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1. Introduction

Random walks (RWs) are popular models of stochastic processes with a very rich history [1-5]." The term “random
walk” was coined by Karl Pearson [6], and the study of RWs dates back to the “Gambler’s Ruin” problem analyzed by
Pascal, Fermat, Huygens, Bernoulli, and others [7]. Additionally, Albert Einstein formulated stochastic motion (in the form
of “Brownian motion”) of particles in continuous time due to their collisions with atoms and molecules [8]. Theoretical
developments have involved mathematics (especially probability theory), computer science, statistical physics, operations
research, and more. RW models have also been applied in various domains, ranging from locomotion and foraging of
animals [9-12], the dynamics of neuronal firing [ 13,14] and decision-making in the brain [ 15,16] to population genetics [ 17],
polymer chains [18,19], descriptions of financial markets [20,21], evolution of research interests (through RWs on problem
space) [22], ranking systems [23], dimension reduction and feature extraction from high-dimensional data (e.g., in the form
of “diffusion maps”) [24,25], and even sports statistics [26,27]. RW theory can also help predict arrival times of diseases
spreading on networks [28]. There exist several monographs and review papers on RWs. Many of them treat RWs on classical
network topologies, such as regular lattices (e.g., Z%) and Cayley trees (i.e., trees in which each node has the same number
of neighboring nodes, which we henceforth call the node “degree”) [4,29-35]. Other monographs and surveys focus on RWs
on fractal structures, revealing diffusion properties that are “anomalous” compared to RWs on regular lattices or Euclidean
spaces (i.e., RY) [32,36-40]. Other literature treats RWs on finite networks, which are equivalent to a finite Markov chain (in
the discrete-time case) [1,32,41,42] and are at the core of several stochastic algorithms.

In parallel, “network science” has emerged in recent years as a central approach to the study of complex systems
[43-46]. Networks are a natural representation of systems composed of interacting elements and allow one to examine the
impact of structure on the dynamics and function of a system (as well as the impact of dynamics and function on network
structure). Examples include friendship networks, international relationships, gene-regulatory networks, food webs, airport
networks, the internet, and myriad more. In each case, one can represent the system’s connectivity structure as a set of nodes
(representing the entities in the system) and edges (representing interactions among those entities). The study of networks
is highly interdisciplinary, and it integrates theoretical and computational tools from subjects such as applied mathematics,
statistical physics, computer science, engineering, sociology, economics, biology, and other domains. Many networks exhibit
complex yet regular patterns that are explainable (sometimes arguably) by simple mechanisms. Network science has also
had a strong impact on the understanding of dynamical processes because of the critical role of structure on spreading
processes, synchronization, and others [47-49]. As with RWs, numerous books and review papers have been written on
networks, including textbooks [44,45,50-52], general review articles [46,53], and more specialized reviews on topics such

1 See https://www.youtube.com/watch?v=stgYW6M504k for an introduction to random walks for a public audience from the U.S. Public Broadcasting
Service (PBS).
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as dynamical processes on networks [48,49,54], connections to statistical physics [55,56], temporal networks [57-59],
multilayer networks [60-62], and community structure [63-65].

The main purpose of the present review is to bring together two broad subjects - RWs and networks - by discussing
their many interconnections and their ensuing applications. RWs are often used as a model for diffusion, and there has been
intense research on the impact of network architecture on the dynamics of RWs. Moreover, nontrivial network structure
paves the way for different definitions of RWs, and different definitions can be “natural” from some perspective, while
leading to different diffusive processes on the same network. Finally, RWs are at the core of several algorithms to uncover
structural properties in networks. We will discuss these points further in the next three paragraphs.

First, RWs are often used as a model for diffusion, and there has been intense research on the impact of network
architecture on the dynamics of RWs. The finiteness of a network - along with properties such as degree heterogeneity,
community structure, and others - can make diffusion on networks both quantitatively and even qualitatively different
from diffusion on regular or infinite lattices. RWs on networks are an example of a Markov chain in which the set of nodes
is the state space and the transition probabilities depend on the existence and weights of the edges between nodes. In this
review, we will include a summary of results on the dependence of dynamical properties - including stationary distribution
and mean first-passage time - on structural properties of an underlying network.

Second, the irregularity of underlying network structure opens the door for different definitions of RWs. Each is “natural”
from some perspective, but they lead to different diffusive processes even when considering the same network. For example,
it is useful to distinguish between discrete-time and continuous-time RWs. On networks in which degree (i.e., the number
of neighbors) is heterogeneous (i.e., it depends on the node), one needs to subdivide continuous-time RWs further into two
major types, depending on whether the random events that induce walker movement are generated on nodes or edges and
corresponding to different types of propagators (normalized versus unnormalized Laplacian matrices). Different literatures
use different variants of RWs, often implicitly. We distinguish different types of RWs and clarify the relationship between
them, and we discuss formulations and results that are informed by empirical networks (such as networks with heavy-tailed
degree distributions, multilayer networks, and temporal networks).

Finally, RWs lie at the core of many algorithms to uncover various types of structural properties of networks. Consider
the notion of identifying “central” nodes, edges, or other substructures in networks [44]. A powerful set of diagnostics
(e.g., PageRank [23,66] and eigenvector centrality [67]) are derived based on recursive arguments of the type “a node is
important if it is connected to many important nodes”, and such derivations often rely on the trajectories of random walkers.
Similarly, flow-based algorithms, based on trajectories of dynamical processes (e.g., RWs) being trapped within certain sets
of node for a long time, are helpful for discovering mesoscale patterns in networks [65,68]. These techniques and algorithms
open a wealth of applications that go well beyond classical applications of RWs. Their design benefits both explicitly and
implicitly from developing an understanding of how RW dynamics are influenced by network structure and how different
types of RWs behave on the same network.

There has been a vast amount of research on RWs on networks, and it is scattered across disparate corners of the scientific
literature. It is impossible to cover everything, and we choose specific subsets of it to make our review cohesive, although
we will occasionally include pointers to other parts of the landscape. First, we focus on the most standard types of RWs, in
which a random walker moves to a neighbor with a probability proportional to edge weight, and their very close relatives.
We only very rarely mention some of the numerous other types of RWs, which include correlated RWs [69], self-avoiding
RWs [4,70,71], zero-range processes [72], multiplicative random processes [73,74], adaptive RWs (including reinforced
RWs [75]), branching RWs [76], Lévy flights [34,35], elephant RWs [77], quantum walks [78,79], intermittent RWs [80],
persistent RWs [81], starving RWs [82-84], mortal RWs [85], and so on. These processes are of course fascinating, and many
of the different flavors of RWs are often developed with specific motivation from an application (e.g., a Pac-Man-like “hungry
RW” [86] has been used as a model for chemotaxis in a porous medium), are often inspired by applications, such as animal
movement [10,12] or financial markets [21], and one can find discussions of different flavors of RWs in Refs. [4,34,35]. Second,
we will not cover many results for RWs on particular generative models of networks, except that we do give extensive
attention to first-passage times for fractal and pseudo-fractal network models (see Section 3.2.5). Third, we will not discuss
various important, rigorous results from mathematics and theoretical computer science. For such results, see [1,4,30,41,42].
We focus instead on results that we believe give physical insight on RW processes and their applications.

As a final warning, we focus almost exclusively on diffusive processes in which the total number of walkers (or,
equivalently, the total probability of observing a walker) is a conserved quantity.> The only exceptions are in Section
5.3.4, where a type of RW in which the number of walkers decreases in time is used in a community-detection algorithm
called Nibble, and in Section 5.7, where we use “coalescing RWs” as an analytical tool. As we will see, this conservation rule
translates into certain properties of the operator that drives the RW process. When transposed, the operator leads naturally
to linear models for consensus dynamics (see Sections 5.7 and 5.8). Among notable non-conservative processes, which we
do not cover in this review, are classical epidemic processes [48,49,89,90], in which the number of entities (e.g., viruses or
infected individuals) varies over time. In the linear regime, corresponding to a small number of infected nodes, the propagator
of infection events in simple epidemic processes such as susceptible-infected (SI) and susceptible-infected-recovered (SIR)
models are the adjacency matrix [91,92]. In contrast, a propagator of an RW is a type of Laplacian matrix, as we will discuss
in detail in Section 3. If all nodes have the same degree, these Laplacian and adjacency matrices are related linearly, and their

2 We thus consider “conservative” processes, though non-conservative processes are also interesting [87,88].
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dynamics are essentially the same [59,93]. However, they are generically different for heterogeneous networks, such as when
degree depends on node identity. Therefore, the difference between conservative dynamics (described by a Laplacian matrix)
and non-conservative dynamics (described by the adjacency matrix) tends to be more striking for heterogeneous than for
homogeneous networks. Other spreading models that are also beyond the scope of this work include threshold models of
social contagions [49,94] (e.g., for modeling adoption of behaviors) and reaction—-diffusion dynamics [95].

The rest of our review proceeds as follows. In Section 2, we discuss RWs on the line. In Section 3, we give a lengthy
presentation of RWs on networks. We then discuss RWs on multilayer networks in Section 4.1 and RWs on temporal
networks in Section 4.2. We discuss applications in Section 5, and we conclude in Section 6.

2. Random walks on the line

In this section, we review some basic properties of RW processes on one-dimensional space (i.e., the infinite line). This
section serves as a primer to later sections, in which we examine RWs on general networks. In this and later sections, we
carefully distinguish between discrete-time and continuous-time models.

2.1. Discrete time

Consider a discrete-time RW (DTRW) process on the infinite line, which we identify with R! = R. There is a single walker.
At each discrete time step, it moves from some point to some other point, including the case of moving from a point to itself.
The length and direction of the move are both random variables. We assume that the probability that a walker located at x
moves to the interval [x+r, x+ 1 4+ Ar] in one step is equal to f(r)Ar. The normalization is ffooof(r)dr = 1, and we assume
that moves at different times are independent.

We derive the probability density p(x; n) that a random walker is located at a point x € R after n steps. (For emphasis, we
sometimes use the term “discrete time” or “event time” for n.) The master equation is given by

o0
P = [ fle—wpcn = 1) (1)
It is convenient to solve Eq. (1) for general x and n in the Fourier domain. We define the Fourier transform by
oo
pkim = [ ptox me 2)
—00
and the inverse Fourier transform by
1 . .
p(x;n) = —f P(k; n)e™*dk . (3)
2 J_ o

Note that @(—k; n) is the “characteristic function” of a random variable x with probability density p(x; n). The Fourier
transform f (k) of f(x) is sometimes called the “structure function” of the RW. The Taylor expansion of p(k; n) around k = 0
yields
B(k; n) =(e~™)
1
=1—ik(x) — 5k2 x%) + o(k3), (4)

where (-) is the expectation unless we state otherwise. One can thereby obtain moments of p(x; n) from the derivatives of
plk; n)atk = 0.
The Fourier transform maps a convolution, such as Eq. (1), to a product; and Eq. (1) thus yields

N

p(k; n) = f(k)p(k; n — 1). (5)

If a random walker is located initially at x = 0, we obtain p(x; 0) = §(x), where §(x) is the Dirac delta function, which has
Fourier transform p(k; 0) = 1. We thereby obtain

~ n
pikim) =[] (6)
Using the inverse Fourier transform in Eq. (3), we obtain a formal solution for p(x; n) in the time domain:
1 ® ra n.
piximy = - [ [fo] e, Q
27 J_ o

The qualitative behavior of the solution in Eq. (7) depends on the details of the structure function f (k). However, the
asymptotic behavior of the RW as n — oo depends only on some of the properties of f(k). When the first two moments of
f(k) are finite, the solution converges to the Gaussian profile

] _ (x—vn)2

7(271Dn)1/26 o (8)

p(x;n) =
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Fig. 1. Schematic of the standard continuous-time random walk (CTRW) on a one-dimensional lattice. (a) The position x of the walker in physical time t is
described by p(x; t). Note that t, represents the time of the nth move. (b) The position of the walker after n moves is described by p(x; n).

where v = (r)and D = ((r — (r))?)/2.Eq.(8) implies that the variance of x grows linearly with time. This result is the “central
limit theorem” for the sum of the sizes of the moves, which are independent random variables. This asymptotic regime is
well-defined because the underlying space (i.e., the line) is infinitely large. One can derive these results in a similar manner
when the underlying space is discrete (e.g., a one-dimensional lattice)[2,4,30,31]. In situations in which the second moment
of the structure function diverges, the process exhibits superdiffusion and the probability profile converges to so-called “Lévy
distributions” [34,35].

2.2. Continuous time

In this section, we consider continuous-time RWs (CTRWs), which incorporate the timing of moves [4,5,30,34,35,96]. We
assume that a walker waits between two moves for a duration 7 that independently obeys the probability density function
¥ (7). In other words, the move events are generated by a renewal process [3]. If ¢ = 1 with probability 1, the CTRW reduces
to the DTRW described in Section 2.1. In a standard CTRW, one assumes that the time of a move event and the selection of
a destination in a given move are independent. Therefore, a combination of ¥/(t) and f(r), where r is the displacement in a
single move, completely determines the dynamical properties of a random walker.

Let t, denote the time of the nth move. By definition, t, = Z}Ll 7;, where each 7; is independent and identically distributed
(i.i.d.) and drawn from some distribution (7). Additionally, we can write

p(x; t) =y p(x; mp(n, t), (9)
n=0

where p(x; t) is the probability that the walker is located at x at time t, the quantity p(x; n) is the probability that the walker
is located at x after n steps, and p(n, t) is the probability density that the walker has moved n times at time t. Note that it
is crucial to distinguish p(x; t) and p(x; n), and we illustrate the difference between these probabilities with a schematic in
Fig. 1. Eq. (9) reflects the fact that a walker can visit x at time t after some number n of steps.

The probability p(x; n) is given by the same solution, Eq. (7), as for the DTRW. To obtain p(x; t) from Eq. (9), we need to
examine p(n, t), and we thus need to consider a renewal process generated by (7). According to the elementary renewal
theorem [97], the mean of n at time t is

(n) = —. (10)
(r)

Eq. (10) indicates that n(t) grows linearly with time on average, irrespective of the details of the distribution /(7). However,
realized values of n are random, inducing heterogeneity in the length of the RW “trajectory” (i.e., the walk measured in terms

of the number of moves) observed at a given time t.
When the CTRW is driven by a Poisson process, ¥(t) is the exponential distribution (i.e., ¥(t) = Be~#7). In this case, n
obeys the Poisson distribution with mean f§t. That is,

t n
BO" 5t

p(n’ t) =

n! (11)

It requires some effort to derive p(n, t) when v/(7) is a general distribution. To calculate the time of the nth event or the

number of events in a given time interval, we need to sum i.i.d. variables that obey y/(t). The duration ¢ > 0 is nonnegative,
so we take a Laplace transform

I(s) = f P(e)e e = (e . (12)
0
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The Taylor expansion of Eq. (12) is given by

TON AL (13)

n=0

and implies that fp(s) generates the moments of ¢ () if they exist. One computes the inverse Laplace transform by integrating
in the complex plane:

1 c+ioco R
(@) / s)eds, (14)

2mi c—ioo

where c is a real constant that is larger than the real part of all singularities of 1/A/(s).
The probability that no event has occurred up to time ¢ is

(o]
po.0= [ utee, (15)
t
whose Laplace transform is
A 1—13(s)
p(0,s) = —s (16)
The probability that one event occurs in [0, t] is
t
P(l,t)=f Y(t)p(0, t —t)dt’. (17)
0
By Laplace-transforming Eq. (17) and applying Eq. (16), we obtain
A 1= P(s)
p(1,s) = W(s)f . (18)
By the same arguments, the probability density that n events occur at times ty, to, ..., t, but at no other times in [0, t] is
given by Y(t1)¥(t; — t1)- - Y(ty — ta_1)p(0, t — t,). This yields [97,98]
A c = Y()
pin.s) = [9)] — . (19)

In the analysis of RWs, Eq. (19) relates two ways to count time: one is in terms of the number of moves (n), and the other is
in terms of the physical time (t).
For a CTRW driven by a Poisson process, we obtain

2 ® Bt st B
1/;(5):/0 Be Pre~*dr = oy (20)
Substituting Eq. (20) into Eq. (19) yields
ﬁ(n,s):( p )n ! . (21)
s+B) s+8

By taking the Fourier transform of Eq. (9) with respect to x and the Laplace transform of Eq. (9) with respect to t and then
using Eqs. (6) and (19), we obtain

p(k; s) = p(k; n)p(n, s)
e L ;f(k)"x&(s)" 22)

_ 1—Y(s) 1 (23)

S 1=flg(s)
This result is central to the theory of CTRWs [96], and we will extend it to the case of general networks in Section 3.3. Taking
the inverse transform of Eq. (23) with respect to both time and space yields p(x; t), and we can examine the behavior of the
RW for large t by expanding p(k; s) or p(x; s) for small s.

3. Random walks on networks
3.1. Notation

For our discussions, we assume that our networks are finite. However, to estimate how certain quantities scale with the
number N of nodes, we sometimes examine the N — oo limit. We allow our networks to have self-edges and multi-edges.
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We assume that the edge weights are nonnegative, so our networks are unsigned. For now, we assume that our networks
are ordinary graphs (i.e., the best-studied types of networks), but we will consider multilayer networks in Section 4.1 and
temporal networks in Section 4.2. Because introducing edge weights does not usually complicate RW problems, we assume
that our networks are weighted unless we state otherwise, and we consider unweighted networks to be a special case of
weighted networks. We also assume that our networks are directed unless we state otherwise. We summarize our main
notation in Table 1.

An undirected network is called “regular” if all nodes have the same degree. Notably, many mathematical results for RWs
on networks are restricted to regular graphs [1,42,99]. In this review, we are interested in networks with heterogeneous
degree distributions, which tend to be the norm rather than the exception in empirical networks in numerous domains [ 100].

In our discussions, we assume that undirected networks are connected networks and that directed networks are “weakly
connected” (i.e., that they are connected when one ignores the directions of the edges). It is clear (in the absence of jumps
such as “teleportation” [23] to augment the RW) that a random walker is confined in the component in which it starts, and
the analysis of RWs is then reduced to analysis within each component. See [44] for extensive discussions of components
and weakly connected components.

3.2. Discrete time

3.2.1. Definition and temporal evolution
Consider a DTRW on a directed network. We suppose that there is a single walker, which moves during each time step.
When the walker is located at v;, it moves to the out-neighbor v; with a probability proportional to A;. The transition-
probability matrix T has elements Tj;, which give the probability that the walker moves from v; to vj, of
Ajj
Tj= - > (24)
Si
where we assume that s?'* > 0. Other choices of T, informed by the adjacency matrix A, are also possible. One example is a
“degree-biased RW” in unweighted (and usually undirected) networks [101-106]. Another example of a biased transition-
probability matrix T is a “maximum entropy RW” [107-111].
Because a random walker must go somewhere - including perhaps the current node - in a given move, the following
conservation condition holds:

N
ZTU =1. (25)
j=1

ADTRW on a finite network is a Markov chain on N states. There is a huge literature (both pedagogical and more advanced)
on Markov chains in general and for RWs in particular. This is especially true for finite state spaces (corresponding to
finite networks) and for stationary Markov chains in which the transition probability does not depend on discrete time
n[1,112-120]. We draw from this literature to explain several properties of DTRWs in the rest of this section.

Let p;(t) denote the probability that node v; is visited at discrete time n. This probability evolves according to

N
pin+1)= Y p(mT; (e{l.....N}). (26)
i=1
Additionally,
N
> pin) =1 (27)
i=1
for any n if Eq. (27) holds for n = 0. Eq. (26) is equivalent to
p(n+1)=pn)T, (28)
where p(t) = (p1(n), ... , pn(n)). From Eq. (28), we see that
p(n) = p(O)T". (29)

3.2.2. Stationary density
Consider the stationary density (i.e., the so-called “occupation probability”) p* = (p7, . .., py), where p} = lim,_, pi(n)
(withi € {1, ..., N}). Substituting p;(n) = pi(n + 1) = p} into Eq. (28) yields

p=pT. (30)

Therefore, the stationary density is the left eigenvector of T with eigenvalue 1. The corresponding right eigenvector is
(1,..., 1T, where T represents transposition.



8 N. Masuda et al. / Physics Reports 716-717 (2017) 1-58

Table 1
Main notation.

N Number of nodes
M Number of edges
vj The ith node (wherei € {1, ..., N})

A The N x N weighted adjacency matrix of the network; the matrix
component A; > 0 represents the weight of the edge from node v; to
node v;. In an undirected network, Aj = A; (wherei,j € {1,...,N}).In
an unweighted network, A; € {0, 1} (again withi,j € {1,...,N}).

L Combinatorial Laplacian matrix

L RW normalized Laplacian matrix

S The strength of node v; in an undirected network; it is defined by

si= ZJN: 1A = ZJN: 1Aji. In an undirected and unweighted network, s;
is equal to the degree of v;, which we denote by k;.

s In-strength of v;; it is defined by s}“ = ZszlAj,‘. In an unweighted
network, s%“ is equal to the in-degree of v;, which we denote by I<§“.

st Qut-strength of v;; it is defined by s?" = ZN:]AU. In an unweighted

i
network, s

U is equal to the out-degree of v;, which we denote by k.

i
(k) Mean degree, which is given by (k) = Z,(kp(k) and indicates the
sample mean of the degree for a network

D The N x N diagonal matrix whose (i, i)th element is equal to s
(wherei € {1, ..., N}).In an undirected network, the (i, i)th element
of D is equal to s;.

n Discrete time

t Continuous time

Di Probability that a random walker visits v;

2 Stationary density of a random walker at v;

~ Approximately equal to

o Proportional to

For a directed network that is “strongly connected” (i.e., a walker can travel from any node v; to any other node v; along
directed edges [44]), p* is unique. In undirected networks, one just needs a network to be connected, which we have assumed.
In undirected networks, we obtain the central result

Si .
pi=—— (ie{l,...,N}), (31)
Zyzl Se
which one can verify by substituting Eq. (31) into Eq. (30). For unweighted networks, Eq. (31) reduces to p; = k;/2M.
Regardless of other structural properties of a network, the stationary density is determined solely by strength (and thus by
degree for unweighted networks). Eq. (31) also holds for directed networks that satisfy s; = si" = s?"* (wherei € {1, ..., N}).
Such directed networks are sometimes called “balanced” [1].
In undirected networks,

piTy =p;Tji- (32)

In other words, for each edge, the flow of probability in each direction must equal each other at equilibrium. This property,
called “detailed balance” in statistical physics [121] and “time reversibility” in mathematics [1,42], does not generally hold
for directed networks.

Let us consider a generalization of the degree-biased RW to weighted networks (i.e., a strength-biased RW) in which the
probability that a random walker located at node v; or v; traverses the edge (v;, v;) is proportional to (s;s;)*. It follows that

o (ss) Vi
= N = s
24:1(51'56)& ZZ;U@EM S?

where A is the neighborhood of v;. A strength-biased RW is equivalent to an RW on a modified undirected network whose
weighted adjacency matrix is given by Alfj = (sisj)* (see Fig. 2 for an example). The strength of node v; in this modified

network is given by s; = ZJN:]A;] = sf fjvj en; s;?‘. By substituting s; into Eq. (31) in place of s;, we obtain the stationary
density

(33)

i

o o
% Si Zvje/\/’i Sj
b =N v (34)
D i—1Si Zvj/e/\/i/ Sy

For an unweighted network constructed using a “configuration model” [122], a standard model of random networks, we
obtain p; ~ k?H/Zz:lsz [123-125]. In particular, we obtain p; = 1/N for all nodes when « = —1. Therefore, in general,
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4 = 5354
(a) Original. (b) Modified.

Fig. 2. Strength-biased RW. (a) An original undirected network, whose weighted adjacency matrix is given by A. (b) The modified undirected network,
whose weighted adjacency matrix is given by A". The numbers attached to the edges represent the edge weight. We set o = 1.

we expect that a node with a large strength tends to have a large p; when « > —1 (including for the unweighted case o = 0)
and that the same node tends to have a small p;" when o < —1. For nodes with a large strength, we expect p} to increase as
« increases.

For directed networks in general, one can write a first-order approximation to the stationary density from Eq. (30). We
assume that we do not possess any information about the neighbors of v;, so we replace pj and s]‘-’”t by their mean values:

N N
pf=) pj*so% ~ (const) x Y Aji ocsi" (35)
=1 i j=1

On both synthetic and empirical networks, Eq. (35) is reasonably accurate in some cases but not in others [126-133].

3.2.3. Relaxation time

To determine the relaxation time to the stationary state, it is instructive to project the solution, Eq. (29), onto an
appropriate basis of vectors and to represent it in terms of its modes. The procedure, which is analogous to taking a Fourier
transform [see Eq. (2)], is sometimes called a “graph Fourier transform” [134,135] and will be explained in this section [see
Eqs. (43)-(45)].

For simplicity, we consider undirected networks. In general, the transition probability matrix T is asymmetric even for
undirected networks, except for regular graphs. However, one can derive its eigenvalues and eigenvectors from those of the
symmetric matrix

Aj = Ay , (36)
5

which we can decompose as follows:
N
A= Z )\@U@HJ , (37)
=1

where A, is the £th eigenvalue of A and uy is the corresponding normalized eigenvector (so that (ug, uy) = 8¢, where ()
is the inner product), and § is the Kronecker delta. Because A is symmetric, each eigenvalue A, is real.
Because Tj; = ,/5;A;;//Si, we have the following similarity relationship between T and A [1,136]:

T =D 2AD"?2 (38)

where we defined D (a matrix whose nonzero entries lie only on the diagonal) in Section 3.1. Eq. (38) implies that T and A
have the same eigenvalues. In particular, all eigenvalues of T are real-valued, because that is the case for A. The left and right
eigenvectors of T corresponding to the eigenvalue A, are, respectively,

u; =u/D'? = ((uhv/51, ..., (Uen/5n) (39)
and
uy =D "Pup = ((ue)i/ V51, - ,(Ue)N/JSW)T . (40)

One can verify Egs. (39) and (40) using Eq. (38) and the relation Auy = A,u,.
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Using
TT! — D—]/ZAnDl/Z

N
=D " ijuu/D'?

=1
N
=Y Muguy, (41)
=1
we obtain the following mode expansion of the solution of the RW:
N
p(n) = p(O)T" = " A7ul(p(0). uf) . (42)
=1
That is,
N
pin) =) au(n)(up)., (43)
=1
where
ag(n) = 1ya,(0), (44)
a,(0) = (p(0), uy) , (45)
and a,(n) is the projection onto the ¢th eigenmode. Egs. (43)-(45) map the state vector p(n), which is defined on the nodes,
to a vector (a;(n), ... , an(n)) of eigenvector amplitudes (i.e., their coefficients). This transform, called the “graph Fourier

transform”, generalizes the standard Fourier transform of an RW [see Egs. (3) and (7)], and the eigenvectors of the transition-
probability matrix T play the role of the Fourier modes e'**.

For the matrix T and A, the eigenvalues A, each satisfy —1 < A, < 1[1,42]. Except in the special cases of multipartite
graphs, the strict inequality A, > —1 also holds. In this case, the mode with A, = 1 corresponds to the stationary density,
and we thus write u’é = p*. The right eigenvector that corresponds to this mode is uf} o (1, ..., 1)T. All modes for which
—1 < A; < 1decay to 0. The eigenvalue A, = 1 is the largest-magnitude eigenvalue, and the Perron-Frobenius theorem
guarantees that all elements of u'g and u? are positive. Similar results hold for directed networks, although we cannot take
advantage of the symmetric structure of the matrix A in general. In directed networks, the eigenvalues satisfy |A,| < 1. When
|A¢] < 1 holds for all but one eigenvalue, which is the case except for directed variants of multipartite graphs with an even
number of components, the mode with A, = 1 corresponds to the stationary density. In this case, we obtain uk = p* and
u'} o« (1, ... ,1)". Again, the Perron-Frobenius theorem guarantees that all elements of "]2 are positive.

By letting n — oo in Eq. (42), we obtain p* = ul (p(0), uR.), where the subscript “max” indicates the mode
corresponding to the dominant eigenvalue (which is equal to 1). Because uR ., oc (1, ... , 1)7, it follows that (p(0), uk )
1 regardless of the initial condition p(0). This is consistent with the fact that uhmx gives the stationary density. By letting n
be large but finite, we obtain

p(n) ~ ul,, (p(0), ul ) + Aus(p(0), ul) , (46)

where X, is the second-largest (in magnitude) eigenvalue of T. In deriving Eq. (46), we only kept two terms, because
[Ae|™ < |Ap|" for all eigenvalues A, with £ > 2, assuming that [A,| < |Ay| (Where £ € {3,...,N}). Eq. (46) indicates
that the second-largest eigenvalue of T governs the relaxation time. More generally, the relaxation speed is determined by
the ratio between |A,| and Amax = 1. The difference 1 — A, is often called the “spectral gap”. A large spectral gap (i.e., a
small-magnitude for X,) entails fast relaxation.

The “Cheeger inequality” gives useful bounds on A, [137]. The “Cheeger constant”, which is also called “conductance”, is
defined by

he msin (number of edges that connect S and S) } ’ (47)

min{vol(S), vol(S)}

where S is a set of nodes in a network, S is the complementary set of the nodes (i.e., SNS = @ and SUS is the complete set of
the N nodes), and vol(S) = Z?’:Miessi. In the minimization in Eq. (47), we seek a bipartition of a network such that the two
parts are the most sparsely connected. (In other words, we want a minimum cut.) The denominator in the right-hand side
of Eq. (47) prevents the selection of a very uneven bipartition, which would easily yield a small value for the numerator. The
Cheeger inequality is

h2
= <1-l%l=2h, (48)
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so a small Cheeger constant h implies a small spectral gap 1 — |A2| and hence slower relaxation. This result is intuitive,
because one can partition a network with a small value of h into two well-separated communities such that it is difficult
for random walkers to cross from one community to the other. Note that there are various versions of Cheeger constants
and inequalities. They give qualitatively similar - but quantitatively different - results [1,42,54,138-140]. As discussed in
Ref. [68] and references therein, such results are important considerations for community detection.

Afactrelated to the relaxation time is that the power method is a practical method to calculate the stationary density of an
RW in a directed network [ 141]. Suppose that we start with an arbitrary initial vector p(0), excluding one that is orthogonal
to p*, and repeatedly left-multiply it by T. After many iterations, we obtain an accurate estimate of p*. Because any p(0) that
is orthogonal to p* includes a negative entry, one can start iterations with any probability vector p(0). In practice, one may
have to normalize p(n) after each iteration (or after some number of iterations) to avoid the elements of p(n) becoming too
large or small.

3.2.4. Exit probability

One is often interested in the probability that a random walker terminates at a particular node, which is then called an
“absorbing state”. Upon reaching an absorbing state, a stochastic process cannot escape from it. A node v; is “absorbing” if
and only if T; = 1, which implies that T = 0 (for j # i). A set of nodes is an “ergodic” set if (1) it is possible to go from v;
to v; for any nodes in the set and (2) the process does not leave the set once it has been reached. An absorbing node is an
ergodic set that consists of a single node. A state in a Markov chain is said to be a “transient state” if it does not belong to an

ergodic set.

When an RW is composed of N; transient-state nodes and N, absorbing-state nodes, there are N; + N, = N nodes in
total. Without loss of generality, we relabel the nodes such that vy, ..., vy, are transient and vy, 41, ..., vy are absorbing.
The transition-probability matrix T then has the following form:

_(Q R
T= < Q 1) , (49)

where Q is an N; x N; matrix that describes transitions between transient-state nodes, R is an N; x N, matrix that describes
transitions from transient-state nodes to absorbing-state nodes, and I is the N, x N, identity matrix that corresponds to
individual absorbing-state nodes. Taking powers of Eq. (49) yields

n n—1
Tn=<% R QR+ QR ) (50)

Suppose that we start from transient-state node v; and want to calculate the mean number of visits to transient-state
node v; before reaching an absorbing-state node. This number of visits is equal to the (i, j)th element of the matrix

WZZQ"Z(I—Q)”, (51)

n=0

because the (i, j)th element of Q" is equal to the probability that a random walker starting from v; visits v; at discrete time
n. The matrix W is called the “fundamental matrix” associated with Q. The matrix on the right-hand side of Eq. (51) is called
the “resolvent” of Q. Similar considerations arise in the study of “central” (i.e., important) nodes in networks [ 142].

The “exit probability” (i.e., the “first-passage-time probability”) is defined as the probability U; that the walker terminates
at an absorbing state v; when it starts from a transient state v;. When there are multiple absorbing-state nodes, it is nontrivial
to determine the exit probability. The probability that the walker reaches v; after exactly n steps is given by the (i, j)th element
of Q" 'R. Therefore, we obtain the exit probability in matrix form as follows:

U= ZQ’HR — WR. (52)

n=1

3.2.5. Mean first-passage and recurrence times

When does a random walker starting from a certain source node arrive at a target node for the first time? The answer
to this question is known as the “first-passage time” (or “first-hitting time”) if the source and target nodes are different
and is known as the “recurrence time” (or the “first-return time”) when the source and target nodes are identical. Let m;
(withi # j) denote the mean first-passage time (MFPT) from node v; to node v;. The mean recurrence time is m;;. For directed
networks, we assume strongly connected networks throughout this section to guarantee that m; < oo (fori,j € {1,...,N}).
For reviews on first-passage problems on networks and other media, see [31,40].

General networks: We first consider some general results. The following identity holds [1,112,113,115]:

N
mj =1+ Z Tiemy; . (53)
L=1;L#£]
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In its first step, a random walker moves from node v; to node v,, which produces the 1 on the right-hand side of Eq. (53). If

£ = j, then the walk terminates at vy, resulting in a first-passage time of 1. Otherwise, we seek the first-passage from node

v (with £ # j) to node vj. This produces the second term on the right-hand side. Note that Eq. (53) is also valid when i = j.
In matrix notation, we write Eq. (53) as

M =]+T(M — Mgg), (54)
where M = (m;), all of the elements of the matrix J are equal to 1, and Mg is the diagonal matrix whose diagonal elements
are equal to m;;. By left-multiplying Eq. (54) by p* and using p*] = (1, ... , 1)and p*T = p*, we obtain the mean recurrence
time

1
my = —. (55)

1
Eq. (55) is called “Kac’s formula” [1,118,119].
There are several different ways to evaluate the MFPT m;; (with i # j), and it is insightful to discuss different approaches.
One method is simply to iterate Eq. (53) [115].
A second method to calculate the MFPT, for a given j, is to rewrite Eq. (53) as

) = 14T m, (56)
where m¥) = (myj, .. ,Mj—1j, Migqj ... ,m,\,]-)T and1=(1, ... ,1)" are (N — 1)-dimensional column vectors and T T
isthe (N — 1) x (N — 1) submatrix of T that excludes the jth row and jth column [124]. The formal solution of Eq. (56) is

X AN —1_ s
) = (i) '51, (57)

where 5 is the submatrix of D that excludes the jth row and jth column and L =D Y- ZU), where KU) is the submatrix of A
that excludes the jth row and jth column. The matrix L D5 is sometimes called a “grounded Laplacian matrix” [ 143] (although
it is not a Laplacian matrix), and it is invertible because we assumed strongly connected networks. One can derive and solve
Eq. (57) separately for each j.

A third method to calculate the MFPT is to take advantage of relaxation properties of RWs [144]. Let p;(n) denote the
probability that a walker starting at node v; visits node v; after n moves. The master equation is

pi(n+1) ZW(” T (58)
Let F;j(n) denote the probability that the walker starting from v; arrives at v; for the first time after n moves. We obtain
p - 5n081] + ZFU p]] n—n ) (59)

Using a discrete-time Laplace transform (see, e.g., [ 145] for an extensive discussion of such generating functions), defined
by

pi(s) =) _ e "py(n) (60)
n=0
and
Fy(s)=") e "Fy(n), (61)
n=0
we transform Eq. (59) to
Bii(s) = 85 + Fy(s)py(s) (62)
and thereby obtain
T pl (S) — 51
Fy(s) = =——. (63)

py( s)
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Using Eq. (63) then yields

my = ZnFU F; 0)

_ —p,-]-( )b;i(0) + P(0) [py(0) — 8]

= (64)
pjj(o)2
To evaluate Eq. (64), we define
Rg}") = Z n™ [pi(n) — p] - (65)
n=0

Eq. (65) quantifies the relaxation speed at which p;j(n) approaches the stationary density. To write the Laplace transform,
we multiply both sides of Eq. (65) by (—1)™s™/m! and sum over m. We thereby obtain

o0

SRS = 3 S w1 [t - )
m=0 ! m=0 n=0
= Ze " [pi(m) - pf]
- pj
=Py(s) — 5 _fefs . (66)
Substituting Eq. (66) into Eq. (63) then yields
(m) m
I:"-'(S) — s+os + 2o o Ry ( m% — 8
ij
(m) m
5+0(5) + Zm ORJJ ( 1)m%
_ P+ REJ-O)S — 8iis + o(s)
pi +Rs + os)
RO RO s,
=1+ %Ho(s), (67)
p;

where o(s) represents a quantity that is much smaller than s in the relevant asymptotic limit (s — 0 in the present case).
Consequently,

1 .
E (=1,
A ]
mjj = —F&(O) = R(--O) _ R(--O) (68)
% G #1i),

which is consistent with Kac’s formula [see Eq. (55)]. For undirected networks, substituting p] =5 /Zl 1S¢ into Eq. (68)
yields

Zea Gi=1,
mjj = (69)

S
Uit (o0 p0) L
?(Rjj ~RY) G0
]

A fourth method to examine the MFPT is to estimate m;; using a mean-field approximation [ 146-148]. Regardless of the
source node v;, the target node vj is reached with an approximate probability of pjf‘ in each time step. Therefore,

(o]
mj ~ Y npi(1—p;) ! = z% =mj. (70)
J

Eq. (70) is a rather coarse approximation, and m;; can deviate considerably from mj; = 1/p}. More sophisticated mean-field
approaches can likely do better, especially for networks with structures that are well-su1ted to the employed approximation.
There have been many studies of MFPTs for various network models using both analytical and numerical approaches
[31,149-153]. We will discuss some examples of undirected and unweighted networks. We focus mainly on the MFPT

between different nodes, although it is of course also interesting to calculate recurrence times.



14 N. Masuda et al. / Physics Reports 716-717 (2017) 1-58

Regular networks: For a complete graph, m;; (withi # j)is independent of i and j because of the symmetry of the network.
Therefore, Eq. (53) reduces to
1 N-2
m,]_N_]+N_1(1+m,J), (71)
which yields mj = N — 1fori # j. Kac's formula [see Eq. (55)] implies that m;; = N.

For regular lattices Z¢ of any dimension d, Eq. (55) implies that m;; oc N because p;{ o< ki = 2d for any i. Define m,; to be
the MFPT averaged over all source nodes v; (i # j) [154]. For Z¢, it satisfies the scalings Mgj O N?ford =1, me; < NInN for
d=2,and m,j o< N ford = 3.

Erdds-Rényi (ER) random graphs: Consider an ER random graph G(N, p), where p denotes the (independent) probability
that each node pair has an edge. Assuming that the mean degree (k) is kept constant (i.e.,p = (k)/(N — 1) oc 1/N), we obtain
m;; o< N and mj; o N3/2 (withi # j)as N — oo [155] for the “giant component” (i.e., a largest connected component that
scales linearly with the number N of network nodes as N — oo [44]). Now suppose that we assume instead thatp > InN/N,
so that all nodes belong to a single component (in the N — oo limit) and thus m;; (for i, j € {1, ..., N}) is well-defined. It
then follows that m;; averaged over all source and target nodes is equal to N — 1, independently of p [ 156,157]. In other words,
for a sufficiently dense ER random graph, the MFPT is the same as that for the complete graph. The MFPT is much longer for
directed ER graphs than for undirected ones, because random walkers do not backtrack on directed networks [158].

Other network models with random features: Much effort in studying RWs on networks has considered first-passage times
on Watts-Strogatz (WS) small-world networks [149,159-164]. As expected, given that WS networks interpolate between
regular lattices and ER networks,”> these studies have found that the behavior of an RW on WS networks lies somewhere
between that on a regular lattice and that on ER graphs.

Eq. (69) has also been elaborated further for “scale-free” networks, which are defined as networks with a power-law
degree distribution p(k) oc k=7, where p(k) is the degree distribution. Let us consider scale-free networks that are generated
by a “configuration model” [122], so there are no degree-degree correlations. We examine the mean of the MFPT m;; over
the position of the source node v; (with i # j), which we select according to the stationary density. We use m,; to denote this
weighted mean of the MFPT over i. This mean is distinct from the unweighted mean m,;. For scale-free networks constructed
using a configuration model, we obtain for large N that [166]

N2/ds (ds < 2),
iy oc 4 NKIE0 700 < dg < 2@y — 1)/(y — 2)), (72)
Nkt (ds > 2(y = 1)/(y —2)),

where d; = 2d;/d,, is the “spectral dimension” of the network; the “fractal dimension” dy is defined as the exponent of the
scaling relation N, o< r%, where N; is the number of nodes within distance r from a source node; and the “walk dimension”
dy, is defined from the scaling relation (r?) oc t?/9w where r is the distance between the current position of the walker and
the source node [36,39]. In practice, one calculates the walk dimension as the scaling exponent for the time tey;; for a random
walker to exit from a sphere of radius r from the source node (so that te; o r®)[167]. For regular lattices, d, = 2, and
the diffusion is thus called “normal”. If d,, # 2, the diffusion is called “anomalous” [39]. For the “compact exploration” case
of dy < 2, Eq.(72) suggests that the asymptotic scaling of m,; with N does not depend on the target node at leading order.
However, if d; > 2 (the second and the third cases in Eq. (72)), nodes with higher degrees are reached faster. In particular,
for networks that satisfy the “small-world property” (i.e., the mean path length between nodes scales proportionally to In N
or even more slowly) [ 165], including popular scale-free network models (such as ones generated by a configuration model),
one obtains d; = oo (and d; is very large for many empirical networks). Therefore, the third case in Eq. (72) applies.

Fractal and pseudo-fractal networks: There are various deterministic mechanisms to grow networks in a recursive
manner. Depending on the mode, these algorithms yield “pseudo-fractal” scale-free networks [ 168] (also called “hierarchical
networks” [169,170] or “transfractals” [ 17 1]; see Table 2 for different meanings of the term “hierarchical network” that exist
in the literature), which have a highly symmetric structure and satisfy the small-world property; fractal networks that do
not satisfy the small-world property [171-173]; or classical fractals [39]. These objects are defined and studied in the limit
N — oo. For such models, it is often possible to exploit their deterministic and recursive nature to exactly calculate the
MFPT, and generating functions again can be helpful.

Let us start by looking at fractals that do not have a heavy-tailed degree distribution. In a recursive process of generating
a fractal structure from a model of a fractal, we stop the process in each iteration and regard any intersection with more than
one edges as a node. In this way, we define a network corresponding to each iteration. The recursive process generates a
series of networks, where the number N of nodes becomes larger as one iterates further. We are interested in how the MFPT
scales in such networks as a function of N. For example, consider a network constructed from the Sierpinski gasket [177].
When the target node is located at the apex of the gasket, the MFPT averaged over a uniform distribution of the source
node is m,; oc N'™%/"3 ~ N146 [39,155,178]. Another example is the so-called “T-graph”, which is produced by the initial
condition of two nodes connected by an edge and recursive replacement of each edge by a star composed of four nodes

3 Technically, it is a variant of WS networks with edge rewiring (rather than edge addition) that interpolates between regular lattices and ER
networks [165].
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Table 2
The term “hierarchical network” has been used (sometimes in a misleading way) to describe various
network structures. To help readers, we provide a short summary of three common uses.

Hierarchical modularity A hierarchical network can indicate the presence of “hierarchical
modularity”, in which dense modules are themselves composed of
dense submodules in the recursive manner of a “Russian doll” [174].

Status theory One can also understand a hierarchy in the context of “status theory”,
in which certain nodes have a higher status than others, and a directed
edge indicates a difference of status [175]. This notion leads naturally
to trees that are dominated by a root and, more generally, to acyclic
networks [176].

Pseudo-fractal networks ~ Some models of pseudo-fractal networks are sometimes called
hierarchical networks. Ravasz and Barabasi proposed to characterize
such “hierarchical” structure by examining a scaling relation between
clustering coefficient and node degree [169,170].

to produce a fractal [179,180]. For the T-graph, the MFPT when the target is the unique central node and the source node
is distributed uniformly over the N — 1 remaining nodes is m,; o« N'™®/"3 ~ N1.63 [181]. Yet another example are so-
called “Vicsek fractals”, which are produced by the initial condition of a star having f + 1 nodes and recursive addition of f
replicas of the current network, such that each replica network is connected to the current network by one edge between
leaves (i.e., between a node with degree 1 in a replica and a node with degree 1 in the current network) [ 182,183]. For Vicsek
fractals, the MFPT averaged over all pairs of source and target nodes, chosen from all possible pairs and denoted by m,,,
scales as m,, oc N'™G3F+3)/n(f+1) [184]. Similar scaling results have also been studied in other deterministic and stochastic
fractals and heterogeneous media [31,39,180,185].

We now consider fractal networks that have a power-law degree distribution. One generates a so-called “(u, v)-flower”,
where u and v are integers, by starting with two nodes connected by an edge and replacing each edge by two parallel paths
of length u and v in each generation. This model produces fractal and scale-free networks for u, v > 2 [171,186]. The degree
distribution of a (u, v)-flower is p(k) = k=7, where y = 1 + In(uv)/In 2. For this network, the MFPT between so-called
“hubs” (which, in this context, are defined as nodes that are present in the same finite generation and whose degree thus

In(uv
becomes infinite as N — oo) scales as m;; o Nﬁ [171]. Consistent with this result, when u = v, the MFPT, averaged over
source-node position (which is distributed according to the stationary density), to the node with the largest degree (i.e., one
of the two nodes that exist initially) is given by fi,; oc N2!n4/In2) [187]. A tree-like network model, called the “(u, v)-tree”, is
produced if, in each generation, one replaces every edge by a path of u edges and add two new paths of v/2 edges that start
from each end point of the already-added path of u edges and have a loose end. (If v is odd, one adds two paths of (v + 1)/2
edges.)Whenu > 2, the (u, v)-tree model produces fractal and scale-free networks with y = 1+In(u+v)/In2[171,173]. For

such networks, thle[ MFI;T between hubs (which here too are defined as nodes that are present in the same finite generation)
n[u(u+v

scales as m;; o« N lﬂi(“+v> [171,188].

All of the above results on fractals and fractal scale-free networks are consistent with a known scaling law for the MFPT:
it scales proportionally to N*/% = N%/d [155], There are known analytical expressions for d; and d,, for the fractals and
fractal scale-free networks whose MFPT we discussed above. The spectral dimension is d; = In9/In5 ~ 1.37 for the
Sierpinski gasket [37], ds = In9/In 6 &~ 1.23 for the T-graph [179], d; = 2 In(f 4+ 1)/In(3f + 3) for the Vicsek fractals [ 183],
ds = 2In(u + v)/In(uv) for the fractal (u, v)-flowers [171,189], and ds = 2In(u + v)/Inu(u + v) for the fractal (u, v)-
trees [171,189].

As we mentioned in the beginning of this section, there are also scale-free network models that are constructed
deterministically and recursively. The resulting networks are not fractals [168-171,190-193] and are sometimes called
“pseudo-fractals” [168]. In the literature, fractal and pseudo-fractal networks are usually distinguished as follows. By
definition, pseudo-fractal networks satisfy the small-world property, as they have a small mean path length (which scales
as log N or smaller [165]) between pairs of nodes, possibly due to the creation of shortcuts during the generation of the
network. In contrast, the fractal network models discussed above, as well as conventional fractals, have large worlds, as the
mean path length scales as a power of N [172]. Similar to the case of fractal networks, it is possible to exactly calculate the
MEPT for a variety of pseudo-fractals by exploiting the recursive nature of their definitions.

Before general (u, v)-flowers were proposed in Ref. [171], the special case with u = 1 and v = 2 had already been
studied [168]. A (1, 2)-flower has degree distribution p(k) oc k™", wherey = 1+1In3/In2 & 2.59 [168]. A (u, v)-flower has
a small mean path length and is non-fractal when u or vis equalto 1[171].Ina (1, 2)-flower, the MFPT for an arbitrary pair of
nodes (present in a particular finite generation of the network) scales as m; o< N [155]. For the same network, m;; averaged
over a uniformly distributed location of the source node scales as m,; oc N'"2/In3 ~ NO63 when the target node v; is the largest
hub (whose degree k ~ N'"2/I"3)[194]. For a (1, v)-flower for general v, the MFPT between hubs (i.e., nodes that are present
in the same finite generation, so their degree becomes infinite as N — o0) scales as m;; Nnv/In(v+1) \which is consistent
with the results in Ref. [ 194] that we explained above. For a (1, v)-tree for general v, which produces non-fractal scale-free
networks [171], the MFPT between hubs (i.e., nodes present in the same finite generation) scales as m;; o< N and that between
non-hub nodes (i.e., nodes of finite degree) scales as m; o¢ NInN [171]. The MFPT to the most connected hub v (i.e., the
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node that is present initially) averaged over the position of the uniformly distributed source node v; (with i # j) scales as
m,; o< N [188]. Consider a different scale-free tree model, in which, in each generation, m new nodes are connected to each
of the already existing nodes. This model produces a power-law degree distribution with y = 14+In(2m+1)/In(m+1)[191].
For this network model, the MFPT averaged over all pairs of source and target nodes selected uniformly at random scales as
Mee & NInN [195]. The MFPT when the target node is selected from the stationary density of an RW is also proportional
toNInN as N — oo for an arbitrary source node [ 196]. Similar results have also been derived for pseudo-fractal scale-free
networks that include loops. In one such network model, one starts from a single node and, in each generation, adds two
replicas of the present network and connects some nodes in each replica to the initially-present single node. This model
produces scale-free networks with loops and with y = In3/In2 ~ 1.59 [190]. For this model, the MFPT from the largest-
degree hub (i.e., the initially-existing node) to a low-degree node created in the latest generation in the growth (and the
corresponding MFPT in the reverse direction) scales as m;; oc N17"2/In3 ~ NO037 [197]. The MFPT to the largest-degree
hub starting from a uniformly distributed source node (where the position of the source node is selected with the equal
probability from the N — 1 nodes excluding the target hub node) also scales as m,; o« N'=12/I"3 [197]. One obtains a related
pseudo-fractal scale-free network model by starting the recursive growth process of a network from an Njy;;-node connected
network in which one root node is specified [ 169,170]. In each generation, one adds Nj,;; — 1 replicas Njp;; > 3) and connects
them to the root node by some edges. This model produces a scale-free network with ¥ = 1 + In Njy;¢/In(Njpi — 1). For
this network model, the MFPT to the root node, which has the largest degree, starting from a source node, selected with
equal probability from all nodes but the root, scales as m,j oc N1~"WNinie=1/InNiie [198] Because Nipie > 3, the MFPT scales
no faster than N'~"2/"3 ~ NO-37_Finally, a so-called “Apollonian network” is defined through an Apollonian packing (i.e., a
space-filling packing of spheres) and produces a power-law degree distribution with y = 1+ 1n3/In2 ~ 2.58 [192,193].
For Apollonian networks, the MFPT to the node with the largest degree, where the source node is selected with the equal
probability from all but the target node, is given by m,; oc N2~n5/In3 ~ N0-54 [199],

In the results in the above paragraph for pseudo-fractal scale-free (but non-fractal) networks, the MFPT scales at most
proportional to N In N and mostly scales sublinearly in N. The MFPT is smaller than for fractals and fractal scale-free networks
for which m;; (or its mean over source or target nodes) scales superlinearly (i.e., in proportion to N 2/ds where ds < 2). Because
ds = oo for the aforementioned pseudo-fractal scale-free networks, which satisfy the small-world property, the MFPT does
not scale in proportion to N%/% These results are consistent qualitatively with the third case in Eq. (72), although Eq. (72) was
derived for a source node whose location satisfies the stationary density, and many of the aforementioned theoretical results
were derived for specific source - target pairs or a source node selected with equal probability from all nodes (excluding the
target node). Note that the largest degree in the aforementioned pseudo-fractal scale-free networks (including the (1, v)-
flowers and (1, v)-trees) scales as a sublinear power of N [168-171,190-193]. Therefore, the third line of Eq. (72) suggests
sublinear power-law scaling of the MFPT with respect to N for these networks.

Unsurprisingly, the MFPT can depend on the distance between source and target nodes. The results in Ref. [ 144] have
been extended to the case of networks such as fractal and pseudo-fractal networks in a way that takes into account the
distance between the source and target [ 167,200]. The MFPT is

N(A + Brdw—dr) (df < dw; ie.ds <2),
mj < { N(A+ Blnr) (dyw = ds; ie.,ds = 2), (73)
N(A — Bréw—r) (dy > d; ie.,ds > 2),

where r is the distance between nodes v; and vj, and A and B are constants. For example, the Sierpinski gasket has
di = In3/In2 and dy, = In5/In2. Therefore, Eq. (73) implies that m; oc Nrin5-In3/In2 The pseudo-fractal scale-free
networks that we discussed above satisfy the small-world property, so di = oo because the number N; of nodes within
radius r grows exponentially in r [172]. Additionally, Eq. (73) still holds if we replace dr by the box-counting dimension dg.
The box-counting dimension is defined by the scaling relation Ng/N o< £ % where Ng is the number of non-overlapping
boxes of linear size ¢y (e.g., the length of a side for a square) that are necessary to cover an entire fractal (and, in the present
context, an entire network). For fractals without a heavy-tailed degree distribution, dg = d¢ [172].

For discussion of scaling theory based on renormalization theory for first-passage time and other quantities on networks,
see Refs. [152,201]. For other approaches to first-passage times and return times on networks, see Refs. [150,202,203].

3.2.6. Cover time

“Cover time” is defined as the time required for a random walker to visit all nodes [1,42]. It has been proven that the
expected cover time ¢, maximized with respect to the source node, scales approximately as cIn[c/(c — 1)]NInN in an
Erdés-Rényi random graph in which each pair of nodes is adjacent with a probability of approximately c(In N)/N [204]. For
a Barabasi-Albert scale-free network, the expected cover time scales as 2m/(m — 1)N In N, where m is the number of edges
in each new node [205]. These results hold with high probability in the limit of infinite network size (i.e., with probability
tending to 1 as N — oo0). For arbitrary networks, researchers have developed a universal form of the distribution of cover
times [206] and a method for accurately calculating the mean cover time for networks on which RWs relax rapidly [207].

In practice, exactly covering all nodes tends to be a rather strong requirement. In contrast to the above and other rigorous
mathematical results on exact cover time, physicists have tended to instead examine “coverage” C(n) in terms of the number
of distinct nodes visited at least once within n steps [36,96,105,149,208-212]. For a complete graph, one can calculate that

N

=3 [1 —(- p:‘)n] . (74)

i=1
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(a) Node-centric CTRW. (b) Edge-centric CTRW.

Fig. 3. Schematic of two types of continuous-time random walks (CTRWSs) on networks: (a) a node-centric CTRW and (b) an edge-centric CTRW. In each
case, a walker is visiting either a degree-3 node or a degree-4 node in a network, which we assume is unweighted for simplicity. We show the transition
rates for each edge. In panel (a), the walker travels at a unit rate and moves to one of its out-neighbors with equal probability for each choice. Therefore, the
transition rate for each edge is the reciprocal of the out-degree of the node that the walker is visiting. In panel (b), however, the transition rate on each edge
is equal to 1. Therefore, on average, a walker visiting the node with out-degree 4 leaves the node earlier than a walker visiting the node with out-degree 3.

because each node is visited with probability p; = 1/N in a single step. In some situations, one can also expect Eq. (74) to
hold approximately as a mean-field calculation. The “edge coverage” (i.e., the number of distinct edges visited at least once
within n steps) has also been examined for various networks [208,213].

3.3. Continuous-time random walks (CTRWs)

Similar to the case of RWs on a line, CTRWs on networks have two main components: the statistics of a walker’s
trajectory in terms of the number of steps and the statistics of the times at which events take place. By combining these
two components, one can specify the probability that a random walker visits a specified node at a specified time. For RWs on
networks, the dynamics of a walker are affected not only by the statistical properties of temporal events, but also by the type
of network unit in which a temporal process is defined. First, we distinguish between node-centric CTRWSs and edge-centric
CTRWs [1,136,214,215]. For dynamical processes in general, there are often substantial differences between node-based
dynamics and edge-based dynamics [49], so it is crucial to distinguish between these situations. A second delineation is
between active and passive CTRWs, depending on whether a walker passively follows edges when available or actively
initializes them as it travels. This second distinction becomes crucial for temporal process other than Poisson process. One
can combine the above components to consider various types of walks (e.g., node-centric active CTRWs).

3.3.1. Node-centric versus edge-centric random walks

In a CTRW, a walker waits until the next move for a time 7, where t is a random variable. For the sake of simplicity, we
start with a scenario in which moves occur as independent Poisson processes. In other words, t is distributed according
to the exponential distribution with parameter A. We can safely normalize X to 1, because A only sets the time scale. In a
node-centric CTRW, a walker moves from node v; when it becomes active, and it selects one of the out-neighbors, which we
denote by vj, as the destination with a probability proportional to A;; [see Fig. 3(a)]. This assumption is the same as that for
a DTRW.

The master equation for the Poissonian node-centric CTRW on a network is

dp(t) _
dt
where

PO~ +T) = —p(t)D"'L, (75)

L=D-A (76)
is the (“combinatorial”) “Laplacian matrix” of the network. The process is driven by the “random-walk normalized Laplacian”
I'=D'L=1-T. (77)

That s, (L');j = 8 — (Ay/s™"). If we examine the node-centric CTRW in terms of the number n of moves, the trajectories are
statistically the same as those of the DTRW in Eq. (26). Consistent with this observation, node-centric CTRWs are also called
the “continuization” of the DTRW [ 1]. In particular, the stationary density of the node-centric CTRW is the same as that of the
DTRW. By setting the left-hand side of Eq. (75) to 0, we obtain p*(—I+T) = 0, so that p* = p*T. If the network is undirected,
p; =si/ ZlNzlsg. Node-centric CTRWs have been used in, for example, some empirical-data-driven metapopulation disease-
spreading models [216,217]. In those models, a network consists of subpopulations of individuals, and individuals move
from one subpopulation to another through a mobility rule. The simplest mobility rule, which has been used widely, is that
individuals move according to a Poissonian node-centric CTRW. (For a discussion of mobility models, see Ref. [59].)
Another type of CTRW is an edge-centric CTRW, in which each edge (rather than a node) is activated independently
according to a renewal process [see Fig. 3(b)]. By definition, once an edge is activated, it becomes available, and a random
walker can use it to move to the associated adjacent node. This RW model has also been called the “fluid model” [1].
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When a Poisson process with a rate proportional to the edge weight is assigned independently to each edge, the master
equation is

ap(t)
dt
The Poissonian edge-centric CTRW is associated with the unnormalized (i.e., combinatorial) Laplacian L. Eq. (78) implies that
the transition rate at node v; is equal to s?“t. A walker leaves a node with a large out-strength (such a node may be a network
“hub”) more quickly than a node with a small out-strength. This situation contrasts with the aforementioned node-centric
CTRW, for which the transition rate of a walker is the same for all nodes.
The stationary density for Eq. (78) is

=p(t)(—D+A) = —p(t)L. (78)

pL=0. (79)

Eq. (79) is equivalent to pjs?"* — Z;Llp;‘Aj,— = 0 (fori € {1,..., N}), which indicates that the in-flow of the probability
(i.e., Z;\lepfAﬁ) and the out-flow of the probability (i.e., p;s?"") are balanced at each node. Eq. (79) also indicates that p* is a
left eigenvector of L with eigenvalue 0. In connected undirected networks, the 0 eigenvalue, which we denote by A1 = 0, is

an isolated eigenvalue. Its associated eigenvector is

1
f=—(1,..., 1). 80
p= ) (80)
For a directed network, the right eigenvector corresponding to A; = Qisstill givenby (1, ... , 1)T /N, but the left eigenvector

(ie., p*) is different in general. Eq. (79) is equivalent to p*D = (p*D) (D~'A) = p*DT, where (as usual) T is the transition-
probability matrix of the DTRW. Therefore, p*D is the stationary density for the DTRW (and hence for the above node-centric
CTRW) in general directed networks. In other words, for the edge-centric CTRW, p; is given by the expression for p} for the
node-centric CTRW divided by s?“t and properly normalized. Using this relationship, we divide Eq. (35) by s?“t to derive the
first-order approximation [132,218]:
in
p} ~ (const) x s‘;T . (81)
1
For Poissonian node-centric CTRWs and Poissonian edge-centric CTRWs (and also for DTRWs), one can express the
stationary density for directed networks by enumerating spanning trees. We present this technique now because it is easier
to understand this approach using L rather than L. The “(i, j) cofactor” of L is defined by
Co (i, j) = (—1) det ", (82)
where Z("]) is the (N — 1) x (N — 1) matrix obtained by deleting the ith row and the jth column of L. (Previously, we used fl)
to denote the (N — 1) x (N — 1) matrix obtained by deleting the ith row and column from L (see Section 3.2.5), and here we
use the notation L’ without ambiguity. Taking i = j yields ﬁ”) = fl).) Because ZJN:]LU- = 0(withi e {1,..., N}), the value
of Co (i, j) is independent of j. Using Eq. (82) and the fact that L is singular because of the 0 eigenvalue, we obtain

N N
Y Coli, i)l = ) Coli, j)L
i=1 i=1

=detL=0 (83)
for any j. This yields
p; o Co (i, 1) = det 1" (84)

From the matrix-tree theorem (i.e., Kirchhoff's theorem), detfi’i) is equal to the sum of the weights of all possible directed
spanning trees rooted at v; (called “arbolescence”) [219,220]. One thereby obtains p; from weighted spanning trees in a
formula called the “Markov-chain tree formula” [1]. The “weight” of a spanning tree is defined as the product of the weight

of the N — 1 edges that form the tree. For unweighted networks, the weight of a spanning tree is 1, and det Z(”) is equal to the
number of spanning trees rooted at v;. When we apply Eq. (84) to a node-centric CTRW (or to a DTRW), we replace Lby L’. In
doing this, we must be aware of the weight of spanning trees even for unweighted networks because L’ is the combinatorial
Laplacian for the weighted adjacency matrix D~'A, where A is a binary (i.e., unweighted) adjacency matrix.

Eq.(84)is useful for exacting calculating p; for some directed networks, including a variant of Watts-Strogatz small-world
networks and multipartite networks [221], and for approximately calculating p; for some types of directed networks with
community structure [222].

Although the stationary density differs for node-centric and edge-centric CTRWs, their trajectories (and also those of
the DTRW) are statistically the same and are determined by the transition-probability matrix T [see Eq. (24)] for Poisson
processes. For edge-centric CTRWs, this is true because the probability that a Poisson process on the edge (v;, v;) occurs first
among the Poisson processes on all edges (v;, v¢) (where £ € {1, ..., N}) is proportional to the rate of the process on the
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edge (v;, vj) (i.e., it is proportional to A;). Let p(n) = (p1(n), ... , pn(n)) denote the distribution of the random walker, where
pi(n) is the probability that the walker visits v; after exactly n moves. In the Poissonian case, the master equations for the
DTRW, the node-centric CTRW, and the edge-centric CTRW in terms of n are each given by Eq. (28). However, the temporal
properties along these trajectories are in general different for the two Poissonian CTRWs. In the Poissonian node-centric
CTRW, moves are triggered by a Poisson process at a constant rate, so the probability p(n, t) of having performed n steps
at time t is given by a Poisson distribution. In the Poissonian edge-centric CTRW, however, p(n, t) depends on a walker’s
trajectory. When a walker is at a node vj, the time to the next event is drawn from the exponential distribution with mean
1 /s?“t. If a trajectory includes many nodes with large out-strengths, the number n of moves at a given time t tends to be
larger than for trajectories that traverse many nodes with small out-strengths.

The combinatorial Laplacian L of a connected, undirected network includes exactly one 0 eigenvalue,s00 = A; < Ay <

- < An, Where A, is its £th smallest eigenvalue. The combinatorial Laplacian of a directed network satisfies an analogous
relationship, 0 = A; < Re(X;) < --- < Re(Ayn), provided the network is strongly connected or has just one strongly
connected component from which all other nodes can be reached by a directed path [54,220,223]. In the latter case, we
call such a strongly connected component the “root component” (including the case of a single node, which is then a “root
node”). If there are multiple components in an undirected network or multiple root components, then there are multiple 0
eigenvalues in L, although we do not consider such situations in the present article. The spectral gap (and thus A;) governs
the relaxation time. The corresponding eigenvector u; is called the “Fiedler vector”. For details of spectral properties of
networks, see Refs. [44,51,54,93,137,139,140,224,225].

When a network is undirected, one can also construct Eq. (78) as a type of deterministic, linear synchronization or
coordination dynamics in which p;(t) is the state of node v; and nodes v; and v; attract each other with a coupling strength
of A;; [54]. The only difference between CTRW dynamics and linearized synchronization dynamics is that p;(t) is confined
between 0 and 1 and normalized in CTRWs, whereas it is not in synchronization dynamics. Therefore, various theoretical
results on linear synchronization dynamics on networks are applicable to edge-centric CTRWs. In particular, methods to
estimate the relaxation time via the spectral gap of L are useful for understanding relaxation properties of RWs [54,226,227].

3.3.2. Active versus passive random walks

In Section 3.3.1, we assumed that temporal events are determined from Poisson processes. In that case, it was not
necessary to specify if temporal events are defined on the walker or on the network. However, for non-Poisson processes,
it is crucial to specify these properties. In this section, we assume that temporal events are generated by renewal processes
with arbitrary distributions of inter-event times. Various empirical data sets related to human activity support heavy-tailed
(and hence non-exponential) distributions [57,228]. See Ref. [229] for a discussion of how to estimate such distributions
from empirical data.

One type of model arises when a renewal process describes the timings of the moves of a random walker. In other words,
the walker carries its own clock and re-initializes it after each move. The CTRW is then said to be active, which may be
appropriate components of models of human or animal trajectories.

A second model consists of assuming that it is the timings at which nodes or edges become active that are generated by
a renewal process. In such scenarios, the node or the edge (rather than a walker) carries a clock, and the arrival of a walker
does not modify it. The random walker is thus a passive entity that follows edges when they become available [214,215].
Passive RWs are often used in models of spreading of a virus on a time-dependent contact network or in the spreading of
information on a communication network.* Active and passive walks model different types of situations. One can interpret
active walks as a continuous-time process that can take place on a fixed network architecture. One can then construe the
resulting flickering of edges induced by a walker as components of a temporal network. In contrast, passive walks are event-
driven processes that take place on a temporal network, which has its own intrinsic dynamics. As we will see, the two types
of walks have radically different mathematical properties.

Node-centric active CTRWs. When the inter-event time between two moves obeys a distribution ¥ (7) that is not
exponential, the RW dynamics are non-Markovian. In a non-Markovian setting, the rate at which a walker moves depends
on the time since the last move. To analyze this scenario, we consider the extension of Eq. (9) to the case of general networks
and write

o0
p(t) =) p(mp(n, t), (85)

n=0

where we recall that p(n, t) is the probability that a walker has moved n times at time t. By taking the Laplace transform of
Eq. (85) and using Egs. (19), we obtain
N o0

1= () .
Bls) = — == ) P ()" (86)

n=0

4 However, spreading processes are typically non-conservative, so one needs to be careful about using RWs in these situations.
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We then substitute p(n) = p(0)T" [see Eq. (29)] into Eq. (86), where T is the transition-probability matrix of the DTRW, to
obtain

L1 1!
36 = "y -] (87

Eq. (87) is a generalization to arbitrary networks of results by Montroll and Weiss [96]. We have implicitly taken a node-
centric perspective, as the waiting time (i.e., the time to the next event) of the walker does not depend on the node degree;
when the walker is ready for a move, it chooses one of the node’s edges uniformly at random and traverses it. The inverse
Laplace transform of Eq. (87) gives the probability p;(t) that the walker visits v; at time t.

For a Poisson process (i.e., when v/(7) = Be~#7), substituting v/(s) = 8/(s + B) [see Eq. (20)] in Eq. (87) yields

sb(s) — p(0) = Bp(s)(—I +T) (88)

after some calculations. Because the inverse Laplace transform of sp(s) — p(0) is equal to ‘;—'t’(t), Eq. (88) leads to Eq. (75) up
to a multiplicative constant S.

To understand how the form of vr(7) affects diffusive processes, we work in the graph-Fourier domain. That is, we work
in terms of the amplitude of the eigenmodes, and we examine how the relaxation of different eigenmodes deviates from the
situation for Poisson processes [230]. Combining Eqs. (43)-(45) and (86) yields

1= e~ @(0)
Bls) = a— (89)
VTS ;1—Mw(3) ‘

where A, is an eigenvalue of T and uk is the corresponding left eigenvector. By taking the inner product of both sides of
Eq. (89) with the right eigenvector u? of T for a particular value ¢, we obtain

Ge(s) = _1=ve) I/f(f)
s[1- 19|

For CTRWs driven by Poisson processes, an eigenmode relaxes exponentially in time. However, relaxation dynamics can
be rather different when v/(t) is not an exponential distribution. For simplicity, we assume that v+(t ) has finite mean and finite
variance. (When these moments are not defined, one can examine dynamical processes using the framework of fractional
calculus [231].) We substitute a small-s expansion

a,(0). (90)

A 1
Y(s)=1—(r)s+ E(IZ)S2 +o(s%) (91)
into Eq. (90). For the £th mode, where A, # 1, one can calculate that
(1) r(t) | (T?)
au(s) = 1—s —_— . 92
«s) 1— 2 -2 T 200) 92)
This leads to a characteristic time tcn, of
Lkl 1)
=T T 2(n)
1
= (1) <* + ﬁburst) s (93)
€
where ¢, = 1 — A, is the eigenvalue of the random-walk normalized Laplacian L’ and
0.2 _ (.L_>2
Bourst = W ) (94)

where of = (r?) — (1)? is the variance of 7. The quantity Byust € [—1/2, 00) is a measure of burstiness. Poisson processes
have Bpurst = 0, and Byyrse = —1/2 when () is distributed as a delta function. A heavy-tailed distribution, implying bursty
activity of nodes, generates a large value of Bpyrst.

We consider the slowest-decaying mode associated with the spectral gap ¢, (i.e., the smallest nonzero eigenvalue of
L’). The corresponding characteristic decay time t, indicates the relaxation time of the CTRW towards equilibrium. Eq. (93)
includes competition between two factors. When the spectral gap is small relative to 1/ Bpyst, the first term on the right-hand
side of Eq. (93) is dominant. In this case, t.p, is determined primarily by structural bottlenecks in a network (e.g., through the
existence of sets of densely-connected nodes called “communities” (see Section 5.3), which are connected weakly to each
other) [68,137,140]. When the spectral gap is larger or when an event sequence is bursty (in the sense of a large variation
in inter-event times), the second term dominates the right-hand side of Eq. (93). In this case, tc,, is determined primarily by
the properties of ¥(7) rather than by network structure.
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Because the inter-event time and the number of moves in a RW are statistically independent, the stationary density of
the node-centric CTRW with a general v/(7) is the same as those for a DTRW or a Poissonian node-centric CTRW. One can
thus calculate the recurrence time and first-passage time of a node-centric CTRW by multiplying the corresponding results
for the DTRW (see Section 3.2.5) by (t).

Edge-centric active CTRWs. One can define other types of active RWs that have qualitatively different behaviors of the
stationary density and first-passage times. For instance, consider the following edge-centric active RW: when a walker
arrives at a node, it considers each edge and takes the first edge available for transport. The time at which each edge appears
is independently drawn from the same distribution (7 ) where, as before, the clock on each edge is re-initialized upon the
arrival of a walker at an incident node. Because only the first edge to appear is taken by the walker, there is a competition
between different edges. The probability density that a random walker moves from node v; to node v; at time t since the
walker arrived at v; is

ki—1
f(r;j <) |:/ v(t ] . (95)

Some calculations yield
(ming=1,...k Te)ki
P=on —. (96)
> i (mine_y _k Te)k;

where the factors of 7, are independent copies of inter-event times that are drawn from the distribution /(7). Because

(o= [ [ e e )

depends only on k;, Eqs. (96) and (97) imply that p} depends only on k;. Note that the stationary density for the active RW is
not proportional to k; unless t is constant, which reduces the model to the DTRW. The mean recurrence time for node v; is

N .
mi = Zj:l <mme:1’"”kj W> i [ l . (98)
k,‘ ki
Egs. (96) and (98) indicate that Kac's formula [see Eq. (55)] is not satisfied unless the network is regular.

Edge-centric passive CTRWs. Passive RWs differ from active ones in that properties of a network (rather than a random
walker) evolves as a renewal process. We start with edge-centric passive RWs, which have attracted considerable attention
because of their many applications (e.g., diffusion on temporal networks). We thus assume that each edge is governed by an
independent renewal process, which we assume for simplicity is the same distribution /(7 ) for each edge. A first important
difference from active walks arises from the “waiting-time paradox” (which is also called the “bus paradox”)[3,232]. In this
paradox, a walker arrives at node v; from node v,. The waiting time before edge (v;, v;) (with j # £) is activated is typically
longer than the naive expected value (t)/2. Let ¥"(z") denote the distribution of waiting times " on edge (v;, v;) after a
walker has arrived at node v; from node v, (where £ # j). See Fig. 4 for a schematic. One can calculate ¥"(z") from y(7)
when the arrival of a walker to v; and the activation of edge (v;, v;) are statistically independent processes. In that situation,
the probability density for the time at which a walker moves from v, to v; lies in an interval of length 7 satisfies

flr) = YD o), (99)
Jo T'w(z)dr! (t)
Conditioned on the walker’s arrival time to v; lying in an interval of length t, the probability density for the waiting time to
be equal to TV

g(r"|0) = {5/’ s tw=" (100)

Egs. (99) and (100) yield

W(rW)—/ Frg(r¥0)d / Y(o)dr. (101)

In particular, the mean waiting time is given by fo TWyW(rW)deW = (12)/(2(t)).If ¥ () is heavy-tailed, (r?) is much larger
than (7), so a typical waiting time is very long. For example, if 1/(t) o« 777, with y € (2, 3], the mean inter-event time is
finite, whereas the mean waiting time diverges because (r?) diverges.

A second difference is that one can only derive approximate master equations for edge-centric passive CTRWs, whereas
they are exact for active CTRWs. When a random walker moves from node v, to node v; at time t, the waiting time (i.e., the
time to the next event) on edge (v;, v;), where j # £ (we will consider the case j = £ in the next paragraph), is estimated
by the distribution y*. However, if a random walker has already traversed edge (v;, v;) in the past - let us suppose that the
last traversal time occurred at t’ - the independence assumption that is required to derive Eq. (101) is not satisfied, and the
waiting time on (v;, v;) is not given exactly by the distribution %, unless the process is Poissonian and  is an exponential
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inter-event waiting
time (7) time (7%)
o > ——,

Fig. 4. Schematic illustrating the concept of waiting time. We show a trajectory of a random walker using dotted arrows. The walker moves from node v;
to node v,, and it then moves to node v;. This example corresponds toj = 1,i = 2, and £ = 3 in the main text. (See the j # ¢ case in Eq. (102).)

distribution. The deviation between the waiting-time distribution and v/ increases when t" approaches t. In the remainder
of the present section, we ignore any modification of the distribution of the subsequent waiting time caused by past events
on (vj, vj); this corresponds to assuming that t’ = —oo. To our knowledge, the impact of such a memory effect (i.e., finite t)
has not been considered in detail in the literature.

A third difference stems from the possibility of non-Markovian trajectories for random walkers. To explain this point,
consider the case of backtracking moves (i.e., v, — v; — v). For such backtracking moves, the waiting time on the edge
(vj, vg) is distributed according to ¥, rather than %, as the waiting-time paradox does not apply. The existence of different
waiting times for backtracking and non-backtracking moves has impacts the motion of a walker. For a walker to move to
node v; at time t" since the walker moved from node v, to node v;, there cannot be any events on any edges emanating
from v; in [0, %], and then an event must occur on the edge (v;, v;) at time ™. Let f(t"; j < i|i < £)denote the probability
density of the event that a walker that has moved from v, to v; moves to node v; at time t*. We obtain

1

00 ki—

ww[ f wmdf/] i=0,
ZWoc ki=2  poo

wW(rW)[ / ) wW(r’)dr’] / Sy £,

Eq. (102) indicates that where a walker moves depends not only on its current position but also on the edge that it used to
arrive to that position. For trajectories of RWs, one can construe this situation as a special case of the “memory networks”
that we will discuss in Section 4.2.2.

Unless 1 is an exponential distribution, f(t"%; £ < i|li < £)is not equal to f(z%;j < i|i < £) (withj # £) in general,
so the trajectory of an RW (i.e., the walk measured in terms of the number of moves) is non-Markovian. In particular, if ¥
is a heavy-tailed distribution, the mean waiting time is larger than the mean inter-event time. Therefore, a walker tends to
backtrack (i.e., there are sequences of moves of the form v, — v; — wv,), and diffusion dynamics are slowed down. This
slowing down is caused entirely by the modification of trajectories in non-exponential distributions, and, in particular, it
does not arise from a competition between structural and temporal factors (in contrast to Eq. (94)). If ¢ has lighter tails than
an exponential distribution, a walker tends to avoid backtracking. (We briefly discuss non-backtracking RWs in Section 6.)
When v is not an exponential distribution, trajectories of the edge-centric passive CTRW are different from those of active
CTRWs or DTRWs .

We now evaluate the stationary density and recurrence time of non-Poissonian edge-centric passive CTRWs [215]. Let
gj—i(t) denote the rate at which a random walker moves from node v; to node v; at time t. This quantity satisfies the following
approximate self-consistency equation:

f@%j<ili<~ (102)

TROEDY [ f flt =t < ili < z)w(r/)dr/]
0

LeN;
+ pji(0)3(t), (103)
where we recall that A is set of the neighbors of v;. The initial condition satisfies
> picj(0) = pi(0). (104)

JeN;
Eq. (104) implies that one needs to specify an initial condition that includes not only the current position of the walker but
also its previous location. More generally, the transition probability of a move depends on the previous move. The master
equation is given by

d

2P0 =D [aii(0) — gi(t)] - (105)

JeN;
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To derive the stationary density, we work in terms of g;.;(t) rather than p;(t). We take the Laplace transform of Eq. (103)
to obtain

Gi9) ~ Y [F515 <= ili = Odicls)] + pii0). (106)

LeN;

Note that gji(s) # Gij(s) in general even for undirected networks. Eq. (106) is a set of linear equations with 2M unknowns.
We solve §ji(s) and then calculate the stationary value of q]<_l(t) (i.e., q = llmf_,ooqu( ) as gj—i(0)). We thereby obtain
p; as a weighted sum of q;._; terms, where j € A. In fact, 4 does not depend on i orj, and the final result is

1
p?:N (iefl,...,N}). (107)
Therefore, the stationary density is the uniform density, independent of the network structure and the form of ¥/(¢). The
mean recurrence time is

N
i ™ ki .

Eq. (108) indicates that the mean recurrence time is essentially independent of v/(t), as it depends only on the mean (7),
which gives the trivial normalization of time. Egs. (107) and (108) imply that Kac's formula [see Eq. (55)] is not satisfied by
any edge-centric passive CTRW except in regular networks.

Node-centric passive CTRWs. To conclude our taxonomy of CTRWs on networks, we mention a fourth combination: node-
centric passive RWs. We are not aware of studies of node-centric passive RWs, though they may be relevant for situations in
which the activity of a temporal network is driven by node dynamics more than by interactions between nodes. Node-centric
passive CTRWs are also subject to the bus paradox, but they are substantially simpler mathematically than edge-centric
active walks, because non-Markovian trajectories do not arise when the renewal processes on the nodes are independent.

(108)

4. Random walks on generalized networks
4.1. Multilayer networks

A multilayer network includes different “layers” and allows one to explicitly incorporate different types of subsystems
and/or different types of ties between edges [60,61]. The latter case, which is often called a “multiplex” network, occurs
when there are different types of interactions between individuals, different modes of transportation, and so on. If there are
¢max layers, one can represent a multilayer network as an ordinary (i.e., “monolayer”) network with £.,.xN nodes, where
there are ¢« replicates of each node if each entity (represented by a node) exists on every layer. How strongly different
layers are connected to each other (and which interlayer edges are present) has an enormous effect on diffusive dynamics
in multilayer networks [61,62,233]. It thereby affects anything else, such as various community-detection methods, that are
based on RWs (see Section 5.3) [234-236].

Let us consider Poissonian edge-centric CTRWs. For simplicity, we also assume undirected multilayer networks in which
each intra-layer network is a connected network [237-239] and each node is present on every layer (though of course this
need not be true in general). We also assume that inter-layer edges occur only between the same entity in different layers
(i.e., so-called “diagonal” coupling) and that there is only a single type (i.e., “aspect”) of layering [61]. (For example, a single-
aspect multilayer network can be a multiplex network, but it cannot be both multiplex and time-dependent.) Let A* = (A7)
denote the adjacency matrix for the «th layer. One needs to think about both diffusion within layers and diffusion between
layers (see Fig. 5). Let D, denote the intra-layer diffusion constant in the octh layer, and let D,g (with o, B € {1, ..., €max})
denote the inter-layer diffusion constant between the «th and Bth layers. Such constants set the edge weights between
pairs of nodes that represent the same entity in different layers, and the corresponding nodes in the «th and Bth layers are
connected by an edge on which there is a Poisson process with rate D,g. The master equation is given by

£max

dpl =D« ZAU Py () = p(0)] + ZDaﬂ [ “ () —P?(t)] : (109)

o’'=1

where pl *(t) is the probablllty that a random walker visits the ith node in the «th layer. The normalization is given by

Zlmax i= 1p1 ( ) 1.
Consider the case of two layers and Dy = D1, = D, [237,239]. Eq. (109) is written concisely as

dp(t)
a = poe, (110)
where p(t) = (pl(t), pi(t), ... ,py(t), pi(t), p3(t), ... ,pi(t)) and

_ (Dili+DJ =D
ﬁ‘( Dl mu+mJ (111)
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Fig. 5. Schematic of a Poissonian edge-centric CTRW on a multilayer network with £,,x = 2 layers. The values on the edges represent edge weights.

is the (combinatorial) “supra-Laplacian”, where L; and L, are the (combinatorial) Laplacian matrices for the intra-layer
network. Because this RW is an edge-centric CTRW on an undirected network, the stationary density is (pf‘)* = 1/(2N)
(withie {1,...,N}and ¢ € {1, 2}).

The supra-Laplacian matrix £ has a 0 eigenvalue that corresponds to the stationary density. The relaxation time is
governed by the smallest positive eigenvalue (i.e., the spectral gap) A, of £. One of the nonzero eigenvalues is 2Dy and has a
corresponding eigenvector of (1, ... , 1, —1, ... , —1).If the inter-layer diffusion constant Dy is small, then A, = 2Dy, so
the inter-layer hopping is a bottleneck for diffusion in the entire multilayer network. In the opposite limit (Dy >> 1), one can
examine diffusion properties using a perturbative analysis [237]. The quantity 2Dy is still an eigenvalue, but it diverges to
infinity in the limit Dy — oo, and there are N copies of the same eigenvalue in this limit. Another important quantity is As/2,
the eigenvalue of (L; + L;)/2; and there are also N copies of this eigenvalue. Therefore, 1, = A;/2. Note that L, + L, is the
(combinatorial) Laplacian for the monolayer network obtained by adding the intra-layer edge weights for each intra-layer
edge and ignoring the inter-layer edges. We obtain

E - )\'g_'l + )\'g_Z

2 2
where A is the second-smallest eigenvalue (i.e., the spectral gap) of L, so it specifies the speed at which an RW on the
network consisting only of the ath layer (so there are no inter-layer edges) relaxes to the stationary density. Eq. (112) implies
that above diffusion in the two-layer network is faster than diffusion in the slower layer. For some multilayer networks,
however, diffusion can occur faster than in each layer considered individually [237,238].

The small-Dy and Dy > 1 regimes are connected by a discontinuous (i.e., “first-order”) phase transition [239]. More
precisely, there exists a threshold value D} of Dy, such that A, = 2Dy for Dy < D} and A, < As/2 for Dy > Dj. Note that
Dy — As/2 as Dy — oo. The first derivative of A, with respect to Dy is discontinuous at Dy = D}. The transition point has an
upper bound given by D} < As/4.

Ref. [240] investigated the so-called “coverage” time of different types of CTRWs in multilayer networks by calculating
the mean fraction of distinct nodes that are visited at least once (in any layer) in some time period by a walk (which can start
from any node in a network). Ref. [240] then examined coverage as a function of time when some nodes are deleted and
used it to consider the resilience of multilayer networks to random node failures. In their paper, node failure is defined with
respect to the removal of nodes in individual layers (rather than, e.g., removal from all layers), such as a failure of a station
in a single transportation mode (i.e., a single layer) in a transportation network.

See Refs. [60-62] and references therein for further discussion of diffusion processes in multilayer networks. For example,
RWs have been employed to estimate the number of layers in multilayer networks [241]. The investigation of RWs in
multilayer networks is a very active area of research.

> min(A$=", A572), (112)

4.2. Temporal networks

Many empirical networks vary over time, and one can describe them as temporal networks [57,58]. CTRWs with non-
exponential distributions of inter-event times (see Section 3.3) are often discussed in the context of temporal networks,
because non-Poissonian distributions of inter-event times are a fundamental property of most empirical temporal net-
works [57,228].

In this section, we discuss some situations in which a temporal network is given in the form of a sequence of static
networks (which are called “snapshots” in [59]).° In this type of example, one time-independent network corresponds to a
single observation (with a time stamp) of a temporal network, whose time resolution may correspond to that imposed by a
recording period (e.g., every 20 secs). One can then consider an RW on a (temporal) sequence of adjacency matrices:

-'4: {A(l)’A(z)w--’A(nmax)}a (113)

5 There are also other types of temporal networks [57,58], and it is important to consider the time scales of both network evolution and the evolution
of dynamical processes on a network to determine appropriate frameworks for network analysis [49].
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where (A(n)); encodes the activation of edge (v;, v;) at discrete time n (with n € {1,..., nmax}). See the review [58] for a
discussion of several models of RWs on temporal networks in addition to the ones that we will discuss in the following
sections.

4.2.1. Activity-driven model

RWs on temporal networks have been examined both analytically and computationally. One useful approach is to
examine RWs on an “activity-driven model” of temporal networks [147].

The simplest type of activity-driven model generates a sequence of uncorrelated time-independent networks [242]. First,
we associate each node v; (withi € {1 ,..., N})with a random variable a;, called the “activity potential”, drawn from a
given distribution F(a) (with a > 0). Second, at each discretized time t, each node v; is independently active with probability
a;At < 1 and inactive with probability 1 — a;At, where At is the time difference (which we assume to be homogeneous)
between two consecutive time points. Third, at each t, each activated node generates m undirected edges that connect to m
other nodes uniformly at random. When nodes v; and v; are both active and each connects to the other with an edge at time
t, we suppose that there is exactly one unweighted edge (v;, vj) at t. In practice, we suppose that a; At is sufficiently small
to prevent such mutual edge creation to occur too often. We regard the network at each t as an undirected and unweighted
network, and we repeat this procedure independently to generate a time-independent network for the time interval At.

Consider the aggregation of a temporal network into a time-independent network, which we construct by summing the
edge weights across some time window for each edge. The aggregated network neglects any temporal information contained
in the temporal network during that window. If we aggregate observed time-independent networks over some time - which
cannot be too long, or else the aggregated network might be a complete weighted graph - the aggregated (and sometimes
called “annealed”) adjacency matrix is given by

m (a; + a;)
= (114)
where we neglect o(1/N) terms. The degree distribution of the aggregated network is
1 k
p(k™) ~ *F< (a>> , (115)
m \m
where (a) = f aF(a)da is the ensemble average of a. Therefore, a heterogeneous distribution F(a) yields a comparably

heterogeneous degree distribution in the aggregated network.

When we observe a temporal network with a fine temporal resolution, the network at each time point is very sparse.®
This also occurs for the above activity-driven model if a; At and m are sufficiently small. A walker has to remain at a node if
the node is isolated at the present time t, and this fact has a substantial effect on RW dynamics. In the above activity-driven
model, there are two ways for a walker located at node v; to move to node v; in a network at time t [147,244]. The first way
is to combine the following three independent events: (i) v; is activated with probability a; At, (ii) node v; is connected to v;
with probability m/N, and (iii) the edge (v;, v;) is traversed with probability 1/(m + m(a) At). Note that the mean degree of
v; in a time-independent network at an arbitrary time ¢t when v; is activated is equal to m + m{a) At, because v; has m(a) At
edges from the activation of other nodes. The second way is to combine the following four independent events: (i) node
v; is not activated with probability 1 — a;At, (ii) node v; is activated with probability a;At, (iii) v; is connected to v; with
probability m/N, and (iv) the edge (v;, vj) is traversed with probability 1/(1 + m(a) At). By adding these contributions and
assuming that At is small, we obtain a transition-probability matrix T with elements

1 1
Ty~ @At (- aAGA —
i A A T (T AL AL
At
N (a; +maj) (G #1). (116)

Note thatT; = 1 — Z T;.
j=1:j#1
We aggregate all nodes w1th the same value of a into one group, and we regard a as continuous. Let p,(t) denote the
probability that a single node with activity potential a is visited at time t. The normalization is j pa(t)F(a)da = 1, and the
master equation in the At — 0 limit is

dpa(t)
dt

The first and second terms on the right-hand side of Eq. (117) account, respectively, for the in-flows and out-flows of
probability driven by (At/N)a; on the right-hand side of Eq. (116). The third and fourth terms account, respectively, for
the in-flows and out-flows driven by (At/N)ma; in Eq. (116). This RW is a Poissonian node-centric CTRW whose general
master equation is given by Eq. (75).

= /a’pa/(t)F(a’)da’ — apg(t) + ma% — m{a)pq(t). (117)

6 We use the term “sparse” to indicate the presence of an extremely small number of edges rather than in a conventional graph-theoretic sense, in which
a sparse network still typically has a large number of edges (but with an edge density that scales sufficiently slowly as the number N of nodes becomes
large) [44,243].
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The stationary density of Eq. (117) is

R

Pa = a+mia)’ (118)
where

¢=/GPZF(a)da (119)

is the mean probability flow from active nodes at equilibrium. By combining Eqgs. (118) and (119), we obtain the following
self-consistency equation:

¢ = f +¢ F(a)da. (120)

a+m

Because we are con51der1ng a Poissonian node-centric CTRW in an undirected network, the stationary density for a time-
independent, aggregated network has components that are proportional to node degree. Eq. (114) implies that p} for the
aggregated network is proportional to m(a + (a)). However, the stationary density for the CTRW on the activity-driven
temporal network model, obtained by numerically solving Eq. (120) for a given heterogeneous F(a), is rather different from
the time-independent case [147]. In particular, in the activity-driven model, p} saturates as the degree (or, equivalently, a)
increases.

The MFPT is also different in the temporal and aggregated networks. At equilibrium, the probability that a walker moves
to node v; in each discrete step of time At is & = Zf’:m#pfm. The probability that the walker arrives at v; for the first time
after n steps is thus given by &(1 — &)"~! under the mean-field approximation in Eq. (70). One can then calculate that the
MEFPT for the above activity-driven model is

o0
At N
mi~ S AtmE(1—gP == (121)
2 Amb(1 = §  ma+ Y0, ap;

This result is different from the aggregated (time-independent) network case, in which m; ~ 1 /p under the mean-field
approximation in Eq. (70). A crucial difference between RW dynamics in the temporal and aggregated cases is that a walker
in the activity-driven model can be trapped for some time in an isolated node v; and is temporarily unable to travel to a
different node. At a later time, v; becomes connected to another node, and the walker can then move away from v;. This
phenomenon never happens in a time-independent (i.e., aggregated) network, as edges are always present. These results
were recently extended to RWs on an extended activity-driven model in which each node is assigned an attractiveness
value in addition to an activity potential [245].

One can also define RWs on empirical temporal networks. For example, given a sequence of time-independent networks,
one can use each time-independent network to induce one time step of a DTRW [148]. (Another approach is to construct a
multilayer representation of such a temporal network, and examine an RW on the resulting multilayer network [61,234].)
In Ref. [148], the authors compared properties of RWs on empirical temporal networks to those on randomized temporal
networks, which included ones in which the times of activating edge (v;, v;) are redistributed uniformly over time while
keeping the weight of each edge in the aggregated network the same as that in the original temporal network. In comparison
to such randomized temporal networks, the numerical computations in Ref. [ 148] suggest that empirical temporal networks
tend to slow down RW processes, as the MFPT is large and the coverage at a given time is small. See Refs. [230,231,246-249]
for discussions of the effects of temporal networks on the speed of diffusion on networks.

Note that if the time-independent network at each time point is sparse, the trajectory of a random walker may not be as
random as the terminology RW might suggest. For example, if the degree of v; equals 1 at a certain time t, then the walker
located at v; must move to its one neighbor. If v; is isolated at time t, then the walker does not move at t. In the extreme case
in which each node is adjacent to just one node or is isolated at all times, the trajectory of the “random” walk is deterministic.
For example, in the temporal network on N = 4 nodes in Fig. 6, a walker starting from node v, always visits node v, after
three time steps, so there is no randomness. In a CTRW, this situation always occurs in some sense: if ¥/(7) is a continuous
distribution, then multiple events occur at the same time with probability 0 because of the continuous-time nature of the
stochastic dynamics. However, because the event times themselves are determined from a random process, we safely regard
CTRWs as RWs. This situation is not shared by RWs on temporal networks when a network is given by a single realization of
empirical or numerical data. Fortunately, there are at least two (imperfect) ways out of this conundrum. One solution is to
aggregate a sequence of time-independent networks with a sufficiently large time window to make them sufficiently dense.
Another solution is to allow walkers to wait at the current node with some probability even if an edge is available for it to
move to another node.

4.2.2. Memory networks

By definition, a DTRW is a (stationary) Markov chain such that the transition probability does not depend on the
past trajectory. Poissonian CTRWs and non-Poissonian active CTRWs (either node-centric or edge-centric) also share this
property. However, many real temporal networks have correlations in edge activations [57-59]. Therefore, one does not
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Fig. 6. A temporal network with three time points and N = 4 nodes.

expect a trajectory of RWs on an empirical temporal network to be a Markov chain, as certain trajectories are favored and
others are discouraged or even forbidden. Such trajectories are poorly reproduced by the first-order Markov chains that
we have considered thus far. In this situation, using higher-order Markov chains may be helpful [248,250], and it is also
important to explore non-Markovian stochastic processes.

To consider the above issue with empirical data in the context of temporal networks, we first map time series of edge
activations in a sequence of time-independent networks to trajectories of walkers [250]. We assume that a walker is located
initially at a uniformly randomly selected node v;. (The choice of initial condition can matter if RW trajectories simulated in
the following are short.) A walker waits there until at least one edge is available for it to move. When at least one edge
becomes available, the walker leaves the node with probability 1 — q and does not move with probability g. As usual,
the destination node vj is selected with probability A;(t)/ Z]Z:til(t)- We repeat this procedure several times and thereby
generate multiple trajectories startingatn = 1and finishing at n = np,,x. When g = 0, the walker always moves to a different
node using the first available edge [148,230]. When q € (0, 1), some randomness is introduced into the trajectories [251],
preventing spurious effects such as a strong tendency for backtracking [252]. However, for sufficiently large g, the effect
of temporal correlations between edges at short time scales becomes unimportant, which may dilute the impact of the
temporality of the data. If trajectories are statistically independent of the past locations of a walker, it is sufficient to use a
first-order Markov chain. In this case, the transition-probability matrix T = (Tj;) constructed from an aggregated network,
in which the weight of edge (v;, vj) is equal to the sum of (A(t));; over time, is sufficient for describing the RWs. We denote a
first-order Markov chain on an aggregated network by M. See the top right panel of Fig. 7.

In general, the probability that a random walker visits node v; after the (n + 1)th step depends on the entire history of
a stochastic process. To partially take into account temporal correlations between edge activations, one can use a second-
order Markov chain. We define a process, which we denote by M-, using an expanded transition probability tensor, whose
element Ty;; represents the probability that a walker moves from node v; to node v; given that the previous position is node
vy. Another representation of the process Ms is to use a memoryless RW (i.e., a first-order Markov chain) between directed
edges of the original network. In this representation, the probability that directed edge ;v is visited depends on vy v; rather
than only on node v;, as in the first-order Markov chain M. For simplicity, for the rest of the present discussion, we use
the shorthand notation 1] for a directed edge v;vj. For this representation, we regard the state space (i.e., the set of directed
edges) as the nodes of a new network, which we call the “M; network” or “(second-order) memory network”. One construes
the original network as a “physical network”, and the state space of M, is the so-called “directed line graph” of the original
network [253]. The memory network has 2M nodes whether the original network is directed or undirected. We sometimes
use the term “memory nodes” for the nodes of a memory network. Even for undirected networks, we must assign two
memory nodes ij and ji to each pair of adjacent nodes v; and v; in the original network, because a memory node encodes
the time ordering of visits. The number of edges in a memory network is proportional to (k?)N [254].

To improve accuracy, one can also examine memory networks in the form of higher-order Markov chains. For example,
in a third-order Markov chain, the transition probability depends on the currently visited node v; and two previously visited
nodes vj and v,. Amemory node is then specified by v;v;v;. However, going beyond second-order Markov chains is not always
practical. First, a second-order memory network is conceptually simpler than higher-order counterparts, as the memory
nodes are given by edges of the original network rather than by higher-order structures. Second, one may only obtain
marginal gains by considering higher orders [250]. Third, higher-order memory networks require a lot of data, because the
number of memory nodes and transition probabilities to be estimated increases exponentially with the order of the Markov
chain.

One encodes the dynamics of a secgnd -order Markov chain by a transition- probablll_y matrix on the network with 2M
nodes whose elements are given by p(ij — jZ) (see Fig. 7). In practice, one estimates p(ij — jZ) with

- - (number of transitions 1j — ]7)
p(ij — jb) = = — ==, (122)
> w—(number of transitions ij — j¢)

where one counts the number of transitions in the RW trajectories generated by the sequence of time- mdependent networks

One interprets the transitions as movements between directed edges. The normalization is given by Z o—1P(i — je) = 1.In

situations in which one can measure RW trajectories in empirical data, they can be used directly to estimate Eq. (122) [250].
In a first-order Markov chain M (i.e., a DTRW) on an unweighted network, we obtain

T {1/kj (v¢ is a neighbor of v;),

plij — jt) = 0 (otherwise). (123)
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Fig. 7. Memory networks (of order 2). The network on the left shows a part of a directed network (a “physical network”). The width of each edge represents
edge weight. In the present example, we assume for simplicity that the physical network is unweighted. In the first-order Markov chain M, a state is a
node of the physical network. In the second-order Markov chain M, (of which we show a part), a state is a directed edge of the physical network. The state
space is the directed line graph of the physical network. If the process that occurs on the physical network is Markovian, transitions in M, are uniform in
the following sense. Suppose, as indicated in the figure, that node v3 has two in-edges and two out-edges in the physical network. One then should be able
to reach node 34 with equal probability from nodes 13 and 23, yielding the same weight for edges 13 - 34and 23 — 34.Inthe part of M5 (determined
from, for example, a temporal network) that we show in this figure has edge weights that are different from the expectation of the first-order Markov
chain M. In other words, a move from node v3 to node v, is more likely to occur when a walker arrives at v3 from v; than from v,. Therefore, the process
represented by M; network is not Markovian on the physical network.

In general second-order Markov chains, the probability that a walker visits node ]7 after n + 1 steps is given by
N — - —
pGln+1) =" p(if; mp(§ — jf). (124)
i=1

Edge-centric passive CTRWSs with a non-exponential distribution v (7 ) of inter-event times are one example of a situation
that is appropriate to model using a second-order Markov chain rather than a first-order chain. Eq. (102) implies that
p(&i — ij) depends on whether j = £ orj # ¢. In particular, if y(7) is a heavy-tailed distribution, then p(¢i — if)
(i.e., the probability to backtrack) is larger than is expected in a first-order Markov chain. All other p(£1 — i) (j # £) values
are the same. In contrast, if ¥ () is a lighter-tailed distribution than an exponential distribution, p(¢i — i¢) is smaller
than expected in a first-order Markov chain, and random walkers tend to avoid backtracking. The extreme case of the latter
situation is a non-backtracking RW [248,250,255,256]. In such an RW, a walker performs an RW, except that it is not allowed
to backtrack [257,258], so p(if — ji) = 0and p(ij — j€) = 1/(s?* — Ay) (with ¢ # i),

A network’s associated non-backtracking matrix, which is a 2M x 2M adjacency matrix for the M, network, has been
used recently in several applications, including percolation [259,260], network centralities [261], community detection
[262-264], and efficient “immunization” algorithms [265]. More generally, we also note that non-backtracking matrices
help with “message passing” and “belief propagation” approaches to network analysis.

To quantify the difference between a first-order Markov chain M; and a second-order Markov chain M, we compare
their entropy rates. “Entropy rate” quantifies the uncertainty of the next state given the current state, weighted by the
stationary density. For My, the entropy rate is

N

Hy=—) piTjlogT;. (125)
=1

In M5, one calculates the entropy rate for a first-order Markov chain on the memory network and thereby obtains

N
Hy=— Y pp(if — jO)logp(if — ji), (126)
ij, =1

where p* is the stationary density at node E in the memory network. In many empirical temporal networks, H; is
considerably smaller than H;, implying that one cannot neglect memory effects [248,250] (also see [266,267] for similar
measurements). The first-order Markov chain M; tends to overestimate the number of available neighbors around the
current node of a random walker compared to its higher-order counterparts.

The observation that H, < H; can influence RW dynamics, other dynamical processes on networks, and how one wants
to calculate certain structural features of networks. For example, communities of networks found by second-order Markov
chains (see Section 5.3.1) tend to contain edges that are activated at the same time [255]. Such communities are undetectable
using first-order models (such as the usual RWs). Memory also affects the relaxation time of an RW or other Markov processes
towards a stationary state [247].
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Fig. 8. A second-order Markov chain on a 3-clique. The widths of the arrows represent (schematically) the transition probabilities in a second-order Markov
chain. For example, a walker that has moved from node v, to node v; moves back to v, with probability g and moves to v with probability 1 — q in the
next move. Because q > 1/2 in this figure, random walkers tend to backtrack.

The eigenvalue A, of T with the second-largest absolute value influences network community structure and determines
the relaxation time of RWs [230]. (See Section 5.3 for more discussions of community structure.) Temporal correlations can
either increase or decrease \,, depending on how temporal correlations are introduced [247]. If memory increases |1,|, a
random walker in a second-order Markov process tends to be confined in a certain part of the original network (i.e., the M1
network) than is suggested by network structure alone. In the corresponding M, network, a random walker tends to be
trapped in a community. In this case, memory has slowed down relaxation to a steady state. However, if memory decreases
|X2], a walker moves from one community to another faster than is suggested by the original network. In this case, memory
accelerates relaxation to a steady state. Moreover, non-Markovian pathways in a network without community structure can
still create community structure in the associated M; network [59]. As a simple example (see Fig. 8), consider an undirected
3-clique (i.e., a triangle).

The transition-probability matrix of the usual DTRW (i.e., the M process) is

1 1
0 — —
2 2
r=(1 o 1, (127)
2 2
1 1
- - 0
2 2
which yields A, = —1/2. On the triangle network, consider the second-order Markov chain process defined by
p(12 — 21) = p(21 — 13) = p(13 — 31) = p(3T - 13) = p(23 - 33) = p(32 > 23) = ¢, (128)
p(12 — 23) = p(21 — 13) = p(13 - 32) = p31 — 13) = p(23 > 31) = p3Z > 21) = 1 - ¢, (129)
where g € [1/2, 1) (see Fig. 8). This RW backtracks the edge traversed in the previous step with probability g. If we order
the nodes in the M, network as 12, 21, 13, 31, 23, and 32, the transition-probability matrix is
0 q 0 0 1—q 0
q 0 1—gq 0 0 0
_ 0 0 0 q 0 1—¢q
T = 1—g 0 q 0 0 0 . (130)
0 0 0 1—¢q 0 q
0 1—gq 0 0 q 0
The eigenvalues of T are 1, 1 — 2q, and [—1 +qx \/(1 —q)?+4(2q — 1)] /2. The last eigenvalues (for each of £) have
multiplicity two. The relaxation time is governed by A, = | -1+ q — \/(1 —q) +4(2q — 1)] /2 < 0.Whenq = 1/2, we
obtain A, = —1/2, which is consistent with the memoryless case. When q > 1/2, we see that A, decreases monotonically

towards —1, which one obtains in the limit ¢ — 1. A large value of g makes |A;| large and hence makes the spectral gap
small, so a random walker tends to spend a long time in a community in the M, network. In this situation, each of the three
edges constitutes a community, and it is difficult for the walker to leave any edge.

Storing the stationary density of a second-order Markov chain (i.e., p*%») may be prohibitive, particularly for a network
that is not sparse, because the M, network has 2M nodes. A space-friendly alternative is to introduce an approximation
p*iT ~ pip; (withi,j € {1,...,N}) and estimate p; [268]. The estimated p; is the stationary density of a modified second-
order-like Markov chain called a “spacey RW” [269]. In a spacey RW, a walker visiting node v; forgets the last node v; that
it has visited. The walker then draws the fictive last position v; uniformly at random from the list of the nodes visited in
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the past. (The probability that each node is selected is weighted by the number of past visits to the node.) The walker then
moves to v, according to the probability p(ij — j¢). Spacey RWs are a type of “reinforced RW”, in which nodes or edges
(nodes in the present case) visited frequently in the past are also visited more frequently in subsequent steps [75]. Spacey
RWs have such a richer-get-richer mechanism embedded in the process to select the fictive last position v;.

The formalism in this section allows one to examine how temporal correlations in a network affect spreading pro-
cesses [255,267].1t can also be used to directly exploit knowledge of the trajectories of diffusing entities (so-called “trajectory
data”) when they can be observed and collected. For instance, the trajectory of a traveler between different airports is
rather different from a first-order Markov process, so it is important to consider higher-order Markov processes or even
non-Markovian dynamics [250]. Similar conclusions arise when studying animal movements [270], Website traffic [271],
and other applications.

Although trajectory data are becoming increasingly available, it is difficult to measure trajectories for the vast majority
of systems. Moreover, even when they can be measured, a high-order Markov model or non-Markovian model may be
unnecessarily complicated to extract the most salient features of a system. Consequently, researchers have proposed simple
models of second-order Markov dynamics based on the distinction between different types of transitions on networks. In
practice, one can calibrate the model parameters in systems in which trajectories can be measured and then use these models
to simulate trajectories in similar systems for which data on trajectories are not available.

In [250], Rosvall et al. enumerated three different types of transitions:

1. Areturn step, in which a walker coming from E jumps to ]_{ In other words: a walker coming from node i to j returns
to node i.
2. A triangular step, in which a walker coming from ij moves to edge j¢, where £ # i is a neighbor of node i.

3. An exploratory step, in which a walker moves from ﬂ to an edge j? whose end point ¢’ is neither node i nor any of i’s
neighbors.

To each of above types of transition, one then assigns a positive weight (denoted r, r3, and r- 3, respectively) to account
for their relative contributions. One can recover several existing types of processes for specific choices of parameters. For
example, r, = r3 = r.3 yields a first-order Markov process and r, = 0, r; = r.3 > 0 yields a non-backtracking RW.

5. Applications
5.1. Search on networks

People are often interested in finding a resource, service, or piece of information that is available only at some nodes in
a network [44]. If network structure is completely known to a user or a designer, a shortest path from the initially visited
node to a destination node provides the most efficient way of searching, although it may be sensible to plan a detour if one
expects congestion from traffic somewhere along a shortest path.

If a searcher has partial information about his/her destination (e.g., the geographic distance to it), one can of course use
such information to inform search paths [272]. In contrast, if one does not have any information about network structure
or has only local information (such as the degrees of neighbors), RWs provide a viable approach for searching in networks.
One context in which this idea has been investigated and implemented are decentralized peer-to-peer networks [273,274].
A node that sends a query emits N, packets to neighbors selected uniformly at random. Each packet behaves as a random
walker, which travels until it finds the item or reaches a prescribed lifetime n,.x, which is the maximum number of steps it is
allowed to take before it is removed from the network. Search overhead is determined by Ny max, Which is a measure of the
number of walkers, averaged over time, that are wandering in a network. One expects larger N;wnmax to yield better search
efficiency (i.e., a higher probability that an item is found). Therefore, there is a trade-off between search overhead and search
efficiency. RW search methods are comparable with flooding search methods in various networks and scenarios [273]. In
a flooding method, first used by Gnutella, a node with a query asks all of its neighbors, each of which in turn asks all of its
unvisited neighbors, and so on [275].

Most empirical networks are highly heterogeneous in node degree [44]. If a node that is making or passing on a query
knows the degrees of its neighbors, one can enhance search efficiency by sending the query to high-degree neighbors [276].
The main limitation of such an approach is that most queries are forwarded to hubs, potentially causing overloading at such
nodes (depending on their capacity).

5.2. Ranking

In the study of networks, one often seeks to rank nodes, edges, or other structures based on their relative importances
(i.e., “centralities”). There are myriad ways to measure centralities in networks, especially for ranking nodes [44,277], and
new ones are published at a very rapid pace. Many methods for computing node centralities are based on eigenvectors
of matrices and are derived from various types of RWs or other walks. These include “Katz centrality” [278] and related
measures (such as “communicability”) [ 142], “eigenvector centrality” [67], “PageRank” [23], “hubs” and “authorities” [279],
“non-backtracking centrality” [261], and many others. By considering RWs on multilayer and temporal networks, one can
also generalize such notions of centrality [240,251,280-285].
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5.2.1. PageRank

The most famous centrality measure is probably “PageRank”, which was introduced originally for ranking web pages. In
this context, it was introduced by Brin and Page [66] (see also [286]), although an equivalent formulation had already existed
for two decades [287]. (Brin and Page’s discovery was independent of Ref. [287].)

PageRank is discussed thoroughly in many review papers and monographs [23,288-292], and it has been used (and
generalized) for numerous applications - including ranking of academic journals and papers, professional sports, disease-
gene identification, discovery of correlated genes and proteins, systemic risk in financial networks, anomaly detection in
distributed engineered systems, ordering of the most important functions in Linux, prediction of traffic flow and human
movement, recommendation systems in online marketplaces, image search engines, identifying community structure in
networks, and much more [23]. We indicate a few fascinating applications in passing. For example, seven new genes
that predict the survival of patients in a type of pancreatic cancer were identified using PageRank [293]. PageRank has
also been used to rank professional tennis players [294], and PageRank and other RW-based ranking methods have been
used for ranking teams in U.S. college football [295,296] and ranking players in Major League Baseball [297]. PageRank
and other eigenvector-based centrality measures have also been used to rank universities [298], mathematics research
programs [284,299], baby names [300], and many other things.

The PageRank vector is defined as the stationary density of a DTRW on a network that is a modification of an original
network to guarantee that the stationary density always exists. For the original network, the temporal evolution of the
probability p(n) that node v; (withi € {1, ..., N})is visited at time n is governed by Eq. (26) (or, equivalently, by Eq. (28)).
The essential idea of PageRank is to use the stationary density in Eq. (30) as a centrality measure. Eq. (30) implies that node
v; is central if many edges enter node v; (i.e., it has a large in-degree), the source node of the edge that enters v; is a central
node, and the source node v; of the edge that enters v; has a small out-degree. The last condition ensures that the total
centrality of v; is shared among its out-neighbors. This recursive relationship (i.e., a node is central if it is adjacent to central
nodes) leads to an eigenvalue problem. Other centrality measures - including eigenvector centrality, Katz centrality, the
hyperlink-induced topic search algorithm (which uses “hubs” and “authorities”), and many others - are based on the same
basic idea [44]. In PageRank, the eigenvalue problem corresponds specifically to the stationary density of a DTRW.

In an empirical directed network, one cannot typically use a transition-probability matrix T without modification to
measure centralities, because such networks are not usually strongly connected. Consequently, there are transient nodes
with stationary density equal to 0, and the stationary density need not be unique, as it depends on the initial condition of an
RW when there are multiple absorbing states. To overcome these problems, we allow walkers to “teleport” (e.g., uniformly
at random) to other nodes to construct an effective network that is strongly connected. The master equation for the altered
RW is

N
pilt +1)=a Y piO0Ti+ (1 — o), (131)
j=1
where the “preference vector” (uy, ... ,uy), which satisfies the constraint Zf': 1ui = 1, determines the conditional

probability that a walker teleports to node v; when it teleports. At any node with at least one out-edge, a walker teleports
with probability 1 — «. To prevent the transition probability in Eq. (24) from being ill-defined, it is standard to ensure that
a walker teleports with probability 1 (rather than with probability 1 — «) when it visits a so-called “dangling node” (which
have no out-edges, so s = 0 for a dangling node v;). Mathematically, we set T; = u; (withj € {1, ..., N}) for any dangling
node v;. For web browsing, one interprets teleportation as a move to a new web page without following a hyperlink on the
web page that is currently being visited. If u; > 0 (withi € {1,...,N}), any « € (0, 1) renders the altered RW ergodic,
and Eq. (131) thus converges to a unique stationary density. The PageRank vector is the stationary state of Eq. (131), and
it is equal to the normalized eigenvector corresponding to the largest positive eigenvalue of the matrix T’ with elements
Ti} =aTj+ (1 — ;.

Power iteration of T converges rapidly if the spectral gap of T’ is large (or, equivalently, if the second-largest eigenvalue of
T’ has small magnitude). The second-largest (in magnitude) eigenvalue of T’ is equal to aA,, where 1, is the second-largest
(in magnitude) eigenvalue of T [288]. Therefore, power iteration converges towards the PageRank vector at a rate that is
proportional to 1/« [23]. However, a small value of «, which corresponds to a large teleportation probability, dilutes the
effect of the original network structure (which is encoded in the transition-probability matrix T). A rule of thumb is to set «
near 1 to suppress the effect of teleportation, but to also make sure that it is not too close. A popular choice is to let « = 0.85
and use a preference vector of u; = 1/N (withi € {1,..., N}) so that one teleports to nodes uniformly at random. An
alternative choice is a “personalized PageRank” [23,288-291,301-304], in which the preference vector is localized around
one node or a small number of nodes (which can be helpful for applications to community detection [68]). One can also
examine other teleportation strategies [305].

The stationary density of Eq. (131) has components

N
Pra=(1—a)) w[l—al) "], (132)

j=1
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and we note that we explicitly include the dependence on « in our notation. The Taylor expansion of Eq. (132) yields [306,307]

p,ar»u,—i-z Zu, TE—Ti ") (133)
=1 j=1

Eq. (133) includes terms for walks of all lengths ¢, and it thereby reveals the non-local nature of PageRank. When the value
of « is large, a lot of credit is given to long walks. (See Ref. [ 142] for similar discussions in the context of centrality measures
such as communicability.) In fact, the stationary density can change drastically as a function of « [288]. We set u; = 1/N
(withi € {1, ..., N})and rewrite Eq. (133) as

0 m_squt

J Z 1

o= 5 2 (T 134
=1 JJ’* 7

The leading contribution for small « makes the PageRank vector uniform across all nodes. Heterogeneity arises as « increases.
Eq. (134) indicates that the contribution of each length-¢ walk is proportional to sJ‘.P - s;’”t Each term on the right-hand side

of Eq. (134) vanishes when a network is regular in the weighted sense (i.e., when 52“ = sf"“ =s,wherei € {1, ..., N}). This
yields p;, = 1/N for any value of a.

A strategy to minimize the dependence of the PageRank vector on « is to carefully choose the preference vector. One
choiceisu; = si” / 22’:152“ [305], inspired by the observation that the in-strength of a node is often correlated positively with
pi for a DTRW on the original network (see Section 3.2.2). With this choice of u;, one uniformly randomly selects an edge
rather than a node. One then teleports, uniformly at random, to one of the two end points of the selected edge. Substituting
this preference vector into Eq. (133) yields

in 00 ot N

Ple = e+ 2 e O () T (135)

e=15¢ 51241411

which differs from Eq. (134) in several respects. As « — 0, the components of the PageRank vector in Eq. (135) are given by
the in-strength of the nodes. (The simplest - and a rather popular — measure of centrality in networks is simply to calculate
node degrees and/or node strengths.) The ¢th-order contribution consists of a weighted mean of the walks of length £. One
expresses their contribution to the PageRank vector in terms of the source node of a walk (i.e., v;) in Eq. (135). This contrasts
with Eq. (134), where one instead expresses the contribution in terms of edges (v, vy ). A node v; that is the source of more
probability flow than it receives as a destination (i.e., sji.“ > s]‘?“‘) makes a positive contribution to the PageRank vector, and
a node v; with s}“ < s]‘?‘“ makes a negative contribution. Eq. (135) is independent of « when a network is balanced. (Recall
from Section 3.2.2 that a directed network is balanced when si.“ = s?“‘ for each i.) In a balanced network, Eq. (135) reduces
top; = 5"/ 0S¢,

Chung proposed a variant of PageRank called “heat-kernel PageRank” (which is defined for strongly connected net-
works)[308,309]. It is the probability density of a Poissonian node-centric CTRW at time t, where ¢ is the only parameter and
it plays the role of & from the original PageRank. One uses a preference vector as an initial condition. Heat-kernel PageRank
tends to the stationary density of a DTRW as t — oo. (For undirected networks, the components of the limiting stationarity
density are thus proportional to the node strengths.)

We also note that various versions of PageRank and similar RW-based centralities for multilayer networks have been
proposed [281-283,310-312].

5.2.2. Laplacian centrality

PageRank is essentially the stationary density of a DTRW. The stationary density of the Poissonian edge-centric CTRW
has also been employed as a centrality measure for directed networks (and, in fact, it has a longer history than PageR-
ank [219,313-315]). For strongly connected networks, such a “Laplacian centrality” is defined by the left eigenvector
corresponding to the 0 eigenvalue of the (combinatorial) Laplacian L. That is, it is given by p* in Eq. (79). This Laplacian
centrality has been used, for example, to rank football teams [316], baseball players [297], and neurons [222]. It has also
been used in population ecology as a “reproductive value” [317,318].

5.2.3. TempoRank

One can extend the DTRW to temporal networks by using sequences {A(1),A(2), ...} of adjacency matrices (see
Section 4.2). Therefore, one can also extend PageRank to temporal networks. One such generalization is called “Tem-
poRank” [251], and Katz centrality [280,319] and all eigenvector-based centralities [284] have been generalized to such
temporal networks.

In this section, we discuss TempoRank. We consider an undirected temporal network whose edge weights at each discrete
time have (nonnegative) integer values. The latter assumption corresponds to a situation in which an event is an unweighted
edge and each node pair can experience multiple events during the time window corresponding to a given matrix in the
sequence. One can also image a sequence of networks, in which one has a time-independent view (or approximation) of a
temporal network at a given instant in time. This weighting assumes that a random walker at node v; that moves at discrete
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time n selects each available edge (i.e., event) with the same probability and then traverse the chosen edge. Because we
consider DTRWs, the walker moves at most once per time step. To avoid using a multilayer-network formalism, we also
assume that there are no inter-layer edges between different matrices in the sequence.

To make the walk random even when just a single edge is available to a walker in a time period, we assume that, in
each time period, a walker resists moving from node v; with probability q per unit weight of an edge connected to v;. For
example, if v; is adjacent to a node with two events (i.e., edge weight equal to two) and to another node with three events
at discrete time n, a walker visiting v; stays at the same node with probability ¢° at time n. A large q entails slow diffusion,
and the parameter q allows one to explore situations in which diffusion is slower than the time scale of the dynamics of the
network. We define the transition probability from node v; to node v; at discrete time n as

8ij (siin)=0,je{1,...,N}),
Ty(n) = { g"™ (sn) = 1,i=}j), (136)
(A(1 = g ™)/sin)  (si(n) = 1.1 # ).
where s;(n) = Z;V:](A(n))ij is the strength of v; at time n. Note that Z}V:]T,»j(n) = 1. From Eq. (136), we see that a walker
does not move with probability ¢*(™. Otherwise, it moves to a neighbor with a uniform probability of 1/s;(n). By setting
the probability of not moving to 5", one ensures that the probability of not moving from v; is unaffected by whether
multiple edges are present simultaneously in a time period or if they are distributed over multiple times. For example, if v;
is connected simultaneously to three other nodes by unweighted edges at time n = 1 but isolated at timesn = 2and n = 3,
the probability that a walker visiting v; does not move duringn = 1,n = 2, and n = 3 is equal to ¢°. The probability is the
same if v; is connected to one node at each of n = 1, n = 2, and n = 3. Note that one can derive the former case (i.e., three
edges simultaneously connected to v;) from the latter case (i.e., one edge connected to v; at each time) by coarse-graining
the temporal network (e.g., by regarding A(3n — 2) + A(3n — 1) + A(3n) as a new adjacency matrix at a rescaled discrete
time n). Our formulation mitigates the effect of temporal resolution (and time-window size) by equating the probability of
not moving in the two cases.
The transition probability depends on time. When there are n,.x time windows, the transition probability for one “cycle”
(i.e., one time through the full time period in the temporal sequence of adjacency matrices) is defined as

TP = T(1)T(2) - - - T(Nmax) - (137)

Using periodic boundary conditions (i.e., by having the last adjacency matrix A(nma.x) loop back to A(1)), the “stationary
density” at node v; is given by the ith element of u(1), where

u(1) = u(1)T™. (138)

There is no stationary density in the present RW process in the conventional sense, because the network is changing in
time. Due to the periodic boundary conditions, the stationary density of walkers at each node differs across time periods.
The vector u(1) represents the stationary density when the RW is observed right after time n,,x (and before time 1) in each
cycle. One defines the TempoRank vector based on the running mean of the stationary density over all time periods. That
is, it is given by u?'® = ZZZ“]"u(n) /Nmax, Where u(n) is the stationary density when the observation is made right after time
n — 1 (and before time n).

5.2.4. Random-walk betweenness centrality
In our discussions of ranking methods, we have discussed centrality measures (e.g., PageRank) that are derived from RWs.
RWs are also useful for deriving variants of other familiar centrality measures, such as “betweenness centrality”.
Shortest-path betweenness centrality (i.e., geodesic betweenness centrality) of a node is defined from a normalized count
of the shortest paths that pass through a focal node for all pairs of distinct source and target nodes in a network [44,320].
Specifically, the shortest-path betweenness of node v; is

pEeo _ Z (number of shortest paths from vy, to v;, that pass through v;)
1

139
N(N — 1) x (number of shortest paths from v;; to v;,) (139)

is it
where the nodes v;, vi,, and v;, are all distinct. However, restricting to strictly shortest paths can be problematic [321]. For
example, consider the network in Fig. 9 that includes two communities of densely-connected nodes. Nodes v, and v, have
large betweenness-centrality values because any shortest path connecting one node in each community must pass through
both v; and v,. However, because such a shortest path does not pass through vs, the shortest-path betweenness of node v3 is
0, yet v3 may be more important than most other nodes in connecting different parts of the network (albeit to a lesser extent
than v; and v,). One can capture this intuition by allowing paths that are longer than the strictly shortest ones to contribute
to the value of a betweenness centrality. One way to do this is to use RWs [144,321].

We now explain the “RW betweenness centrality” introduced in Ref. [321]. Consider an undirected network. Similar to
the definition of shortest-path betweenness centrality, we specify the starting node v;, and terminal node v;, of an RW.
Intuitively, RW betweenness centrality of a node v; measures the number of times that a random walker starting from v,
passes through v; before reaching v;,. If we do not specify v;,, a walker wanders forever in the network, and the centrality of
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Fig. 9. A network with two clearly distinguished communities.

v; is proportional to s; [see Eq. (31)]. In RW betweenness centrality, one still discounts long walks, because a walk terminates
once a walker reaches v;,.
The RW betweenness centrality of node v; is

N is—1
b Z Z(number of times that a walker starting at v;, and terminating at v;, “effectively” visits v;). (140)
is=1 ig=1

Note that the “effective” number of transitions between nodes v; and v; € A is equal to the difference (in absolute
value) between the number of times that a walker moves from node v; to node v; and the number of times that it moves
from node v; to node v;. An effective transition from v, to v; and then to a different node v; (with j # £) completes
an effective visit to v;. Therefore, the number of effective visits to v; on the right-hand side of Eq. (140) is given by
> _je;(number of effective transitions between v; and v;)/2.

Because an RW on a network is related to a corresponding electric circuit on the same network [1,35,41,44,118,119], we
also discuss a centrality based on electric circuits and then relate it to RW betweenness centrality b{". Consider an electric
circuit in which one injects a unit current at node v;, and drains it at v;.. Suppose that each edge has a conductance of A;;, and
let V; denote the voltage at node v;. Kirchhoff’s current law at each v; implies that

N
ZAU(VI‘ — Vi) = 68iis — Siie - (141)
j=1
The left-hand side of Eq. (141) represents the current that flows from node v; to node v; for eachj € {1, ..., N}. Because
N
> Aj=si. (142)
j=1
we rewrite Eq. (141) as
(D—AV =LV =, (143)
where V = (V;, ..., Vy)T, the quantity I°“ is the column vector of size N given by
1, (i = is) s
Mr={-1, (i=1y), (144)

0, (i & {is,it}),
and we recall that L is the combinatorial Laplacian matrix.

Because L does not have full rank, Eq. (143) does not have N independent solutions, even though it consists of a set of N
linear equations with unknowns V; (withi € {1, ..., N}). Therefore, we delete an arbitrary igth row from L, corresponding
to setting V;, = 0, without loss of generality. As in Section 3.2.5, we also delete the igth row and column from D and A to
yield(N—1)x (N —1) matrices'E(IO) and E( IO), respectively. Similarly, we remove the iyth element from V and I°"" to obtain

(N — 1)-dimensional vectors ﬁlo} and rllrr(iO), respectively. Eq. (143) is thus equivalent to

=(io)

0" — E(lo))v(lo) _ iCUfr(lo) . (145)
.. =(io) (o) .
For a connected network, the matrix D'~ — A~ has full rank, and we obtain
V(fo) _ (B(fo) _E(io))_qwff(fo) ) (146)

We now reinsert the igth row and column of (ﬁi(’) — EUO))‘I by filling them with 0s, and we denote the resulting N x N
matrix by R = (Rj;). Substituting Eq. (144) into Eq. (146) then yields

Vi=Rij, — Rij, - (147)
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Note that Eq. (147) satisfies the condition V;; = 0. The total current that flows through node v; is

N N
1 1 = = = = .

Current** — |} 3 j_ZlAij Vi—V| = 3 j_Z]Aij |Riiy — Rij, — Rii + Ry (i & {is, it}) (148)
1 (i € {is, it}) -

The division by 2 in the first case of Eq. (148) arises from the fact the same current is counted twice when it flows into and
out of v;.
One can show that RW betweenness centrality is equal to

Zgzl Zi:;} Current?’it
N(N —1)/2

Thatis, it is the normalized frequency that a random walker visits node v; before it reaches v;,. To verify Eq. (149), we consider
a DTRW with an absorbing boundary at v;,. The transition-probability matrix consists of the elements

, A (i#ip)

Ti=1 s ‘ ‘f ’ (150)
3iyj (i=1).

The matrix T’ is equal to the transition-probability matrix of a DTRW with an absorbing boundary, so T’ is equal to D~'A

except in the i;th row. We remove the i;th row and column from T’, D!, and A to obtain

i N
T““:(B(’”) 700 (151)

Whenever the row sum of T is less than 1, the walk is absorbed at v;, with the residual probability.
Consider an RW that starts from node v;,. The probability that a random walker visits v; (with i # i) after n steps is given

by the (is, i)th element of( (t)) (For clarity, we use the indices 1, ..., i — 1,i;+ 1,..., N ratherthan 1,..., N — 1 for

b = (149)

the elements of T ) .) Conditioned on this event, the probability that the walker moves to node v; in the next step is equal
to 1/k;. The expected number of times that the walker steps from node v; to a neighboring node v; € \j is

i1
(), ([T
Z ki = k; N

n=0
N P I N
it etementor (1) |1 - (0) " (&) | (0"

. -1
= ith element of (I ({urr(lt)) (D(”) — E(lt)) ) (152)

Because ﬁit) and E(it are sTymmetrlc matrices, the left-hand side of Eq. (152) is also equal to the ith element of

—euriN T /i —
[(Icu”(m) (D(”) E(“)) :| = (D(lt) ﬁ(lt)) Icurr ") Therefore, Eq. (146) guarantees that the quantity > @™ )]isi/
Ki

i)is equal to voltage V; when v;, = v;. Finally, the “effective” number of transitions - i.e., the difference between the number
of times that a walker moves from node v; to node v; and the number of times that it moves from node v; to node v; - is
equal to |V; — V.

We now consider “RW centrality” [ 144], which is a variant of RW betweenness centrality. This centrality quantifies the
speed at which a walker starting from node v; reaches other nodes compared to the speed at which a walker starting from
an arbitrary node reaches v;. To formalize this idea, we use Eq. (69), which gives the MFPT m;; from node v; to node vj, and
we focus on undirected networks. One measures the importance of node v; relative to node v; by calculating

R RO R RY
—mi = s /A S N L A L . 153
ji (Z z) x [( . 5 s (153)

For undirected networks, the following detailed balance, which extends Eq. (32), holds [ 144]:
N

A, Ao, Aryij
1 1€2 n—1J
sipii(n) = s E ~ 5 S
L1.8p,....0h—1=1 ! 4 n—1
N
Aig, Ao, A
Tk by n—1J
= E X ey = spi(n). (154)
0 bty =1 01 02 5
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Substituting Eq. (154) into Eq. (65) yields
0
I ORI

Sj 5j
oo | spin) 5
Zn:O |: Si Z’[L] SK:I
= 5
o0 Si
+(n) —
ano |:sz( ) . Sz] R](‘,'O)
= =J (155)
Si Si

We then apply Eq. (155) to Eq. (153) to obtain

my — mji = G ()" — Gr(i) ™", (156)
where
S;
R(O) Zz 15¢
S,
= ! (157)

Z;“io[ii( ST ]S}Zl 15¢
is defined to be the RW centrality.

5.2.5. Discrete-choice models

Discrete-choice models describe decisions between distinct alternatives [322,323]. Examples of discrete choices occur
in everyday life; for example, one can choose to shop at a given store, use a specific mode of transportation, or root
for the Los Angeles Dodgers instead of some other baseball team. In many applications, one faces the problem of “rank
aggregation” [324], as it is necessary to aggregate preferences about an item over a set of alternatives, which one observes
for different individuals, who have different subsets of alternatives. For example, the Bradley-Terry-Luce (BTL) model defines

the probability to select alternative i (where i € {1, ..., N}) over alternative j in a pairwise comparison as
Vi
i = , (158)
! Vit

where y; > 0is a latent parameter that encodes the attractiveness of alternative i [325,326].

The pairwise-choice Markov chain (PCMC) model is a discrete-choice model that uses the stationary density of a CTRW
as the probability to select i among several alternatives [327]. In the PCMC model, one considers a Poissonian edge-centric
CTRW on an N-node directed and weighted network. An individual can choose an item from a subset S of the N alternatives
(i.e., nodes). Instead of using the network’s adjacency matrix A to construct a transition-rate matrix for a CTRW on the entire
network (see Eq. (78)), the PCMC model uses A to define a transition-rate matrix Qs = (q,j) on S. The rows and columns of
Qs are indexed by the elements in S, and they are defined by q; = A;; (forj # i) and g;; = ies\iij- For any set S, note that
Qs does not require the diagonal elements of A, so we assume that they are 0. The PCMC modlel uses the stationary density
of the CTRW on S as the probability that an individual chooses i when S is the set of alternatives. One can then estimate the
matrix A from, for example, empirical-choice data.

A generalization of the BTL model is the multinomial logit model (also called the Plackett-Luce model) [326,328,329],
which treats the case of a choice among more than two alternatives. The multinomial logit model defines the probability pjs
to choose i from S as

Vi
Zjes Vi
This model is a PCMC model, where the adjacency matrix is determined by the BTL model, so A; = yi/(y: + ¥;). A large y;

value makes A;; large, which in turn results in a large probability in-flow to the ith node and an increased probability that an
individual chooses i. In fact, the vector p* = (p;s), with i € S, is the stationary density of the CTRW on S, because

Pis = (159)

1
(P*QQ)i ZZees Ve Z Vi = vi Z A

jesii jesii
Vi Z Yi 14| ;
= - =0 (ie{l,....N}). (160)
Loes Ve \iGgu ity iquvity
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Consider a data set given in the form of D = {(i;, S;)|[€ = 1, ..., €max}, Where S; is the set of the items presented in the ¢th
choice, i, € S; is the item chosen in the £th choice, and ¢, is the number of choices. The PCMC in which the parameters
(i.e., entries of A) are estimated by a maximum-likelihood method yields a better predictive performance than benchmark
discrete-choice models on two empirical data sets [327].

One can also derive the maximume-likelihood estimator of the multinomial logit model as the stationary density of a

Poissonian edge-centric CTRW [330]. The likelihood Lof the parameters y = {y1, ..., yn} givendata D is
[max
LylD) = (161)
1—[ Zl €Sy i

By maximizing the log likelihood, one obtains

d(logl) 8 X

= logy;, — lo Vi
9% i = & gZy,
i'eSy
B SHERI S
(=1;CeW; vi Z' €St v (=1;¢el; Z’ €St v
=0 (ie{l,...,N}), (162)
where Wi = {¢|i € S¢ andiis chosen}, ii = {¢|i € S, andiisnotchosen}, and ; (withi € {1,..., N}) is the maximum-
likelihood estimator. By multiplying y; by Eq. (162), one obtains
Cmax ]/ £max
3 Liesiia -y =0 (ief{l,....N}). (163)
(=1;0eW; 2 'St i t=1;¢el; Z' St v

Because L =N

i lHé,(Wj N L,»), one can rewrite Eq. (163) as

N

3 Z Zy] _ Z Z”‘ -0 (ie{l,...,N}). (164)

= Vi Vi
=i e=tseeni; S e=tseewni; S

One rewrites Eq. (164) as

N N
YWD )= Y (D P) (ie(l,..., N}, (165)
J=Lj# j=1#
where
1
fo.9nN=) =——F. (166)
Y Sé/ Dies W

D' C Dis a subset of the observation set D, and D;.j = {(i, S¢) € D¢ € w; N ij} C D is the set of observations in which
i is preferred to j. Eq. (165) implies that the maximum-likelihood estimator is the stationary density of the CTRW whose
transition rate from the jth to the ith node is given by f(D;;, ). One mterprets f(Dij, ¥) ZSED»} ( /Y ies Vi ) as the

number of times i is chosen over j (taken into accounted by the sum ) ¢ Dy ) ), weighted by the strength of the alternatives

in each observation (which is taken into account with the term 1/}, ;7). Taking advantage of this relationship between
the CTRW and the maximume-likelihood estimator of the multinomial logit model has resulted in inference algorithms for
the multinomial logit model that is faster and more accurate than previous methods for several data sets [330].

For other methods of rank aggregation based on RWs, see Refs. [324,331,332].

5.3. Community detection

A useful approach for studying networks is to examine mesoscale structures, of which the best-known type is “community
structure” [63-65]. There are numerous methods to algorithmically detect communities (and many applications in which
communities can be insightful), which are sets of densely connected nodes such that connections between different
communities are relatively sparse. RWs provide a theoretical basis for understanding community structure and practical
algorithms for detecting them. The main idea is that, if a given network has community structure, a random walker should
be trapped within a community for a relatively long time before leaving it. This arises from the high density of edges within
communities and the sparse connections across communities. Therefore, RWs that are observed on a short time scale should
reveal intra-community structure in a network, and RWs that are observed on a long time scale should reveal global structure
about the same network.
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In this section, we introduce some algorithms for community detection that are based on RWs. For other RW-based
algorithms and theoretical underpinnings, see papers such as Refs. [68,236,333-342].

5.3.1. Markov-stability formulation of modularity

It is common to use the “modularity” objective function Q to quantify the quality of a partition of a network into
nonoverlapping communities, and many community-detection methods are based on maximizing Q [65]. Consider a
partition of an undirected network into Ncyy communities. Let CM. denote the cth community (with ¢ € {1, 2, ..., Nem}).
We use a variant (sometimes called the “Newman-Girvan null model”) of an undirected configuration model [122] that
is defined as a random graph with a specified strength s; at each node. For this configuration model, the probability that
nodes v; and v; are adjacent is approximately P;j = s;s;/(2M’), where M’ = Zf;s,»/Z is the sum of the edge weight over
all edges [44]. (Technically, P; is a probability only for sufficiently small edge weights; otherwise, it is an expectation.) Note
that M’ = M for an unweighted network, where we recall that M is the number of edges. Modularity is defined by

1 N SiSi
Q - 2M'’ Z Z (A'J ZM/>
=Hij=1
vi, vj € CM
1 N S;iS;
= 2 2 (A= 5F) e ). (167)

i,j=1

where g; is the community to which node v; has been assigned, and §(g;, g;) = 1if g = gj and §(g;, ) = 0 otherwise. The
quantity P; gives the elements of a null-model matrix, and a wide variety of different versions of the matrix P = (P;) have
been examined [343,344]. More precisely, P is not a “null model” but rather a “null network” (which is a network generated
from a null model) [344].

Methods based on modularity maximization suffer from the fact that Q has a resolution limit, so using Eq. (167) does not
allow one to detect dense communities of nodes that are smaller than a certain scale [345,346] (though some null models
attempt to address this issue). Modularity maximization also implicitly favors communities of a particular size that depend
on the size of the entire network (not only its internal structure), and methods based on maximizing Q also have various
other problematic features [65].

One can use RWs to gain insights into modularity and its resolution issues. Modularity is closely related to “Markov
stability”, which quantifies the tendency for a random walker to stay inside a community for a long time. The Markov stability
of a partition of a network is defined as the probability that a walker is in the same community at time 0 and time t in the
equilibrium of the Poissonian node-centric CTRW [347-350]. See Refs. [350,351] for a version of Markov stability derived
from a DTRW.

The master equation is

dp(t) )

T p(t)L’, (168)
where we recall that L’ is the random-walk normalized Laplacian matrix [see Eq. (77)]. The stationary density is given by
Eq. (31).

Consider a pair of nodes, v; and vj, that belong to the same community. Eq. (168) implies that, in the stationary state, the
probability that a random walker visits v; and then v; after time ¢ is equal to p;*(e‘“' )ij- As with modularity maximization,
one needs to compare this quantity with a null model. For Markov stability R(t), the standard null model is given by the
probability that a walker visits node v; at t = 0 and node v; at t = oo. This yields a null probability of p?‘p]’-*. One thereby
obtains a Markov stability of

N
REO)=Y" [(p;‘e“')ij - p?‘p}*] 8(gi. g)- (169)

ij=1

Because of the exponential factor e~ Markov stability combines walks of various lengths between two nodes. The time
t acts as a resolution parameter, enabling one to zoom in and out to unravel multiscale structure in a network. A large value
of t gives large weightings to long walks and yields a small number of communities. In the limit t — oo, Markov stability
is optimized by the bipartition given by the signs of the elements of the Fiedler vector (i.e., a type of spectral partitioning) if
the corresponding eigenvalue is not degenerate [338]. More generally, spectral partitioning is related to RWs on networks
because it uses the eigenvectors of matrices such as the combinatorial Laplacian matrix or a modularity matrix [88,352].

Because it is computationally expensive to calculate e~ for large networks, we use a linear approximation e~ —tl.
To simplify our exposition, we now assume the case of undirected networks for the rest of this section [350]. By substituting
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p; = si/(2M’") and p; = s;/(2M’") into Eq. (169), we obtain

N
SiSj
> [+ (1= o8isi+ 5.0 ] s ). (170)

ij=1

RO= o

Because Zi\_’j:](l — 1)8;si6(8i, &) = Zf’:]s,- does not depend on the partitioning of a network, maximizing R(t) is equivalent
to maximizing

1 N SiS;
Q) =55 X (A= 75,5 ) dei &) (171)

ij=1

where y = 1/t. We ignore the constraint that ¢ is small (which is admittedly naughty mathematically) and thereby allow
general values for y when maximizing Q(y ). We also note that Q(y ) was derived originally using the perspective of a Potts
spin glass [353], and recently it has been related to maximum-likelihood methods [354].

When y = 1, Eq. (171) coincides with Eq. (167). Therefore, modularity is an approximate variant of Markov stability. A
large value of y emphasizes the penalty for classifying nodes into the same community and results in many communities.
The choice of the natural resolution parameter y is an important practical issue [352,355], and it can be examined from a
maximume-likelihood approach [354].

5.3.2. Walktrap

In the Walktrap algorithm, one defines a measure of similarity between nodes based on DTRWs and uses it for community
detection [356]. (See Ref. [357] for a similar method that uses DTRWs.) Consider an undirected and unweighted network.
Define the RW-based distance between two nodes, v; and vj, by

. (172)

where n is the number of steps in a DTRW. The distance r;; is small when a pair of random walkers - one starting from v; and
the other starting from v; - visit each node with similar probabilities after n steps. The denominator k, discounts the fact
that a walker visits v, with a probability proportional to k, at equilibrium. Note that n needs to be large enough for random
walkers to be able to travel to any node. However, n should not be too large, because limy_, 5 Tj; = limp—.ocTj; = pj implies
that ry; is very close to O for all i, j € {1, ..., N} when n is large [64].

We expect that a pair of nodes, v; and vj, that are separated by a small distance r; are likely to belong to the same
community. One uses a standard agglomerative and hierarchical clustering algorithm on the distance matrix r = (r;). One
starts from the partition composed of N single-node communities and joins a pair of communities (so-called “tentative
communities”) with the smallest distance, one pair at time, to produce a series of partitions until the entire network is in
a single community. In the merging process, one measures the distance between two communities CM, and CM. by the
r; value, normalized in some way, between v;, v; € CM. U CM.. This agglomerative clustering algorithm is similar to a
greedy algorithm to maximize modularity across partitionings with different numbers of communities [358]. In Walktrap,
one merges a pair of communities under the restriction that they can be merged only when they are adjacent to each other
by at least one edge.

Other community-detection methods also rely on defining a similarity measure between nodes. An interesting approach
is based on the concept of mean first-passage time m;; of a random walker (see Section 3.2.5) and its symmetrization m;; +m;;
(the so-called “mean commute time”) [359]. The square root of the mean commute time has the desirable property of being
a Euclidean distance between nodes. In this context, it is called the “Euclidean commute-time distance”. It decreases when
the number of paths between two nodes increases or when the length of any path between the two nodes decreases, and it
can be derived from the pseudo-inverse of the combinatorial Laplacian matrix L [360].

5.3.3. InfoMap

InfoMap is another algorithm for community detection based on RWs [361]. It is very popular and has been extended to
the case of hierarchical algorithms [362], memory networks [250], and multilayer networks [235]. In this section, we discuss
the basic version of InfoMap.

Consider a DTRW on a network, which can be directed or weighted. If the network has meaningful community structure,
a random walker tends to be trapped within a community for a long time before traveling to a different community. A
trajectory of the RW is a sequence of the visited nodes (e.g., vs, vg, v3, V1, Us, .. .). We encode each node as a finite binary
sequence (i.e., “a code word”) and concatenate the code words to encode the trajectory of a random walker. For example, if
v1, Vg, U3, U4, Us, ... are encoded into 000, 001, 010, 011, 100, ..., then the trajectory vs, vg, vs, V1, vg, ... is encoded into
010101010000111 - - -. For unique decoding, one needs a “prefix-free” coding scheme. In other words, a code word cannot
be a “prefix” (i.e., an initial segment) of another code word. For instance, if v, and v, are coded as 000 and 0001, respectively,
then one’s code is not prefix-free, because 000 is an initial segment of 0001.
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in: 11 in: 00
out: 00 out: 00
in: 01 in: 10
out: 00 out: 00

Fig. 10. Optimal partitioning from the InfoMap algorithm along with its resulting code words. We draw this example from a demonstration applet available
at [364].

The “Huffman code” is a popular prefix-free code that encodes individual symbols (i.e., nodes v;) separately and tends to
yield short binary sequences [363]. It assigns a short code word to a frequently visited node. In a stationary state, the mean
code word length per step of an RW is Zflﬂp;* x len(i), where len(i) denotes the length of the code word assigned to v;.

If symbols (such as v; in our context) appear independently in each step of an RW, the Huffman code yields a mean code
word length in each step that is close to the theoretical lower bound set by the Shannon entropy

N
H=—Y p;logp;. (173)
i=1

However, the sequence of symbols is correlated in time, because it is produced by an RW. Consequently, a different coding
scheme can yield a mean code length that is smaller than the Shannon entropy. InfoMap exploits community structure and
uses a two-layer variant of the Huffman code to achieve this goal. Because there are fewer nodes in a community than in an
entire network, one can express a trajectory within each community using a shorter, different Huffman code that is local to
individual communities. In practice, one constructs the two-layer Huffman code as follows:

1. When a random walker enters the cth community, one issues the (predetermined) code word that corresponds to
entering community CM,.

2. The walker moves around within community CM, for some time. One records the trajectory during this period by the
sequence of code words that corresponds to the sequence of visited nodes. One concatenates these code words, and
they appear after the code word (obtained in the previous step) that corresponds to the entry to community CM,.

3. The walker eventually exits CM,. This event is represented by a special code word, which one places after the sequence
of code words that one has obtained thus far.

4. The exit from CM, implies an immediate entry to a different community, which we denote by CM,.. Therefore, we
concatenate the code word corresponding to the entry to CM. to the end of the sequence of code words that we have
obtained thus far.

5. One uses the code words that are local to CM. to record the trajectory until the walker exits CM./. Note that one can
use the same code word to represent a node in CM, and a node in CM.. This fact does not cause any problems, because
one determines the current coding table from the entry and exit code words.

6. Repeat steps 3-5.

Let us consider the network in Fig. 10. The InfoMap algorithm partitions the network into four communities, whose
boundaries we show with the dotted lines. The binary sequence at each node represents the local code word within the
corresponding community. When a random walker enters or exits a community, one uses the corresponding “in” and “out”
code word, respectively. For example, the trajectory indicated by the red arrows is encoded into 11 111 10 01 00 00 10 01
110. The first “11” indicates that the RW starts in the top left community, the subsequent “111” indicates that the walk starts
at node “111” in this community, the “00 00” in the middle indicates that the walk exits this community (because of the
first “00”) and simultaneously enters the community to the right (because of the second “00™).

In contrast to the original Huffman code, we need 2N¢y additional code words to encode entry to and exit from
communities. However, we can use a smaller code length when a random walker travels within a community because the
code words local to a community are generally shorter than the code words of the original Huffman code. If a network
has strong community structure, one expects that an RW within a community occupies a majority of steps if one optimally
partitions the network into communities. Consequently, one expects the mean code length to be smaller using InfoMap than
by using a straightforward Huffman code in networks with community structure. In practice, InfoMap optimizes a quality
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function, called the “map equation” (where the word “equation” is a misnomer), instead of constructing the optimized coding
scheme. The map equation generalizes Eq. (173). The resulting quality function provides a theoretical limit of how concisely
one can encode an RW using a given partition. One can optimize this function using some computational heuristic.

5.3.4. Local community detection

Another approach to community detection is to use local algorithms. For example, given a node v; of interest, one can
use a local algorithm to identify a relatively small community around v; by examining only the nodes that are adjacent
to nodes that have been examined before. Local algorithms are particularly useful when a network is huge, and it is thus
costly to apply a partitioning algorithm to the entire network. As discussed in Ref. [68] (and in several references therein),
they also provide a means to studying overlapping communities and to incorporate dynamical processes and seed sets into
community detection.

Nibble is a local community-detection algorithm based on DTRWs [365-367]. The idea is to examine nodes that are visited
frequently by a random walker that starts from a node v;. Specifically, Nibble uses the transition-probability matrix

D 'A+1

Tnibble = % . (174)
Eq. (174) implies that a random walker obeys the usual DTRW with probability 1/2 and does not move with probability 1/2
in each time step. For each of the nodes, Nibble also reduces the probability of a visit to it to 0 in each time step if it is smaller
than some threshold. Therefore, the probability that the random walker is still present in the network decreases in time.
The probability reduction ensures that the detected community does not become too large in a small number n of steps. One
terminates the DTRW after a certain number of steps according to a stopping criterion, which guarantees that the discovered
set of nodes has a low conductance (see Eq. (47)) and is neither too small nor too large. Nibble can also be used as a building
block for network-partitioning algorithms that run in O(M) time [365,367]. (Recall that M denotes the number of edges (see
Table 1).)

In the “seed-set expansion problem”, one seeks to discover a local community that emanates from a small subset S of a
network’s nodes. One expands the seed set to estimate the rest of a community by ranking the nodes outside S. Variants of
personalized PageRank and heat-kernel PageRank are popular approaches for studying seed-set expansion [368-370]. Like
Nibble, one starts a DTRW from a node v; € S, and one then examines T/;, which gives the probability that a walker starting
from v; visits node vj after n steps. The score for v; is given by a weighted sum of T" over different lengths of walks. That is,
the score is Z _waT, i " where w, is the weight assigned to walks of length n [370]

5.3.5. Multilayer modularity

One can generalize Markov stability to multilayer networks to derive modularity functions for such networks, including
temporal networks given in the form of a sequence of adjacency matrices (with interlayer edges that connect corresponding
nodes in the sequence) [234,344].

As in Section 4.1, consider a multilayer network in the (supra-adjacency) form of a weighted network on N¢p,,x nodes,
where £, is the number of layers. One specifies a node by the pair (v;, £), where i € {1,..., N} indexes an entity and
£ € {1,..., €nax} indicates a layer. The adjacency matrix in each layer £ (which can be, e.g., an aggregation over some time
window of a temporal network) is A(£), which we assume to be undirected for simplicity. The weight of the interlayer edge
between nodes (v;, £) and (v;, £') is Ciy. We consider a multilayer network in which only nodes with the same index i can
be adjacent to each other, though multilayer networks also allow much more general structures [61]. (Note that an entity
v; need not exist on all layers [234].) For a multilayer network that represents a temporal network, the simplest choice is to
connect the corresponding nodes (i.e., nodes with the same index i) across the adjacent layers symmetrically and uniformly,
sow = Cypr = Cipy > 0when?' =€+ 1fore e {1,...,L—1}and Gy =0for ¢’ £ ¢ £ 1.

To derive an expression for multilayer modularity for these “multislice” networks, we generalize the RW interpretation of
modularity for time-independent networks (see Section 5.3.1) to the case of multilayer networks [234]. Random walkers are
allowed to move either between layers or within a layer. Consider a Poissonian node-centric CTRW on a multilayer network
with N£.x nodes. The master equation is given by

dpw ‘i ZN: Ay(€)8eer + 8iGer ] Pie(8)

Kijer

— pie(t), (175)
=1 j=1

where kji = kj¢ + ¢j is the strength of the jth node in the £th layer, kjy = Zf’: 1Ajj(€') is the intra-layer strength of the jth
node in the ¢'th layer, and ¢jp = Zﬁ?,‘:‘] Cje¢r is the inter-layer strength of the same node. The summand on the right-hand
side of Eq. (175) represents the rate at which a random walker moves from node (v;, £') to node (v;, £). A move to (v;, £) is
possible from the nodes (vj, £) in the same layer at a rate of A;(¢)/kj¢ and from the ith node in a different layer ¢’ at a rate of
Gieor /Kjor M Cigr = Girg (withi e {1,...,N}and £, ¢’ € {1, ..., €max}), the stationary density is given by

Kie _ Kie

B E—— (176)
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In the same manner as with monolayer networks, we examine the probability that a random walker visits node (vj, £')
at time t = 0 and node (v;, £) at a small time At. Within the small time At, a walker initially at (v;, £') can make at most a
single step. Based on Eq. (175), the probability that the walker visits node (v;, £) at time 0 and node (v;, £) at small time At

1S

Aij(£)8¢¢ + 8iiCieer e

[(Sfjaﬁl/ + At (U()NW _ Sijaﬁl/>] Kije . (177)
Kje! 21

Under the independence assumption, which sets the null model, the situation remains the same, but each intra-layer network
is now replaced by a Newman-Girvan (NG) null network whose degree distribution is determined by the original set of
adjacencies of the same layer [344]. The inter-layer transition probability, determined by Cj,,/, remains the same. Under the
independence assumption, the probability that a walker visits node (v;, £') at time t = 0 and node (v;, £) after a single move

is

kie kip Cippr Cipr Kipr
( gy 4y L ﬂ) " (178)
2M; kjy Ger Kjer ) 21

where M, = Z}leje. In Eq. (178), kjer /(2p) is the probability that the random walker visits (v;, £') at time 0 at equilibrium.
The quantity in parentheses represents the conditional probability that a walker visits node (v;, £) after a single move starting
from node (vj, £') at time 0. A move occurs within the €'th layer with probability k;, /«;je . If an intra-layer move occurs, the
walker moves to the ith node in the same layer with probability k;; /(2M,) according to the NG null model. Alternatively,
the walker moves to a different layer with probability ¢je /«jr = 1—Kje /kje. If an inter-layer move occurs, the walker moves
to the jth node in the £th layer with probability Cig, /Cjer.
By subtracting Eq. (178) from Eq. (177) and then summing over nodes (v;, £) and (vj, £') that belong to the same
community, we obtain
Q= 3 (1= At)sySe + AtAG(£)Se — Kickyy
= ijoLe ij 124 M

2“ ij,0.t

Sep + (At — 1)5ijcjez’] x 8(8ie, &' , (179)
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where g;, is the community to which node (v;, £) has been assigned. Because Zi’j’l,z/&jéw&(gw, &jr') = Nlnmay is independent
of the partitioning of the multilayer network and thus does not affect the maximization of Q, we ignore the first term on
the right-hand side of Eq. (179). By rescaling Cj;» by a multiplicative factor of (At — 1)/ At, we can also ignore (At — 1) in
the fourth term. If we allow y = 1/At to depend on the layer (see [234] for the justification), corresponding to different
diffusion rates in different layers, we obtain the following formula for multilayer modularity:
1 Kigkipr
Q=5 > [Ai,-(e) —y(0) j,w’f Buw + a,-jcju} 5(gie, ge') - (180)
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For simplicity, suppose that the inter-layer edge weight is uniform; that is, w = G, for any i, £, and £’ whenever entity v;
exists in both layers. If an entity v; does not exist in a layer, its associated interlayer edges have weight 0 because they do not
exist. If w = 0, the different layers are independent networks. If w is sufficiently large, all existing copies (v;, £) of each node
vi (with £ € {1, ..., €max}) are assigned to the same community because the third term on the right-hand side of Eq. (180)
dominates the others. More generally, a large value of w tends to yield a smaller number of communities. In contrast, a large
y(£) value tends to yield a large number of communities. See Refs. [343,344,355,371] for illustrations and discussions.

5.4. Core-periphery structure

It is often insightful to decompose a network into one or more densely-connected cores along with sparsely-connected
peripheral nodes. By definition, nodes in a core are heavily interconnected and also tend to be well-connected to peripheral
nodes. By contrast, peripheral nodes are sparsely connected (or, ideally, not adjacent at all) to other peripheral nodes and
tend to be adjacent predominantly to core nodes. This idea, whose intuition draws somewhat on the notion of pealing an
onion (especially in the case of a single core), is also a mesoscale network structure, but it has a rather different character
from community structure. See Ref. [372] for a review of core-periphery, and see the introduction of Ref. [373] for a brief
survey.

There is an RW-based algorithm to extract core-periphery structure from networks [374]. The idea is that if a random
walker is located at a peripheral node, it is very unlikely to visit another peripheral node in the next time step in a DTRW.
One defines a “persistence probability” «s for a set of nodes S by

Zi.jes pi'Ty
Zies p? ’

where we recall that p; is the stationary density at node v;, and Tj; is the transition probability from v; to v; in a single move.
Eq. (181) is the steady-state probability that a DTRW starting from a node in S remains in S in the next time step. For an

as = (181)
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undirected network, we substitute p; = s;/ Z[Z:lS[ to reduce Eq. (181) to
Zi,jes Ajj
Dies Si

Ideally, one obtains as = O for any set S of nodes that includes only peripheral nodes. This condition is trivially satisfied
when S consists of a single node, and it becomes very difficult to satisfy as S becomes large. Reference [374] used the following
greedy algorithm. Start from a node with the smallest total node strength s}“ + s, If there are multiple such nodes, we
select one of them uniformly at random. For undirected networks, this reduces to selecting a node with the minimum node
strength. The set S is composed of a single node. One then adds one node to the set S so that adding this node yields the
smallest value of «s. Again, if there are multiple candidate nodes, we break the tie by selecting one of them uniformly at
random. One continues this procedure and sequentially adds nodes to try to keep «s small. One then assigns each node v;
a coreness value of «;, which one sets as the value of as when v; is added. Nodes with larger values of «; are deeper into a
network core. One also defines a network’s “a-periphery” as the set of nodes that satisfy o; < «. Although the algorithm has
randomness in it because of the tie-breakers, Ref. [374] reported that the randomness had negligible effects on their results
for empirical networks.

as = (182)

5.5. Diffusion maps

Dimension reduction is a type of compression that has numerous practical applications in data mining, image processing,
visualization, and many other subjects [375]. Its aim is to find a transformation of a set of data points into a low-dimensional
space in a way that preserves quantities of interest, such as distances between any pair of data points, preferably with
a small number of free parameters. “Diffusion maps” are a framework of RW-based dimension reduction and encompass
a wide variety of methods, such as kernel eigenmap methods, as special cases [24,25]. Diffusion maps are also useful for
identifying synchronous clusters of nodes in synchronization dynamics [376].

Consider a DTRW on an undirected, weighted network constructed from a given set of data points, which one identifies
with nodes. The edge weight between nodes v; and v; is Aj = Aj;, and it is given by a similarity value between the ith and jth
data points. In our terminology, the “diffusion distance” is defined by

N n
di(n) = Z T)
\ ¢=1
N n_ n
=\Z(T T Zs@, (183)
=1

which is the same as the distance measure used in the Walktrap algorithm, except for the normalization (see Eq. (172)).
Because a,j(n) involves the summation of all walks of length n starting from v; and the summation of such walks starting
from v, Refs. [24,25] suggested that it is more robust to noise in data than when using Aj; as a similarity or distance measure
for dimension reduction.

Substituting Eq. (41) into Eq. (183) yields

N N ki () 2
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where uy is the eigenvector corresponding to the £'th eigenvalue of A (see Eq. (36)) and Ay is the £'th largest eigenvalue of
A in terms of absolute value. Note that A, = 1. Using (u,/, u,») = 847, Eq. (184) reduces to

z we) ()’
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To derive the last line in Eq. (185), we used #ty = (/51, . . ., /Sn) ', corresponding to the stationary density (see Section 3.2.3).
By neglecting eigenmodes whose contributions are much smaller than the largest eigenmode in Eq. (185) (i.e., u;), one
defines a diffusion map by

Ay(ua)i

Y(i;n) = : , (186
i;n) NG )\n('w) )
p\Hedi

where £ is the largest index ¢’ such that |1y |" > SLXZ |", and § is a parameter. Each component of ¥ (i; n) is called a “diffusion
coordinate”. Eqs. (185) and (186) imply that, in R¢~!, the Euclidean distance between two data points i and j is equal to the
diffusion distance d;(n) with a tolerance of 8.

The properties of diffusion maps depend on the parameters n and 3. A large value of § yields a small value of £ and hence
results in a large dimension reduction. A diffusion map with a larger value of n extracts geometry on a more global scale
than one with a smaller value of n, so a collection of diffusion maps for different values of n allows one to describe a data set
with multiscale geometric properties.

5.6. Respondent-driven sampling

One often is interested in estimating a population mean of certain quantities, such as the fraction of infected individuals,
the fraction of people who have a particular opinion, or demographics such as age. If a population is large, which is typical
in the context of social surveys, it is impossible to record all individuals. In such situations, a common challenge is how to
sample individuals in as unbiased manner as possible.

“Respondent-driven sampling” (RDS) is a popular sampling method that uses edge-tracing in a social network [377,378].
In RDS, one starts from a seed individual (i.e., a seed node). The seed individual recruits his/her neighbors to a survey by
passing a coupon to each of them. The successfully recruited individuals then participate in the survey and in turn pass
coupons to their neighbors who have not yet participated. To try to promote participation, individuals who participate are
rewarded financially. One takes a weighted mean of the samples to derive an estimate of the quantity of interest (e.g., mean
age of a population).

It is necessary to take a weighted mean because the probability of being recruited depends on the position of a person
in a network. The so-called “RDS II estimator” is an efficient and realistic estimator [379]. Consider the case in which
each respondent passes a single coupon to one of its uniformly randomly selected neighbors. One can then describe the
recruitment process as a DTRW if one allows sampling with replacement for simplicity (i.e., if the same individual can be
sampled more than once). Again for simplicity, we also assume that the network is undirected and unweighted. The essential
idea of the RDS II estimator is that one should discount the effect of a sampled node v; by a factor of its degree k;, because
v; is visited with probability p/* oc k;. Note that respondents have to report k; to be able to calculate this estimator, although
empirically it is difficult to accurately collect the k; values of respondents [380,381].

We are interested in estimating the mean (y) of a quantity y; assigned to node v;. We denote the set of sampled nodes by
S and the number of samples (i.e, the size of S) by Ns. The estimator (y) of (y) is

o 1 Vi
0 =5 > Np (187)
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where p? is the estimate of the stationary density p;. We set the discount factor on the right-hand side of Eq. (187) to be Np?,
because it is normalized so that (Np}) = 1. By assuming that we do not have access to the mean degree (k) of the entire
network, we estimate it by calculating

k,‘

pi=—r. (188)
N (k)
where (12) is an estimate of (k). We use
N 2 S L‘* N,
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Combining Eqgs. (187)-(189) yields
C Yes k07

The estimated quantity y can be either continuous-valued or discrete-valued. Alternatively, one can estimate the
proportion of nodes P4 that have a discrete type A (e.g., an infected state) by setting y; to the indicator function (i.e., y; = 1

(190)
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when v; is of type A and y; = 0 otherwise). In this case, we obtain
n Zu,-ems(kir1
Pp="————. (191)
Zu;es(ki)71
Note that, even if one controls for the effect of p; in this manner, the estimator (y) is statistically biased in practice.
For example, the estimator is inaccurate when networks have community structure [382] or have multiple connected
components [383]. Additionally, different techniques are required for directed networks, because Eq. (188) (or, more
succinctly, p{ oc k;) does not hold for directed networks [384,385]. Furthermore, actual sampling trajectories are non-
backtracking, and one can incorporate this feature into RDS estimators [386].
A strategy other than RDS Il or other estimators of unbiased sampling of nodes is to use a “Metropolis-Hasting RW” [387].
In such sampling, one modifies the edge weight of the original network to guarantee that the stationary density is the uniform
density. This method has been used for sampling in peer-to-peer (P2P) and online social networks [42,388,389].

5.7. Consensus probability and time of voter models

Voter models are a prototypical family of models of opinion formation that are often defined in terms of a Markov process
on a network [1,31,33,49,390-392]. In traditional voter models, each node assumes one of two opinions, which we call
opinion 0 and opinion 1, and the nodes’ opinions evolve stochastically in time. If two adjacent nodes have the opposite
opinion, a local consensus of opinion 0 or opinion 1 between the two nodes occurs at some rate. We suppose that the local
consensus dynamics on each edge obeys an independent Poisson process, so the nodes update their opinions asynchronously.
For example, if a local consensus on the edge (v;, v;) in an undirected network occurs according to a Poisson process at rate
o< Ajj, we say that voter dynamics obeys “edge dynamics” (ED) (see Fig. 11) [393,394]. (Note that people often use the term
“link dynamics” (LD), because it is common in physics to use the term “link” for “edge”.) On finite networks, the final state of
a network is the perfect “consensus” of either opinion 0 or opinion 1 for every node. These two consensus configurations are
the only absorbing states of the stochastic process. Note that consensus is sometimes also called “fixation” or “coordination”.

The best-studied phenomena in voter models include the probability for a network to achieve consensus of a particular
opinion and the mean time to achieve consensus. The consensus probability is the probability that a consensus of one opinion
(e.g., opinion 0) is reached. With the complementary probability, a finite network achieves a consensus of the other opinion
(e.g., opinion 1). When computing mean consensus time, one conditions on the consensus being reached. Both consensus
probability and mean consensus time depend both on the initial configuration of opinions and on network structure.

The duality relationship between voter models and “coalescing RWs” (which are non-conservative) makes analysis of
RWs a powerful approach for calculating consensus probability and mean consensus time [1,390,391,395]. By definition, a
coalescing RW [396] starts by placing a random walker on each node in a network, and the walkers perform independent
Poissonian edge-centric CTRWs. If different walkers meet at a node, they coalesce into one and continue as a single random
walker. On a finite network, all walkers eventually coalesce into a single random walker.

When examining the dual process, we invert the time and direction of edges [1,390,391,395]. When proceeding
backwards in time, two individuals sometimes “collide” in the dual process. Such a coalescence event corresponds to two
individuals sharing a common ancestor in the original opinion-formation process. After two individuals coalesce in the dual
process, they behave as a single individual.

The duality relationship guarantees that the consensus probability F; for opinion 0 when node v; initially has opinion 0
and the other N — 1 nodes initially have opinion 1 is given by the stationary density of the coalescing RW on the network
that one obtains by reversing all edges in an original network. Because all walkers eventually coalesce into a single walker,
F; is given by the stationary density of the usual RW on the edge-reversed network. If initially there are multiple nodes with
opinion 0, then the consensus probability for opinion O is equal to the sum of F; over the nodes with initial opinion 0. The
mean consensus time is equal to the mean time needed for all walkers to coalesce into one walker. This equality is useful for
evaluating the mean consensus time for some networks, because the latter quantity is roughly approximated by the mean
time for the first meeting of two independent walkers whose initial location is selected uniformly at random [397-399].
Similar to the MFPT, the mean time for two random walkers to meet is relatively easy to calculate.

Consider a directed network. As a convention, we assume that the directed edge from v; to v; indicates that v; can coax v;
into v;’s opinion. Even if the network is undirected, one has to distinguish three rules of opinion updating unless the network
is regular [393,394] (see Fig. 11). We evaluate the consensus probability for these three types of voter dynamics using the
duality relationship [132,395].

First, we consider a variant of the voter model that focuses on the dynamics of edges [393,394]. Under these “edge
dynamics” (ED), one selects a directed edge v; — v (i.e., from node v; to node v;) with probability A;;/ Z%E]Ai’f in each
step, and then node v; copies v;'s opinion with probability 1. One then advances time by 1/N, so each node is updated
once per unit time on average. The dynamics are equivalent to opinion dynamics in which each edge has a Poisson process
with rate NAU/Z?I,;':]AI"J"' and an event induces a local consensus event. The dual process for ED is a coalescing RW on the
edge-reversed network in continuous time. (In fact, it is a Poissonian edge-centric CTRW.) By modifying Eq. (78), a single
random walker satisfies the following master equation:

an(e) _
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Fig. 11. Three updating rules for variants of the classical voter model on a network. For illustration, assume that we have an undirected and unweighted
network. With edge-dynamics (ED), one first selects one of the M = 5 edges with equal probability (i.e., with probability 1/5 each). One then selects one
of the two directions of the edge with equal probability 1/2, and then one performs an opinion-updating step. In the most traditional voter model (VM),
which has node dynamics, one selects one of the N = 4 nodes with equal probability 1/4. One then determines uniformly at random the neighbor from
which the selected node imports its opinion. In the invasion process (IP), one first selects one of the N = 4 nodes with equal probability 1/4 (as in the VM).
One then determines uniformly at random the neighbor to which the selected node exports its opinion.

where AT is the adjacency matrix of the edge-reversed network, D™ is the diagonal matrix whose (i, i)th element is sﬁ“, and
L™ is the combinatorial Laplacian of the edge-reversed network. The consensus probability FiED for each node is given by
the equilibrium of Eq. (192). That is,

(FP, ... \RR°)L™ =0. (193)

We can obtain an intuitive understanding of Eq. (193) by writing a recursive equation for the consensus probability when
the process starts from a single node v; with opinion 0 (i.e., for Fl-ED). We obtain
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where F{E,-?] is the probability that one reaches the consensus of opinion 0 starting from the configuration in which v; and v;
but no other nodes have opinion 0. To prove that F{F;B} = FiED + FIED, imagine that there are N different opinions rather than
two, and suppose that node v; (withi € {1, ... , N}) holds opinion i. One can express the probability that opinion i or j
eventually occupies the entire network either as Fi5, or as Ff® + Ff°, so it follows that F{, = Ff® 4 F°. By substituting the

Ljy
latter relationship into Eq. (194), we obtain

N N
> AFP =FP > a4y, (195)
j=1 j=1

and we note that Eq. (195) is equivalent to Eq. (193).

The quantity FF° is the stationary density of the Poissonian edge-centric CTRW on the edge-reversed network. If the
network is undirected, we obtain L' = Land p} = Fl.ED = 1/N (withi € {1, ..., N}).Therefore, the likelihood of propagating
an opinion does not depend on which node is the seed of the opinion. If the network is directed, we obtain a first-order
approximation to the consensus probability of a node by applying Eq. (81) for the edge-reversed network [132]:

SQUt
FfP 2 (const) x ——
Si

(196)

Eq.(196) is intuitive, because an out-edge indicates that v; can enforce its opinion on another node, and an in-edge indicates
that v; listens to neighboring nodes.

In the traditional node-based “voter model” (VM) updating rule, one selects a node v; uniformly at random (i.e., with
equal probability 1/N) in each time step. One then selects an in-neighbor v; of v; with a probability that is proportional to
the weight of the in-edge from that node (i.e., = Aj; /s?"), and v; copies the opinion of v; with probability 1. One then advances
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time by 1/N so that on average one node experiences one opinion update per unit time. One can map the dynamics of the
VM updating rule to ED dynamics with a modified weighted adjacency matrix A(D"™")~!, whose (i, j)th element is equal to
Ajj/sj". The master equation for a single random walker on the edge-reversed network is thus

dnl) _
dt

The equilibrium of the dynamics given by Eq. (197) gives the consensus probability Fi"M for opinion 0 when only node v;
initially has opinion 0. By setting the left-hand side of Eq. (197) to 0, we obtain

p(t)(—I + (D) 'AT). (197)

(FM, . RMY=(FM, L RMYD™)TIAT, (198)
which is equal to the stationary density of a DTRW on the edge-reversed network. Because Eqs. (192) and (197), respectively,
represent a Poissonian edge-centric CTRW and a DTRW on the same network, we obtain

FYM _ S%nFiED (199)

1

for arbitrary networks (Section 3.3.1). When a network is undirected, the edge-reversed network is the same as the original
network, and we thereby see that

Si
FM = - (200)
25(21 Se
When a networKk is directed, the first-order approximation is given by
F™ o st (201)

In the so-called “invasion process” (IP) updating rule, one first selects a node v; uniformly at random (i.e., with probability
1/N) at each time step to propagate its opinion to one of its out-neighbors. One then selects an out-neighbor v; of v; with
probability A;/s"* (i.e., uniformly at random), and then node v; copies the opinion of v; with probability 1. One then advances
time by 1/N. One can map IP dynamics to ED dynamics with the modified weighted adjacency matrix D~!A, whose (i, j)th
element is equal to A;/s?". The master equation for a single walker in the edge-reversed network is

dp(t) _
de
N

where D' is the diagonal matrix whose (i, i)th element is given by Zj:1 (Aj,- /s]‘?‘“). The consensus probability FiIP satisfies

p(t)(—D® +ATD™Yy, (202)

(FF, ... F)=(FF, ... ,RHATDY(D")~!. (203)
For an undirected network, p;* o< 1/s; solves Eq.(203), so nodes with small strengths are good at disseminating their opinions.
For a directed network, the first-order approximation to Eq. (203) is

N IP 4 .. /cout
FIP — FJ A'J/Si

1

=1 >0 Aci/(const)

o — . (204)

5.8. DeGroot model

The “DeGroot model” is a linear deterministic model that describes opinion-formation dynamics towards consen-
sus [400-402]. Control theorists have studied it as an example of a decentralized consensus algorithm (or protocol) [403].
Although the DeGroot model is not usually discussed as an application of RWs, there are relationships between the extent of
anode’s influence on the final collective opinion in the DeGroot model and the stationary density of RWs. Before proceeding
with our discussion, note that a recent generalization of the DeGroot model combines the averaging rule of the former with
an appraisal mechanism (See Ref. [404] and references therein.) to describe the dynamics of individuals’ self-appraisal and
social power in a network [405]. For nonlinear opinion-formation dynamics that allow non-consensus steady states, see
Refs. [392,406-409].

In the DeGroot model, the opinion of node v; at discrete time n is given by a continuous variable x;(n). One assumes that
node v; weighs the opinion x;(n) of node v; with weight A; to determine its opinion in the next time step (i.e., xj(n + 1)). The
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normalization is Y"1 ,A; = 1, and the dynamics are given by

N
n)=> Axn—1) (ief{l,....N}). (205)

In the DeGroot model, the column sum of A is equal to 1 for every column, and recall that the row sum of T is equal to 1 for
every row in a DTRW. To see the correspondence between the two models, it is convenient to write Eq. (205) in vector form
as follows:

xn)=A"xn—-1), (206)

where x(n) = (x1(n), ... ,xn(n))".Because the row sum of AT equals 1, we can identify AT with T. The DeGroot model and
DTRWs are thus driven by the same matrix, so their dynamics are essentially the same. The only difference is that the state
vector is multiplied on the left in the RW, but it is multiplied on the right in the DeGroot model. Up to rescaling, the models
are characterized by the same eigenvalues and eigenvectors.

As long as the spectral gap of T (i.e., AT) is positive, the stationary density of a DTRW is given uniquely by the left
eigenvector of T whose corresponding eigenvalue is 1. Under the same condition, the asymptotic state of the DeGroot model

is given by the corresponding right eigenvector of AT. This eigenvector is ¥* = (x7 ... ,x,’i,)T o« (1,... ,1)7, and it
corresponds to a state with full consensus.
The initial opinion x;(0) of node v; affects the value of the final opinion ] = - - - = x§, inconsensus. Ifx] = - - - = x} isclose

to x;(0) (for a general set of initial conditions that we will specify below) one interprets node v; as being influential. To quantify
this idea, we postulate that YN | F>% discx.(n) is conserved over time for positive constants FP 4 (withi € {1,...,N}),
where the superscript “disc” stands for discrete time and Z, 1FlDG dise — gives the normalization. If such a conserved

quantity exists, one obtains

Z FDG dlSC Z FDG disc X = R X;:I . (207)

Eq. (207) implies that F; DG.disc ¢ uantifies the influence of v; on the final opinion in consensus. By imposing this conservation
law, one obtains

N
Z FiDG’dlSCX,‘(n _ 1)
i=1

FDG’diSCXi(n)

[
Mz

1

I
Mz

F]DGd‘SC ZAJ,XJ -n]l. (208)
1 j=1

By requiring that Eq. (208) holds for arbitrary x;(n — 1) (withi € {1, ..., N}), we obtain
N
FiDG,dlsc — ZAIjI_-jDG.dlsc ) (209)

Eq. (209) indicates that F; DC.dis¢ i< the stationary density of the DTRW whose transition-probability matrix is AT.
A continuous-time varlant of the DeGroot model has similar relationships [222]. Consider the continuous-time DeGroot
model [403]

N
dx;(t
« Z [x®-x®], (210)
and note that we do not impose Z]N:]Aﬁ = 1. The asymptotic state of Eq. (210) is given by X = --- = x. Similar to the
discrete-time DeGroot model above, we rewrite Eq. (210) as
dx(t
d(t ) _ (AT —D™V) x(t) = —L"'X(t). (211)

Recall that D' is the diagonal matrix whose (i, i)th element equals s‘“ and L™ is the combinatorial Laplacian matrix for
the edge-reversed network. The left eigenvector of L™ correspondmg to eigenvalue 0 gives the stationary density of the
Poissonian edge-centric CTRW on the edge-reversed network. The corresponding right eigenvector gives the asymptotic
state of the continuous-time DeGroot model. Moreover, this eigenvector is the consensus state ¥* o< (1, ... , 1)T.Eq.(211)
also has a fascinating interpretation as linear synchronization dynamics that results from linearizing nonlinear systems such
as coupled Kuramoto oscillators [54,410]. See, for example, the discussion in [376].
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Eq.(211)yields

dx(t
* d(t) = (p*L") x(t) =0, (212)
where p* = (p], ... ,py), and p} is the stationary density of the Poissonian edge-centric CTRW at node v; in the edge-
reversed network. Therefore, p*x(t) is conserved, implying that Zf; p;xi(0) = Zf’zl pix{ =xj = --- = xj,. We thereby see

that p} quantifies the influence of node v; on the final opinion, similar to the case of the discrete-time DeGroot model.
6. Conclusions and outlook

Random walks play a central role in network science. As we have seen in this review, RWs are at the core of numerous
methods to extract information from networked systems, and they serve as a leading-order model for (conservative)
diffusion processes on networks. Because conventional RWs are linear processes, they are amenable to analysis. For example,
one can exploit methods from linear algebra to characterize dynamics in terms of modes relaxing on different time scales, and
one can even derive analytical solutions (e.g., via recursive equations) for quantities such as mean first-passage time (MFPT).
The simplicity of RWs is crucial, because associated dynamical properties on networks can be analyzed exactly, allowing
one to uncover mechanisms by which network structure affects dynamical processes, which is perhaps the primary goal of
studying dynamical processes on networks [49]. Many nonlinear processes (e.g., reaction—diffusion systems) include terms
related to linear diffusion, so studying RWs on networks also yields important insights into the linear stability (and weakly
nonlinear regimes) of numerous nonlinear processes.

RWs have been studied thoroughly (especially on networks) for many decades, but there remains much exciting work
to be done. In the following paragraphs, we discuss a few important directions in the study of RWs on networks. As with
the rest of our paper, these suggestions are far from exhaustive, and we look forward to seeing new theory and applications
of RWs. As we have discussed at length, RWs have connections both to many other processes and to a diverse variety of
applications, and we look forward especially to new, unexpected connections that will come to light in the coming years.

One prominent research direction is “non-backtracking RWs”, which have opened new perspectives in recent years in
topics such as community detection [262-264], because of the convenient properties of their spectrum for sparse networks.
Non-backtracking spreading processes have also been used in the examination of network centralities [261], percolation
theory [259,260], and the design of efficient immunization algorithms [265]. Non-backtracking RWs are a type of second-
order Markov chain (see Section 4.2.2), and their further study may provide algorithms for clustering and other applications
that are more efficient and/or realistic than current ones. As we have illustrated in this review, one can define different types
of RWs on the same network, and different RWs lead to different processes, algorithms, and insights.

Intrinsically, community detection and other forms of clustering are a type of model reduction, as one seeks to represent
a given network (or dynamical process on a network) using a smaller amount of information. InfoMap (see Section 5.3.3) is a
community-detection algorithm that is constructed explicitly on this principle. Related techniques include coarse-graining
RWs in a way that preserves the spectral properties of relevant matrices [411,412], external equitable partitions [413],
and using computational group theory to find “hidden” symmetries in networks [414]. More generally, RWs are at the
heart of flow-based algorithms, and they have been exploited to examine node centralities (see Section 5.2), community
structure (see Section 5.3), core-periphery structure (see Section 5.4), and the mapping of networks into a Euclidean
feature space [415]. It may also be fruitful to exploit similar ideas to examine other types of network properties (e.g., “role
similarity” [349,416], “rich clubs” [417,418], and approximately multipartite structure [419]). RWs have also been used for
some studies of community structure in temporal and multilayer networks [68,234-236] as well as for examining diffusion
processes and centralities in such networks [62,237,238,240,281,283,284], and much more remains to be discovered in such
applications. In temporal networks, for example, it is important to consider the relative timescales of the network dynamics
and the RW dynamics. Novel types of RWs also play an important role in examining higher-order network structure.
Examples include the spacey RW [269,420], RWs on hypergraphs [421], and RWs on simplicial complexes [422].

One can also combine RWs with other dynamical processes to model real-world phenomena in fascinating and insightful
ways. For example, one can couple RWs to other processes in multilayer networks [62,423], where it is important to study
scenarios such as infection spreading coupled to human/animal mobility (and more generally to study diffusion dynamics
coupled to other types of dynamics). One very successful family of models that combines multiple types of dynamics is
metapopulation models of biological contagions, in which individuals move from one subpopulation to another in some
way (e.g., according to an RW) and infection events occur within each subpopulation [216,217]. Metapopulation models,
reaction-diffusion models [95,216], and many other dynamical processes on networks often feature diffusion in the form
of a simple, memoryless Poisson process. The use of more complicated and realistic RW processes such as higher-order
Markov chains (see Section 4.2.2) and CTRWs driven by non-Poissonian renewal processes (see Sections 2.2 and 3.3) may
yield interesting results.

Various types of RWs continue to be employed actively for a diverse array of applications. We mentioned several examples
in Section 1, and we now indicate a few more applications of different types of RWs. For example, a “hungry RW” (taking
some inspiration from the arcade game Pac-Man) has yielded insights into anomalous diffusion in bacteria [86], a “waddling
RW” allows one to devise an efficient sampler for estimating the frequency of small subgraphs in a network [424], Lévy
flights can help capture features of animal foraging [9,11], multiplicative RWs are a useful approach for examining the
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Fig. 12. The weary random walker retires from the network and heads off into the distant sunset. [This picture was drawn by Yulian Ng.]

dynamics of financial markets [20,21], self-avoiding RWs have helped improve understanding of polymer chains [18,19],
the stochastic dynamics of neuronal firing have been studied using Ornstein-Uhlenbeck processes (a type of CTRW with
a leak term) [13,14], and the dynamics of correlated novelties (and Kauffman’s so-called “adjacent possible”) have been
modeled using an RW on a growing network (representing the growing space of possible innovations) [425].

In the coming years, we expect that RWs will continue to play a crucial role in physics, computer science, biology,
sociology, and numerous other fields. The study of RWs continues to yield fascinating, important, and inspiring insights.
Given how much random walkers have contributed to our scientific knowledge, they must be exhausted by now (see Fig. 12).
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In Eq. (8), the first factor should be 1/(47 Dn)!/?, rather than 1/(27Dn)!/2. The correct equation is
1 _ (x—un)2

—rd 4Dn

(472Dn)1/2

In Eq. (33), the sum in the denominator of the first fraction should be over the neighbors of node i. In other words, it should
be the same as the sum in the second fraction on the right of Eq. (33). The correct equation is

plx; n) = (1)

o

. (sis)* _ 5
Zl;vge./\f,-(sisf)a Zl;vge./\/',- S?

Tj; (2)
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Additional errata

In Eq. (50), the (1, 2)th element of the matrix on the right-hand side should be R(I + Q + --- +

R+ QR+ --- + QR . The correct equation is

Tn_<Q" R(I+Q+~--+Q"“)>
=\o I '

In Eq. (66) .f’ij(s) should be pj(s). The correct equation is

ZR“’“ I M o — 5]

m=0 n=0
—Zes pi(n) — p}]
. p}
= pii(s) — ——.
py() P

In Eq. (109), two instances of @ on the right-hand side should be 8. The correct equation is

€ max

=D, ZA,J A0 = O] + Y Das [0 - p0)] -
B=1
In Eq. (148), —Rj,,- + Rj,i should be —Ej,fs + Ej’it. The correct equation is
1< 1<
Current™ — 13 ZAij |Vi - V]| =3 ZAij |Ri,iS —Rii, — Rji, + Rj,it| (i & {is, ic}),
i j=1 j=1

1 (i e {is, it}).
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In Eq. (155), pjﬁx’ should be p;". The correct equation is

0 *
Ry Yo [pitm) = pf]

Sj 5
oo | spiin) 5
Zn:O |: s Zy:1 5&']
= 5
[e°] Si
ano |:Pji(n) - levﬁi:| R](','O)
- = (5)
Si Si
In Eq. (160),i € {1, ..., N} should be i € S. The correct equation is
1
po) = | X m-n XA
tes V0 \ jésijzi jesii
S— b__ 3y Y -0 qes). (6)
Loees Ve \iqua MY Equ it
In Eq. (179), (1 — At)8;8¢¢ should be (1 — At)§;jé¢e kjer. The correct equation is
1 k,gk]g
Q= Em .;Z/ (1 — At)8iberkjer + AtAG(€)Seer — M, Seer + (At — 1)8;iCiger | X 8(Gie, Gjer) - (7)
i€,
In the line right after Eq. (179), Zt,j,é,l’ 6,]5@@/5(&'@, gj(/) = N{yax should be Zi,j,l,l’ 51]'55[/161'('5(&'5, gj[) = Zi,z Kie-
In Eq. (180), A;j(¢) should be A;(£)8.,. The correct equation is
k; gk@
Q= ﬂ > [Ai,»(rz)aw — V(O b + al,c,w} 5(gie. giv') - 8)

ij,0.t

In Eq. (184), s, in the denominator on the right-hand side in the first line should be included in the summand. The
correct equation is

= |3 (=t (52 - - )] $3 s
=1

= Z |:Z)~" <(il;) (il/{> Z/)K] X ZSZ 9)

In Eq. (200), ZS’F] should be Z'er The correct equation is

VM Si
F, ZIZ:] 5 (10)
In Eq. (207), x; should be x}. The correct equation is
N N
ZFiDG,discXi(O) — ZFiDG,discX;k — XT - .. = X;f] ) (11)
i=1 i=1

In Eq. (208), F DG 45 i the second line should be FP 4 The correct equation is

DG, disc
E F; xi(n
i=1

DG, di
Fi 1scxi(n)

I
M=

1

[
MZ

Il
-

N
Fl-DG’diSC Z Aﬁxj(n -1 ) . ( 12)
j=1
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In Eq. (212), (p*L™") x(t) should be — (p*L™") x(t). The correct equation is

dx(t)
* - _ * Lrev t)=0.
P = )X
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