PHYSICAL REVIEW E 102, 062307 (2020)

Inference of edge correlations in multilayer networks
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Many recent developments in network analysis have focused on multilayer networks, which one can use to
encode time-dependent interactions, multiple types of interactions, and other complications that arise in complex
systems. Like their monolayer counterparts, multilayer networks in applications often have mesoscale features,
such as community structure. A prominent approach for inferring such structures is the employment of multilayer
stochastic block models (SBMs). A common (but potentially inadequate) assumption of these models is the
sampling of edges in different layers independently, conditioned on the community labels of the nodes. In this
paper, we relax this assumption of independence by incorporating edge correlations into an SBM-like model. We
derive maximum-likelihood estimates of the key parameters of our model, and we propose a measure of layer
correlation that reflects the similarity between the connectivity patterns in different layers. Finally, we explain
how to use correlated models for edge “prediction” (i.e., inference) in multilayer networks. By incorporating edge
correlations, we find that prediction accuracy improves both in synthetic networks and in a temporal network of
shoppers who are connected to previously purchased grocery products.
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I. INTRODUCTION

A network is an abstract representation of a system in
which entities called “nodes” interact with each other via
connections called “edges” [1]. Most traditionally, in a type of
network called a “graph”, each edge encodes an interaction or
a tie between two nodes. Networks arise in many domains and
are useful for numerous practical problems, such as detecting
bot accounts on Twitter [2], finding vulnerabilities in electri-
cal grids [3], and identifying potentially harmful interactions
between drugs [4]. A common feature of many networks is
mesoscale (i.e., intermediate-scale) structures. Detecting such
structures in a network amounts to producing a coarse-grained
description of the network that is more compact than listing all
of its nodes and edges. Types of mesoscale structures include
community structure [5], core—periphery structure [6,7], role
similarity [8], and others. An increasingly popular approach
for modeling and detecting such structures is by using stochas-
tic block models (SBMs) [9], which are generative models
that can produce networks with community structure or other
mesoscale structures.

For many applications of network analysis, it is important
to move beyond ordinary graphs (i.e., “monolayer networks”)
to examine more complicated network structures, such as
collections of interrelated networks. One can study such struc-
tures through the flexible lens of multilayer networks [10-13].
A multilayer network consists of a collection of “state nodes”
that are connected pairwise by edges. A state node is a mani-
festation of a “physical node” (which we will also sometimes
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call simply a “node”), which represents some entity, in a spe-
cific layer. Different layers may correspond to interactions in
different time periods (yielding a temporal network), different
types of relations (yielding a multiplex network), or other pos-
sibilities. As in the setting of monolayer networks, modeling
and inferring mesoscale structures in multilayer networks is a
prominent research area.

A key assumption of almost all existing models of mul-
tilayer networks with mesoscale structure is that edges are
generated independently, conditioned on a multilayer par-
tition [14-21]. This independence assumption applies both
within each layer (which is inconsistent with the fact that
real networks often include 3-cliques and other small-scale
structures) and across layers (which is inconsistent with the
fact that the same nodes are often adjacent to each other in
multiple layers). In this paper, we focus on relaxing the edge-
independence assumption that applies to edges between the
same two physical nodes in different layers. We still consider
each pair of nodes independently.

In Fig. 1, we show an example of a two-layer network
with both strong positive and strong negative edge correla-
tions. Incorporating such correlations into a network model
is beneficial for many applications. For example, a multiplex
network of air routes in which each layer corresponds to one
airline is likely to include some popular routes that appear in
multiple layers (and unpopular routes may appear only in one
layer) [22]. In a temporal social network, we expect people
to have repeated interactions with certain other people [23].
This is a stronger assertion than just stating that people tend to
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FIG. 1. Example of a correlated multilayer network with two
layers and with two blocks of nodes in each layer. Edges between two
black nodes are positively correlated across layers, edges between
two white nodes are negatively correlated across layers, and edges
between a black node and a white node are uncorrelated across
layers.

interact more within the same community over time than with
people in other communities. Such edge persistence is also
common in many bipartite user—item networks: Shoppers tend
to buy the same grocery products over time [24], customers of
a music-streaming platform listen repeatedly to their favorite
songs [25], and Wikipedia users edit specific pages several
times [26].

Multilayer network models that incorporate edge correla-
tions have many important applications. One is the inference
task of edge prediction (which is also called “link prediction”),
in which one seeks to assign probabilities of occurrence to
unobserved edges. Stochastic block models have been used
often for edge prediction in both monolayer networks [4,9,27]
and multilayer networks [15,20,28]. The models that we pro-
pose should yield better performance than past efforts, as
they take advantage of interlayer edge correlations in data.
We discuss this in more detail in Sec. III. Another appli-
cation is graph matching [29], in which one seeks to infer
a latent correspondence between nodes in two different net-
works when one does not know the identities of the nodes.
For example, one may wish to match common users be-
tween anonymized Twitter and Facebook networks. A series
of papers [30-32] established conditions under which graph
matching is successful. These papers considered correlated
Erd6s—Rényi (ER) networks and correlated SBMs, which we
also examine in this paper (albeit for a different purpose). We
take these models further by incorporating degree correction
[33], which generates networks with heterogeneous degree
distributions and is important for inference using SBMs. This
extension may allow one to study the graph-matching prob-
lem on more realistic network models. A third application is
efficient computation of pairwise correlations between layers
of a multilayer network. One can use such estimates of corre-
lations to quantify the similarity between different layers and
potentially to compress multilayer network data by discarding
(or merging) layers that are strongly positively correlated with
an existing layer [34]. Previous papers have focused primarily
on node-centric notions of layer similarity [35-37], whereas
our correlated models yield edge-centric measures of similar-

ity. Benefits of our approach over related studies [34,38,39]
include the fact that correlation values cover an intuitive range
(between —1 and 1) and that they work equally well for
quantifying layer similarity and dissimilarity.

Our edge-correlated network models are also useful for
community detection. Given a multilayer network, one can
design an inference algorithm that determines both the pa-
rameters that describe the edge probabilities (and correlations)
and a multilayer community structure that underlies these
probabilities. Solving this inference problem enables the de-
tection of correlated communities. Because of the additional
complexity in the resulting model, this is bound to be more
difficult than standard multilayer community detection, so we
leave this inference problem for future work. Instead, for the
rest of our paper, we assume that we know the block structure
of a network. We infer the remaining parameters, including
the correlations that are the core element of our model [40].
We also assume that the block assignments g are the same
for all layers. Situations in which communities can vary arbi-
trarily across layers are significantly more difficult [41], and
we leave consideration of them for future work. With these
restrictions, one can determine g using any method of choice.

Some existing models of multilayer networks incorporate
interlayer dependencies by prescribing joint degree distribu-
tions [36,42,43], by incorporating edge overlaps [44,45], or by
modeling the appearance of new edges through preferential-
attachment mechanisms [46]. The models that we describe
in this paper are similar to those that were introduced in
[30-32] for graph-matching purposes. Another noteworthy
paper is one by Barucca et al. [47] that described a generalized
version of the temporal SBM of Ghasemian et al. [17]. This
generalization includes an “edge-persistence” parameter &,
which gives the probability that an edge from one layer also
occurs in the next temporal layer. For several reasons, we take
a different approach. First, the model in [47] is specific to
temporal multilayer networks, whereas we are also interested
in other types of multilayer networks. Second, their model
does not easily incorporate degree correction. Third, we want
to include correlations explicitly in the model, rather than
implicitly using the edge-persistence parameter &.

Our paper proceeds as follows. In Sec. II, we describe
our models of multilayer networks with edge correlations.
We start with a simple example of correlated ER graphs
in Sec. ITA to make it easier to follow our exposition
for more complicated models. In Sec. IIB, we integrate
mesoscale structures by incorporating correlations into an
SBM-like model. We then incorporate degree correction in
Sec. IIC. For all of these models, we derive maximum-
likelihood (ML) estimates both of the marginal edge-existence
probabilities in each layer and of the interlayer correla-
tions. Maximum-likelihood estimation is common for SBMs
and degree-corrected SBMs (DCSBMs) in both monolayer
networks [33] and multilayer networks [16]. Although ML es-
timation is less powerful than performing Bayesian inference
[9], the former is consistent for both SBMs and DCSBMs
[48] and it recovers many common techniques for detecting
mesoscale structures in networks [49]. In Sec. III, we de-
scribe how to use our models for edge prediction and give
some results for synthetic networks. We then proceed with
applications in Sec. IV. In Sec. IV A, we use our models
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to estimate pairwise layer correlations in several empirical
networks. In Sec. IV B, we use our correlated models for
edge prediction in a temporal network of grocery purchases.
We summarize our results in Sec. V and discuss a few ideas
for future work. We give additional details in a quartet of
appendices.

II. CORRELATED MODELS

In our derivations, we consider just two network layers
at a time. Although this may seem limiting, we can apply
our framework to generate correlated networks with more
than two layers in a sequential manner (see the discussion in
Sec. II A) and we can determine pairwise layer correlations for
a network with arbitrarily many layers (see the applications in
Sec. IV). In Sec. V, we briefly discuss the challenges that arise
when considering three or more layers simultaneously, rather
than in a sequential pairwise fashion.

Consider a network with two layers and identical sets of
nodes in each layer; this is known as a node-aligned multilayer
network [10]. Let A' and A% denote the adjacency matrices
of our two network layers. As in many generative models
of networks, we assume that edges in these two layers are
generated by some random process, so the entries Aill- and

Aizj are random variables. Imposing some statistical correla-
tion between these two sets of random variables introduces
interlayer correlations in the resulting multilayer network
structure.

Our goal is to propose a model of correlated networks
in which, marginally, each layer is a DCSBM [33]. How-
ever, it is instructive to first consider the simpler cases in
which, marginally, each layer is an ER random graph (see
Sec. ITA) or each layer is an SBM without degree correc-
tion (see Sec. IIB). Correlated ER models and correlated
SBMs have been studied previously, most notably in [30-32]
in the graph-matching problem. Such prior efforts employed
these models to generate synthetic networks. By contrast,
we fit these models to empirical data and use them to es-
timate layer correlations. We also extend these models to a
degree-corrected setting with the correlated DCSBMs that we
propose in Sec. 11 C.

In monolayer SBMs, it is common to use either Bernoulli
or Poisson random variables to generate edges between nodes.
The former choice is generally more accurate because it does
not yield multiedges; however, the latter is more common,
as it often simplifies calculations considerably [48,50]. Nev-
ertheless, we have found that Bernoulli models are simpler
when incorporating correlations [24]. They also have several
other advantages, including the fact that they work for both
sparse and dense networks and that they can handle the entire
correlation range between —1 and 1. Therefore, we consider
only Bernoulli models in this paper.

A. Correlated Erdds—Rényi layers
1. Forward model

Assume that the intralayer networks that correspond to A’
and A? are ER graphs from the G(n, p) ensemble [1] with edge

FIG. 2. Visualization of the feasible region (gray area) for the
probabilities p; and p,, given a value of g. The boundaries of this
region are defined by the inequalities ¢ < p; < 1, ¢ < p» < 1, and
p1+ p2 < 1+ ¢q. The hyperbola p,p, = g specifies the boundary
between regimes with a positive layer correlation and regimes with a
negative layer correlation.

probabilities p; and p,. For each node pair (i, j), we have
P(Al, =1)=pi, (1)

P(A;;=1)=p,. 2)

To couple edges that connect the same pair of nodes in differ-
ent layers, let

q:=P(A, =14} =1) 3)

denote the joint probability for an edge to occur in both layers.
Unless g = p;p», this construction implies that the random
variables A}, and A}, are not independent.

The parameters p;, p», and g (which lie in the interval
[0,1]) fully specify a forward model of networks with cor-
related ER layers. To generate a network from this model,
one considers each node pair (i, j) and, independently of all
other node pairs, assigns values to A}i and Aiz]. according to the
following probabilities:

PA},=1A;=1)=¢q

P(Ailj = I’Aizj =0)=pi—q,

P(A,=0,A7 =1)=pr—q,
P@A}=0AF=0)=1-p—ptq. @

These expressions follow from the laws of probability and
from the definitions of pi, p,, and g. For these probabilities
to be well-defined, it is both necessary and sufficient that 0 <
g < min{p;, po} and p; + p» < 1 + q. In Fig. 2, we illustrate
the feasible region for p; and p,, given a value of g.

It is also possible to generate a correlated ER network in a
sequential manner. First, one generates the adjacency matrix
A! by placing edges with probability p;. One then determines
the probabilities of edges in the second layer by conditioning
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on the first layer:

P(A2 = 1AL = 1) = ij = A _ 4
“= =1 P(A}; =1) pi’
P(Al =0,A% =1 _
P(A7 = 1|}, = 0) = (4 ki) ) _p a9
P(Aij:()) 1—p
P(Al. =1,A%2 =0 _
B3 =ou = 1) = =LA =0 _pioa
P(Aijzl) P1
P(Al. =0,A% =0
P(A}; = 01A]; = 0) = 4 5=0)
P(A}, =0)
_l=p-—pm+tg )
1 —p ’

With this approach, it is possible to generate networks with
arbitrarily many layers by first sampling edges in the first
layer and then sampling edges in each subsequent layer by
conditioning on the previous one. This kind of process is
especially well-suited to temporal networks, in which layers
have a natural ordering. For multiplex networks, it is more
appropriate to extend Eq. (4) to handle more than two layers.

It is also possible to parametrize correlated ER graphs in
terms of the marginal Bernoulli probabilities, p; and p,, and
the Pearson correlation

E[A}A}] - E[A}]E[A]

where E[-] and o[-] denote, respectively, the mean and stan-
dard deviation of a random variable. One benefit of using p,
rather than ¢, as the third model parameter is that its value is
easier to interpret. A value of p that is close to O indicates
a weak correlation between layers, whereas values that are
close to the extremes of 41 and —1 indicate a strong positive
correlation and a strong negative correlation, respectively.

We can gain further intuition by considering the cases p =
0, p =1, and p = —1. First, p = 0 if and only if ]P’(Al-lj =
I,Aizj =1)= ]P’(A}j = 1)}P’(Afj = 1). That is, the correlation
is 0 if and only if edges are generated independently in the two
layers with marginal probabilities of p; and p,. For p =1,
one can show (see [24]) that p; = p, = g, which corresponds
to the two layers having identical network structure. Finally,
for p = —1, we have ¢ = 0 and p; = 1 — p; (see [24]), and
two nodes are adjacent in one layer if and only if they are not
adjacent in the other layer.

2. Maximume-likelihood parameter estimates

We now derive ML estimates of the parameters p;, p,, and
q. Let £ denote the set of node pairs and hence the set of
possible edges in a layer. For undirected networks without
self-edges, there are || = N(N — 1)/2 node pairs to con-
sider, where N is the number of physical nodes. By contrast,
|E] = N(N — 1) when generating directed networks without
self-edges. With this general notation, all of our derivations in
Sec. II are valid for both directed and undirected networks,
with or without self-edges. (They are also valid for bipar-

o[A}j]a[A?j] tite networks [24].) We consider each node pair (i, j) € £
' independently when generating edges, so the likelihood of
_ q— P1P2 . . . 1 2.
= , (6) observing adjacency matrices A" and A” is
vpi(l = p)pa(1 = p2) |
1A L (1-A2, —ALAZ —ALY(1-A%
P@A A prpr )= [ @i (pr— gy 4P (py — AN (1 = py — py 4 q) ! TAPIAD ™

(i.j)e€

It is helpful to introduce the following notation:
er = {(i. ) € £ A = LAG =1},
e = 1{(i, j) € £ Aj; = 1A} = 0}
eor = 1{(i, j) € £ 1 Aj; = 0,47 = 1}].
eoo == 1{(i, j) € £ 1 Aj; = 0, A7 = 0}].
In order, these quantities count the numbers of node pairs that
are adjacent in both layers (e), adjacent in the first layer but
not in the second (ejo), adjacent in the second layer but not
in the first (eg1), and not adjacent in either layer (ego). Using
this notation and taking the logarithm of (7), we arrive at the
following expression for the log-likelihood:
L = ey logq + eiolog(pr — q) + eo1 log(pz — ¢)
+egolog(l —p1 —p2+¢q). ®)
When fitting our model to network data, the quantities e,
e10, o1, and e are all known; we seek to determine the values

of p1, p2, and g that are most consistent with the data. To do
so, we maximize the log-likelihood (8) by setting its partial

[
derivatives to O [51]. We obtain

~ ei;r + e

P = ) 9
e11 + ejo + eo1 + eqo

~ e +eo

P> = - : (10)
ei1 + e + eor + epo

—~ e

q = (11

e11 + ejo + eo1 + epo

In each of these three expressions, the denominator is equal
to the number of potential edges (i.e., the cardinality of &).
Additionally, let m; = e} + ejp and my = e;; + eg; denote
the number of observed edges in the first and second layers,
respectively. It follows that the ML estimate p; is equal to the
number of observed edges in layer 1 divided by the number
of potential edges, and an analogous relation holds for p».
The estimate g is equal to the number of node pairs that are
adjacent in both layers divided by the total number of node
pairs. These results match our intuition.

We obtain an estimate of the Pearson correlation p between
the two layers by substituting the ML estimates py, p,, and ¢
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into Eq. (6) to obtain

€00€11 — €10€01
A (e +ero)(err + eor)eio + epo)(eor + €oo)

One can show that maximizing the log-likelihood (8) with
respect to py, pa, and p (rather than with respect to pi, p»,
and q) gives the same expression for p, confirming that this is
indeed an ML estimate of the correlation. Note that o is not
defined when either layer is an empty or a complete graph, as
the associated Bernoulli random variable for such a layer has
a standard deviation of 0.

In Appendix A, we calculate the variances that are asso-
ciated with the ML estimates Py, P>, and §g. We then show
using a synthetic example that these scale as 1/N?, where N
is the number of physical nodes. These results quantify the
uncertainty around the ML estimates for correlated ER models
as a function of network size.

p= (12)

B. Correlated SBMs

One of the ways in which real-world networks differ from
ER random graphs is that the former have mesoscale struc-
tures, such as communities [5]. We use SBMs to incorporate
such structures into our correlated models.

Let g be a vector of block assignments, which we take
to be identical in our two network layers, and let K denote

J

the number of blocks. As we explained in Sec. I, we assume
throughout the present paper that we are given g and we
aim to estimate the remaining model parameters. Following
terminology from [27], let B={1,...,K} x {1,...,K} be
the set of “edge bundles” (r, s), each of which is described by
its own set of parameters p', p2 , and ¢,. The K x K matrices
p', p?, and g play an analogous role to p;, p», and ¢ in the ER
layers.

Let g; denote the block assignment of node i. A correlated
two-layer SBM is described by the following set of equalities:

P(Ailj = 1) = P;,-g,’

P =1) =1,

P(Ailj = 1’Ai2j =1) =g, -
Lyzinski et al. proposed this forward model in [31] to study
graph matching. By contrast, we focus on the inverse prob-

lem of estimating the parameters pl, pz, and ¢, given some
network data.

1. Maximume-likelihood parameter estimates

As in Sec. II A, suppose that we consider each node pair
(i, j) independently. The likelihood of observing adjacency
matrices A' and A? is then

a2y ol 2 AAY A8 o (1A,
]P(A 7A |87P 7P 7q): 1_[ [Qgiéjj(pg,-gj _qgigj) ! ! (pgig, _qgigj) Y

(i,j)e€

1 2 (1-A2)(1-A})
X (1 T Pgig; ~ Pag; T qgfg_f) ! ! i| . (13)

In the product in Eq. (13), each factor depends on i and j only
via their block memberships g; and g;, so we can combine
several terms. First, define

el = H(i,j)eS:Ailjza,Aizjzb,gizr,gjst

for (a, b) € {(1, 1), (1, 0), (0, 1), (0, 0)}, in analogy with e,
e10, €01, and ey from Sec. II A. We can then write the log-
likelihood as

L= Z [el) 1og gy,

(r,s)eB
+ e}l? log (Pis - qrs) + e(r);l log (Pfs - qrs)
+eplog (1= pi = 1 +4i)]- (14)

The advantage of writing the log-likelihood as in (14) is
that it clearly separates the contribution from different edge
bundles. Using the results for ER layers from Sec. IT A, we
immediately obtain (without further calculations) the ML pa-
rameter estimates

11 10 1

/p\l _ ers + ers _ mrs (15)
rs L1 10 01 00 ~ ’

er‘v + ers + em + ers Crs

11 01 2

e..+e, m

fn) s rs rs
Prs = = —, (16)

11 10 01 00
ers + ers + ers + ers Crs

11 11
G = o = (17
11 10 01 00 ’
erx + ers + erx + ers Crs

where m) and m2, denote the number of edges between blocks
r and s in layers 1 and 2, respectively, and e, is the number of
possible edges between nodes in block r and nodes in block
s. When there is a single edge bundle (i.e., when we do not
assume any block structure in a network), the ML estimates
(15)—(17) recover those that we obtained for correlated ER
networks in Sec. IT A. Each edge bundle also has a correspond-
ing Pearson correlation. The ML estimate of this correlation
is

00,11 10 ,01
-~ €5 Crs — €€
Prs =

et ) (eld el (9 + ) (e + <)

In applications to temporal consumer—product networks, we
find that different edge bundles have vastly different correla-
tion values [24]. We anticipate that other empirical multilayer
networks have similar properties.

. (18)

2. Effective correlation

Although having different correlation values for different
edge bundles can be useful, it is also helpful to have a single
correlation measurement for a given multilayer network. For
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example, one may wish to use such a network diagnostic for
one of the purposes that we outlined in Sec. I. One way to
define an effective correlation is to first sample two node
indices, I and J, uniformly at random and then compute the
Pearson correlation of the random variables A}, and A?,. One
thereby obtains

E [AIIJA%J] —E [AIIJ]E [A%J]
olA}]o[A}]
where we use capital letters for the node indices / and J to
emphasize that they are random variables.
We can calculate each term on the right-hand side of (19)

by conditioning on the block assignments of / and J. First, for
[ € {1, 2}, we have

corr(A},, A7) = , 19)

E[A],] =P(A}, = 1)
= Z P, =1llgr=rg =s)P(g=rg =s)
(r,s)eB
_ Alerv_zm s €rs _ M 20)
(B &l (reyep s ERE]

where m; denotes the number of edges in layer /. The expres-
sion (20) is the same as the probability p; of generating an
edge in layer / for the ER case. Because A}, is a Bernoulli
random variable (in other words, it can only take the values 1
or (), its standard deviation is

L L
o[al,]= w&l|a>

Finally,
E[A}JA%J] =

= qu&‘

(r,5)eB

P(al, = 1,43, = 1)

_ Yy mln_en
S e €1 1]

The estimated value of the effective correlation is thus
D = corr(A},, A2,

_ €00€11 — €10€01
V(e +er)(err + eoero + eo)leor + €oo)

which is the same as the value in (12) for ER layers (i.e., with-
out any block structure in the model). We stress that there is no
reason a priori to expect this outcome. In fact, the analogous
result does not hold for Poisson models [24]. In the present
case, the fact that there is such a correspondence between
models is convenient for practical reasons, as it implies that
one can perform the simpler calculations from Sec. II A to
obtain correlation estimates between network layers, even for
networks with nontrivial mesoscale structure.

21

C. Correlated degree-corrected SBMs

The models that we have discussed thus far generate net-
works in which nodes in the same block have the same

expected degree. Stochastic block models that make this kind
of assumption tend to perform poorly when they are used to
infer mesoscale structure in real networks [9], many of which
have highly heterogeneous degree distributions. This observa-
tion led to the development of degree-corrected SBMs [33].
We expect that such adjustments can also be important when
modeling edge correlations, so we now extend the model from
Sec. I B to incorporate degree correction.

We continue to work with two-layer networks, which we
again specify in terms of two intralayer adjacency matrices,
A'! and A%, with a common block structure that we specify
with a vector g. For each node pair (i, j) € £, we place edges
in the two layers according to the probabilities

P(Al, =1)=6/0]py,, . (22)
2 2pn2.2
P(A7, = 1) = 676]p,, . (23)
P(Aj; =1,A7, =1) = /6]616262q,,, . (24)

We will soon justify the expression in (24). The quantities 6!
and 9]’. (with [ € {1, 2}) are the (intralayer) degrees of nodes
i and j, normalized by the mean degrees. We calculate these
quantities directly from the input degree sequences, so they
are not model parameters. For undirected and unipartite net-
works, 91.’ = dl-l/(dl), where i € A and (d') is the mean degree
in layer /. This normalization recovers the model in Sec. II B
when 0} = 1 (i.e., when all nodes have the same degree). The
model parameters pl, p?, and g,, are now edge “propensi-
ties” that, together with the degrees, control the probabilities
of the edges in the layers.

The probabilities in Eqgs. (22) and (23) ensure that,
marginally, A' and A? are generated according to monolayer
DCSBMs [33]. It is not obvious how to model the joint prob-
ability ]P’(Ailj = 1,Al-2j = 1). In particular, it is not clear how
it should depend on the observed degrees of nodes i and j in
layers 1 and 2 [52]. Part of the complication is that there are
four such quantities for each node pair (7, j). The choice from
(24) works particularly well when p = 1 and the normalized
degree sequences @' and 6° are the same, as it reduces to
a single DCSBM that generates two identical network lay-
ers. Another sensible option is to set IE”(A1 =1, A2 =1)=

616! H 9129126181.&. This choice has the nice property that edges in
a particular edge bundle (r, s) € B are independent if and only
if g,, = p! p?,, which matches the independence condition
from Sec. II B for the setting without degree correction. How-
ever, this second model underperforms the one from (22)—(24)
for edge prediction (see Sec. III and [24]). Consequently, for
the rest of this paper, we use the model from Eqgs. (22)-(24)
as our correlated DCSBM.

1. Maximum-likelihood parameter estimates

When writing the log-likelihood for a correlated DCSBM,
we can ignore any additive terms that only involve known
quantities, such as the normalized degrees 91-’. We can thus
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write

L= Z Z |:Aile12j log g +A,<1j(1 —A?j) log | p!. —
(r,9)eB (i,j)e€

+ (1 —A}) (1 — A7) log (1 —6/60} p), — 6707 p}, + ‘/eile}eizej?q,s)]a(gi, r)8(gj, s) + const. (25)

As in Sec. I B, we seek to maximize £ with respect to the parameters p!,, p2, and g, by setting the corresponding derivatives
to 0. However, degree-corrected models have the crucial complication that node pairs (i, j) in the same edge bundle (r, s) are no
longer stochastically equivalent (i.e., the corresponding entries of the adjacency matrix are no longer sampled from independent
and identically distributed random variables), so their contributions to the log-likelihood are no longer the same in general.
Consequently, the ML equations for correlated DCSBMs that we obtain from (25) involve O(N?/K?) terms (where N is the
number of physical nodes and K is the number of blocks), making them difficult to solve efficiently.
In certain cases, we are able to make some approximations that make these ML equations easier to solve. Recall that 9} =1
if the degree of node i is equal to the mean degree in layer /. For (i, j) € £, we write
6/0] =1+¢,,
676; =1+¢.

If the degree distribution is narrow, such that all node degrees are close to the mean degree, then ¢! ; and e,-zj are small parameters
(which can be either positive or negative). In this case, a first-order Taylor expansion yields

1910202 1 2 &+ e
\/ei ngi ej Z\/(1+8ij)(l+sij)% 1+—2 (26)
‘We also calculate
glg! 1+ el el — g2
i7j 2 ) 2
= ~ 1+ 27
202 2
0; Gj 1+ & 2
and
g2 _ ¢l
|42 % (28)

Using the approximations (26)—(28), we expand the first derivatives of L to first order in sl-lj and elzj (See [24] for details.)
This calculation yields the following system of equations:

ey e & s 1= Phtans/2 P PR—anl2
Prs=dr  L=P =Pt a2 (phi—g)” T(-ph—p+as)’ T -ph-ritan)’
ey ey & as 5 P —as/2 Pl Prtas/2
Pe=dn s pntas 2 (g’ T (-ph-phtas) T (I-ph-phtas)
ey e en e IR S+ R

+
s Pli—drs  Pi—ds 1= pi—Phtas 2 (ph—q) 2 (2 —qn)

=0. (29
2
2 (1_pl3_ng+q”)
[
In Egs. (29), e!!, €19, €% and % have the same definitions as fh= Z (1= AL (1 = A)el;8(gi, 138 5)
in Sec. II B. Additionally, we set ()eE ! I
=Y (1=AL) (1 - A7)el8(2i, 1)8(g. 5) -
10 1 2\(2 .1 rs ij ij)¢ij
8rs = Z Aij(1 _Aij) (Sij - gij)(s(gi’ r)S(gj, 5)s =
(i.j)eE
Q= Z (1 —A})AY (e, — €7)8(gi, 1)3(g;. 5) We can eﬁ‘liciently2 calculate all of these quantities from the
(i.))eE matrices A" and A~.
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The system of equations (29) reduces to the analogous
system of equations for correlated SBMs if we ignore all
of the terms that depend on ¢! ; (i.e., the terms that corre-
spond to perturbations of the degrees from their mean values).
The zeroth-order solution that we obtain from ignoring these
terms provides a good initialization of a numerical algorithm
to solve (29) for the parameters p!, p?, and g,. In prac-
tice, when using correlated DCSBMs for edge prediction
(see Sec. III), we find that using a first-order approximation
to determine p!, p?, and g,, gives results that are almost
identical to those from the zeroth-order approximation [see
Egs. (15)-(17)]. Consequently, we suggest using these zeroth-
order approximations for edge-prediction applications, given
that they are straightforward to calculate and have negligible
impact on the quality of the results. We also obtain a no-
ticeable improvement in calculation speed when using these
approximations.

In Appendix B, we compare the parameters that we es-
timate using the approximate system of equations (29) with
those from the log-likelihood (25). As expected, the quality of
the approximation depends on the shape of the degree distri-
bution, with larger discrepancies between the two approaches
for broader degree distributions.

2. Correlation values

For the SBM without degree correction from Sec. IIB,
node pairs (i, j) from a given edge bundle (7, s) have the
same Pearson correlation p,,. This no longer holds for degree-
corrected models. Instead, each node pair (i, j) has its own
correlation value

o ]

yAy] — E[A;|E[AT]
ofAj]o[A7]

1915202 2021 .2
9’ 9/ 91 6/ rs 91 9] 61 0] prsprs ‘ (30)
\/9 prs 8 8] prs)el?ejzp%s(l - el'zejzp%s)

As in our earlier expansions of the ML equations, we

0ij =

approximate g;; to first order in 51'1]' and siz]-. We obtain
1 1 2 2
Eij _ Prg Eij _ Prg
Qij ~ Prs pm( 1= p}s 21— p%S
1 2
2 4 — PPy
Ignoring terms that depend on ¢! and &2 (i.e., terms that

ij
correspond to perturbations of the degrees from their mean

values), we obtain g;; ~ p,,. This approximation works espe-
cially well when p! and p? are also small, such that their
corresponding network layers are sparse.

The case ¢,; = pl, p?, requires separate consideration [53]
to avoid dividing by 0. First-order approximations in e}j and

2 . .
&;; for this case give

1 2
& te; | pl Pl
2 L=p N 1=p%

rs

Qij =~ — (32)

In particular, the zeroth-order solution gives o ~ 0, in agree-
ment with the SBM without degree correction from Sec. II B.

III. EDGE PREDICTION

The aim of edge prediction (which is also called “link pre-
diction”) in networks is to infer likely missing edges and/or
spurious edges [54]. Edge prediction is useful for filling in
incomplete data sets, such as protein-interaction networks (in
which edges are often established as a result of costly ex-
periments) [55] or terrorist-association networks (which are
typically constructed based on partial knowledge) [56]. In the
context of bipartite user—item networks (in which users are
adjacent to items), edge-prediction techniques provide candi-
dates for personalized recommendations.

One can perform edge prediction in either a supervised
or an unsupervised fashion. We briefly discuss each of these
types of approaches.

Supervised methods rely on models that learn how a speci-
fied set of features relates to the presence or absence of edges.
Existing methods that take advantage of multilayer structure
for edge prediction typically do so through the specification of
multilayer features. These include collections of monolayer
features [57], as well as path-based [58] and neighborhood-
based [59,60] features that consider multiple layers. Although
many of these features depend indirectly on the similarities
between different layers, none of these methods quantify the
level of correlation or use it for edge prediction.

With unsupervised methods, one obtains a ranking of node
pairs such that edges are more likely to occur between nodes
in higher-ranked pairs. Common approaches include ones that
are based on probabilistic models and ones that are based on
similarity indices (like the Jaccard index or the Adamic—Adar
index) [54]. An example of the former for multilayer networks
is a method that maps each network layer independently to a
hyperbolic space and then uses the hyperbolic distance be-
tween nodes in one layer to predict edges in another layer
[61]. This work used node-centric notions of correlation
and thereby complements the edge-centric perspective of our
work. Methods that rely on similarity indices include those
that first generate latent states (i.e., so-called “embedding
vectors”) for the nodes and then rank node pairs according to
the similarities of these latent states [62,63]. Tillman et al. [64]
used layer-level correlations to combine monolayer similarity
indices into a single score. There are also approaches that
implicitly take advantage of similarities across layers, such
as by extracting common higher-order structures (specifically,
subgraphs with three or more nodes) and looking for patterns
that differ by exactly one edge [65].

Variants of SBMs are popular choices for unsupervised
edge-prediction methods [4,9,55,56], including in multilayer
settings [15,20]. As an example, in a monolayer degree-
corrected Bernoulli SBM, the probability that nodes i and j
are adjacent according to the model is P(A;; = 1) = 0,0, pg, -
Pairs (i, j) for which these probabilities are relatively large but
which are not adjacent (i.e., A;; = 0) in the actual network of
interest may be associated with missing edges. Similarly, pairs
(i, j) for which these probabilities are small but which are ad-
jacent (i.e., A;; = 1) in the actual network may be associated
with spurious edges.
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TABLE I. Edge-prediction probabilities for various correlated multilayer and monolayer network models.

Model P2 =1]Al = 1) P2 = 1]A}, = 0)
Correlated ER q/p (P2 —q)/(1 = p1)

Correlated SBM qrs/ P} (P} —4-)/(1 = py)
Correlated CM \/9,»19}79,-29]%/(9,-1 0!p1) 6707 p2 — \/Wq)/(l — 0.0} p1)
Correlated DCSBM \/(W /(0161 p) 62602p?, — \/(qu) J(—616'pl)
SBM 2

DCSBM 62622,

A. Edge prediction using correlated models

There have been several recent attempts to perform edge
prediction in multilayer networks [15,20,28]. All of these
methods use multilayer information to infer mesoscale struc-
tures in networks, but then they perform edge prediction
independently in each layer, conditioned on the inferred
mesoscale structure and the other model parameters. In par-
ticular, when using one of these approaches, observing that
two nodes are adjacent in one layer has no bearing on their
probability to be adjacent in another layer. We aim to use our
correlated models to overcome this limitation.

As in our prior discussions, consider a network with two
layers with intralayer adjacency matrices A' and A% and let
g be the shared block structure of these layers. Our goal is
to predict edges in the second layer, conditioned on the adja-
cency structure of the first layer. For each node pair (i, j) € £,
the key quantities to calculate are the probabilities ]P’(A[zj =

11Aj; = 1) and P(A}, = 1]Aj; = 0) for nodes i and j to be
adjacent in the second layer, conditioned on their adjacency
or nonadjacency in the first layer. For example, using the
correlated Bernoulli SBM from Sec. II B (which has no degree

correction), we have

Qgig;
P(A7, =114}, =1) = 4=, (33)
8i8j
Pag, — dsis;
P(A} =114}, =0) = g"gf—lg’gf (34)
1- Pyig

This set of probabilities is the same across all node pairs
(i, j) from the same edge bundle (r, s). Now suppose that
we have a positive correlation in this edge bundle, so p,s >
0. From the definition of the Pearson correlation, it follows
that g, > p,,py,. We then find that P(A}; = 1|4}, = 1) > p},
and P(A}; = 1|A]; = 0) < p},, whereas using a monolayer
SBM would entail that P(Al-zj = 1) = p?,. Therefore, the ef-
fect of incorporating correlations into our edge-prediction
model when these correlations are positive is (1) to increase
the probability that nodes i and j are adjacent in the second
layer when the corresponding edge also exists in the first layer
and (2) to decrease this probability when the corresponding
edge is absent from the first layer. The effect is reversed for
negative correlations, as the aforementioned probability now
decreases in situation (1) and increases in situation (2).

In Table I, we summarize the two key probabilities (33) and
(34) for four different correlated models, along with the prob-

abilities IP’(Al.zj = 1) for monolayer SBMs and DCSBMs. We
include a correlated configuration model (CM) [66], which
is a special case of the degree-corrected SBM from Sec. II C
when there is only one block. Alternatively, one can think of
correlated CMs as extensions of correlated ER models that
incorporate degree correction. We use all of these models for
edge prediction in synthetic networks in Sec. IIIB and in
consumer—product networks in Sec. IV B. The two monolayer
models are baselines that we hope to outperform using our
correlated models.

B. Tests on synthetic networks

We use K-fold [67] cross-validation to assess the edge-
prediction performance of the models in Table I. In machine
learning, this approach is an effective way to measure predic-
tive performance [54]. After partitioning a given data set into
K parts, one fits a model to K — 1 of these subsets and uses it
to make predictions on the remaining (i.e., “holdout”) subset.
One uses each subset once as a holdout, so one does this
process K times in total. For our problem, we perform 5-fold
cross-validation (which is a standard choice in the machine-
learning literature) by splitting the data in the second layer of
a given network into five subsets. Effectively, this consists of
hiding 20% of the entries of the adjacency matrix A2, such that
we do not know whether they are edges or not. We then train a
model on 100% of the entries of A! and 80% of the entries of
A?, and we use it to make predictions about the 20% holdout
data from A2. We do this five times to cover each choice of
holdout data.

A common way to assess the performance of a binary clas-
sification model (i.e., a model that assigns one of two possible
values to test data) is by using a receiver operating charac-
teristic (ROC) curve. An ROC curve plots the true-positive
rate (TPR) of a classifier versus its false-positive rate (FPR)
for various choices of a threshold. Many models—including
those that are used for edge prediction in networks—make
probabilistic predictions, so specifying a threshold is neces-
sary to convert these into binary predictions. Lowering the
threshold increases both the TPR and the FPR. A model has
predictive power if the former grows faster than the latter,
such that the entire ROC curve lies above the diagonal line
TPR = FPR, which gives the performance of a random clas-
sifier. As a single summary measure of a model’s predictive
performance, it is common to report the area under an ROC
curve (AUC). Larger AUC values are better, with a value of
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AUC = 0.5 indicating the same level of success as random
guessing and AUC = 1 corresponding to perfect prediction.
Even in the latter case, one still needs to determine a choice of
threshold that completely separates true positives from false
positives.

The AUC is not the only possible quantity to assess edge-
prediction performance, although it is very common [15,68].
In many networks, the number of edges is much smaller than
the number of nonedges (i.e., pairs of nodes that are not
adjacent). In situations with such an imbalance, the area under
the precision—recall (PR) curve is more sensitive than the AUC
to variations in model performance. Nevertheless, we use the
AUC because it has an intuitive interpretation (specifically, as
the probability that the underlying model ranks a true positive
above a true negative) that allows us to prove the proposition
in Appendix C. Additionally, the conclusions that we draw
in Sec. IVB about the performance of different models do
not change significantly if we use PR curves instead of ROC
curves.

We now describe how to generate synthetic network bench-
marks that are suitable for testing the models in Table I.
We construct these networks so that they have two tun-
able parameters: the Pearson correlation p € [—1, 1] and
a community-mixing parameter pu € [0, 1] that controls the
strength of the planted mesoscale structure. (See Ref. [14]
for more details about the definition of w.) One can also
explicitly control the degree distribution, such as by including
a parameter 1), for the slope of a truncated power law (e.g.,
as used in [14] to sample a degree sequence in each layer).
For the experiments in this section, we fix n; = —2 and use
a minimum degree of ki, = 10 and a maximum degree of
kmax = 50. It would be interesting to explore the performance
gap between degree-corrected models and models without
degree correction as one varies 1, Kmin, and kmax, although
we do not do so in the present paper. Finally, for our numerical
experiments in this section, we use networks with N = 2000
nodes in each layer and n. = 5 communities, with community
sizes sampled from a flat Dirichlet distribution (i.e., one with
6 = 1 in the notation of [14]).

We examine two versions, which we call CORRSBM and
CORRDCSBM, of a correlated benchmark that is parametrized
by the correlation p and the community-mixing parameter (.
For both versions of the benchmark, we generate the (undi-
rected and unipartite) adjacency matrix A' of the first layer in
the same way. Specifically, given u and degree-distribution
parameters 7, kmin, and kmax, we use the code from [69]
to generate A' and its associated block structure g. We fit a
monolayer model—either an SBM or a DCSBM, depending
on the selected version of the benchmark—to A! to obtain
the marginal edge propensities p' for the first layer. We then
choose p? in one of two ways. For p € [0, 1], we set p> = p',
which ensures that we can generate networks with correlations
that cover the entire range from 0 to 1. For p € [—1, 0], we
set p> = 1 — p', where 1 is a matrix with all entries equal
to 1; this ensures that we can generate networks with correla-
tions that cover the entire range from —1 to 0. Given p', p?,
and p, we then determine ¢ using either the correlated SBM
of Sec. IIB or the correlated DCSBM of Sec. IIC. For the
CORRDCSBM benchmark with p > 0, we set the normalized
degrees 67 to be equal to the corresponding quantities 6 from

the first layer. Again, this choice ensures that we can gener-
ate networks all the way to p = 1. (We also implemented a
version of the CORRDCSBM benchmark that samples degrees
independently in the second layer, and we found qualitatively
similar results.) The final step consists of generating A given
Al the propensities p2 and ¢, and (for the CORRDCSBM
benchmark only) the normalized degree sequences (9! and
6%) of the two layers. To perform this step, we first compute
edge probabilities using either of the correlated models from
Secs. II B and I1 C and we then generate edges independently
according to these probabilities.

In Fig. 3, we show sample ROC curves for one network that
we create using the CORRDCSBM benchmark with u = 0.3
and p = 0.5. We compare the performance of our correlated
models with a monolayer DCSBM baseline, which performs
edge prediction using only information from the second net-
work layer. Two of the correlated models outperform this
baseline and the correlated CM performs comparably well
(i.e., it has a similar AUC value).

In Fig. 4, we show results for the CORRSBM benchmark
for two choices of the community-mixing parameter y and
several values (both positive and negative) of the Pearson cor-
relation p. As expected, the AUC values for monolayer SBMs
are independent of p, whereas the predictive performance of
correlated ER models and correlated SBMs improves as we
increase |p|. In particular, when |p| = 1, the two correlated
models make perfect predictions. When p = 0, the perfor-
mance of the correlated ER model is almost indistinguishable
from chance (because AUC =~ (.5) and the correlated SBMs
perform identically to monolayer SBMs. The gap between
the two correlated models is smaller for u = 0.8 than for
© = 0.3, because the underlying block structure is weaker in
the former case than in the latter. The AUC value that we
obtain with the monolayer baseline is also smaller for © = 0.8
than for u = 0.3.

One striking feature in Fig. 4 is that all curves are ap-
proximately straight lines (to within sampling error). It makes
sense that the performance of monolayer SBMs does not vary
with p, as these models do not use multilayer information,
but the linear dependence on p of the other two curves is
less intuitive. For the correlated ER model, we can establish
rigorously (see Appendix C) that the AUC is approximately
equal to (1+|p|)/2 when p; = p, or when p; = 1 — p;.
Given that the correlated SBM curves from Fig. 4 also exhibit
a linear dependence on p, we believe that it is possible to
establish similar results for correlated models that incorporate
mesoscale structure. These results have practical importance,
as they allow one to quickly estimate the additional benefits of
using correlated models instead of monolayer SBMs for edge
prediction.

In Fig. 5, we show results for the CORRDCSBM bench-
mark for two choices of the community-mixing parameter
u and non-negative [70] values of the Pearson correlation
p. As expected, when p = 0, correlated DCSBMs perform
similarly to monolayer DCSBM. As in Fig. 4, the perfor-
mance of the monolayer DCSBM is roughly independent
of p, whereas the two correlated models perform better
as p increases. The gap between the two correlated mod-
els narrows substantially as one increases u from 0.3 to
0.8.
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FIG. 3. ROC curves from a 5-fold cross-validation for a network that we sample from the CORRDCSBM benchmark with community-
mixing parameter i = 0.3 and correlation p = 0.5. (a) We compare correlated models that do not incorporate any mesoscale structure to
a monolayer DCSBM baseline. The baseline gives AUC =~ 0.83, whereas the AUC values for the two correlated models are approximately
0.76 (correlated ER) and 0.83 (correlated CM). (b) We compare correlated models that incorporate mesoscale structure to the same monolayer
DCSBM baseline. The baseline again gives AUC = (.83, and the AUC values for the two correlated models are approximately 0.89 (correlated
SBM) and 0.91 (correlated DCSBM).
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FIG. 4. Edge-prediction results on synthetic networks from the CORRSBM benchmark with parameter values (a) © = 0.3 and p <0,
(b)yu=0.3and p >0,(c) u =0.8and p <0, and (d) « = 0.8 and p > 0. In all plots, along the horizontal axis, we vary the correlation p
that we use to generate network instantiations. On the vertical axis, we indicate the AUC for 5-fold cross-validation using a monolayer SBM
(dashed curves) and correlated SBM and ER models (solid curves). Each data point is a mean across ten trials, and the error bars correspond
to one standard deviation from that mean. As expected, the AUC does not change with p for the monolayer model, but it increases with |p|
for the two correlated models. As we increase 1, such that the sampled networks have progressively weaker mesoscale structure, we observe
a substantial narrowing of the performance gap between correlated ER models and correlated SBMs.
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FIG. 5. Edge-prediction results on synthetic networks from the CORRDCSBM benchmark with correlation p > 0 and community-mixing
parameters of (a) 4 = 0.3 and (b) u = 0.8. In both panels, along the horizontal axis, we vary the correlation p that we use to generate network
instantiations. On the vertical axis, we indicate the AUC for 5-fold cross-validation using a monolayer DCSBM (dashed curves) and the
correlated DCSBM and CM (solid curves). Each data point is a mean across ten trials, and the error bars correspond to one standard deviation
from that mean. As expected, the AUC is roughly independent of p for the monolayer model, but it increases with p for the two correlated
models. As we increase , such that the sampled networks have progressively weaker mesoscale structure, we observe a substantial narrowing
of the performance gap between the correlated CMs and the correlated DCSBMs.

IV. APPLICATIONS

We discuss two applications of correlated multilayer-
network models to the analysis of empirical networks. In
Sec. IV A, we report pairwise layer correlations for several
multiplex networks. In Sec. IV B, we consider a temporal
and bipartite network of customers and products. Using an
approach similar to that from Sec. III, we demonstrate that
correlated multilayer models have a better edge-prediction
performance than monolayer baselines.

A. Layer correlations in empirical networks

We now calculate pairwise layer correlations using formula
(21). Recall that this expression gives the effective correlation
between two layers, assuming that they have identical block
structures (although their edge-propensity parameters can be
different). Crucially, this calculation does not require that
we first determine the underlying block structure. In fact, as
we demonstrated in Sec. II B, the effective correlation of the
correlated SBM is the same as the correlation of the correlated
ER model, and the latter is straightforward to compute. Ac-
counting for node degrees, as we did in Sec. II C for correlated
DCSBMs, significantly increases the complexity of such a cal-
culation. Additionally, as we showed in Sec. I C, correlations
using a degree-corrected model are rather similar to those that
one obtains without degree correction.

In Table II, we report the mean pairwise layer correlations
for nine multiplex networks. (See Appendix D for descriptions
of the associated data sets.) To provide additional insight into
these networks, we also report the two layers with the largest
effective correlations.

We make a few observations about some of the results
in Table II. In the C. elegans connectome, the layers that
correspond to two types of chemical synapses are highly
correlated with each other; their correlations with the layer
of electrical synapses is comparatively lower. In the Euro-

pean Union (EU) air transportation network, the two most
correlated layers are those that correspond to Scandinavian
Airlines and Norwegian Air Shuttle flights; this is consistent
with previous findings [38] (which were based on a different
method for quantifying layer similarity). In the network of
arXiv collaborations between network scientists, the two most
similar categories are physics.data-an (which stands for “Data
Analysis, Statistics and Probability””) and cs.SI (which stands
for “Social and Information Networks™). One hypothesis is
that these two labels are often used together in papers. Such
common usage leads to a large edge overlap between the
corresponding layers and hence to a large correlation value.

To quantify edge correlations at a more granular level, one
can first infer block assignments g and then calculate corre-
lations p,s for all edge bundles (r, s). One possible finding
from such a calculation may be that correlations between
Scandinavian Airlines and Norwegian Air Shuttle routes are
significantly larger in certain geographical regions than in
others.

B. Edge prediction in shopping networks

The data-science company dunnhumby gave us access
to “pseudonymized” transaction data from stores of a ma-
jor grocery retailer in the United Kingdom. The data were
pseudonymized by replacing personally identifiable informa-
tion with numerical IDs, rendering it impossible to identify
individual shoppers. For our analysis, we aggregate transac-
tions over fixed time windows to construct bipartite networks
of customers and products. We refer to these structures
as “shopping networks”. Because some purchases occur in
higher volumes than others, it is useful to incorporate edge
weights. Given a customer i and a product j, the item-
penetration weight is equal to the fraction of all of the items
purchased by customer i that are product j. The basket-
penetration weight is equal to the fraction of all baskets (i.e.,
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TABLE II. Pairwise layer correlations in several multiplex networks.

Number Mean

Domain Network of layers correlation Largest correlation (associated layers)
Social CS Aarhus [71] 5 0.27 0.45 (“work” and “lunch” layers)

Lazega law firm [72] 0.39 0.48 (“advice” and “co-work™ layers)

YouTube [73] 5 0.12 0.20 (“shared subscriptions” and “shared subscribers”)
Biological C. elegans connectome [74] 0.47 0.85 (“MonoSyn” and “PolySyn” layers)

P. falciparum genes [75] 0.08 0.25 (“HVRT” and “HVR9” layers)

Homo sapiens proteins [76] 0.04 0.29 (“direct interaction” and “physical association” layers)
Other FAO international trade [34] 364 0.13 0.74 (“pastry” and “sugar confectionery”)

EU air transportation [22] 37 0.03 0.39 (“Scandinavian Airlines” and “Norwegian Air Shuttle”)

arXiv collaborations [77] 13 0.07 0.73 (“physics.data-an” and “cs.SI”)

distinct shopping trips) of customer i that include product j.
See Ref. [24] for more details about these weighting schemes.

We now apply the edge-prediction methodology from
Sec. III to temporal shopping networks, in which edges and
edge weights can change from changes in shopping behavior,
with a fixed set of customers and a fixed set of products. We
construct networks with two layers, which cover the three-
month time periods of March to May 2013 and June to August
2013, respectively. Using the same underlying transaction
data, we construct two shopping networks by determining
the vector g of block assignments (the same vector for both
layers [78]) in two different ways. For the first network (which
we call SHOPPINGMOD), we use basket-penetration weights
for the edges and apply multilayer modularity maximization
[79,80] to the weighted network to determine the commu-
nity assignments g [81]. For the second network (which we
call SHOPPINGSBM), we initially calculate item-penetration
weights and we then apply a threshold to remove edges whose
weight is below the median weight (i.e., approximately 50%
of the edges). We fit a degree-corrected SBM to the resulting
unweighted network using the belief-propagation algorithm
of [82]. We expect better edge-prediction performance for the
second network, because we detect its block structure using an
SBM (as opposed to using modularity maximization, which is
more restrictive).

As with our tests on synthetic networks in Sec. III B, we
use 5-fold cross-validation to assess edge-prediction perfor-
mance. We summarize the AUC values that we obtain with
our various correlated multilayer models and the monolayer
baselines in Table III, and we show sample ROC curves in
Fig. 6. We make a few observations about these results. First,
our approximation AUC ~ (1 + p)/2 for correlated ER mod-
els is very accurate for our two shopping networks, whose
correlations are p ~ 0.44 and p ~ 0.48, respectively. Second,
our correlated multilayer models outperform the monolayer
baselines for both networks. In particular, the very simple
correlated ER model—which assigns one of two probabilities
to edges, as indicated in Table I—performs about as well
as the more sophisticated monolayer DCSBM for the SHOP-
PINGMOD network. Third, as expected, the AUC values are
systematically larger for the SHOPPINGSBM network than for
the SHOPPINGMOD network. Finally, although incorporating

mesoscale structure leads to better performance when there
is no degree correction, this does not seem to be the case
for degree-corrected models, as correlated DCSBMs do not
perform significantly better than correlated CMs. This is also
apparent in Figs. 6(b) and 6(d), where we observe almost
identical ROC curves for the two models. This result suggests
that, for some networks, taking into account layer correlations
and degree heterogeneity alleviates the need to also consider
mesoscale structure when performing edge prediction. This
observation has practical implications, as a correlated CM is
much easier than a correlated DCSBM to fit to data and to use
for edge prediction. However, for recommendation systems,
there are situations in which fitting a correlated DCSBM is
beneficial, even if its edge-prediction performance is similar
to that of a correlated CM. For instance, one may wish to
identify relevant customers for a chosen product, irrespective
of how much they buy (i.e., their degree). Stochastic block
models are able to distinguish between customers with equal
degrees and identify those with the greatest potential predis-
position to buy a particular product, whereas CMs are not.
We also note a result from [83] that an ROC curve lies
completely above (i.e., “dominates”) another ROC curve if
and only if the same relationship holds for the associated PR
curves. This result implies for almost all of the curves in Fig. 6
that the rankings of our models based on AUC values are
almost identical to those that we would obtain if we instead
based them on the areas under PR curves. The only curves
whose ranking when we use PR curves is unclear from this

TABLE III. Predictive performance of different models on the
shopping data set, as measured by AUC values.

AUC AUC
Model (SHOPPINGMOD) (SHOPPINGSBM)
Monolayer SBM 0.549 0.633
Correlated ER 0.724 0.743
Correlated SBM 0.742 0.793
Monolayer DCSBM 0.725 0.797
Correlated CM 0.817 0.870
Correlated DCSBM 0.818 0.875
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FIG. 6. ROC curves for our edge-prediction task using 5-fold
cross-validation on (a) the SHOPPINGMOD network without degree
correction, (b) the SHOPPINGMOD network with degree correction,
(c) the SHOPPINGSBM network without degree correction, and (d) the
SHOPPINGSBM network with degree correction. The dotted diagonal
line in each plot indicates the expected ROC curve for a random
classifier. All other curves lie above this diagonal line, suggesting
that they have predictive power. In all cases, correlated multilayer
models outperform their monolayer counterparts. For both networks,
correlated SBMs outperform correlated ER models, whereas corre-
lated DCSBMs perform similarly to correlated CMs [as illustrated
by the almost overlapping curves in (b) and (d)].

result are the correlated ER and monolayer SBM curves in
Fig. 6(c).

It is informative to consider the source of false positives
in Fig. 6. Because the correlation between layers is positive,
we are likely to predict an edge where none exists when all of
the following conditions hold: (1) Nodes i and j are adjacent
in the first temporal layer but not in the other one, (2) the
node pair (i, j) belongs to an edge bundle (r, s) with a large
layer correlation p,s, and (3) nodes i and j have large degrees.
Note that condition (3) applies only to correlated models with
degree correction.

V. CONCLUSIONS AND DISCUSSION

We introduced models of multilayer networks in which the
edges that connect the same nodes in different layers are not
independent of each other. In comparison to models without
edge correlations, our models offer an improved representa-
tion of many empirical networks, as interlayer correlations are
a common phenomenon: Flights between major airports are
serviced by multiple airlines, individuals interact repeatedly
with the same people, consumers often buy the same products
over time, and so on. Among other potential applications, one
can use our models to improve edge prediction, to study the

graph-matching problem on benchmark networks with highly
heterogeneous degree distributions, and to calculate layer cor-
relations as insightful summary statistics for networks.

To model layer correlations, we used bivariate Bernoulli
random variables to generate edges simultaneously in two net-
work layers. (See [24] for derivations using Poisson random
variables.) Correlated Bernoulli stochastic block models were
proposed previously [31], although only as forward models
for generating networks, rather than for performing inference
given empirical data. Another key contribution of our work is
a degree-corrected variant of such a model. The maximum-
likelihood equations are significantly more difficult to solve
in this case than without degree correction, but we were able
to make useful simplifications with suitable approximations.
Notably, these simplified equations closely approximate the
equations for models without degree correction for networks
with almost homogeneous degree distributions.

The models in the present paper that incorporate some
mesoscale structure g assume that such structure is given. This
setup has the benefit that one can use any desired algorithm to
produce a network partition, including ones that operate on
weighted or annotated networks or that use nonstandard null
models in a modularity objective function. This makes our
approach for analyzing correlations suitable for a wide variety
of applications.

Fitting a correlated SBM to network data yields a corre-
lation value p,, for each edge bundle (r, s). We have defined
an effective correlation p that combines all of these values
into a single measure of similarity between two layers of a
multilayer network. Notably, the value of the effective correla-
tion is independent of a network’s mesoscale structure, so it is
extremely easy to compute [see Eq. (12)]. We illustrated this
method of assessing layer similarity for multiplex networks
from social, biological, and other domains.

Another application of our work is to edge prediction
in multilayer networks. Our numerical experiments revealed
that simple correlated models (e.g., a correlated configuration
model or a correlated SBM without degree correction) can
outperform monolayer DCSBMs (as measured by AUC val-
ues) even for moderate correlation values. We also observed
such improved performance for consumer—product networks,
which have significant layer correlations (with p > 0.4). We
expect that a correlated multilayer DCSBM will typically out-
perform a monolayer DCSBM for most empirical networks,
even for small levels of correlation.

There are many interesting ways to build further on our
work. For example, it would be useful to be able to model
all layers simultaneously, rather than in a pairwise fashion,
especially for multiplex networks (in which layers do not
have a natural ordering). One challenge is that a multivariate
Bernoulli distribution of dimension L has 2% — 1 parameters;
this grows quickly with the number L of layers. For a temporal
setting, we have proposed generating correlated networks in
a sequential way by conditioning each layer on the previous
one. In some cases, it will be useful to relax this memoryless
assumption and condition a layer on all previous layers, rather
than only on the most recent layer. For example, the purchases
of shoppers in December in one year are strongly related not
only to their purchases in November, but also to what they
bought in December during the previous year.
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In the present paper, we have not considered the case of
nonidentical mesoscale structures across layers. (See [24] for
a possible approach.) Additionally, although one can account
for edge weights when fitting a block structure g to use
with our models, the rest of our derivations apply only to
unweighted networks. Modeling correlated weighted net-
works entails prescribing both edge-existence and edge-
weight correlations. Yet another idea is to derive correlated
models for networks with overlapping communities. Previous
research [15] has found that incorporating community over-
laps can substantially improve edge prediction. Moreover, for
correlated DCSBMs, it would be useful to learn the depen-
dence of the joint probability ]P’(Ailj =1, Al-zj = 1) on the node
degrees, instead of assuming the parametric form in Eq. (24).
This is a challenging problem for which maximum-likelihood
estimation is unlikely to be a suitable tool, so it falls outside
the scope of the present paper.

Our work is also a starting point for designing algorithms
to detect correlated communities in networks by inferring g
alongside other model parameters. A practical outcome of
such an algorithm would be a set of communities that persist
across layers if and only if the edges in those communities
are sufficiently highly correlated with each other. Such an
approach would offer a new notion of what it means for a
community to span multiple layers [41,84].

Finally, although we performed edge prediction in an
unsupervised manner, it is also possible to use estimated cor-
relations as features in supervised models (see, e.g., [S7-60])
to improve their performance.

Our work highlights the importance of relaxing edge-
independence assumptions in statistical models of network
data. Doing so provides richer insights into the structure
of empirical networks, improves edge prediction, and yields
more realistic models on which to test algorithms for commu-
nity detection, graph matching, and other tasks.
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APPENDIX A: VARIANCE OF ML ESTIMATES

In Sec. II, we derived ML parameter estimates for various
types of correlated network models. In this appendix, we
show how to obtain the variance of these estimates and we
illustrate how these variances scale with network size (i.e.,
the number of nodes). We focus on correlated ER models and
the corresponding log-likelihood (8). The same approach also
works for the other types of models that we examined.

Let B = [p1 p> q]" denote the vector of parameters for a
correlated ER model. Under mild conditions [85], the ML
estimate 8 converges in distribution to a multivariate normal
distribution as the number N of nodes tends to infinity. For
large but finite NV, the quantity B is distributed approximately
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FIG. 7. Maximum-likelihood estimates with 95% confidence in-
tervals that we obtain from the inverse of the Fisher information
matrix for different values of the number N of nodes. The true param-
eter values (dashed horizontal lines) are p; = 0.1, p, = 0.085, and

q = 0.05. The widths of the confidence intervals scale approximately
as 1/N.

according to NV (8%, Z~!(B*)), where B* is the true-parameter
vector and Z~!(B*) is the inverse of the Fisher information
matrix evaluated at the parameter values in B*. The diagonal
entries of Z~1(8*) give estimates of the variances of pj, p,,
and gq.

To illustrate how these variance estimates scale with the
number N of nodes, we simulate correlated ER networks with
p1 =0.1, p =0.085, and ¢ = 0.05 (which correspond to a
correlation of p = 0.5) for different network sizes. In Fig. 7,
we plot the 95% confidence intervals around the ML estimates
of the three parameters in our model. We find empirically that
the variances of the parameters scale approximately as 1 /N2,
so the standard deviations (and thus the widths of the 95%
confidence intervals) scale approximately as 1/N.

APPENDIX B: MAXIMIZING THE FULL
LOG-LIKELIHOOD VERSUS OUR APPROXIMATE
LOG-LIKELIHOOD FOR CORRELATED DCSBMs

In Sec. IIC, we derived an approximation (29) of the
log-likelihood for correlated DCSBMs that enables a more ef-
ficient estimation of the parameters than maximizing the exact
log-likelihood (25). We now use simulated data to compare
the results that we obtain using this approximation to those
from maximizing the original log-likelihood.

We simulate networks using the CORRDCSBM benchmark
(see Sec. III B) with N = 1000 nodes, K = 5 communities, a
mixing parameter of u = 0.3, and a correlation of p = 0.5.
For N = 2000 nodes, which we used in other experiments in
our paper, we find that maximizing the full log-likelihood is
prohibitively slow. Even for N = 1000, obtaining estimates
using the full log-likelihood takes about 30 min on a typical
laptop computer, whereas the calculation runs in about 5 s on
a typical laptop computer when we use the approximate log-
likelihood.

The quality of our approximation depends strongly on the
shape of the degree distribution. Specifically, we observe that
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FIG. 8. Maximum-likelihood estimates from the approximate
log-likelihood (29) versus ML estimates from the full log-likelihood
(25). (a) Example of a network with a relatively narrow degree
distribution (ny = 0, kyin = 18, and ky.x = 20). For this example,
the approximation works well. (b) Example of a network with a rela-
tively wide degree distribution (n;y = —2, kin = 10, and ko = 50).
For this example, we observe some discrepancies between the two
sets of estimates.

accuracy degrades as we consider distributions with progres-
sively larger variances. We illustrate this behavior in Fig. 8§,
where we plot the full-likelihood [see Eq. (25)] estimates
versus the approximate-likelihood [see Eq. (29)] estimates for
two networks. For both of these networks, we sample degrees
from truncated power-law distributions using the code in [69].
In Fig. 8(a), we choose a relatively narrow degree distribution
(with 1 = 0, a minimum degree of ky,, = 18, and a maxi-
mum degree of kp,x = 22). In this case, the parameter values
that we estimate using the approximate log-likelihood closely
match those from the full log-likelihood. For Fig. 8(b), we
choose a relatively wide degree distribution (with n; = —2,
a minimum degree of kpj, = 10, and a maximum degree of
kmax = 50). In this case, the approximate log-likelihood tends
to overestimate parameter values, especially for larger values
of these parameters. See the top-right corner of Fig. 8(b).

As this example illustrates, there is a trade-off between
accuracy and speed. It may be possible to derive better ap-
proximations. For example, one can consider a second-order
expansion (instead of a first-order expansion) with respect to
the quantities ¢/, and &7;. One can also add corrections for
large-degree nodes to the approximate log-likelihood.

APPENDIX C: EDGE-PREDICTION AUC AS A FUNCTION
OF THE PEARSON CORRELATION p

We establish the following result.

Proposition. The AUC for a correlated ER model is an
affine function of the Pearson correlation p. In particu-
lar, when p; & p, or p; & 1 — p,, we have AUCgr ~ (1 +
loD/2.

Proof. Suppose that p > 0. (The case p < 0 is similar.)
With a correlated ER model, all unobserved interactions (i, j)
in the second layer have one of two probabilities: g/ p; if A} ;=
Land (p2 — ¢)/(1 — p1) if Aj; = 0. Because p > 0, we have
q > p1p2, which implies that ¢/p; > (p» — ¢q)/(1 — p1). Se-
lecting a threshold between these two probabilities amounts
to predicting that everything that is an edge in the first layer

TPR

AUC

a

FPR

FIG. 9. Diagram of the ROC curve for our correlated ER model,
which assigns one of two possible edge probabilities to each pair of
nodes.

is also an edge in the second layer and that everything that is
not an edge in the first layer is also not an edge in the second
layer. Let a and b denote the TPR and FPR, respectively, at
such an intermediate threshold. In this case, a and b are the
coordinates of the point at which the slope of the ROC curve
changes. See the illustration in Fig. 9.

By straightforward geometry,

AUCER=1—?—f—(1—a)b
_1+a—b
) 2

is the area under this ROC curve. The next step is to estimate
a and b. With a correlated ER model, the number of true
positives is proportional [86] to ej;; the model’s prediction
is correct every time that an edge that is present in the first
layer is also present in the second layer. To find the TPR, one
needs to divide this quantity by the number of edges (there are
e11 + eo; of them) in the second layer. We obtain

e l—p
a%#%i=1ﬁ+p\/ 2171(1_[’1)' (CD)

e + e )2) )2)

Similarly, each time an edge that is present in the first layer is
not present in the second layer counts as an incorrect predic-
tion of the model. Therefore, the number of false positives is
proportional to ejo. Dividing this by the number of nonedges
in the second layer yields

pa €0 P14 » p\/ P2
~ ~ =p —
eio+eon 1—p2 1—p>

pi(l = p1).

(C2)
From (C1) and (C2), it follows that

1 1—
AUCgR ~ 3 ~|—§ pi(l —P1)<‘/ p2p2 +./ 1 fzp2>’

062307-16



INFERENCE OF EDGE CORRELATIONS IN MULTILAYER ...

PHYSICAL REVIEW E 102, 062307 (2020)

which is an affine function of p. When py ® p,or p; = 1 —
P2, as is the case in Fig. 3, we obtain AUCgr ~ (1 + |p])/2,
as desired. Using a similar argument, one can show that the
same result holds (with the same assumptions on p; and p;)
when p < 0. |

Given that the correlated SBM curves from Fig. 4 also
appear to depend linearly on p, we believe that it is possible to
establish similar results for correlated models that incorporate
mesoscale structure.

APPENDIX D: DATA SETS

We provide brief descriptions of the multiplex networks
that we analyzed in Sec. IV A. For weighted networks, we
disregard edge weights when calculating layer correlations.
‘We downloaded these networks, aside from the YouTube and
P. falciparum data sets, from [87].

1. CS Aarhus

This is an undirected and unweighted social network of
offline and online relationships between N = 61 members of
the Department of Computer Science at Aarhus University
[71]. There are T = 5 layers: regularly eating lunch together,
friendships on Facebook, coauthorship, leisure activities, and
working together.

2. Lazega law firm

This directed and unweighted network encompasses inter-
actions between N = 71 partners and associates who work at
the same law firm [72]. The network has T = 3 layers that
encode co-work, friendship, and advice relationships.

3. YouTube

This is an undirected and weighted network of interactions
between N = 15088 YouTube users [73]. There are T =5
types of interactions: direct contacts (“friendships”), shared
contacts, shared subscriptions, shared subscribers, and shared
favorites.

4. C. elegans connectome

This is a directed and unweighted network of synap-
tic connections between N = 279 neurons of the nematode

C. elegans [74]. There are T = 3 layers, which correspond
to electric, chemical monadic (“MonoSyn”), and chemical
polyadic (“PolySyn”) junctions.

5. P. falciparum genes

This is an undirected and unweighted network of N = 307
recombinant genes from the parasite P. falciparum, which
causes malaria [75]. There are T = 9 layers that correspond
to distinct highly variable regions (HVRs), in which these
recombinations occur. Two genes are adjacent in a layer if they
share a substring whose length is statistically significant.

6. Homo sapiens proteins

This is a directed and unweighted network of interactions
between N = 18222 proteins in Homo sapiens [88]. There
are T = 7 layers, which correspond to the following types
of interactions: direct interactions, physical associations,
suppressive genetic interactions, association, colocalization,
additive genetic interactions, and synthetic genetic interac-
tions. The original data set is from BioGRID [76], a public
database of protein interactions (for humans as well as other
organisms) that is curated from different types of experiments.

7. Food and Agriculture Organization (FAO) trade

This is a directed and weighted network of food imports
and exports during the year 2010 between N = 214 countries
[34]. There are T = 364 layers, which correspond to different
food products.

8. European Union air transportation

This is an undirected and unweighted network of flights
between N = 450 airports in Europe [22]. There are T = 37
layers, each of which corresponds to a different airline.

9. arXiv collaborations

This is an undirected and weighted coauthorship net-
work between N = 14489 network scientists [77]. There
are T = 13 layers, which correspond to different arXiv sub-
ject areas: physics.soc-ph, physics.data-an, physics.bio-ph,
math-ph, math.OC, cond-mat.dis-nn, cond-mat.stat-mech, q-
bio.MN, g-bio, g-bio.BM, nlin.AO, cs.SI, and cs.CV.
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