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Abstract. Characterizing large-scale organization in networks, including multilayer networks, is one of the most
prominent topics in network science and is important for many applications. One type of mesoscale
feature is community structure, in which sets of nodes are densely connected internally but sparsely
connected to other dense sets of nodes. Two of the most popular approaches for community detection
are to maximize an objective function called “modularity” and to perform statistical inference using
stochastic block models. Inspired by Newman’s work on monolayer networks [Phys. Rev. E, 94
(2016), 052315], we show in multilayer networks that maximizing modularity is equivalent, under
certain conditions, to maximizing the posterior probability of community assignments under suitably
chosen stochastic block models. We derive versions of this equivalence for various types of multilayer
structures, including temporal, multiplex, and multilevel networks. We consider cases in which
the key parameters are constant, as well as ones in which they vary across layers; in the latter
case, this yields a novel, layer-weighted version of the modularity function. Our results also help
address a longstanding di�culty of multilayer modularity-maximization algorithms, which require
the specification of two sets of tuning parameters that have been di�cult to choose in practice. We
show how to perform this parameter selection in a statistically grounded way, and we demonstrate
the e↵ectiveness of our approach on both synthetic and empirical networks.
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1. Introduction. Networks are useful representations of systems of interacting entities,
such as cities linked by railways, computers connected on the internet, or neurons interacting
through synapses [50]. The simplest kind of network is a graph: a collection of nodes (i.e.,
vertices) that are linked to each other, in pairwise fashion, by edges. Variants include weighted
networks, in which real numbers associated to edges indicate the strength of the associated
connections, and directed networks, which one can use to encode asymmetric interactions
between entities.

An enormous amount of research is dedicated to studying mesoscale structures in networks.
Examples include community structure [23], core–periphery structure [14, 65], and role sim-
ilarity [66]. In the present paper, we focus on community detection [1, 21, 23, 58, 62, 70].
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668 A. PAMFIL, S. HOWISON, R. LAMBIOTTE, AND M. PORTER

There is no consensus definition of what constitutes a community, and the precise definition
typically depends on the methodology that one uses to detect communities. In qualitative
terms, communities are sets of nodes that are densely connected to each other and sparsely
connected to other nodes in a network. Communities can reveal meaningful structure in net-
works, such as functional pathways in metabolic networks, related pages in the World Wide
Web, groups of friends in social networks, and more [50, 62].

Many existing community-detection methods involve the optimization of some quality
function, such as modularity [48, 52], Markov stability [20, 41, 42], the “map equation” in
Infomap [17, 67], and likelihood functions or posterior probabilities from generative network
models [37, 51, 56, 59]. Among these approaches, we distinguish two types (see also [25]). The
first set of methods relies on the definition of a quality function based on heuristic, information-
theoretic, or other arguments. For example, one may construe a partition of a network as
“better” if its communities have a “surprising” number of connections compared with some
null model (modularity), if they form bottlenecks to random walks (Markov stability), or if
they give a good compression of a network from an information-theoretic perspective (the
map equation). The second set of methods encompasses generative models of networks with
mesoscale structures (in particular, community structure), which one then fits to data using
some form of statistical inference. These models take many forms, and it is particularly
popular to use various types of stochastic block models (SBMs). A recent paper by Newman
[49] showed that, under certain conditions, maximizing modularity is equivalent to maximizing
the likelihood of a simplified SBM known as the “planted-partition model” (PPM) [13]. This
result plays an important role in our paper, so we discuss it in detail in section 2.

For many applications, it is important to move beyond ordinary graphs (i.e., “monolayer
networks”) to consider more complicated network structures, such as by studying a collection
of interrelated networks. Examples include temporal networks [6, 29, 60], in which edges
and/or nodes change in time, and multiplex networks (a generalization of edge-colored multi-
graphs), in which edges correspond to di↵erent types of interactions [47, 77]. We consider
these examples (and others) using the formalism of multilayer networks [9, 16, 38, 61].

Detecting communities in multilayer networks is an active area of research. There are
now several methods, with a variety of approaches [15, 17, 35, 47, 57, 72], and they have been
employed on numerous applications. For temporal networks, multilayer community detection
has been applied to the study of brain networks [7], financial correlations [6], scientific citations
[30], biological contagions [69], and more. For multiplex networks, examples of previous studies
include investigations of genes with di↵erent types of interactions [12], social support networks
in Indian villages [15], and microbial interactions at di↵erent sites in the human body [72].

Given the popularity of modularity maximization for detecting communities in monolayer
networks, it is no surprise that researchers have extended it to multilayer settings. Mucha
et al. [47] generalized previous studies that described communities as bottlenecks to certain
random-walker dynamics [40, 41, 42] to derive a multilayer modularity function, which one
then seeks to optimize. Multilayer modularity requires the specification of two sets of pa-
rameters, and selecting appropriate values is crucial for uncovering meaningful community
structure. In the simplest case, there are exactly two parameters: the resolution �, which
influences the sizes of detected communities; and the interlayer coupling !, which influences
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MODULARITY AND SBMs IN MULTILAYER NETWORKS 669

how much detected communities change across layers.1 Even in this simplified setting, deter-
mining appropriate values for � and ! is an open problem, and interlayer-coupling parameters
are especially poorly understood. In the absence of other guidance, researchers typically run
modularity maximization for di↵erent values of � and ! and then use heuristic criteria (e.g.,
looking for a range of values that yield qualitatively similar community structures) to select a
subset of values for in-depth investigation. Some researchers have attempted more systematic
approaches, and we briefly indicate two of them. Bassett et al. [4] chose values of � and ! that
maximize the di↵erence between the modularity Q of a network and the modularity Qnull of an
associated network without community structure. This procedure reveals “cohesive regions”
in the (�,!) plane in which a given network is significantly more modular than a random
network with similar characteristics. Weir et al. [78] proposed a di↵erent approach. Their
method takes as input a set of partitions of a network into communities and then discards
all “nonadmissible” partitions, which they construed as those that are dominated by others
for any choice of � and !. Both of these methods require a large number of calculations to
adequately sample the space of multilayer partitions (by performing modularity maximization
for many combinations of � and ! values).

SBMs and other generative models of networks with planted mesoscale structures have also
been extended to multilayer settings. However, one shortcoming of existing SBMs is that they
restrict how mesoscale structure can vary across layers, and many multilayer SBMs require
that communities be identical across all layers [57, 60, 73, 81]. Several authors have relaxed
this assumption in various ways. Ghasemian et al. [26] described a Markov model for temporal
multilayer networks in which nodes move to new communities between successive layers with
probabilities given by a transition matrix. Because their goal was to study detectability
thresholds [46] in these networks, they made several simplifications that reduce the utility of
their model for inferring mesoscale structures in many empirical networks. (For example, their
model produces networks in which all nodes have the same expected degree.) The degree-
corrected, mixed-membership generative model of De Bacco et al. [15] assumed that block
structure is identical across layers, but these blocks can induce di↵erent types of structures
in di↵erent layers (e.g., assortative, disassortative, core–periphery, and so on). Stanley et
al. [72] proposed a model that allows di↵erent layers to have di↵erent communities. However,
their algorithm involves a clustering step that assigns layers to “strata,” with each stratum
described by a single SBM. Consequently, their model does not include an explicit mechanism
for generating di↵erent communities in di↵erent layers. Vallès-Català et al. [76] proposed a
model in which di↵erent layers can have di↵erent communities, but they assumed that one
observes only an aggregate monolayer network. Consequently, one cannot fit this model to
multilayer network data. Bazzi et al. [5] proposed a general probabilistic model of multilayer
networks in which mesoscale structure can vary arbitrarily across layers. One of the potential
uses of their model is in community detection, although an inference algorithm that works in
this general setting has not yet been developed. Nevertheless, the ideas of Bazzi et al. play
an important role in the derivation of our results in section 3 and in some of the numerical

1Recently, Vaiana and Muldoon [74] examined the interplay between these two parameters. They demon-
strated the existence of a multilayer “resolution limit,” in that modularity maximization is unable to detect
community merges across layers for some values of � and !.D
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experiments in section SM1 of our supplementary materials.
The primary goal of our paper is to demonstrate that the problem of maximizing modu-

larity in multilayer networks is related to the problem of fitting particular multilayer SBMs to
network data. We achieve this by using the formulation of multilayer modularity from [47] as
a starting point and seeking generative models that recover this objective function. Our work
sheds light on some of the assumptions that are implicit in multilayer modularity maximiza-
tion. It also provides a general method for devising new modularity functions, including a
layer-weighted modularity that is appropriate for multilayer networks with statistical proper-
ties that may be heterogeneous across layers. A second contribution of our paper is an iterative
algorithm for estimating resolution and interlayer-coupling parameters when performing mul-
tilayer modularity maximization. This algorithm enables one to detect communities that can
vary in arbitrary ways across layers—something that existing SBM approaches are unable to
do. Throughout the paper, we work with unweighted networks; we briefly discuss possible
extensions of our results to weighted networks in section 6.

The rest of our paper is organized as follows. In section 2, we review Newman’s work
in [49] that established a connection between modularity maximization and inference in a
degree-corrected PPM for monolayer networks. In section 3, we show that similar results hold
for certain types of multilayer networks (including temporal and multiplex networks). We then
use these results to determine appropriate values for the resolution and coupling parameters in
multilayer modularity. In section 4.1, we describe an iterative algorithm for estimating these
parameters. In section 4.2, we demonstrate its performance on synthetic networks. We then
apply our methods to a multiplex social network in section 5, and we conclude with some ideas
for future work in section 6. In the supplementary materials, we include derivations of our
equivalence result for directed and multilevel networks, additional details about our iterative
parameter-estimation algorithm, and further numerical tests on synthetic networks.

2. Newman’s result for monolayer networks. Modularity maximization and inference
in SBMs are two of the most widely used methods for identifying mesoscale structures in
networks [23]. In [49], Newman uncovered a connection between these two methods. We
briefly summarize his argument in this section before considering the more general multilayer
setting from section 3 onwards.

Modularity is an objective function that measures the “quality” of a partition of a network
into disjoint sets of nodes known as “communities.” Larger values of modularity correspond
to partitions in which more edges fall within groups than expected by chance, as quantified by
a null model. Let gi denote the (unknown) community label of node i. One seeks to determine
a vector g of community assignments that maximizes modularity. In practice, because this is
an NP-hard problem [10], one generically finds only local optima of this objective function.

For undirected monolayer networks, the version of modularity that is used most often
employs the Newman–Girvan null model [52] (which is closely related to configuration models
[24]). In this case, the modularity function Q(g) compares the entries of a given network’s
adjacency matrix A with the expectation of the entries after uniformly randomly rewiring theD
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edges such that the expected degrees of the nodes are preserved:

(2.1) Q(g) =
1

2m

NX

i,j=1

✓
Aij � �

didj
2m

◆
�(gi, gj) ,

where N is the number of nodes in the network, di is the degree of node i (and dj is the degree
of node j), and m is the number of edges. The Kronecker delta �(·, ·) is equal to 1 whenever
its arguments are the same, and it is equal to 0 when they are di↵erent. Therefore, the only
terms that contribute to the sum in (2.1) are ones in which nodes i and j are in the same
community. The resolution parameter �, which is equal to 1 in the traditional formulation
of modularity [48, 52], was introduced in [63] and mitigates (but does not remove) resolution
issues, wherein communities below a certain size are undetectable using the original definition
of modularity [22, 28]. By tuning this resolution parameter, one can detect coarser or finer
community structure in a network.

In [49], Newman compared the modularity function (2.1) with likelihood functions that
arise from statistical network models. Following his derivation, consider a degree-corrected
SBM that is parametrized by the matrix ⇥ = (✓rs)1r,sK , where K is the number of commu-
nities. In SBMs, one typically needs to assume that K is given (or learned through some other
means, such as Bayesian inference [64]), but knowing the correct value of K is not necessary to
establish the results of this section. The parameters ✓rs indicate the propensities with which
nodes in community r connect to nodes in community s. Suppose that the number of edges
between two nodes, i and j, follows a Poisson distribution with mean didj✓gigj/(2m). The
log-likelihood of the data (i.e., the adjacency matrix) A, given parameters ⇥ and g, is then

(2.2) logP(A|⇥, g) =
1

2

NX

i,j=1


Aij log

didj
2m

+Aij log ✓gigj � log(Aij !)�
didj
2m

✓gigj

�
.

The factor of 1/2 is necessary to avoid double-counting of edges for undirected networks.
For directed networks, one can omit this factor from the log-likelihood, because the entries
Aij and Aji are independent random variables. (For multilayer networks, this di↵erence in
scaling becomes significant for reasons that we discuss in section SM1 of our supplementary
materials.)

If we know the parameters ⇥, our goal is to maximize the log-likelihood (2.2) with respect
to the partition vector g. We can ignore any terms in the right-hand side that do not depend
on g and write

(2.3) logP(A|⇥, g) =
1

2

NX

i,j=1

✓
Aij log ✓gigj �

didj
2m

✓gigj

◆
+ (const.) .

Following [49], we consider a type of SBM known as a “planted-partition model” (PPM)
[13]. In this model, the parameters ✓rs take one of two values: ✓in for r = s and ✓out for r 6= s.
When ✓in > ✓out, the PPM generates networks with assortative communities, for which the
density of edges is higher within sets of nodes than it is between sets. We may now write

✓gigj = (✓in � ✓out)�(gi, gj) + ✓out ,

log ✓gigj = (log ✓in � log ✓out)�(gi, gj) + log ✓out .(2.4)
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Substituting (2.4) into (2.3) yields

logP(A|⇥, g) =
1

2
(log ✓in � log ✓out)

NX

i,j=1

✓
Aij �

✓in � ✓out
log ✓in � log ✓out

didj
2m

◆
�(gi, gj)

+ (const.) .(2.5)

The connection between the modularity in (2.1) and the log-likelihood in (2.5) now be-
comes clear. Both are functions of g that take the same form (up to additive and multiplicative
constants), provided we set

(2.6) � =
✓in � ✓out

log ✓in � log ✓out
.

In particular, the optimal community assignments g are the same for both functions; maxi-
mizing one is the same as maximizing the other.

The above comparison between modularity maximization and maximum-likelihood es-
timation (MLE) for the PPM is useful for two reasons. First, it reveals some features of
modularity that otherwise are not clear—including the fact that it detects communities that
are “statistically equivalent” in the sense that they are characterized by the same parameters
✓in and ✓out. Second, this argument suggests that choosing the resolution � as in (2.6) is
a reasonable default when detecting communities using modularity maximization. (One can
estimate the unknown values ✓in and ✓out that appear in (2.6) using iterative approaches [49].)
This is especially relevant when one is interested in choosing a single resolution value for a
network, rather than exploring multiscale community structure [71].

A similar equivalence holds for directed and bipartite networks, and the associated reso-
lution value is the same as the one in (2.6). We expect that establishing an analogous result
for weighted networks is considerably more di�cult.

3. Multilayer networks. In this section, we derive a connection between multilayer mod-
ularity maximization and statistical inference in certain multilayer SBMs. We start with a
general discussion of multilayer modularity in section 3.1 and multilayer SBMs in section 3.2.
We then show how these formulations are related for temporal networks in section 3.3 and for
multiplex networks in section 3.4. In section SM2 of our supplementary materials, we examine
a scenario in which nodes are part of a hierarchical “multilevel” structure and thus are not
restricted to representing identical entities across layers.

3.1. Multilayer modularity maximization. We now introduce some terminology and no-
tation. We study “fully interconnected” multilayer networks [38], in which each node is present
in all layers, although the edges can di↵er from layer to layer. (In situations where this is not
the case, one can “pad” a network with additional nodes that are not adjacent to any other
nodes in their layer.) Let T denote the number of layers, and let N denote the number of
nodes in each layer. We write At for the N ⇥ N adjacency matrix of the network in layer
t 2 {1, . . . , T}. We assume for simplicity that the intralayer networks are undirected, and we
note that a similar derivation works for directed networks. (In fact, the example in section 5
involves directed networks.) In addition to these intralayer edges, for any two distinct layersD
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s, t 2 {1, . . . , T}, the N ⇥ N matrix ⌦st = (!st
ij )1i,jN specifies the weights of interlayer

connections between nodes in those layers. It is convenient to assume for simplicity that these
interlayer couplings are “diagonal” [38], so they only connect copies of the same node in dif-
ferent layers. In this case, the matrices ⌦st are themselves diagonal, and we use !st

i ⌘ !st
ii to

denote the ith diagonal entry.
Detecting communities in a multilayer network amounts to assigning each node-layer pair

(i, t) to a community, which we label gti . For simplicity, and unless we specify otherwise, we
use the term “node” to refer to such a node-layer tuple. (These are called “state nodes” in
some papers, such as [5, 68].) On occasion, it is useful to consider all node-layer pairs that
correspond to the same entity. We use the term “physical node” to refer to this common
entity, following terminology from [68] that was later adapted for multilayer networks [5, 17].

Analogously to the monolayer case, multilayer modularity is a function that measures the
quality of a multilayer partition g of a set of nodes into communities, relative to some null
model. Using the standard Newman–Girvan null model within each layer [48, 52], Mucha et
al. [47] derived an expression for multilayer modularity that is equivalent to

Q(g) =
TX

t=1

NX

i,j=1

 
At

ij � �t
dtid

t
j

2mt

!
�(gti , g

t
j) +

TX

t=1

X

s 6=t

NX

i=1

!st
i �(gsi , g

t
i)

= Qintra(g) +Qinter(g) ,(3.1)

where dti is the degree of node i in layer t, the quantity mt is the number of edges in layer t,
and gti is the community label of node i in layer t (and gtj is defined analogously). The layer-
specific resolution parameters �t control the importance of the null-model network relative to
the observed network. The node-specific and layer-specific coupling parameters !st

i influence
the extent to which one assigns instances of the same physical node in di↵erent layers to the
same community. In practice, it is common to assume, as we do in sections 3.3 and 3.4, that
some or all of these interlayer-coupling parameters are equal [38]. The multilayer modularity
from (3.1) is the sum of intralayer terms Qintra(g) (which add the monolayer modularity
values that are contributed by each layer) and interlayer terms Qinter(g), which depend on the
multilayer partition g and on the coupling between the layers. One can perform community
detection by finding multilayer partitions g that maximize (3.1).

It is helpful to introduce an alternative formulation of the modularity function in (3.1). A
convenient representation of multilayer networks is to use a supra-adjacency matrix [27, 38],
which has the following block structure:

(3.2) A =

2

6664

A1 ⌦12
· · · ⌦1T

⌦21 A2
· · · ⌦2T

...
...

. . .
...

⌦T1 ⌦T2
· · · AT

3

7775
.

For each layer t, we also define a modularity matrix Bt, with entries

(3.3) Bt
ij = At

ij � �t
dtid

t
j

2mt
.
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This results in a multilayer modularity matrix B with diagonal blocks Bt and o↵-diagonal
blocks ⌦st, analogously to the supra-adjacency matrix A. Introducing global indexes for the
nodes, i0 = i + (t � 1)N (so that nodes in the first layer are labeled 1, . . . , N , nodes in the
second layer are labeled N + 1, . . . , 2N , and so on), the modularity function in (3.1) is

(3.4) Q(g) =
NTX

i0,j0=1

Bi0j0�(gi0 , gj0) .

This objective function is the one that is maximized in the software known as GenLou-
vain [34], a multilayer generalization of the popular Louvain method for monolayer modular-
ity maximization [8]. Having an algorithm that is able to perform community detection at
this level of generality is important for some of the models that we consider in section 3.3 and
in the supplementary materials. Such a general algorithm also makes it possible to optimize
new versions of modularity that one can derive using the methods in the present paper; we
provide some suggestions in this direction in section 6.

3.2. Multilayer SBMs. We now describe a generative model whose posterior probability
recovers the modularity function in (3.1). Many di↵erent types of multilayer SBMs have been
studied [5, 15, 26, 57, 60, 72, 73, 76, 81], and there are many more that one can propose, so
we start by pointing out some requirements for such models to be suitable for our purpose.

The first key requirement is that the statistical model has a posterior probability over
multilayer partitions g that one can write in closed form; otherwise, we are unable to make
a meaningful comparison with multilayer modularity. This rules out the general benchmark
model in [5], which uses Monte Carlo methods to sample from the distribution of multilayer
partitions. The second requirement is that the model should allow arbitrary variations in
community structure across layers. This is important, because the modularity function in (3.1)
also allows this type of generality. This requirement rules out many existing multilayer SBMs
[57, 60, 73, 81]. Finally, we demand that any interdependencies between layers are induced
solely through the multilayer partition g and the coupling between nodes in di↵erent layers,
rather than through intralayer edges. This rules out, for example, the model proposed in [3],
as it includes an “edge persistence” parameter that favors intralayer edges remaining active
over multiple temporal layers. Note that the modularity function in (3.1) also encapsulates
all interlayer dependencies in a separate term Qinter(g), which does not involve any of the
intralayer adjacency matrices At.

With these requirements in mind, we are ready to describe the building blocks of a
multilayer SBM that recovers the modularity function in (3.1). In the process, we have to
place further restrictions on the generative model; this is unsurprising, because SBMs allow
more general mesoscale structures than the type of communities that are detectable through
modularity maximization. (In the monolayer setting from section 2, one such restriction is
that the SBM only has two edge probabilities, ✓in and ✓out.)

We assume that edges are placed independently in each layer, conditioned on the multilayer
partition g. In particular, any coupling between nodes in di↵erent layers (through interlayer
edges or otherwise) has no direct influence on the placement of edges within each layer. This
is in line with many existing multilayer SBMs, including those in [5, 26], which are the existingD
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MODULARITY AND SBMs IN MULTILAYER NETWORKS 675

models that most closely resemble the ones that we propose in the present paper. Using a
degree-corrected SBM with a set of parameters⇥t for each layer, the conditional log-likelihood
of observing a network specified by A is

(3.5) logP(A|g,⇥) =
TX

t=1

NX

i,j=1

 
At

ij log ✓
t
gtig

t
j
�

dtid
t
j

2mt
✓tgtigtj

!
+ (const.) .

(For reasons that we explain in section SM1 of our supplementary materials, we omit the
factor of 1/2 in front of the double sum.) By taking the same approach as in section 2, we
can relate each term in (3.5) to the corresponding intralayer modularity term from (3.1).
Assuming that the SBM in each layer takes the form of a PPM with two parameters, ✓tin and
✓tout, the log-likelihood becomes

(3.6) logP(A|g,✓in,✓out) =
TX

t=1

�
log ✓tin � log ✓tout

� NX

i,j=1

 
At

ij � �t
dtid

t
j

2mt

!
�(gti , g

t
j) + (const.) ,

where

�t =
✓tin � ✓tout

log ✓tin � log ✓tout
.(3.7)

For now, we assume that the SBM parameters, ✓tin and ✓tout, are the same for all layers.
(We discuss the more general setting, in which these parameters can di↵er across layers, in
section 3.3.) In this case, the log-likelihood from (3.6) becomes

(3.8) logP(A|g, ✓in, ✓out) = (log ✓in � log ✓out)
TX

t=1

NX

i,j=1

 
At

ij � �
dtid

t
j

2mt

!
�(gti , g

t
j) + (const.) ,

where

� =
✓in � ✓out

log ✓in � log ✓out
.(3.9)

The expression in (3.8) now matches the term Qintra(g) from (3.1) (up to scaling by an
expression that does not depend on g). The “optimal” resolution value from (3.9) is, perhaps
not surprisingly, the same as the one in (2.6) that was derived for the monolayer setting [49].
Note additionally that this derivation holds irrespective of the interdependency structure
between the layers and whether a multilayer network is temporal, multiplex, or something
else.

We have now accounted for the intralayer modularity terms in (3.1). These terms, as well
as the log-likelihood in (3.8), lack any form of coupling between the community assignments
gt for di↵erent layers. Without such coupling, maximizing either multilayer modularity or the
SBM log-likelihood with respect to g is no di↵erent from performing the optimization sepa-
rately for each layer. We introduce layer interdependencies in our generative model through a
prior distribution on g. This is a prior distribution, because it encodes our belief of what com-
munity assignments are probable before observing the network data A. As one might expect,D
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the form of this prior depends markedly on the specific coupling between layers. Therefore,
in our subsequent discussions, we can no longer consider the most general representations
of multilayer networks. We thus focus on specific types of multilayer structure; we examine
temporal networks in section 3.3, multiplex networks in section 3.4, and multilevel networks
in section SM2 of our supplementary materials.

3.3. Temporal networks. In a multilayer representation of a temporal network, each
layer encodes interactions that occur in some period of time. Although there are exceptions
(e.g., see [75]), it is common to assume that interlayer edges in these temporal networks are
“diagonal” (they only connect copies of the same node in di↵erent layers), “layer-coupled”
(their weight depends only on the layers, rather than on the nodes), and “ordinal” (they only
connect successive layers) [38]. We also take these interlayer edges to be directed, indicating
that information flows along the arrow of time. Let !t denote the weight of interlayer edges
from layer t� 1 to layer t, where t 2 {2, . . . , T}. The supra-adjacency matrix A then has the
following structure:

(3.10) A =

2

6666666664

A1 !2I 0 · · · 0

0 A2 !3I · · · 0
...

...
...

. . .
...

0 0 0 · · · !T I

0 0 0 · · · AT

3

7777777775

.

It is common to assume for simplicity that the parameters !2, . . . ,!T are all equal to some
value !; this is known as uniform coupling [6, 47]. In this case, the expression (3.1) for
multilayer modularity becomes

(3.11) Q(g) =
TX

t=1

NX

i,j=1

 
At

ij � �
dtid

t
j

2mt

!
�(gti , g

t
j) + !

TX

t=2

NX

i=1

�(gt�1
i , gti) .

We also assume for now that the resolution parameter � is the same for all layers; we will
relax this assumption later in this section. After specifying values for � and !, modularity is
a function of the community labels g, where gti gives the community assignment of node i in
layer t.

We relate the vectors gt of community assignments for di↵erent layers using a prior prob-
ability P(g). Following previous approaches for sampling multilayer partitions [5, 26], assume
that the community membership of node i in layer t is copied from the previous layer with
probability p and is sampled from some specified null distribution P0 with probability 1� p.
Because of the temporal structure, we sample labels in the first layer from the null distri-
bution, rather than copying them from some other layer. The probability of generating a
particular multilayer partition g is then

P(g) = P(g1)
TY

t=2

P(gt
|gt�1) =

NY

i=1

P0(g
1
i )

TY

t=2

(
NY

i=1

⇥
p�(gt�1

i , gti) + (1� p)P0(g
t
i)
⇤
)
.
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Taking logarithms and rearranging yields

logP(g) =
NX

i=1

logP0(g
1
i ) +

TX

t=2

NX

i=1

log


1 +

p�(gt�1
i , gti)

(1� p)P0(gti)

�
+

TX

t=2

NX

i=1

log
⇥
(1� p)P0(g

t
i)
⇤

=
NX

i=1

logP0(g
1
i ) +

TX

t=2

NX

i=1

log


1 +

p

(1� p)P0(gti)

�
�(gt�1

i , gti)(3.12)

+
TX

t=2

NX

i=1

log
⇥
(1� p)P0(g

t
i)
⇤
.

The second equality follows from noting that any logarithmic term in the second sum is 0
whenever �(gt�1

i , gti) = 0. The ability to move the Kronecker delta outside the logarithmic
expression is the key technical trick that allows us to relate this prior probability to the
interlayer modularity terms from (3.1). This is also the crucial step that makes certain cases,
such as multiplex networks (see section 3.4), more di�cult to analyze.

Comparing the expression in (3.12) with the interlayer modularity terms in (3.11), we
start to see a resemblance: both involve weighted sums over nodes i and layers t of Kronecker
deltas of the form �(gt�1

i , gti). To obtain an exact match, we have to make further assumptions.
Suppose that the null distribution P0 is uniform over community assignments. Specifically, if
there are K communities (possibly including empty ones), let P0(gti) = 1/K for any node i
and layer t, such that each node is equally likely to be assigned to each of the communities.
The first and third terms in (3.12) become constants, and the only term that depends on g
is the second one. From now on, we also write logP(g|p,K) for the log-prior to emphasize its
dependence on the parameters p and K.

We now use Bayes’ rule to combine the intralayer and interlayer terms that arise in our
proposed multilayer SBM into a single posterior probability:

logP(g|A, ✓in, ✓out, p,K) = log

✓
P(A, g|✓in, ✓out, p,K)

P(A|✓in, ✓out, p,K)

◆

= log

✓
P(A|g, ✓in, ✓out)P(g|p,K)

P(A|✓in, ✓out, p,K)

◆

= logP(A|g, ✓in, ✓out) + logP(g|p,K)� logP(A|✓in, ✓out, p,K) .(3.13)

The first two terms of (3.13) correspond, respectively, to the log-likelihood from (3.8) and the
log-prior from (3.12). The third term is di�cult to compute in practice, but it does not depend
on g, so we can treat it as a constant for our purposes. We can also ignore multiplicative
constants to obtain

logP(g|A, ✓in, ✓out, p,K) /
TX

t=1

NX

i,j=1

 
At

ij � �
dtid

t
j

2mt

!
�(gti , g

t
j)

+
TX

t=2

NX

i=1

log
⇣
1 + p

1�pK
⌘

log ✓in � log ✓out
�(gt�1

i , gti) + (const.) .(3.14)
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By maximizing the right-hand side of (3.14) with respect to g, we find the mode of the
posterior distribution over multilayer partitions, given the multilayer network A and model
parameter values ✓in, ✓out, p, and K. We now ensure that maximizing multilayer modularity
(3.11) is equivalent to maximizing the posterior probability (3.14) by choosing

� =
✓in � ✓out

log ✓in � log ✓out
,(3.15)

! =
1

log ✓in � log ✓out
log

✓
1 +

p

1� p
K

◆
.(3.16)

It is useful to point out some limiting cases for the interlayer-coupling parameter !. When
p = 0, which entails that there is no copying of community assignments from one layer to the
next, (3.16) gives ! = 0. This implies that community detection proceeds independently for
each layer. When p ! 1, we obtain ! ! 1, which ensures that maximizing modularity
recovers the same communities in each layer, as it should. Perhaps less obvious is the de-
pendence on ✓in and ✓out. Consider the ratio ✏ = ✓out/✓in, which determines the strength of
the planted community structure. According to (3.16), a weaker community structure in a
network (i.e., a larger value of ✏) should entail a larger value of !. One explanation is that
by putting more emphasis on persistence of communities across layers, we take advantage
of correlations between layers to increase the “signal” of underlying community structure,
while simultaneously decreasing layer-specific “noise.” Finally, ! increases (weakly) with the
number K of communities. For fixed ✓in and ✓out, it is typically more di�cult to detect a
larger number of communities than a smaller number [26]. Increasing the amount of coupling
improves community-detection results by taking advantage of correlations between layers.

Thus far, we have assumed that all layers have the same resolution parameter � and are
connected by interlayer edges with the same weight !. This amounts to assuming that the
layers are “statistically similar,” in that they can be described by a common set of parameters
✓in, ✓out, p, and K. For many applications, this assumption is unrealistic, so it is important
to investigate what happens when these parameters are layer-dependent.

Proceeding analogously to the layer-independent case, the log-likelihood of observing a
network A conditioned on a multilayer partition g is

logP(A|g,✓in,✓out) =
TX

t=1

"
�
log ✓tin � log ✓tout

� NX

i,j=1

 
At

ij �
✓tin � ✓tout

log ✓tin � log ✓tout

dtid
t
j

2mt

!
�(gti , g

t
j)

#

+ (const.) .(3.17)

To impose a prior on the multilayer partition g, let pt be the probability that a node in layer
t copies its community label from layer t� 1, where t 2 {2, . . . , T}. Recall that P0 is the null
distribution for community labels when nodes do not copy their community assignments from
the previous layer. We now make this distribution layer-dependent, such that Pt

0 is the null
distribution for layer t, to allow layers with nonuniform characteristics. As before, suppose
that each null distribution Pt

0 is uniform, which entails that Pt
0(g

t
i) = 1/Kt, where Kt is the

number of communities (possibly including empty ones) in layer t. Ignoring any terms thatD
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no longer depend on g, the log-prior is then

logP(g) =
NX

i=1

log
⇥
P1
0(g

1
i )
⇤
+

TX

t=2

NX

i=1

log
⇥
pt�(g

t�1
i , gti) + (1� pt)Pt

0(g
t
i)
⇤

=
TX

t=2

NX

i=1

log

✓
1 +

pt
1� pt

Kt

◆
�(gt�1

i , gti) + (const.) .(3.18)

Combining (3.17) and (3.18) and multiplying by a constant for notational convenience, we
see that g has the posterior probability distribution

logP(g|A,✓in,✓out,p,K)(3.19)

/

TX

t=1

"
log ✓tin � log ✓tout
hlog ✓tin � log ✓toutit

NX

i,j=1

 
At

ij �
✓tin � ✓tout

log ✓tin � log ✓tout

dtid
t
j

2mt

!
�(gti , g

t
j)

#

+
TX

t=2

NX

i=1

log
⇣
1 + pt

1�pt
Kt

⌘

hlog ✓tin � log ✓toutit
�(gt�1

i , gti) + (const.) ,

where h·it denotes a mean across all layers t 2 {1, . . . , T}.
Guided by (3.19), we define a modularity function for temporal networks with nonuniform

parameters using the following formula:

(3.20) Q(g) =
TX

t=1

�t

NX

i,j=1

 
At

ij � �t
dtid

t
j

2mt

!
�(gti , g

t
j) +

TX

t=2

!t

NX

i=1

�(gt�1
i , gti) .

In contrast to previous definitions of multilayer modularity [47], our definition includes a new
set of layer weights �t in addition to the resolution parameters �t and interlayer-coupling
parameters !t. Comparing (3.20) with the log-probability in (3.19), we see that these param-
eters should take the following values:

�t =
✓tin � ✓tout

log ✓tin � log ✓tout
,(3.21)

!t =
1

hlog ✓tin � log ✓toutit
log

✓
1 +

pt
1� pt

Kt

◆
,(3.22)

�t =
log ✓tin � log ✓tout
hlog ✓tin � log ✓toutit

.(3.23)

The expressions in (3.21)–(3.23) are consistent with the ones that we obtained for the case of
uniform coupling. If the parameters ✓in, ✓out, pt, and Kt are layer-independent, expressions
(3.21) and (3.22) reduce to (3.15) and (3.16), respectively. Additionally, (3.23) gives �t = 1,
which is why these weights do not appear explicitly when one considers uniform coupling.

The role of the parameters �t is to give di↵erent weightings to intralayer modularity
terms that correspond to di↵erent layers. To the best of our knowledge, this is the firstD
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definition of multilayer modularity that explicitly incorporates such layer weightings.2 Their
values depend on the strength of the community structure in their respective layers. Letting
✏t = ✓tout/✓

t
in, we see that �t / log(1/✏t). This implies that layers with strong community

structure (i.e., ✏t close to 0) get a larger weight when maximizing multilayer modularity
than layers in which the community structure is weak (i.e., ✏t close to 1). It is also worth
noting what happens when some layers have disassortative structure (i.e., when ✏t > 1).
The formula (3.23) suggests taking �t < 0, pushing the method towards finding multilayer
partitions that minimize monolayer modularity for these layers. Indeed, it is known that
minimizing modularity for monolayer networks identifies partitions with many edges between
groups and few edges within groups [48, 49]. The multilayer setting is especially interesting,
because it allows (at least in principle) a combination of assortative and disassortative layers
[15].

Although the proposed multilayer modularity from (3.22) takes a nonstandard form be-
cause of the weights �t, algorithms such as GenLouvain [34], which are designed for any
maximization problem of the form in (3.4), will continue to work. We also note that one can
explicitly consider situations in which the interlayer-coupling parameters are uniform and the
resolution parameters are layer-dependent, and vice versa.

A key facet of the results of this section is that they give a principled method for choosing
heterogeneous interlayer-coupling weights !t. Although the original derivation of multilayer
modularity in [47] is general enough to include scenarios with nonuniform parameters, most
computations that researchers have done in practice have used uniform coupling and resolution
values [4, 47, 78]. For most applications, this is a simplifying assumption, rather than a
hypothesis that these parameters are in fact the same for all layers. Our work suggests ways
to remove this assumption and perform computations when parameters are layer-dependent,
which we expect to be relevant for almost all applications.

The derivation from this section holds whenever the graph of dependencies between layers
is a tree. In that case, community labels propagate from the root of this tree to the leaves,
yielding a prior distribution P(g) that is similar to the one from (3.12). One example of
potential interest for applications is the star graph, in which one central layer influences
community structure in all remaining layers.

3.4. Multiplex networks. In a multiplex network, nodes are adjacent to each other via
multiple types of edges; each edge type corresponds to a layer in a multilayer network [38, 77].
In this section, we establish a relationship between modularity maximization and certain
multilayer SBMs for multiplex networks.

As in section 3.3, we continue to assume that our multilayer networks are fully intercon-
nected, diagonal, and layer-coupled. To construct a multiplex SBM, we follow [5] and let P
denote the matrix of interlayer dependencies, where pst (with s 6= t) is the probability that
a node in layer t copies its community label from layer s. (We assume that pss = 0.) The
matrix P may or may not be symmetric. We say that the case in which all probabilities pst
are equal to the same value p has “uniform coupling.”

2One can write the most general version of multilayer modularity in [47] in the form of (3.20) by rescaling
the adjacency matrices At to incorporate the weights �t. However, this scenario is not one that the authors
of [47] (or other researchers) have considered explicitly.D
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Recall from section 3.2 that the intralayer modularity Qintra(g) takes the same functional
form as the conditional log-likelihood P(A|g,✓in,✓out), regardless of the dependency structure
between layers. We therefore focus our attention on devising a prior P(g) that recovers the
interlayer modularity Qinter(g) for multiplex networks.

In a multiplex network, there is no natural ordering of the layers (in contrast to temporal
and multilevel networks). Consider the vector gi = (g1i , . . . , g

T
i ) of community labels for some

node i. From the definition of conditional probability, it follows that

(3.24) P(gi) = P(g1i )P(g2i |g1i )⇥ · · ·⇥ P(gTi |g1i , . . . , gT�1
i ) .

However, we can also write

(3.25) P(gi) = P(gTi )P(gT�1
i |gTi )⇥ · · ·⇥ P(g1i |gTi , . . . , g2i ) ,

and we can write a similar expression for any other permutation of the T layers. Of course,
all of these products have to evaluate to the same quantity (namely, P(gi)). It is di�cult to
define a probabilistic model for g that is internally consistent in this way. In particular, a
closed-form model (i.e., one in which we can write P(g) explicitly) that is otherwise similar to
the one in [6] does not have these properties.

We take a di↵erent approach. Considering each node i independently, we first sample
a permutation � of the layers from the symmetric group ST with probability P(�), and we
then update community labels in the order indicated by this permutation: first, we sample a
community label for i in what is now layer 1; we then sample a label in layer 2, conditioned
on the label from layer 1; and so on.3 The permutation � that indicates the update order can
be di↵erent for di↵erent nodes. The resulting prior is

(3.26) P(g) =
NY

i=1

X

�2ST

P(�)P
⇣
g�

�1(1)
i

⌘ TY

t=2

P
⇣
g�

�1(t)
i |g�

�1(t�1)
i

⌘
.

Note that we assume that the update process is memoryless, so the community label in layer
t (after applying the permutation �) depends only on the community label in layer t�1. This
is the same assumption that we (and others [5, 26]) have made for temporal networks.

For simplicity, we write &t for ��1(t). As in section 3.3, we use a copying and resampling
process to generate community labels. The conditional probabilities in (3.26) are then

(3.27) P(g&ti |g
&t�1
i ) = p&t�1&t�(g

&t�1
i , g&ti ) + (1� p&t�1&t)P&t

0 (g
&t
i ) .

For the first layer,

(3.28) P(g&1i ) = P&1
0 (g

&1
i ) .

With a uniform prior P&t
0 (g

&t
i ) = 1/K&t , we obtain

(3.29) P(g) =
NY

i=1

X

�2ST

(
P(�)

QT
t=2 (1� p&t�1&t)QT

t=1K&t

TY

t=2


1 +

p&t�1&t

1� p&t�1&t
K&t�(g

&t�1
i , g&ti )

�)
.

3Alternatively, one can consider sampling over all possible spanning trees with T nodes and assume that
the update propagates from the root of each tree to the leaves.D
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Taking logarithms and treating any terms that do not depend on g as constant yields

logP(g) =
NX

i=1

log

(
X

�2ST

P(�)
TY

t=2

(1� p&t�1&t)


1 +

p&t�1&t

1� p&t�1&t
K&t�(g

&t�1
i , g&ti )

�)

+ (const.) .(3.30)

As we mentioned in section 3.3, being able to take the Kronecker delta outside the logarithmic
expression is the key step that allows us to relate this prior probability to the corresponding
interlayer modularity terms. However, we cannot do this easily in the present case because
of the sum over permutations � 2 ST . Instead, we bound the expression from (3.30) using
Jensen’s inequality. Because the logarithm is a concave function,

(3.31) log

 
X

i

xi

!
�

X

i

qi log

✓
xi
qi

◆

for any qi � 0 with
P

i qi = 1; equality holds for qi = xi/
P

i xi. Applying the inequality
(3.31) to (3.30) and ignoring additive terms that do not depend on g yields

(3.32) logP(g) �
NX

i=1

X

�2ST

q�i

TX

t=2

log

✓
1 +

p&t�1&t

1� p&t�1&t
K&t

◆
�(g&t�1

i , g&ti ) + (const.) .

We want to rearrange the right-hand side of (3.32) into an expression that resembles the
interlayer modularity terms in (3.1). To do this, we fix s and t and consider all of the terms
in (3.32) that involve �(gsi , g

t
i). There are (T � 1)! permutations � with &t0�1 = s and &t0 = t

for some t0 2 {2, . . . , T}. (There are T � 1 ways to choose t0, which fixes the values of �(s)
and �(t); and there are (T � 2)! ways of permuting the remaining layers.) For convenience,

let S(s,t)
T denote the subset of ST that consists of permutations that map layers s and t to two

successive layers. The lower bound of the log-prior then becomes

(3.33) logP(g) �
NX

i=1

X

s 6=t

X

�2S(s,t)
T

q�i log

✓
1 +

pst
1� pst

Kt

◆
�(gsi , g

t
i) + (const.) .

The fact that we have a lower bound for this log-prior, rather than an equality as in section 3.3,
may seem problematic. However, recall that we obtain equality if the quantities q�i take the
specific values

(3.34) q�i =

P(�)
TY

t=2

(1� p&t�1&t)


1 +

p&t�1&t

1� p&t�1&t
K&t�(g

&t�1
i , g&ti )

�

Zi
,

where, for each node i 2 {1, . . . , N}, the quantity Zi is a proportionality constant that ensures
that

P
�2ST

q�i = 1. One can interpret each q�i as the posterior probability P(�|gi) of a layer
permutation �, given the observed community labels for node i. This posterior probability is
proportional to the product of the prior probability P(�) and the likelihood P(gi|�).D
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By comparing the right-hand side of (3.33) with the intralayer modularity terms from
(3.1), we arrive at the following optimal values for the interlayer-coupling parameters:

(3.35) !st =
1

hlog ✓tin � log ✓toutit
log

✓
1 +

pst
1� pst

Kt

◆ X

�2S(s,t)
T

q�i .

Given a multilayer partition g and values for the other parameters of our generative
model, one can (in principle) calculate values for the weights q�i using (3.34). Substituting
these values into (3.35) then gives estimates for the coupling weights !st. In practice, the

sum over permutations � 2 S(s,t)
T from (3.35) has (T � 1)! terms. Although there are many

empirical data sets with a su�ciently small number of layers (say, T / 6) for which this
calculation is feasible, this brute-force approach will not work in general.

We can make some simplifications in the case of uniform coupling, for which pst = p for
s, t 2 {1, . . . , T}. Furthermore, we assume that the number of communities is the same for
each layer (Kt = K) and that we sample each permutation � with equal probability (i.e.,
P(�) = 1/T !). In this case, the layers of our multiplex network are statistically equivalent, so
on average any permutation of the layers should produce the same results. This implies that
the quantities q�i = P(�|gi) (with � 2 ST ) are equal in expectation, which yields

(3.36)
X

�2S(s,t)
T

q�i ⇡
1

T

X

�2ST

q�i =
1

T
.

It is possible to make this argument mathematically rigorous in the limit T ! 1 by ap-

proximating the quantities q�i (with � 2 S(s,t)
T ) with quantities q�

0
i (with �0

2 ST ) of simi-
lar magnitude. In Table 1, we provide some numerical evidence that our approximation is
reasonable even for small T . Indeed, we observe that the sample mean of the expression
(
P

�2S(s,t)
T

q�i ) � 1/T is close to 0 for di↵erent values of the copying probability p and the

number T of layers. (For these examples, we use K = 5.) From a practical standpoint, we
expect that any errors in the approximation (3.36) will have a small impact on the results of
modularity maximization compared to other sources of error (e.g., the algorithm identifying
di↵erent local optima of the modularity function across di↵erent runs).

Table 1
Sample mean and standard deviation (in parentheses) of

P
�2S

(s,t)
T

q�i � 1/T across 50 trials.

T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10

p = 0.5
�0.013 0.027 0.009 0.008 �0.013 0.005 �0.004 �0.020
(0.052) (0.098) (0.090) (0.090) (0.076) (0.078) (0.069) (0.047)

p = 0.7
0.000 �0.001 0.016 0.003 �0.008 �0.003 0.025 0.010
(0.068) (0.073) (0.082) (0.096) (0.071) (0.086) (0.100) (0.082)

p = 0.9
�0.003 0.006 �0.004 0.007 0.004 0.010 0.008 �0.007
(0.016) (0.048) (0.064) (0.075) (0.051) (0.080) (0.059) (0.052)

The approximation (3.36) gives

(3.37) ! =
1

T hlog ✓in � log ✓outit
log

✓
1 +

p

1� p
K

◆
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for multiplex networks with uniform coupling, so we see that !multiplex = !temporal/T . This
scaling makes intuitive sense, as the number of directed interlayer edges per physical node is
equal to T � 1 for temporal networks and is equal to T (T � 1) for multiplex networks.

4. Parameter estimation. In section 3, we showed an equivalence between modularity
maximization and statistical inference in SBMs, given certain assumptions, for di↵erent types
of multilayer networks. In this section, we use these results to determine appropriate values for
the resolution and interlayer-coupling parameters that arise in the formulation of multilayer
modularity. For concreteness, we focus on the uniform setting, in which there are only two
parameters (� and !). However, one can straightforwardly extend all of our results in this
section to the layer-dependent case.

4.1. Iterative algorithm. In section 3, we derived expressions for � and ! that depend
on the unknown quantities ✓in, ✓out, p, and K. We therefore have to estimate the values of
all of these parameters. To do this, we use an iterative procedure similar to the one that was
proposed in [49] for monolayer networks. Given some initial guesses �(0) and !(0), the iterative
process alternates between running modularity maximization with the current estimates of
these parameters and using the resulting community structure to estimate ✓in, ✓out, p, and
K, thereby obtaining new values for � and !. The algorithm stops once � and ! converge,
up to some prespecified tolerance. We give the pseudocode for this iterative procedure in
Algorithm 4.1. The iteration proceeds similarly when the parameters are layer-dependent. It
is also possible to use the framework of Algorithm 4.1 to update only one of the two parameters,
� and !, while keeping the other one fixed. A MATLAB implementation of Algorithm 4.1
(which we call IterModMax) is available at https://github.com/roxpamfil/IterModMax.

Algorithm 4.1. Iterative algorithm for performing modularity maximization and estimating
resolution and interlayer-coupling parameters in a multilayer network.
function IterativeModularityMaximization(A)
initialize � = �(0) and ! = !(0)

while not converged do
g  MaximizeModularity(A, �,!) . Run multilayer modularity maximization (e.g.,

using GenLouvain [34])
✓in, ✓out, p,K  EstimateSBMParameters(A, g)

. Use detected communities to estimate SBM
parameters

�  UpdateGamma(✓in, ✓out) . Update � using (3.9)
!  UpdateOmega(✓in, ✓out, p,K) . Update ! using (3.16) or (3.37)

end while
return �, ! . Optimal modularity parameters
return g . Communities detected using optimal

parameters
end function

A key step of Algorithm 4.1 is estimating ✓in, ✓out, p, and K, given a multilayer network’s
supra-adjacency matrix A and the current multilayer partition g. This task is relatively
straightforward for temporal and multilevel networks, although it is more involved for multi-
plex networks. We explain how to perform this estimation in section SM3 of our supplementaryD

ow
nl

oa
de

d 
10

/0
8/

19
 to

 1
28

.9
7.

27
.2

0.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODULARITY AND SBMs IN MULTILAYER NETWORKS 685

materials.
The most time-consuming part of Algorithm 4.1 is the modularity-maximization step of

each iteration. Additionally, we observe empirically that the number of iterations that we
need for convergence does not increase with the size of a network. (Instead, it depends
on the strength of a network’s community structure.) Therefore, the overall complexity of
Algorithm 4.1 is the same as that of the modularity-maximization algorithm that one uses for
community detection. We use GenLouvain, whose computational complexity scales roughly
as O(N2T ) for temporal networks and roughly as O(NT (N+T )) for multiplex networks [34].4

Although Algorithm 4.1 is serial, it is possible to perform some related tasks in parallel.
For instance, it can be useful to consider di↵erent choices of initial � and ! (see section 5) or
to run consensus clustering [43] at each iteration to obtain higher-quality partitions. (See our
discussion in section 6.) One can easily parallelize either of these tasks to reduce the overall
running time. Additionally, it appears within reach to implement a parallel version of the
subroutine that maximizes multilayer modularity [11]; this would make it possible to apply
Algorithm 4.1 to larger networks.

4.2. Numerical examples. We first illustrate the performance of Algorithm 4.1 on a sim-
ple network. Consider a network with N = 1000 nodes, T = 2 layers, and K1 = 20 communi-
ties in the first layer that merge pairwise into K2 = 10 communities in the second layer. We
place edges independently in the two layers with probabilities pin = 0.32 (for nodes in the same
community) and pout = 0.1 (for nodes in di↵erent communities). We choose these values near
the detectability threshold for a monolayer network to make the community-detection task
su�ciently di�cult. Note that the parameters pin and pout are not the same as the parameters
✓in and ✓out from our generative model, as the latter are also multiplied by node degrees to
generate edge probabilities. In Figure 1, we show the detected communities for two parameter
choices: (1) the parameter values � = 1 and ! = 1 and (2) the values � ⇡ 1.60 and ! ⇡ 1.30
to which the iterative process from Algorithm 4.1 converges. The naive approach recovers the
correct structure in the second layer, but not in the first; in particular, it identifies 10, rather
than 20, communities in the first layer. By contrast, our iterative modularity-maximization
algorithm identifies a multilayer partition that is close to the planted one.

We also test our parameter-estimation approach on existing multilayer network bench-
marks, in which one can easily tune the strength of the planted community structure by
changing one parameter. This flexibility allows us to study the community-detection problem
at various levels of di�culty in a systematic way. In this section, we provide results for the
generative temporal network model that was proposed by Ghasemian et al. [26]. Apart from
the lack of degree correction, their model is the same as the one that we used in section 3.3 to
study multilayer representations of temporal networks. This is a limitation, as real networks
are likely to have di↵erent characteristics from those that are assumed by this (or some other)
model. Therefore, in section SM4 of our supplementary materials, we use the models of Bazzi
et al. [5] to test our approach in more general settings.

4The quadratic scaling is worse than that of the original Louvain algorithm [8] and is due to the fact that
GenLouvain is designed to work with any modularity matrix B. Using an approach similar to that in [8], it
is possible to implement a specialized version of GenLouvain that maximizes multilayer modularity and that
runs in approximately O(NT log(N)) time for sparse networks.D
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(a) � = 1 and ! = 1 (b) � ⇡ 1.60 and ! ⇡ 1.30

Figure 1. Detected multilayer partitions for a toy network with 20 communities in the first layer that merge
pairwise into 10 communities in the second layer. We set the values of � and ! to (a) � = 1 (the “default”
value) and ! = 1 and (b) the optimal values � ⇡ 1.60 and ! ⇡ 1.30 that we infer using Algorithm 4.1. In both
cases, the normalized mutual information (NMI) between the detected partitions and the planted one is close to
1 for the second layer. For the first layer, NMI is approximately 0.5 using the naive approach, and it is about
0.95 for the optimized approach.

The model of Ghasemian et al. uses the copying and resampling process that we described
in section 3.3 to propagate community labels across temporal layers. In any layer other than
the first, a node keeps its community label from the previous layer with probability ⌘, and
it samples a label uniformly at random (from K available labels) with probability 1 � ⌘.
The parameter ⌘ is the same as our copying probability p, but we use di↵erent notation to
emphasize that one is a tuning parameter for generating a network and the other is a parameter
that we infer while detecting communities in that network. The expected community sizes
are equal to N/K for all communities and all layers.

After assigning nodes to communities in this way, we place edges independently in each
layer with probabilities pin (if the nodes are in the same community) and pout (if the nodes
are in di↵erent communities). Because this generative model has no degree correction, it
produces networks in which each node has the same expected degree in every layer. The ratio
✏ = pout/pin controls the strength of the planted community structure.

For their numerical experiments in [26], Ghasemian et al. limited themselves to situations
with K = 2 communities, and we do the same in the present paper. We construct networks
with T = 40 layers and N = 512 nodes in each layer. Each node has a mean degree of c = 32,
and we vary ⌘ and ✏ in our calculations. In qualitative terms, the ability of a community-
detection algorithm to recover a planted partition should decrease as ✏ increases (because
community structure is becoming weaker), and it should increase as ⌘ increases (because
the multilayer partition is changing less between successive layers). We show the results of
these tests in Figure 2. (See Figure SM2 in our supplementary materials for the analogous
results when using the model from Bazzi et al. [5] to generate temporal multilayer networks.)
Note that our plots use the theoretically optimal values of � and ! from (3.15) and (3.16),
rather than iterating from some initial values. We choose to proceed in this manner because
the authors of [26] also assumed that one knows all parameters aside from the community
assignments g. Towards the bottom of each plot, we also show the detectability thresholds that
were derived in [26]; beyond these values, no algorithm can recover the planted communities.
One derives these thresholds, which depend on ⌘, in the limit in which the number T of layersD
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(a) GenLouvain (b) GenLouvainRand

Figure 2. Results for the temporal multilayer benchmark network from [26]. The plots show layer-averaged
NMI scores between the planted partition and the one detected by modularity maximization as a function of
community strength ✏ for two di↵erent versions of the GenLouvain algorithm [34]. Each line and set of
markers corresponds to a di↵erent value of the copying probability ⌘, and each data point is a mean over 100
trials. We use the theoretically optimal � and ! for each choice of parameters. The bottom parts of the plots
(vertical lines) indicate the detectability thresholds from [26], beyond which no algorithm is able to detect the
planted structure. The plots di↵er in how the di↵erent versions of the GenLouvain algorithm explore the
space of multilayer partitions to increase modularity: (a) choose the move that yields the largest increase in
modularity; (b) choose a move with a probability proportional to the resulting increase in modularity. The
algorithm in panel (a) seems to perform better, especially for large ⌘, although we note that this version of the
algorithm can lead to poor behavior in certain cases for su�ciently large ! [6].

tends to infinity. We measure the level of success of each run by taking a mean over all layers
of the normalized mutual information5 (NMI) between the planted partition gtrue and the
algorithmically detected one:

(4.1) hNMI(g, gtrue)i =
1

T

TX

t=1

NMI(gt, gt
true) .

The two di↵erent plots in Figure 2 correspond to two di↵erent versions of theGenLouvain
algorithm for optimizing multilayer modularity [34]. When the GenLouvain algorithms seek
to increase the value of modularity by reassigning nodes to communities, one can either (1)
select the move that leads to the largest increase in modularity (GenLouvain) or (2) use a
“weighted” random move, which occurs with a probability that is proportional to the resulting
increase in modularity (GenLouvainRand). Previous work [6] found that the original version
of the GenLouvain algorithm can sometimes lead to undesirable behavior in which interlayer
modularity terms are overemphasized relative to intralayer terms for su�ciently large !. The
GenLouvainRand version of the algorithm was designed to avoid this problem. For our
numerical experiments in Figure 2, we find that GenLouvain tends to perform better. This
is due to two factors. First, for small values of ⌘, the theoretically optimal values of ! do not
fall in the problematic regime that was described in [6]. Second, for large values of ⌘, the fact
that GenLouvain puts so much emphasis on persistence of communities across layers tends

5We use the version of NMI in which one normalizes by the mean entropy of the two input partitions [45].D
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to help, rather than hinder, the algorithm’s performance. Note that the results in Figure 2
do not contradict the earlier findings from [6].

Our results in Figure 2 exhibit the same qualitative features as similar plots in the paper
that introduced these benchmarks [26]. Specifically, for each value of ⌘, the success rate of
the algorithms (as measured by NMI) is close to 1 for small values of ✏, and it then drops
rapidly to 0 near some critical value of ✏ that depends on ⌘. This degradation in performance
occurs before the theoretically predicted detectability thresholds that were derived in [26].
By contrast, the belief-propagation algorithm proposed in [26] performs well closer to these
thresholds. There are several reasons for this observation. The first is that belief-propagation
methods are known to give asymptotically optimal accuracy, in that they are able to recover
planted communities all the way down to the threshold, as long as there is su�cient data
(in terms of network size and number of layers) and as long as one initializes the relevant
parameters su�ciently close to their optimal values [18, 19, 46]. By contrast, there are no
such theoretical guarantees for modularity maximization. Additionally, the belief-propagation
algorithm in [26] looks only for multilayer partitions with two communities, whereas our
modularity-maximization algorithm also considers other partitions. Another possible reason
for the suboptimal results in Figure 2 may be that our values of � and !, which we calculated
from (3.15) and (3.16), are not the best possible values to use in practice. We investigate this
next.

(a) “Easy” regime (⌘ = 0.7, ✏ = 0.4) (b) “Hard” regime (⌘ = 0.5, ✏ = 0.5)

Figure 3. Illustration of the dynamics of the iterative process in Algorithm 4.1. In each plot, the heat map
shows NMI scores between the planted partition gtrue and the algorithmically detected partition g, averaged over
10 runs for each combination of � and ! values. (We also tested parameter values outside the ranges in these
plots.) The arrow centered at each (�,!) grid cell indicates the direction that yields the new estimates of � and
! (averaged over the 10 trials) that we obtain from (3.15)–(3.16) after performing modularity maximization.
For clarity, we have scaled down the arrow sizes. The blue disk in each plot indicates the location of the correct
parameter values, which one can calculate from the planted partition. (a) An example with ⌘ = 0.7 and ✏ = 0.4
(an “easy” case). As the arrows indicate, the iterative process converges to the true parameter values for many
initial values �(0) and !(0). (b) An example with ⌘ = 0.5 and ✏ = 0.5 (a “hard” case). The region in the plane
that results in the largest NMI values is roughly 0.8 / � / 0.9 and 0.7 / ! / 1.5. The optimal parameter values,
�opt ⇡ 0.96 and !opt ⇡ 0.80, lie slightly outside this regime. Although many of the arrows point in the direction
of the blue disk, once the iterative process continues from there, it results in increasingly large resolution values
and thus never converges. However, by returning the largest-modularity partition that it encounters during the
iterative process, the algorithm identifies a solution that is close to the planted structure. (The NMI is about
0.86.)D
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In Figure 3, we show heat maps of mean NMI values for two di↵erent choices of ⌘ and ✏.
Specifically, after generating a multilayer network for each of the two settings, we sample values
of � and ! from a two-dimensional grid and run GenLouvainRand 10 times for each pair of
values. The mean NMI values in each grid cell indicate the level of agreement between the true
partition and the one that we detect algorithmically. Figure 3(a) corresponds to an “easy”
case, in which modularity maximization correctly recovers the planted partition at the optimal
parameter values; and Figure 3(b) corresponds to a “hard” case, in which we are only partially
able to recover the planted structure. (Situations in which there is no overlap between the
detected partition and the planted one are not particularly interesting.) In each of these plots,
we mark the optimal parameter values, �opt and !opt, with a blue disk. The arrows centered
at each (�,!) grid point indicate the direction of the new � and ! estimates (averaged over the
10 trials) that we obtain from (3.15)–(3.16) after performing modularity maximization. (For
clarity, we have scaled down the arrow sizes.) This visualization indicates how our iterative
approach explores (on average) the two-dimensional parameter space from di↵erent starting
positions. In Figure 3(a), most of the arrows point to the location of the optimal point
(�opt,!opt). We are thus in the “easy” regime, in which the iterative process in Algorithm 4.1
converges to the correct parameter values and recovers the correct partition. The situation is
more complicated in Figure 3(b). We observe that the optimal parameter values lie slightly
outside the region in the (�,!) plane with the largest mean NMI values. Although many of
the arrows point in the direction of the optimal point (�opt,!opt), GenLouvainRand detects
suboptimal partitions into communities at these values. (We confirmed that the detected
partitions are indeed suboptimal, as they give a smaller modularity value than the planted
partition.) The arrows also illustrate why the iterative approach fails to converge in this
case. From the optimal point, the resolution value becomes increasingly large, with no hope
of returning to the large-NMI regime that is roughly in the region 0.7 / � / 0.9. This
observation suggests that there is no stable fixed point of the iterative process in Figure 3,
although there may be an unstable fixed point.

To circumvent the issue of the resolution � increasing indefinitely for some networks (specif-
ically, ones that tend to have relatively weak community structure), we find it useful to de-
crease � in the iterations of Algorithm 4.1 whenever the number of communities exceeds some
user-specified threshold.6 Specifically, we decrease � by 20% (leaving ! unchanged) whenever
K exceeds some given Kmax. Although this approach introduces additional parameters to
tweak, detected communities are less sensitive to the value of Kmax than they are to the val-
ues of � and !. Decreasing � when the number of communities is too large helps our algorithm
explore the space of resolution and interlayer-coupling parameters in a useful way, even when
it fails to converge to a fixed point. The algorithm can then return the largest-modularity
partition that it encounters during this exploration. For the multilayer network in Figure 3(b),
this approach finds a solution with an NMI score of 0.86. This example illustrates an impor-
tant point: even when our proposed iterative algorithm does not converge to a fixed point, it
can still identify meaningful community structure in a multilayer network. One way to select
Kmax is by applying an existing method for estimating the number of communities [64] in one

6When lack of convergence is not an issue, one should set this threshold to be large enough (e.g., larger
than the number of nodes) so that it does not a↵ect the iterative process.D
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layer of a network. Given that researchers often analyze monolayer network representations
before constructing multilayer networks from the same data, this approach seems reasonable.
Nonetheless, it is ad hoc, and we expect that better heuristics are possible.

5. Application: Lazega Law Firm. We illustrate our approach on the Lazega Law Firm
network [44].7 This multiplex network encompasses interactions between N = 71 partners
and associates who work at the same law firm. The network has T = 3 layers, each with
directed edges, which encode co-work, friendship, and advice relationships. The data set also
includes seven pieces of metadata, which we can use to analyze detected communities. These
are (1) status (partner or associate); (2) gender; (3) o�ce (Boston, Hartford, or Providence);
(4) seniority (specifically, years with the firm); (5) age; (6) practice (litigation or corporate);
and (7) law school (Harvard, Yale, University of Connecticut, or other). We group both the
seniority and age metadata into five-year bins.

(a) Scatter plot of fixed points (b) Matrix of NMI scores

Figure 4. (a) Scatter plot of (�opt,!opt) fixed points that our iterated modularity-maximization algorithm
identifies when we apply it 100 times to the Lazega Law Firm network. The colors indicate membership to one
of five groups that we identify using the K-means clustering algorithm [32]. About 80 runs converge to one
of the groups that we label as “ 1” and “ 2”. (b) The matrix of layer-averaged NMI values between all pairs
of partitions that we identify across 100 trials of our iterated modularity-maximization algorithm. The five
diagonal blocks correspond to the five groups from panel (a).

We apply a version of Algorithm 4.1 for directed networks (see section SM1 of our sup-
plementary materials for a derivation of this case) to the Lazega Law Firm data set, and
we use GenLouvainRand for community detection. (Using GenLouvain gives very similar
results.) Specifically, we run 100 trials of our iterative algorithm using initial values of �
and ! that we sample uniformly at random from the intervals [0, 5] and [0, 1], respectively.
(For other applications, one can use a larger or smaller number of initializations, depending
on network size and one’s computational budget.) Each trial converges within 30 iterations
(which is our specified maximum), and typically our procedure reaches a fixed point in a

7For applications of our method to larger networks, see the recent doctoral dissertations [39, 53]. In [39] (see
Appendix B), Klimm investigated changes in community structure in a temporal protein-interaction network
of human white-blood cells under an inflammatory trigger. In [53] (see Chapter 5), Pamfil analyzed community
structure in multilevel and temporal networks of customers who are linked to grocery products that they
purchase.D
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much smaller number of iterations. In Figure 4(a), we show a scatter plot of the resulting
fixed points (�opt,!opt). This plot has two distinct regions of interest, depending on whether
the copying probability p that our algorithm learns is strictly smaller than 1 or is equal to 1.
In the former case, there is some variation in community structure across layers. In the latter
case, we obtain identical communities across all three layers, and the theoretically optimal
coupling value is !opt = 1. In the algorithm, we set ! equal to !max = 1000 to introduce
a very large penalty to nodes that switch communities across layers. We apply the K-means
clustering algorithm to the (suitably normalized) points in Figure 4(a) to assign them to five
groups,8 of which three correspond to the runs with p < 1 and the other two correspond to
the runs with p = 1. Of the 100 runs, about 80 converge to one of the groups that we label
as “1” and “2” in Figure 4(a). To compare the outputs of di↵erent trials, we calculate the
layer-averaged NMI between all pairs of partitions that we obtain across our 100 trials, and we
show the resulting similarity matrix in Figure 4(b). The borders around the diagonal blocks
of this similarity matrix correspond to the five groups from Figure 4(a). We observe large
similarity scores among trials in the same group, especially for the two dominant groups (the
ones that we label as “1” and “2”). Because one of the groups is associated with p < 1 and
the other is associated with p = 1, we analyze them separately.

(a) Consensus partition for group 1 (b) Consensus partition for group 2

Figure 5. Visualizations of the consensus partitions that correspond to the two largest groups from Fig-
ure 4(a). We use the same ordering of the rows in both panels. The partition in (a) reveals a set of nodes that
are in a di↵erent community in the friendship layer than they are in the other two layers. The partition in (b)
has identical communities in the three layers.

We use consensus clustering [43] with the null model from [33] to extract a representative
partition for the trials in each of the two labeled groups, and we visualize these consensus
partitions in Figure 5. As expected from Figure 4(a), the consensus partition for group 2 has
identical communities across the three layers. The structure of the consensus partition for
group 1 is more interesting; it reveals a set of lawyers who are in a di↵erent community in the
friendship layer than in the co-work and advice layers. In fact, the friendship layer is what
distinguishes the two partitions from Figures 5(a) and 5(b). In Figure 6, we show sparsity
plots of the adjacency matrix for the friendship layer; we order the rows and columns of this
matrix according to the two consensus partitions from Figure 5. The three diagonal blocks in

8We base the number K of K-means clusters (which is not related to the number of communities) on visual
inspection of Figure 4(a); other choices give similar results.D
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(a) Group 1 (b) Group 2

Figure 6. Sparsity plots of the adjacency matrix for the friendship layer, with rows and columns ordered
according to their community assignments in the consensus partitions for (a) group 1 and (b) group 2.

each panel correspond to the three communities. There is a larger number of intracommunity
entries in Figure 6(a) than in Figure 6(b). This suggests that the consensus partition for group
1 identifies stronger assortative structure in the friendship layer than the consensus partition
for group 2. This simple example illustrates a key trade-o↵ in multilayer community detection
between detecting “optimal” communities in each layer (as the partition for group 1 tends to
do) and detecting communities that are stable across layers (as is the case for the consensus
partition for group 2).

Table 2
NMI scores between metadata and consensus partitions for the Lazega Law Firm data set. We highlight

the largest value in each column.

O�ce Practice Age Seniority Status Gender Law school
Partition 1 0.587 0.334 0.146 0.147 0.150 0.035 0.024
Partition 2 0.610 0.469 0.098 0.052 0.040 0.026 0.007
All 100 runs 0.577 0.406 0.125 0.106 0.093 0.037 0.022

We can gain further insight into the two consensus partitions by computing NMI scores
with each type of metadata. We report our results in Table 2. For comparison, the bottom
row of this table gives the mean NMI score across all 100 runs of our iterative algorithm.
Our results are in line with a previous study of this data set [55]; it found that the o�ce
and practice metadata are related more strongly to network community structure than the
law-school or gender metadata. We also observe that the two consensus partitions tend to
correlate with di↵erent pieces of metadata. From Figure 5, we know that these di↵erences
arise from variations in the friendship layer. This suggests that age, seniority, and status
are more important determinants of friendship than of co-work and advice relationships. By
contrast, o�ce location and type of practice (litigation or corporate) have a larger impact on
co-work and advice relationships than on friendships.

As this example shows, there is no guarantee that our IterModMax algorithm identifies
a single set of optimal parameter values and thus a single multilayer assignment of a network’s
nodes to communities. However, we feel that this is a strength, rather than a shortcoming,D
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of our method. Many empirical networks may have multiple meaningful partitions into com-
munities; for example, these may align best with di↵erent pieces of metadata and appear as
distinct peaks in a likelihood surface [55]. Even without the guarantee of a unique output, our
method gives a systematic and principled way to reduce the number of cases to investigate
using a much smaller number of computations than other similar methods [78].

6. Conclusions. The ability to coarse-grain a network by identifying its constituent com-
munities is important for many applications. Many recent developments in community de-
tection have focused on multilayer networks, which one can use to encode time-dependent
interactions, multiple types of interactions, and other complications that can arise in complex
systems. There exist a variety of methods for community detection in multilayer networks. In
this paper, we focused on two approaches: modularity maximization and statistical inference
using stochastic block models. Our main results connect these two types of methods. By
considering various types of multilayer structure, we showed that the multilayer modularity
objective function is, under specific circumstances, the same as the posterior log-probability
that corresponds to certain multilayer SBMs. Therefore, maximizing one expression with re-
spect to community assignments is equivalent to maximizing the other. This link between the
two approaches highlights some implicit assumptions of classical multilayer modularity that
previously were not clear. These include the assumption that layers are “statistically equiva-
lent” (which entails that they are described by the same sets of parameters, ✓in and ✓out) and
that all communities in a layer have the same expected sizes (because the null distributions
Pt
0 are uniform and the copying probabilities pt are the same for all nodes in a layer).

For temporal networks, we examined both the situation in which the resolution and
interlayer-coupling parameters are uniform across all layers and the one in which they are
layer-dependent. In the latter case, we proposed a novel layer-weighted version of modular-
ity that is appropriate for situations in which communities in di↵erent layers have di↵erent
statistical properties. We also briefly explored the use of layer-dependent models to detect
structural change points [54], which correspond to layers in which a network’s mesoscale struc-
ture undergoes a major reorganization. (See section SM4 of our supplementary materials.)
For multiplex networks, we proposed a new way of generating multilayer partitions by per-
muting the layers and then updating community labels in the order that is indicated by the
permutation. In contrast to other generative models of multiplex networks [5], our approach
makes it possible to write down the probability of generating a particular multilayer partition
in closed form, and we expect that this will be useful for future e↵orts (e.g., for performing
inference in associated SBMs).

Our work also suggests a principled method for determining appropriate values for the
resolution and interlayer-coupling parameters that arise in the formulation of multilayer mod-
ularity. Our iterative algorithm provides a way to explore parameter space in a more e�cient
way than an exhaustive grid search, and we can thereby use fewer computations than pre-
vious approaches [4, 78]. We tested our algorithm on two families of multilayer benchmark
networks. Our results showed the expected qualitative features, with better performance in
networks with stronger community structure and more persistent communities across layers.
We also used our algorithm on the Lazega Law Firm data set, which is a multiplex network
with three layers. Our analysis revealed a set of lawyers who belong to a community in theD
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friendship layer that is di↵erent from their community in the co-work and advice layers.
There are many possible extensions of our work. One can derive similar results for mul-

tilayer networks with di↵erent forms of interlayer coupling from those that we discussed in
this paper. Examples include temporal networks with memory, in which a layer depends not
only on its predecessor, but rather on all other layers that came before it; networks with
community-dependent coupling parameters; interconnected networks, in which interlayer con-
nections are no longer diagonal; and multilayer networks with more than one aspect (e.g.,
networks that are both temporal and multiplex [38]). More broadly, our work (as well as
Newman’s previous work [49]) provides a recipe for deriving new versions of modularity for
both monolayer and multilayer networks by starting from an SBM and making appropriate
simplifications. Previous authors have used such a procedure to propose a version of modular-
ity that incorporates information from metadata [79] by simplifying the SBM from [51]. We
expect that one can similarly derive modularity functions from other SBMs that incorporate
node annotations [31, 82] in both monolayer and multilayer settings. Another idea is to in-
corporate parameters that control expected community sizes in the definition of modularity,
e↵ectively relaxing the assumption that the null distributions Pt

0 are uniform [80].
We also anticipate that it is possible to improve on Algorithm 4.1 in several ways. For

example, rather than using a single run of modularity maximization to estimate new resolution
and interlayer-coupling parameter values, one can combine information from multiple runs to
choose a direction in which to move and a step size to use in a move in that direction.
Another practical issue arises when iterating over both � and ! does not yield a fixed point.
In these cases, we proposed a simple heuristic of decreasing the resolution when the number
of communities becomes too large. Based on our observations, failure to converge is almost
always due to the resolution increasing indefinitely, so an alternative solution is to fix �
throughout the iterations and optimize only ! [53]. One can then combine this version of
our iterative algorithm with the multiresolution consensus-clustering approach from [36] to
obtain a hierarchy of consensus partitions that span multiple scales. Another challenging task
is to extend the results of the present paper to weighted networks. A key observation is that
such weights only impact intralayer terms. Therefore, to study extensions of our analysis to
weighted networks, it is su�cient to relate weighted modularity to a suitable monolayer SBM
for weighted networks [2, 59].

In summary, we showed that two common and independently developed methods for com-
munity detection in multilayer networks—modularity maximization and SBM-based statistical
inference—are closely related. This connection goes far beyond being only an interesting the-
oretical finding, as we believe that the techniques that we developed in the present paper can
provide practical insights into devising more robust community-detection algorithms that do
not require ad hoc experimentation with parameter values.

Acknowledgments. We thank Marya Bazzi, Lucas Jeub, and Florian Klimm for useful
discussions.

REFERENCES

[1] E. Abbe, Community detection and stochastic block models: Recent developments, J. Mach. Learn. Res.,
18 (2018), pp. 1–86.

[2] C. Aicher, A. Z. Jacobs, and A. Clauset, Learning latent block structure in weighted networks, J.
Complex Networks, 3 (2014), pp. 221–248.

D
ow

nl
oa

de
d 

10
/0

8/
19

 to
 1

28
.9

7.
27

.2
0.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODULARITY AND SBMs IN MULTILAYER NETWORKS 695

[3] P. Barucca, F. Lillo, P. Mazzarisi, and D. Tantari, Disentangling group and link persistence in
dynamic stochastic block models, J. Stat. Mech. Theory Exp., 2018 (2018), 123407.

[4] D. S. Bassett, M. A. Porter, N. F. Wymbs, S. T. Grafton, J. M. Carlson, and P. J. Mucha,
Robust detection of dynamic community structure in networks, Chaos, 23 (2013), 013142.

[5] M. Bazzi, L. G. S. Jeub, A. Arenas, S. D. Howison, and M. A. Porter, A Framework for the
Construction of Generative Models for Mesoscale Structure in Multilayer Networks, preprint, https:
//arxiv.org/abs/1608.06196, 2016.

[6] M. Bazzi, M. A. Porter, S. Williams, M. McDonald, D. J. Fenn, and S. D. Howison, Community
detection in temporal multilayer networks, with an application to correlation networks, Multiscale
Model. Simul., 14 (2016), pp. 1–41, https://doi.org/10.1137/15M1009615.

[7] R. F. Betzel and D. S. Bassett, Multi-scale brain networks, NeuroImage, 160 (2017), pp. 73–83.
[8] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities

in large networks, J. Stat. Mech. Theory Exp., 2008 (2008), P10008.
[9] S. Boccaletti, G. Bianconi, R. Criado, C. D. Genio, J. Gómez-Gardenes, M. Romance,
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SM1. The Relative Weight of Intralayer and Interlayer Contributions for Undirected
and Directed Networks. In this section, we compare the optimal modularity functions that
one obtains for undirected and directed networks using our approach from section 3 of the main
manuscript. These two objective functions should be identical when the intralayer adjacency
matrices At are symmetric, as treating each undirected edge as two directed edges should not
change the objective function that one optimizes for community detection. To simplify our
discussion, we focus on the uniform setting (in which all layers are described by the same
parameters).

Recall from section 3.2 that the log-likelihood for undirected multilayer networks under
the PPM is

logP(A|g, ✓in, ✓out) = (log ✓in � log ✓out)
TX

t=1

NX

i,j=1

 
At

ij �
✓in � ✓out

log ✓in � log ✓out

dtid
t
j

2mt

!
�(gti , g

t
j)

+ (const.) .(SM1.1)

As in (3.8), the fact that this expression involves a sum over all i and j, and not just over
i  j, entails that the entries At

ij and At
ji of an intralayer adjacency matrix both contribute

to the log-likelihood. A similar derivation for directed networks gives

logP(A|g, ✓in, ✓out) = (log ✓in � log ✓out)
TX

t=1

NX

i,j=1

 
At

ij �
✓in � ✓out

log ✓in � log ✓out

dti,outd
t
j,in

m0
t

!
�(gti , g

t
j)

+ (const.) ,(SM1.2)

where dti,out is the out-degree of node i in layer t, the quantity dtj,in is the in-degree of node j

in layer t, and m0
t =

PN
i,j=1A

t
ij is the number of directed edges in layer t. When using a PPM

to generate directed networks, the number of directed edges from node i to j in layer t follows
a Poisson distribution whose mean is either dti,outd

t
j,in✓in/m

0
t or dti,outd

t
j,in✓out/m

0
t, depending

on whether or not i and j are in the same community in layer t. The expression (SM1.2)
corresponds to a sum of monolayer modularities with the directed null model from [SM8].

If the adjacency matrices At are all symmetric, dti,out = dti,in = dti, d
t
j,out = dtj,in = dtj ,

and m0
t =

PN
i,j=1A

t
ij = 2mt. (The number of directed edges is twice the number of undi-

rected edges.) The expressions (SM1.1) and (SM1.2) become identical. When adding the
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log-prior term logP(g|p,K) and comparing the resulting expression with multilayer modular-
ity, one obtains the same optimal value of ! in both the undirected and directed settings.
The assumption that At

ij and At
ji both contribute to the log-likelihood (SM1.1) for undirected

networks is a crucial one: if one were to introduce a factor of 1/2 to discount this double-
counting of terms, the resulting optimal value of ! would be twice as large when assuming
that the matrices At encode undirected networks instead of directed ones.

It is important to note that one of our paper’s key results, which relates the intralayer
component of modularity to a sum of log-likelihoods and the interlayer component to a log-
prior on community assignments, holds irrespective of the relative scaling between these two
types of contributions. It is only when one uses this relation for parameter estimation (see
section 4) that the formula for ! depends on this scaling. In our numerical experiments in
section 4.2 and section SM4, we find that performance deteriorates if one rescales the log-
likelihood (SM1.1) by a factor of 1/2 to avoid double-counting edges. It is possible that one
would see improved performance in our parameter-estimation algorithm by incorporating an
additional tuning constant ↵ and maximizing the modularity function that is equivalent (for
suitable � and !) to the expression

(SM1.3) logP(A|g, ✓in, ✓out) + ↵ logP(g|p,K) .

Such a constant is analogous to ones that have been introduced for community detection in
the presence of metadata [SM4,SM10]. It is also akin to regularization constants that appear
in other types of optimization problems, as the term logP(g|p,K) helps prevent overfitting
to the community structure of individual layers. Investigating the e↵ect of such a trade-o↵
parameter is beyond the scope of the present paper, but it is an interesting topic for future
work.

SM2. Derivation of Theoretically Optimal Parameter Values for Multilevel Networks.
In a multilevel network [SM9], the layers are a hierarchy of monolayer networks, and inter-
layer edges between nodes indicate inclusion relationships. Like the temporal networks from
section 3.3 of the main manuscript, the layers in multilevel networks have a natural ordering,
which makes it straightforward to modify the approach from section 3.3 and obtain a simi-
lar result. This section complements our results for temporal and multiplex networks from
section 3.3 and section 3.4, respectively.

Multilevel networks have been studied before, most notably by Snijders and collaborators,
who used multilevel modeling for social network analysis [SM13, SM14, SM15]. The use of
multilevel networks for community-detection applications is considerably rarer. We note a
recent study by Barbillon et al. [SM1], who investigated a data set of collaborations and
exchanges of resources between cancer researchers in France and their laboratories. Although
Barbillon et al. modeled these interactions as a multiplex network of researchers, one can
alternatively use a multilevel representation with researchers in one layer and laboratories in
the other layer. A related example is a multilayer collaboration network, in which coauthored
papers induce connections between individuals, research groups, departments, and universities
(or a subset of these). A third potential application is international trade networks, in which
nodes at higher levels represent larger geographical areas.

A key di↵erence between multilevel networks and the other examples that we consider
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in this paper (including temporal and multiplex networks) is that we need to consider non-
diagonal interlayer edges. Additionally, nodes in di↵erent layers no longer necessarily corre-
spond to the same set of entities. We therefore need to introduce some new notation. Let N t

be the set of nodes in layer t, which has |N t| = N t nodes. Assume that N 1 corresponds to
the top level of the hierarchy. For t 2 {2, . . . , T}, the functions ⇡t : N t ! N t�1 send nodes
i 2 N t to their parents immediately higher up in the hierarchy. (For example, such a function
can map researchers to their departments.) For convenience, we use the notation ⇡t

i to denote
⇡t(i); note the implicit assumption that node i is from layer t.

This multilevel network’s log-likelihood,

logP(A|g,✓in,✓out) =
TX

t=1

"
�
log ✓tin � log ✓tout

� X

i,j2N t

 
At

ij �
✓tin � ✓tout

log ✓tin � log ✓tout

dtid
t
j

2mt

!
�(gti , g

t
j)

#(SM2.1)

+ (const.) ,

is similar to the one in (3.17) for nonuniform temporal networks. The prior on g is also similar
to that for temporal networks, although information flows from the top level of the hierarchy
to the bottom level, rather than in the direction of time. First, we generate the vector g1 of
community assignments in the top level by sampling from the null distribution P1

0. To then
obtain community assignments gt in subsequent layers, we assume that each node copies its
community label from its parent with probability pt and otherwise randomly samples a label
from a null distribution Pt

0. This process yields the following log-prior:

logP(g) =
X

i2N 1

logP1
0(g

1
i ) +

TX

t=2

X

i2N t

log
⇥
(1� pt)Pt

0(g
t
i)
⇤

+
TX

t=2

X

i2N t

log


1 +

pt
(1� pt)Pt

0(g
t
i)

�
�(gt�1

⇡t
i
, gti) .(SM2.2)

As in section 3.3, we assume that the null distributions Pt
0 are uniform, so the first two terms

in the right-hand side of (SM2.2) are independent of g. In particular, we let Pt
0(g

t
i) = 1/Kt.

Ignoring constants, we then obtain the following expression for the log-prior:

logP(g) =
TX

t=2

X

i2N t

log

✓
1 +

pt
1� pt

Kt

◆
�(gt�1

⇡t
i
, gti) + (const.) .(SM2.3)

From (SM2.1) and (SM2.3), it follows that the posterior distribution for g is

logP(g|A,✓in,✓out,p,K)

=
TX

t=1

"
�
log ✓tin � log ✓tout

� X

i,j2N t

 
At

ij �
✓tin � ✓tout

log ✓tin � log ✓tout

dtid
t
j

2mt

!
�(gti , g

t
j)

#

+
TX

t=2

X

i2N t

log

✓
1 +

pt
1� pt

Kt

◆
�(gt�1

⇡t
i
, gti) + (const.) .(SM2.4)
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The corresponding layer-weighted modularity for multilevel networks is

(SM2.5) Q(g) =
TX

t=1

�t
X

i,j2N t

 
At

ij � �t
dtid

t
j

2mt

!
�(gti , g

t
j) +

TX

t=2

X

i2N t

!t�(g
t�1
⇡t
i
, gti) .

Comparing the expressions in (SM2.4) and (SM2.5), we arrive at the following values for
the resolution parameters �t, coupling parameters !t, and layer weightings �t:

�t =
✓tin � ✓tout

log ✓tin � log ✓tout
,(SM2.6)

!t =
1

hlog ✓tin � log ✓toutit
log

✓
1 +

pt
1� pt

Kt

◆
,(SM2.7)

�t =
log ✓tin � log ✓tout

hlog ✓tin � log ✓toutit
.(SM2.8)

These are the same expressions as the ones for temporal networks in (3.21)–(3.23). Addi-
tionally, just as in the temporal case, one can also analyze the case of layer-independent
parameters � and !. (In that case, the layer weights �t are equal to 1.) Although this deriva-
tion is very similar to the one for temporal networks from section 3.3, the application to
multilevel networks is markedly di↵erent, due to the interpretation of interlayer edges as in-
clusion relationships. Community detection in multilevel networks has been studied sparingly
thus far, and we hope to see more such applications in the future.

SM3. Estimating SBM Parameters. In this section, we explain how to estimate, given
a multilayer partition g, the parameters of our various SBMs from section 3. This completes
the description of our iterative modularity-maximization algorithm from section 4.1.

We approximate ✓in and ✓out in a manner similar to that presented in [SM11] for monolayer
networks. Let M t

in denote the random variable for the number of intracommunity edges in
layer t under the degree-corrected SBM from section 3.2. The expected number of such edges
across all layers is

(SM3.1) E
"

TX

t=1

M t
in

#
=

1

2

TX

t=1

NX

i,j=1

✓in
dtid

t
j

2mt
�(gti , g

t
j) =

1

2
✓in

TX

t=1

P
r

�
tr
�2

2mt
,

where tr denotes the sum of the degrees of nodes in community r in layer t. Replacing the
expectation on the left-hand side of (SM3.1) with the observed number of intracommunity
edges (

PT
t=1m

t
in) yields the estimate

(SM3.2) ✓in ⇡
PT

t=1 2m
t
inPT

t=1
1

2mt

P
r (

t
r)

2
.

Using a similar approach, we estimate that

(SM3.3) ✓out ⇡
PT

t=1 2m
t
out

PT
t=1

h
2mt � 1

2mt

P
r (

t
r)

2
i .
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In the layer-dependent case, one can similarly determine each set of parameters, ✓tin and ✓tout,
by considering intracommunity and intercommunity edges separately for each layer.

We now consider the other two sets of parameters. We set the number K of communities
equal to the observed number of distinct community labels in the most recent multilayer
partition g. That is,

(SM3.4) K =
���gti : i 2 {1, . . . , N} , t 2 {1, . . . , T}

 �� .

In the layer-dependent case, we set

(SM3.5) Kt =
���gti : i 2 {1, . . . , N}

 �� , t 2 {1, . . . , T} .

Estimating the copying probabilities p (or pt, if they are layer-dependent) is more di�cult. The
details of the calculation also depend on the type of multilayer network that one considers.
We discuss temporal and multilevel networks in section SM3.1 and multiplex networks in
section SM3.2.

SM3.1. Temporal and multilevel networks. To estimate the copying probability p, note
that the probability that a node i is in the same community in two consecutive layers in our
model is

(SM3.6) P(gt�1
i = gti) = p+

1� p

K
.

The first term corresponds to the probability that node i copies its community assignment
from the previous layer, and the second term is the probability that node i samples that com-
munity uniformly at random from the K available choices. Estimating the same probability
empirically from network data amounts to counting the number of times that a node stays in
the same community (i.e., “persists”) across two consecutive layers:

(SM3.7) P(gt�1
i = gti) ⇡

1

N(T � 1)

TX

t0=2

NX

i0=1

�(gt
0�1
i0 , gt

0
i0 ) =

Pers(g)

N(T � 1)
,

where we follow the notation in [SM3] and let Pers(g) denote the number of instances in
which a node belongs to the same community in consecutive layers. Equating the empirical
probability (SM3.7) to the theoretical one in (SM3.6) yields

(SM3.8) p+
1� p

K
⇡ Pers(g)

N(T � 1)
) p ⇡


Pers(g)

N(T � 1)
� 1

K

��✓
1� 1

K

◆
.

In the layer-dependent case, a similar derivation yields

(SM3.9) pt ⇡
"
1

N

NX

i=1

�(gt�1
i , gti)�

1

K

#�✓
1� 1

K

◆
, t 2 {2, . . . , T} .

We follow an almost identical approach for multilevel networks. In the uniform case, our
estimate for p is the same as in (SM3.8), although the calculation of persistence Pers(g) is
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di↵erent. We obtain

Pers(g) =
TX

t=2

X

i2N t

�(gt�1
⇡t
i
, gti)(SM3.10)

) p ⇡
"

1

T � 1

TX

t=2

1

N t

X

i2N t

�(gt�1
⇡t
i
, gti)�

1

K

#�✓
1� 1

K

◆
.

Similarly, for the layer-dependent case, we obtain

(SM3.11) pt ⇡
"

1

N t

X

i2N t

�(gt�1
⇡t
i
, gti)�

1

K

#�✓
1� 1

K

◆
, t 2 {2, . . . , T} .

SM3.2. Multiplex networks. Estimating the probability p for the multiplex version of
our SBM—or the probabilities pst, if one is considering layer-dependent parameters—is sig-
nificantly more di�cult than for temporal or multilevel networks. We start by considering the
uniform case.

Consider the probability P(gsi = gti) for a randomly chosen node i and two arbitrary layers
s and t (with s 6= t). For a given multilayer partition g, we estimate P(gsi = gti) by counting
the number of instances in which two community labels are the same and dividing by the total
number of instances:

(SM3.12) P(gsi = gti) ⇡
1

NT (T � 1)

NX

i0=1

TX

t0=1

X

s0 6=t0

�(gs
0

i0 , g
t0
i0 ) .

We now calculate P(gsi = gti) for the generative model that we described in section 3.4.
To do this, we need to account for all of the possible ways in which a node i can have the
same community label in layers s and t. Suppose that we update labels in the order that
is indicated by a permutation � and that, in this permutation, there are n � 1 intermediate
layers between s and t ⌘ tn. We denote these layers by t1, . . . , tn�1. By symmetry, we may
assume that layer s comes before layer t in the permutation, and we introduce a factor of 2
when necessary to account for the reverse case. We break down the probability P(gsi = gti)
into two components: either (1) node i in layer t copies the label from layer tn�1 and that
label is identical to the one in layer s; or (2) node i in layer t randomly samples the same
label as the one in layer s. Therefore, we obtain the recursive relationship

(SM3.13) P(gsi = gtni ) = pP(gsi = gtn�1
i ) +

1� p

K
,

which holds for any n. We illustrate this process in Figure SM1. The base case is

(SM3.14) P(gsi = gt1i ) = p+
1� p

K
.

Let f(x) = px + (1 � p)/K. Therefore, f(1) is the probability that a node in one layer
either copies the community label from the previous layer (after applying the permutation)
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gs
i g

t1
i

. . . g
tn�1
i

gt
i

p

(1 � p)/K

p

(1 � p)/K

Figure SM1. Illustration of the copying and sampling process that propagates community labels across

layers. Assume that after applying a permutation, the order of the layers is s, t1, . . . , tn�1, t. We are interested

in the probability that a node i has the same community labels in layers s and t (i.e., the probability that

gsi = gti). For each layer from t1, . . . , tn�1, t, node i copies its community label from the previous layer with

probability p (solid arrows), or it samples its label uniformly at random with probability (1 � p)/K (dashed

arrows).

or that it randomly samples the same label. We summarize the recursion from (SM3.13) and
(SM3.14) with the expression

(SM3.15) P(gsi = gtni ) = f (n)(1) ,

where f (n) denotes f composed with itself n times.
The expression (SM3.15) corresponds to the probability that nodes s and t share the

same label when they are n layers apart after applying a permutation �. To get the overall
probability, we first have to count, for each n, the number of permutations with this property.
Specifically, we need to consider all � 2 ST with �(u) = s, �(u+1) = t1, . . . , �(u+n) = tn ⌘ t
for some u. Using straightforward combinatorics, one can show that there are (T � 2)!(T �n)
such permutations. This yields

(SM3.16) P(gsi = gti) =
T�1X

n=1

2(T � 2)!(T � n)

T !
f (n)(1) =

T�1X

n=1

2(T � n)

T (T � 1)
f (n)(1) .

For p = 1, note that f(1) = 1, so (SM3.16) gives P(gsi = gti) = 1, as expected. For p < 1,
the function f has a unique fixed point at 1/K. We can write

(SM3.17) f (n)(1)� 1

K
= p

✓
f (n�1)(1)� 1

K

◆
= · · · = pn

✓
1� 1

K

◆
,

which implies that

(SM3.18) f (n)(1) = pn
K � 1

K
+

1

K
.

This yields

(SM3.19) P(gsi = gti) =
2(1� 1

K )

T (T � 1)

T�1X

n=1

pn(T � n) +
1

K
.

We can therefore estimate p numerically by setting the right-hand side of (SM3.12) to be
equal to that of (SM3.19). This leads to a polynomial root-finding problem that is easy to
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solve using readily available algorithms. It is also possible to rewrite (SM3.19) using formulas
for the geometric series and its derivatives, but that complicates the numerics without giving
additional insights into the estimated value of p.

The above calculation does not work in the layer-dependent case. Previously, all permuta-
tions that put n�1 layers between s and t gave the same value for the probability P(gsi = gti),
but this is no longer the case when there are di↵erent copying probabilities pst for di↵erent
layers. Instead, one needs to consider every permutation individually to obtain an exact ex-
pression for P(gsi = gti). Such a brute-force approach is feasible for a small number of layers
(say, T / 6), but it will not work in general. One avenue for future research is exploring
suitable approximations for estimating the parameters pst in this more complicated setting.

SM4. Additional Numerical Examples. Our examples in section 4.2 in the main manuscript
consist of temporal networks in which each node has the same expected degree and each com-
munity has the same expected size. To test our methodology on networks with heterogeneous
degree distributions and heterogeneous community sizes, both of which are common features
of empirical networks, we turn to the general multilayer model in [SM2]. We use the code
provided in [SM6] to generate networks using this generative model.

(a) GenLouvain (b) GenLouvainRand

Figure SM2. Results for the temporal multilayer benchmark network from Bazzi et al. [SM2] using Gen-

Louvain and GenLouvainRand to perform modularity maximization. We use the same parameter values

that the authors used in their paper. The resulting networks have T = 100 layers and N = 150 nodes in each

layer. There are K = 5 communities, whose expected sizes follow a symmetric Dirichlet distribution with a

concentration parameter with value 1; the node degrees in each layer follow a truncated power-law distribution.

(See [SM2] for details.) Our plots show layer-averaged NMI scores between the planted partition and the one

that we detect by modularity maximization as a function of the mixing parameter µ. Each line and set of

markers corresponds to a di↵erent value of the copying probability pb, and each data point is a mean over 100

trials. We use Algorithm 4.1 to update the values of � and ! from the initial values �(0)
= 1 and !(0)

= 1. The

lines at the bottom of each plot indicate the values of µ up to which at least 10% of the 100 runs converge to a

fixed point.

Similar to the model of Ghasemian et al. [SM5], the simplest models from [SM2] have two
parameters. A mixing parameter µ controls the strength of the planted community structure.
When µ = 0, all edges lie within communities; when µ = 1, edges are equally likely to lie
within communities or between communities. The second parameter of the benchmark from
Bazzi et al. is the probability with which a node in one layer copies its community label from
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a di↵erent layer; we denote this probability by pb to distinguish it from our own parameter
p. The parameters p and pb are the same for temporal networks, but they are di↵erent for
multiplex networks. The discrepancy in the latter case arises because our generative model
from section 3.4 is di↵erent from the one from [SM2]. For multiplex networks, Bazzi et
al. also introduced the quantity bpb = (T � 1)pb for the probability that a node copies its
community label from one of the other T � 1 layers. See [SM2] for additional details about
these benchmarks.

In Figure SM2, we show the performance of our iterative modularity-maximization algo-
rithm on the uniform temporal benchmark from [SM2]. We use the same parameter values
to generate networks that Bazzi et al. [SM2] used for their calculations. The iterative process
starts from �(0) = 1 and !(0) = 1. The two plots use GenLouvain and GenLouvainRand

to maximize modularity. GenLouvain tends to perform better, especially for larger values
of the copying probability pb. The plots from Figure SM2 have the same qualitative features
as those from Figure 2, with NMI scores close to 1 for µ close to 0 and rapid degradation in
performance for critical values of µ that depend on the value of the copying probability pb.
We also observe a clear separation of the curves that correspond to di↵erent values of pb, with
better performance for progressively larger pb. When pb = 1, we can successfully recover at
least some of the planted community structure up to µ = 1. Towards the bottom of both
plots, we show for each value of pb the value of µ up to which at least 10% of the 100 runs
converge to a fixed point in a maximum of 30 iterations. Recall that when our algorithm does
not converge, it returns the largest-modularity partition that it encounters during the iterative
process. For smaller values of pb, the mean NMI between the algorithmically detected and
planted communities remains large beyond these critical values of µ, suggesting the utility of
our approach even when the iterative process fails to converge. For pb = 1, the critical value
of µ appears to coincide with the value of µ beyond which the calculated NMI is close to 0.

In [SM2], Bazzi et al. fixed � = 1 and computed NMI between algorithmically detected
and planted communities for di↵erent values of !. They did not attempt to select an “optimal”
set of parameter values, as this was not a goal of their paper. Using Algorithm 4.1 to select
values of � and ! in a principled way, we obtain NMI values that are comparable with or
larger than those that were observed for the analogous calculations in [SM2] using the best
possible value of ! (i.e., the one that yields the largest NMI between detected and planted
partitions).1

Bazzi et al. also examined temporal networks with nonuniform interlayer dependencies,
with a focus on networks with change points [SM2]. We now apply our iterative algorithm with
layer-dependent values of � and ! to one such network with T = 100 layers using a mixing
parameter µ = 0.4. We set the copying probability to be pt = 0 for t 2 {25, 50, 75} (the
change-point layers), and we set pt = 0.9 for all other layers. This induces a reorganization of
mesoscale structure in layers 25, 50, and 75 of a sampled network. In Figure SM3, we show

1
Bazzi et al. used a di↵erent version of NMI (one that normalizes mutual information by the joint entropy

of the input partitions). Therefore, it is not possible to systematically compare our results from Figure SM2

with theirs. However, we have recalculated some NMI values for specific choices of pb and µ to enable a

direct comparison to [SM2]. To give an example, for pb = 0.85 and µ = 0.6, we obtain hNMIi ⇡ 0.70 using

GenLouvain and hNMIi ⇡ 0.65 using GenLouvainRand. Bazzi et al. obtained NMI values of up to 0.55 and

0.65, respectively, for the two versions of the algorithm.
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(a) First iteration (b) Final iteration

Figure SM3. Inferred values of the coupling parameters !t after (a) one iteration of our IterModMax

algorithm and (b) the final iteration (i.e., upon convergence) for a temporal network with change points. We

use pt = 0 for t 2 {25, 50, 75}; this induces an abrupt change in community structure at these layers. For the

remaining layers, we set pt = 0.9. We let µ = 0.4 for the mixing parameter; other choices give similar results.

For the remaining benchmark parameters, we use the same values as in [SM2]. Specifically, we generate a

network with T = 100 layers and N = 150 nodes in each layer. There are K = 5 communities, whose expected

sizes follow a symmetric Dirichlet distribution with a concentration parameter with value 1; the node degrees

follow a truncated power-law distribution. (See [SM2] for details.)

the inferred values of the coupling parameters !t using our layer-dependent IterModMax

algorithm both (a) after one iteration of the algorithm and (b) upon convergence (i.e., in
the final iteration). Our algorithm correctly infers !t = 0 at the three change points. The
layer-averaged NMI between the output partition and the planted partition is approximately
0.96.

We make a few comments about Figure SM3. First, these results use a version of the
IterModMax algorithm that fixes � = 1 throughout the iterative process. (Due to the
large number of parameters in the layer-dependent case, Algorithm 4.1 does not converge
when we vary both � and !.) We initialize all coupling parameters !t to 1. Second, we
use a version of the GenLouvain algorithm without the postprocessing step that increases
multilayer modularity by relabeling communities to increase persistence. (See [SM3] and the
implementation of GenLouvain in [SM7] for details.) With postprocessing, our algorithm is
unable to determine that layers 24 and 25 have unrelated community structures (and likewise
for the other two change points). Third, although it can take our IterModMax algorithm
up to 20–30 iterations to converge to a solution like the one from Figure SM3(b), it only
takes one iteration to identify the change-point layers [see Figure SM3(a)]. This suggests that
waiting for the iterative algorithm to converge may not be necessary if one is interested only
in the locations of change points (and not in the extent to which communities reorganize at
change points).

In Figure SM4, we show the performance of our method on the uniform multiplex bench-
mark network from [SM2]. As with the temporal benchmark, we use the same parameter
values to generate networks that Bazzi et al. used in their numerical experiments. We ini-
tialize our iterative algorithm with �(0) = 1 and !(0) = 1/T , where T is the number of layers.
(We justify our choice of !(0) using the scaling argument from section 3.4.) For both Gen-
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(a) GenLouvain (b) GenLouvainRand

Figure SM4. Results for the multiplex benchmark from Bazzi et al. [SM2] using GenLouvain and Gen-

LouvainRand to perform modularity maximization. We use the same parameter values that the authors used

in their paper. The resulting networks have T = 15 layers and N = 1000 nodes in each layer. There are

K = 10 communities, whose expected sizes follow a symmetric Dirichlet distribution with a concentration pa-

rameter with value 1; the node degrees in each layer follow a truncated power-law distribution. (See [SM2] for

details.) Our plots show layer-averaged NMI scores between the planted partition and the one that we detect by

modularity maximization as a function of the mixing parameter µ. Each line and set of markers corresponds to

a di↵erent value of the copying probability bpb = (T � 1)pb, and each data point is a mean over 100 trials. We

use Algorithm 4.1 to update the values of � and ! from their initial values, which are �(0)
= 1 and !(0)

= 1/T .
The lines at the bottom of each plot indicate the values of µ up to which at least 10% of the 100 runs converge

to a fixed point.

Louvain and GenLouvainRand, and with the exception of the case with bpb = 1, we observe
only marginal improvement in performance for larger values of the copying probability bpb.
Bazzi et al. made a similar observation in [SM2]. For bpb = 1, the abrupt drop in perfor-
mance coincides with the point at which fewer than 10% of runs converge to a fixed point.
(Our choice of threshold is arbitrary; the results are similar for values other than 10%.) Our
method of estimating the parameters � and ! gives comparable NMI values to the best values
that Bazzi et al. obtained in [SM2] for their analogous calculations.2

Our numerical experiments in this section demonstrate the promise of our approach for
estimating resolution and interlayer-coupling parameters. We obtain NMI scores that often
exceed the best NMI values that have been reported for multilayer modularity maximization
without the parameter-estimation step [SM2]. It is inevitable that, for some networks, modu-
larity maximization will underperform other community-detection methods [SM12] (e.g., the
belief-propagation algorithm from [SM5] or inference algorithms that are based on general
SBMs). However, when using modularity maximization for performing community detection,
our way of estimating resolution and coupling parameters is a valuable tool.

2
To be consistent with [SM2], we calculate a second set of NMI values; these normalize mutual information

by the joint entropy of the input partitions, rather than by their mean entropy.
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