the transient dynamics

to achieve a thorough understanding of this system.

Investigating the transient dynamics of two-particle bil-

liards entails very long computation times, which is particu-

larly true when the integrable transients are long.

Accordingly, we use numerical computations to attempt to

discern when a perturbed circular one-particle billiard can

give a reasonable approximation for statistical properties of

the two-particle billiard. When this is the case, which we

show is true for small particle radii, one can attempt to gain

insights into the original two-particle system by studying a

perturbed one-particle system.

The rest of this paper is organized as follows. In Sec. II,

we describe the model of a circular billiard with confined cir-

cular particles of finite radius. For simplicity, we assume that

both particles are of the same size. In Sec. III, we describe

some measures of the statistical properties of the system’s

dynamics. In Sec. IV, we compare these statistical properties

for the two-particle circular billiard and for two types of per-

turbed one-particle circular billiards. In Sec. V, we summa-

rize our results.

II. MODELLING A CIRCULAR BILLIARD SYSTEM

We study a two-particle billiard that occupies a region

Q � R2 with a circular boundary @Q. Each of its confined,

finite-size, circular particles of mass m and normal momen-

tum pn ¼ mvn moves freely until it encounters either the

boundary or the other particle. To understand this system,

we need to start from the simplest case. Accordingly, we

assume in this paper that m ¼ jvj ¼ 1 for both particles and

also that they have the same radius. (We consider several dif-

ferent radii in our computations.) Without loss of generality,

we set the radius of the billiard table to be 1.

The model that we consider is a simplification of a real-

life billiard system, as we do not allow particles to change

speeds when they collide with each other. Allowing such a

change in speeds would conserve momentum in situations in

which the center-of-mass motion is initially nonzero. (When

momentum is conserved, one can examine a two-particle bil-

liard in two dimensions as a one-particle billiard in four

dimensions.) This simplifies the dynamics, but the system

retains many interesting features, and this situation is more

tractable to study than the original system.

Consider the dynamics of one of the two particles in our

system. When it collides against the boundary, its momen-

tum changes according to

~p0 ¼ ~p � 2h~p;~ni~n ; (1)

where ~p is the momentum before the collision, ~p0 is the mo-

mentum after the collision, and ~n is the unit normal to the

boundary @Q at the collision point. When the particles col-

lide against each other, then the change in momentum of one

particle still obeys Eq. (1), but now ~n is the normal to the

tangent of the boundary of the other particle at the point of

collision.

In a dynamical system, a Poincar�e section is a lower-

dimensional subspace of phase space that is transversal to

the flow. In a two-particle billiard, we can obtain a Poincar�e
section separately for each particle. Consider the coordinates

ðsi; sinðhiÞÞ, where si is the arclength coordinate of the

boundary at a collision between particle i and the boundary

and hi 2 ½0; 2pÞ is the corresponding angle of collision

against the boundary.12 We construct a Poincar�e section by

tracking the coordinate values of such collisions for each

particle while throwing away the continuous flow and

particle-particle collisions in between such particle-boundary

collisions. This yields a four-dimensional Poincar�e section,

as two dimensions from phase space are eliminated by only

considering the locations of particle-boundary collisions.

(We lose one dimension from using a Poincar�e section, and

we lose a second dimension via energy conservation.)
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In Fig. 1, we show two-dimensional projections of

examples of Poincar�e sections for one of the particles in the

two-particle system. We consider examples in which each

confined particle has a radius of 0.02 (top panel) or 0.014

(bottom panel). We plot the dependence of sinðhiÞ of

particle-boundary collisions versus the boundary location

(i.e., the arclength si) of the collision. To construct Fig. 1, we

use discrete-time simulations with 15 000 time steps in

which each time step has a duration s of up to 0.3 time units

of the simulation (and is exactly 0.3 time units when there

are no particle-particle or particle-boundary collisions during

the time step). We give a more precise description of our

simulation algorithm below. When the radii of the confined

particles are small, as in these two examples, the dynamics

can exhibit regimes of regular-looking behavior even for

long computation times.

Whether one can discern transient regular dynamics in

Poincar�e sections depends on the initial conditions, computa-

tion time, and the sizes of the confined particles. In particu-

lar, regions of regular behavior (which appear as incomplete

lines and circles) are more evident in the top panel then in

the bottom panel, although there are regions of regular

behavior in the latter plot as well. Such regular features arise

from particle-boundary collisions, which are angle-

preserving. Horizontal segments represent consecutive

particle-boundary collisions with the same angle, and parts

of circles represent regions of recurrent behavior. Chaotic

features arise from particle-particle collisions, whose disper-

sive character results in changes to hi in subsequent particle-

boundary collisions and leads to divergence of trajectories

(and the splattering of dots in Poincar�e sections).

In these simulations, we determine initial conditions as

follows. For each of the two confined particles, we choose

initial distances between the particle center and the center of

the billiard table uniformly at random from (0,1). As the par-

ticles have finite radii (i.e., they are not point particles), we

discard any configuration in which the particles overlap with

each other or any particle overlaps with the billiard bound-

ary. We do this by checking the overlapping condition and

choosing a new random initial position until there is no over-

lap with the other particle or the boundary. We choose the

initial angle of each particle uniformly at random from the

interval ½0; 2pÞ. Because the magnitude of the speed for each

particle is always equal to 1, this gives the starting velocity

of each particle.

We use a uniform distribution to determine our ensem-

bles of initial conditions because it is the simplest choice. It

would be interesting to repeat our computational experi-

ments for other distributions and to compare the results

obtained for different choices.

In this paper, we perform computations for many values

for the radius r ¼ r1 ¼ r2 of the confined particles. For a

given family of computations, we use the same ensemble of

initial conditions for each choice of r. For a given family, we

thus choose initial conditions (as described above) using the

largest employed value of r. This guarantees that there is

never any particle-particle or particle-boundary overlap. As

with our choice of using a uniform distribution, we have

made this choice because of its simplicity: when there is no

overlap between the particles at the largest radius, then there

is also no overlap for the smaller values of r and we can

therefore obtain precisely the same set of initial conditions

for each value of r.

Our algorithm for simulating a two-particle billiard pro-

ceeds as follows. After each discrete time step (of fixed dura-

tion s), we calculate the positions and velocities of both

particles. For each time step, we check if a collision occurs

(either between the two particles or between a particle and

the billiard boundary). If no collisions occur, we determine

the new particle positions based on their free movement after

a time s (the velocities are unchanged). Otherwise, the par-

ticles evolve freely for the (shorter) time step s0 < s until the

next collision, and we then calculate their new positions and

velocities immediately after that collision.

III. QUANTIFYING CHAOTIC DYNAMICS

Although the Poincar�e sections in Fig. 1 illustrate regu-

lar features that result from particle-boundary collisions and

FIG. 1. Projections of example Poincar�e sections for one particle in a two-

particle circular billiard. We use the same initial conditions for both panels.

(As discussed in the main text, we choose initial conditions uniformly at ran-

dom.) In panel (a), the radius of each of the confined particles is 0.02, and

we observe fairly regular behavior (horizontal segments from consecutive

particle-boundary collisions and parts of circles from recurrent behavior). In

panel (b), the radius of each confined particle is 0.014. The behavior now

appears to be more chaotic, as there are fewer regular features.

013123-3 S. Ranković and M. A. Porter Chaos 23, 013123 (2013)

Downloaded 21 Feb 2013 to 152.23.127.12. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



chaotic dynamics that result from particle-particle collisions,

it is desirable to quantify the statistical properties resulting

from the interplay of these two types of events as functions

of the sizes of the confined particles. As diagnostics to

describe chaotic dynamics in our system, we use recurrence-

rate coefficients, autocorrelation coefficients, and finite-time

Lyapunov exponents.

A. Recurrence plots and recurrence rates

Recurrence plots (RPs) were introduced as a tool to vis-

ualize recurrences in a variable in phase space.16,23 Recur-

rence of states is a typical feature of chaotic systems, and it

is traditional to try to find them by visualizing high-

dimensional phase spaces as projections to two-dimensional

or three-dimensional spaces. RPs take a different approach

and yield a visualization using an N � N matrix, where N
denotes the number of time steps in a simulation.

To construct an RP, we start with the formula23

Ri;jðeÞ ¼ Hðe� jjxi � xjjjÞ ; (2)

where xi; xj 2 Rm (with m¼ 2 in this paper) and i; j
2 f1;…;Ng. Additionally, e is a threshold distance, jj � jj is a

norm, and Hð�Þ is the Heaviside function. In this paper, we

always use the L2-norm.30

We compute RPs for the temporal evolution of the posi-

tions of the confined particles. We choose one of the two par-

ticles in the system and construct its recurrence plot. The

variable xi represents the position coordinates of the chosen

particle inside the billiard at time i. We are interested in how

close and how often a particle returns to a given position

(x, y) that it has visited previously in its trajectory. An RP

includes a dot in the location (i, j) if the positions of the par-

ticle center at times i and j are within a threshold distance e
from each other. The threshold should be small enough so

that the particle can be considered to have approached suffi-

ciently close to the previously visited locations, but it should

also be large enough to keep computations reasonably

efficient.22

In this paper, we present results using the threshold value

e ¼ 0:001. (Computations using the value of e ¼ 0:01 give

similar qualitative results.) Early RP studies suggested that

one should choose e to be a few percent of the phase-space di-

ameter,25 and similar comments have been made about prob-

lems with circular symmetry.23 Additionally, some authors

have used an xi-dependent threshold ei,
16 but we have elected

to use a uniform value. The constant value for the threshold

yields a symmetry in the recurrence plot: the RP always has a

main diagonal and is symmetric about it.

In Fig. 2, we show an example RP for one particle in

a two-particle circular billiard. As with Poincar�e sections,

splatters of dots illustrate irregular behavior. The lines par-

allel to the diagonal represent regions of regular behavior,

in which trajectories visit the same region of position

space at different times. The isolated points by themselves

do not contain any information about the system. How-

ever, the occurrence of isolated points next to the lines

in an RP can be an indication of chaotic dynamics,23

which we know occurs in this system. The lengths of the

diagonal segments are determined from the durations of

regular dynamics.2

An RP can be used to define a recurrence-rate (RR)

coefficient16,23

RRðeÞ ¼
PN

i;j¼1ðRi;jÞ
N2

; (3)

which measures the density of recurrent points in an RP and

can be used as a measure of complexity in a dynamical sys-

tem. As the discrete time N !1, the coefficient RRðeÞ rep-

resents the probability for a state to recur in an

e-neighborhood in position space.23

B. Autocorrelation

Autocorrelations measure the tendency for observations

of the same system made at different time points to be

related to one another.19 That is, an autocorrelation describes

a correlation in a time series with respect to its own past and

future values. A negative autocorrelation value indicates that

the direction of influence is changing as a function of time,

whereas a positive autocorrelation value can be construed as

a tendency for a system to remain in a similar state in the

observations considered.

For a series x consisting of N observations, the autocor-

relation coefficient Rl calculated between the time series and

the same series lagged by l time units is given by the formula

Rl ¼
PN�l

i¼1 ðxi � hxiÞðxiþl � hxiÞPN
i¼1 ðxi � hxiÞ2

; (4)

where hxi is the mean value of x among the N observations.

In this paper, we will compute autocorrelation coeffi-

cients for time series of angles of particle-boundary collisions.

C. Lyapunov exponents

The largest Lyapunov exponent k measures the rate of

separation of trajectories in a dynamical system.29 It is

defined using the equation

FIG. 2. Example recurrence plot with Euclidean norm for a two-particle cir-

cular billiard with two confined circular particles (each of which has a radius

of 0.02).
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jjddðtÞjj ¼ ektjjddð0Þjj ; (5)

where ddðtÞ is the time-t separation of two trajectories that

start a distance ddð0Þ apart. We use a finite-time version of a

Lyapunov exponent because of the finite-time nature of nu-

merical computations. The dynamics of a system are only

predictable up to the Lyapunov time, which is defined as the

time it takes for two neighboring trajectories to diverge by a

distance equal to e.

A positive Lyapunov exponent indicates that trajectories

separate from each other exponentially fast. For chaos to

manifest, there needs to be a positive Lyapunov exponent

and trajectories also need to mix. A positive Lyapunov

exponent implies that there is a local instability, and mixing

implies that trajectories of individual particles get arbitra-

rily close to each other arbitrarily often if the system

evolves for a sufficiently long time.12,17,29

Our two-particle system behaves chaotically in the

t!1 limit,21 though its most interesting behavior occurs

during the potentially extremely long transients, and we use

numerical computations to study such dynamics. To calcu-

late the largest finite-time Lyapunov exponent, we use

Benettin’s algorithm,5 which assumes that small perturba-

tions in initial conditions stretch primarily along the most

unstable direction in phase space after a sufficiently long

time. As discussed previously, we evolve the billiard sys-

tem for N time steps of duration up to s. (Recall that

the duration is exactly s if there is no collision, and it is

the time s0 < s that elapses until the next collision if there

is a collision.) The time step s thus gives the unit of time

for our numerical simulations. This yields a finite-time

Lyapunov exponent of

kmaxðNÞ ¼
1

sN

XN

k¼1

log
jjddðksÞjj
jjddð0Þjj

� �� �
; (6)

where jjddðksÞjj=jjddð0Þjj is the stretching factor due to an

initial perturbation of size jjddð0Þjj. After each of the N time

steps (which we index by k), we evaluate logðjjddðksÞjj=
jjddð0ÞjjÞ and compute kmax as a (scaled) mean over these N
evaluations.

Each of the simulations that we report in this paper1

uses either N¼ 25 000 steps with s ¼ 0:2 or N¼ 15 000 steps

with s ¼ 0:3. The size of the initial perturbation is always

jjddð0Þjj ¼ 1=5000. In our numerical computations, we

report values for the largest finite-time Lyapunov exponent

kmaxðNÞ that is a mean over results that we obtain using an

ensemble of initial conditions (200 or 1000 in the examples

shown). We choose these initial conditions using the proce-

dure that we discussed in Sec. II.

We calculate finite-time Lyapunov exponents by sepa-

rately evaluating the stretching factor for the horizontal posi-

tion variables and vertical position variables and then taking

the maximum of the two corresponding exponents [kx
maxðNÞ

and ky
maxðNÞ] calculated using Eq. (6). Note that we evaluate

the stretching factors using position variables only rather

than using all phase-space coordinates, so we are actually

calculating a variant of Lyapunov exponents.

IV. COMPARISON OF TWO-PARTICLE BILLIARDS AND
PERTURBED ONE-PARTICLE BILLIARDS

Because analytical calculations are very difficult for two-

particle billiards, we use numerical computations to determine

when statistical properties for the two-particle circular billiard

can be approximated effectively by those for a perturbed one-

particle billiard. Perturbed one-particle billiards have the

potential to be more tractable analytically than two-particle

billiards, and they can require significantly less computational

time (and fewer computational resources).

In this paper, we compare our two-particle billiard sys-

tem with perturbed one-particle billiards using numerical

simulations to compute the diagnostics (largest finite-time

Lyapunov exponents, recurrence-rate coefficients, and auto-

correlation coefficients) that we discussed in Sec. III.

We consider two different types of perturbation to one-

particle circular billiards, where we apply perturbations

(“kicks”) to the confined circular particle. We first examine a

perturbed one-particle billiard with time intervals between

kicks determined using the exponential probability distribu-

tion. This corresponds to using a Poisson process to determine

the number of perturbations that a particle experiences in a

given amount of time. As we will explain in Sec. IV B, we

estimate the parameter for the exponential distribution (and

hence for the Poisson process) from the statistics of the origi-

nal two-particle system. The second type of perturbed one-

particle circular billiard that we consider is one with random

kicks at times that are determined directly from particle-

particle collisions in the original two-particle billiard.

A. Random perturbations in a one-particle billiard

We apply random perturbations to a one-particle circular

billiard at times determined by a Poisson process (see the

discussion below) or directly from particle-particle collision

times in the two-particle billiard. We impose the random per-

turbations by determining a velocity angle uniformly at ran-

dom from the interval ½0; 2pÞ. We have chosen this type of

perturbation because we are considering small confined par-

ticles, so particle-particle collisions are not very common,

and we are assuming that we have no knowledge of the angle

at which such a collision occurs. We have also considered

angles chosen from the standard Gaussian distribution

Nð0; 1Þ. This approach appears to yield similar qualitative

results, so we only show the results of our computations for

the uniform distribution.

B. Poisson process for determining perturbation
times

Our original system consists of two circular particles of

the same size confined inside a radius-1 circular billiard.

These particles collide elastically against the boundary of the

billiard and against each other. As we discussed in Sec. II,

we choose the initial positions and velocities (i.e., angles) of

the particles uniformly at random for the two-particle bil-

liard. For our initial conditions in perturbed one-particle sys-

tems, we take the set of initial conditions for one of those

two particles. We compute each of our diagnostics for both
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two-particle billiards and one-particle billiards for each ini-

tial condition, and we show plots with the means of those

diagnostics over all initial conditions. (We consider as many

as 1000 initial conditions for some calculations.)

When applying kicks in the perturbed one-particle bil-

liards, we change the particle velocity (i.e., its angle) as

explained in Sec. IV A. Because of the randomness of the

initial data, we assume that all of the time intervals between

particle-particle collisions (and hence between particle per-

turbations in the one-particle systems) have the same distri-

bution. Each such collision is thus independent from other

collisions. Note that we make this assumption for simplicity,

and it is desirable to relax it.

Approaches that are similar to ours were used success-

fully by Dahlqvist et al.13 and Baladi et al.4 The latter

authors investigated recurrence properties of intermittent dy-

namical systems using a probabilistic independence assump-

tion about recurrence times. They found that asymptotic

properties can be influenced significantly by the tail of distri-

butions (which, in the present context, is the distribution of

particle-particle collision times). Heavy tails are a hallmark

of intermittency, so it is good to keep this observation in

mind for the problem that we study.

We seek a means to estimate kick times for a particle in

a perturbed one-particle billiard to attempt to obtain an

approximation for some statistical properties of the original

two-particle billiard without having to simulate the original

two-particle system. Because of our independence assump-

tion, we use a Poisson process to describe the sequence of

particle-particle collisions in our two-particle system. (One

can, of course, use more sophisticated distributions based on a

system’s dynamics, and this is an important idea for future

investigations.) The Poisson process was developed to model

events that occur by chance and independently from each

other while maintaining a constant intensity (i.e., the expected

number of events per unit time is constant).6,18 The Poisson

process in our example has a rate of 1=l, where l gives the

mean (continuous) amount of time per particle-particle colli-

sion. Because the times of kicks of the confined particle in a

perturbed one-particle billiard should correspond to the times

for the particle-particle collisions in the original two-particle

system, a Poisson process gives estimates of these perturba-

tion times. In Fig. 3, we show a plot of the perturbation times

determined by a Poisson process in a one-particle system ver-

sus the original times of the particle-particle collisions in the

two-particle billiard. In this example, the radius of each con-

fined particle is r ¼ r1 ¼ r2 ¼ 0:008. We fit a linear function

to this curve using the method of least squares. The high qual-

ity of our fit suggests that using a Poisson process to deter-

mine perturbation times is a reasonable approximation.

It follows from the definition of a Poisson process that

the time intervals between the perturbations are given by in-

dependent and identically distributed (IID) random variables.

Because the system behaves ergodically in the infinite-time

limit, such a distribution for particle-particle collisions seems

plausible. The sequence of particle-particle collisions in the

two-particle billiard and hence of the perturbations in the

one-particle billiard then behaves as a Markov process, so

the future of the process depends only on the present state

(and is independent of the past). However, when considering

finite-time dynamics, recurrences in the system lead to devi-

ations from the Poisson-process approximation to the colli-

sion times, and this becomes increasingly noticeable as the

radii of the confined particles become larger. We note, more-

over, that computations of escape rates in circular billiards

with a hole9 suggest that the above Poisson picture is too

simplistic. Examining this in more detail is a very interesting

idea for future work.

One can do a set of simulations of the original two-parti-

cle billiard to estimate the mean number of particle-particle

collisions and hence the rate of the Poisson process. In

Fig. 4, we show the dependence of the number of particle-

particle collisions on the particle radius in the two-particle

billiard. We fit a linear curve to this graph using the method

of least squares, and the fit is reasonably good. This suggest

that, for a given particle radius, one can pre-determine the

rate of its associated Poisson process and then use that pa-

rameter value when investigating a perturbed one-particle

billiard. However, we did not do this when comparing our

results for two-particle billiards and perturbed one-particle

billiards. Instead, to obtain better estimates of the Poisson

rates, we perform numerical simulations of the original two-

particle system for each initial condition.

FIG. 3. Comparison of the times of particle-particle collisions in a two-

particle circular billiard with Poisson-process kick times in a perturbed one-

particle circular billiard. We determined the initial conditions in our simula-

tions uniformly at random, and we consider confined particles of radius

r ¼ r1 ¼ r2 ¼ 0:008.

FIG. 4. Mean number of particle-particle collisions in a circular two-particle

billiard as a function of the radius r ¼ r1 ¼ r2 of the confined particles.
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C. Results of the comparisons

In this section, we compute diagnostics for circular two-

particle billiards (which is computationally intensive) and

compare them to the same diagnostics computed for perturbed

one-particle billiards. For it to be reasonable to apply random

perturbations to the velocity variable in one-particle billiards,

we need to consider long computations and small confined

particles. For simplicity, we assume that both confined (circu-

lar) particles in the two-particle billiard have the same size,

though of course it would be interesting to examine more gen-

eral situations. We consider several different particle radii in

order to examine the effect of particle size on the diagnostics.

As discussed in Sec. III, the diagnostics that we use to mea-

sure chaotic dynamics are maximal finite-time Lyapunov

exponents, recurrence-rate coefficients, and autocorrelation

coefficients for the angle of particle-boundary collisions.

In Figs. 5–7, we show the dependence on the radius of

the confined particles of the diagnostics applied to one parti-

cle in our three systems (which we label as “Two-particle,”

“Poisson,” and “Actual”). As discussed previously, we aver-

age each diagnostic over a large number of initial conditions.

In the plots, we also include error bars, whose length is given

FIG. 5. Finite-time Lyapunov exponents for a two-particle circular billiard

(“Two Particle”), a perturbed one-particle circular billiard with perturbation

times drawn from a Poisson distribution (“Poisson”), and a perturbed one-

particle circular billiard with perturbation times drawn from the times of

particle-particle collisions in the two-particle system (“Actual”) as a func-

tion of particle radius for (identical) confined particles. In the top plot, we

consider radii ranging from 0.008 to 0.03. For each radius, we average over

200 random initial conditions (see the discussion in the text for how we

choose these initial conditions) and simulate for 25 000 time steps (of 0.2

time units each). In the bottom plot, we consider radii ranging from 0.018 to

0.026. For each particle radius, we average over 1000 random initial condi-

tions and simulate for 15 000 time steps (of 0.3 time units each). In the top

plot, observe that our computations for the Poisson-time perturbed one-

particle billiard give a good approximation to those for the two-particle bil-

liard. The Lyapunov exponents from the actual-time perturbed one-particle

billiard have the same order of magnitude as the other two sets of values. In

the bottom plot, observe that our calculations for the actual-time perturbed

one-particle billiard give an excellent approximation to those for the two-

particle billiard. The Lyapunov exponents from the Poisson-time perturbed

one-particle system are also very similar. The mean values are located in the

centers of the error bars, which depict 1/10 of a standard deviation above

and below the mean.

FIG. 6. Recurrence-rate coefficients for a two-particle circular billiard

(“Two Particle”), a perturbed one-particle circular billiard with perturbation

times drawn from a Poisson distribution (“Poisson”), and a perturbed one-

particle circular billiard with perturbation times drawn from the times of

particle-particle collisions in the two-particle system (“Actual”) as a func-

tion of particle radius for (identical) confined particles with radii ranging

from 0.008 to 0.03. For each particle radius, we average over 200 random

initial conditions and simulate for 25 000 time steps (of 0.2 time units each).

In the bottom plot, we show results only for small radii to make it easier to

see the very good agreement between all three computations in that regime.

For larger radii, the two perturbed one-particle billiards still have similar RR

coefficients, but the RR coefficient for the two-particle billiard exhibits an

interesting balloon (depicted in the top plot) before shrinking again. Even

during the balloon, all three computations give values with the same order

of magnitude. The mean values are located in the centers of the error bars,

which depict 1/10 of a standard deviation above and below the mean.
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by 1/5 of the standard deviation corresponding to the calcu-

lated mean value (i.e., the error bars show

1/10 above and below the mean). The computed standard

deviations are large because we choose our initial conditions

uniformly at random and the systems are chaotic.

As the plots illustrate, the values of the diagnostics have

the same order of magnitude for the two-particle billiard and

the perturbed one-particle billiards. In some cases, these val-

ues are also very close to each other quantitatively. In gen-

eral, the values of the diagnostics appear to become more

dissimilar as one considers confined particles of larger radii,

though we do not observe a monotonic dependence.

From our numerical computations alone, it is difficult to

discern when our one-particle systems provide “good”

approximations to the original two-particle billiard. However,

we believe that examining two-particle billiards versus associ-

ated perturbed one-particle billiards has the potential to be

valuable. Additionally, these perturbed one-particle billiards

are interesting systems to investigate in their own right.

Interestingly, drawing the perturbation times from a Pois-

son process sometimes yields better results than taking pertur-

bation times from the actual times of particle-particle

collisions in the original two-particle billiard, even though

doing this uses less information from the original system. This

result, together with Fig. 3, suggests that it is sometimes rea-

sonable to use a Poisson process to estimate the number of

particle-particle collisions in the two-particle circular billiard.

V. CONCLUSIONS AND DISCUSSION

Circular two-particle billiards provide a clean example

of intermittent dynamics, so studying them in detail should

be very useful for obtaining a better understanding of inter-

mittency. In the present paper, we have taken a step in this

direction by comparing the properties of a circular two-

particle billiard with two different circular one-particle bil-

liard systems undergoing random perturbations. We consid-

ered random perturbations at times determined in two

different ways: (1) times taken from a Poisson distribution

and (2) times obtained directly from the times of particle-

particle collisions in the original two-particle system.

For such approximations to be reasonable, one should

consider small confined particles, which entails very long

computation time for the two-particle system, as particle-

particle collisions occur much less frequently than particle-

boundary collisions. Consequently, the two-particle system

exhibits long transients with regular behavior, although the

system behaves chaotically in the infinite-time limit. Accord-

ingly, it can be very helpful to find situations in which it is

reasonable to compare some of the aggregate properties of

two-particle billiards to properties in perturbed one-particle

systems (which require much less exhaustive simulations to

study). We focused in the present paper on numerical simu-

lations, but ideally perturbed one-particle billiards will also

be studied analytically.

We considered Lyapunov exponents, recurrence-rate

coefficients, and autocorrelation coefficients; and we found

that the two-particle billiard and perturbed one-particle bil-

liards have values of the same order of magnitude for all of

these diagnostics when the confined particles are small. At

times, we also found quantitative agreement. Because these

diagnostics are used widely to measure the amount of chaos

in a system, this suggests that the aggregate levels of chaos

in the one-particle systems are similar to that in the original

two-particle system.

Importantly, the one-particle systems are much less

computationally demanding than the original two-particle

system, and we expect that they will also provide a much

easier setting for analytical investigations, which are very

difficult for two-particle billiards. We thus propose that ran-

domly perturbed one-particle billiards have the potential to

provide insights on the aggregate (and intermittent)

dynamics of associated two-particle billiards.

FIG. 7. Autocorrrelation coefficients for the angle of particle-boundary colli-

sions for one particle in a two-particle circular billiard (“Two Particle”), a

perturbed one-particle circular billiard with perturbation times drawn from a

Poisson distribution (“Poisson”), and a perturbed one-particle circular bil-

liard with perturbation times drawn from the times of particle-particle colli-

sions in the two-particle system (“Actual”) as a function of particle radius

for (identical) confined particles. In the top plot, we consider radii ranging

from 0.008 to 0.03. For each radius, we average over 200 initial conditions

and simulate for 25 000 time steps (of 0.2 time units each). In the bottom

plot, we consider radii ranging from 0.018 to 0.026. For each radius, we av-

erage over 1000 initial conditions and simulate for 15 000 time steps (of 0.3

time units each). We observe excellent agreement for all three systems in

the top plot. We still find good agreement in the bottom plot, though for

larger radii the results for the two-particle billiard start to deviate quantita-

tively from those for the perturbed one-particle billiards. The mean values

are located in the centers of the error bars, which depict 1/10 of a standard

deviation above and below the mean.
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