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We investigate algorithms to find short paths in spatial networks with stochastic edge weights. Our formulation
of the problem of finding short paths differs from traditional formulations because we specifically do not make
two of the usual simplifying assumptions: (1) we allow edge weights to be stochastic rather than deterministic
and (2) we do not assume that global knowledge of a network is available. We develop a decentralized routing
algorithm that provides en route guidance for travelers on a spatial network with stochastic edge weights without
the need to rely on global knowledge about the network. To guide a traveler, our algorithm uses an estimation
function that evaluates cumulative arrival probability distributions based on distances between pairs of nodes.
The estimation function carries a notion of proximity between nodes and thereby enables routing without global
knowledge. In testing our decentralized algorithm, we define a criterion that makes it possible to discriminate
among arrival probability distributions, and we test our algorithm and this criterion using both synthetic and real
networks.
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I. INTRODUCTION

One of the most important aspects of many networks is
their navigability [1–3], and it is often important to find short
paths between pairs of nodes in a network. For example,
sending packages across the Internet, attempting to spread
ideas through social networks, and transporting people or
goods cheaply and quickly all require the ability to find paths
with a small number of steps and/or a low cost [4]. Assuming
that network topology and the cost of making a step is known,
such paths can be found easily [5]. Unfortunately, complete
knowledge of network topology (and edge weights) is often
unavailable or constitutes an insurmountable overhead [6–9].

Despite the aforementioned difficulties, there is empirical
evidence that some networks can be navigated by using
only local information.1 A well-known example is Milgram’s
small-world experiments [6], which demonstrated that short
paths between individuals in social networks exist and that
individuals are able to navigate networks without global
knowledge of network topology. This observation was put
on solid theoretical ground more than 30 years later by
Kleinberg [10], who showed that one can find short paths
between nodes via decentralized algorithms in certain types
of spatially embedded networks [11]. This work has led
to both theoretical and numerical studies of routing with
limited information [4,12] as well as investigations of routing
algorithms in spatially embedded networks [13–17].

1Our initial motivation for studying our formulation of this problem
arose when one of the authors accidentally left his umbrella at
University of Bath and had to find a way to get it back to Oxford
without further travel on his part.

An important limitation of the above findings is their
assumption that the cost of making a step is deterministic.
In many situations, it is much more appropriate to model
the cost as a random variable. For instance, when a network
has varying levels of traffic [18–20], it is unsuitable to
model associated costs deterministically. The aim of the
present article is to address this important limitation and to
develop a decentralized algorithm for routing on networks
with stochastic edge weights.

The remainder of this article is organized as follows. We
discuss the deterministic shortest-path problem in Sec. II and
a stochastic version of this problem in Sec. III. In Sec. IV,
we discuss criteria for measuring the quality of a path in a
network. In Sec. V, we discuss an adaptive algorithm that
will be helpful for trying to solve our stochastic shortest-path
problem. We present the notion of an estimation function
in Sec. VI, and we discuss our new decentralized routing
algorithm in Sec. VII. We show the results of simulations on a
synthetic network in Sec. VIII and on a real network in Sec. IX.
We discuss our results further in Sec. X and conclude in Sec.
XI. We present pseudocode for our decentralized algorithm
and discuss additional technical details in appendices.

II. DETERMINISTIC SHORTEST-PATH PROBLEM

A network (or graph) G consists of a set N of nodes labeled
by the indices {i1, . . . ,in} (and with cardinality |N | = n) and
a set E of edges (with |E| = m) labeled by ordered pairs of
indices (i,j ) that indicate that there is a directed edge from
node j to node i. The node j is called a neighbor of node i.
We associate a weight Tij , which represents a cost or travel
time, with each edge (i,j ). A path � with k steps is a sequence
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of k + 1 nodes � = {i1, . . . ,ik+1} that are connected to one
another by virtue of an edge between each pair of consecutive
nodes in the sequence. Note that we do not require a path to
be “simple,” so a node can occur multiple times in a path. See
Ref. [21] for a discussion of cycles in paths that arise from
adaptive routing.

The weight T� of a path � is given by the sum of the weights
of its constituent edges:

T� =
k∑

j=1

Tij ij+1 .

The shortest-path problem (SPP) aims to determine the path
of smallest total weight from an origin node to a target (or
destination) node. In the deterministic shortest-path problem
(DSPP), each edge weight Tij is deterministic, and a path with
minimal total weight is called optimal.

III. STOCHASTIC SHORTEST-PATH PROBLEM

Nondeterministic travel times are a typical feature of trans-
portation networks [18]. Because this is our motivating exam-
ple, we use the terms “time” and “weight” interchangeably.

To define a stochastic shortest-path problem (SSSP), we
let the weights Tij be real-valued random variables that are
distributed according to a probability distribution function
(PDF) with probabilities pij [19,20,22–24]. In our SSSP
formulation, we make three assumptions: (1) the random edge
weights are independent of each other, (2) the PDFs do not
change during the routing process, and (3) the weight incurred
by traversing an edge becomes known upon completion of the
step. (For example, the time taken to travel a road is known
once the next junction is reached.) With these assumptions, it
follows that the PDF for the weight T� of a k-step path � to
have a value t is given by the convolution of the PDFs of the
weights associated with the path [25]:

p�(t) =
(

k∗
j=1

pij ij+1

)
(t), (1)

where the right-hand side denotes k consecutive convolutions.
The probability to traverse the path � and incur a weight T� � t

is given by the cumulative distribution function (CDF):

U�(t) =
∫ t

0
dt ′ p�(t ′).

IV. CRITERIA

Because the edge weights are now random variables, we
need to reconsider the concept of an optimal path. In particular,
there is no longer a unique concept of optimality. For example,
Frank [22] defined a path to be optimal if its CDF surpasses
a threshold θ within the shortest time, whereas Fan et al. [19]
suggested maximizing the CDF for a given time budget τ . Each
of these criteria has a regime in which it outperforms the other.
If the budget τ available to a traveler is large, then there are
many paths that result in almost certain arrival at the desired
target; that is, U�′(τ ) ≈ 1 for many paths �′. In this regime, the
paths are virtually indistinguishable using Fan et al.’s criterion.
However, Frank’s criterion can easily identify the path that
it deems to be optimal. In contrast, if the budget is small,

FIG. 1. Comparison of path optimality criteria using CDFs of
three paths. Fan et al.’s criterion prefers paths 2 and 3 to path 1
but cannot discriminate between the CDFs of paths 2 and 3. Frank’s
criterion prefers path 2 to path 3 but cannot be applied to path 1.
The joint criterion is applicable to all CDFs and selects path 2 as the
optimal one.

then arrival at the target within the budget is unlikely; that is,
U�′′(τ ) � 1 for all paths �′′. In this case, Frank’s criterion is
not helpful because there does not exist a path whose CDF
surpasses the threshold. However, Fan et al.’s criterion can
identify the path with the maximal CDF for the given budget.

We define a joint criterion that takes advantage of both
aforementioned criteria. If there are paths whose CDFs surpass
a threshold θ within the budget τ , then we choose a path
according to Frank’s criterion. Otherwise, we choose a path
according to Fan et al.’s criterion. In Fig. 1, we illustrate the
differences between the criteria.

V. AN ADAPTIVE ALGORITHM

Even finding approximate solutions to an SSPP is challeng-
ing. An interesting approach was proposed by Fan et al., who
utilized an adaptive algorithm that evaluates the available in-
formation before each step and accounts for the consequences
of previous decisions [19]. They proposed building a routing
table by considering the maximal probability to reach the target
r from all other nodes i ∈ N\{r}. This amounts to solving the
following set of coupled nonlinear integral equations:

ui(t) = max
j∈Ji

[ ∫ t

0
pij (t ′)uj (t − t ′) dt ′

]
,

(2)
ur (t) = 1,

where Ji is the set of neighbors of i and ui(t) is the probability
to arrive at node r starting from node i with a total travel time
that is no longer than t . The node qi(t) that one should choose
to attain the maximal arrival probability is

qi(t) = arg max
j∈Ji

[ ∫ t

0
pij (t ′)uj (t − t ′) dt ′

]
. (3)

One cannot find analytical solutions to Eqs. (2) and (3) in
general, but one can approximate the CDF ui(t) using the
iterative sequence

vs+1
i (t) = max

j∈Ji

[ ∫ t

0
pij (t ′)vs

j (t − t ′) dt ′
]
,

(4)
vs+1

r (t) = 1,
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with index s and initial conditions

v0
i (t) = 0, ∀ i ∈ N\{r}.

The sequences {vs
i (t)} give lower bounds for the true CDFs.

One obtains upper bounds by using the sequences {ws
i (t)}

with the same recursion relation (4) but with different initial
conditions [26]:

w0
i (t) = 1, ∀ i ∈ N.

In our numerical implementation, we demand that the se-
quences converge to within a numerical tolerance ε for all
t . That is, we require that

ws
i (t) − vs

i (t) < ε, ∀ i ∈ N

for sufficiently large s.

VI. ESTIMATION FUNCTION

Fan et al.’s algorithm is centralized, because it requires
knowledge of the entire network topology and all edge-weight
distributions. To build a decentralized algorithm, we define
an estimation function f (i,j ; t), which gauges the arrival
probability from node j to node i within time t . Such a function
carries a notion of proximity between nodes, and we will use
it to guide travelers on a network. We define an estimation
function using the following four steps.

First, we embed the network under consideration in a metric
space by defining a distance measure d : N × N → R for any
pair of nodes. We use the shorthand notation dij ≡ d(i,j ) to
denote the distance between any pair of nodes i and j in the
metric space. The length of an edge is equal to the distance
between a pair of nodes with a direct connection (i.e., an edge)
between them. Note that the length of an edge (e.g., the length
of a road) is different from its weight (e.g., the travel time).

Second, we define the network distance gij as the shortest
distance between nodes if travelers are restricted to move along
edges. Note that the network distance is distinct from the
travel time. We assume that network distance between nodes
i and j can be estimated from the (metric) distance between
i and j . That is, we assume that there exists a function h

such that gij ≈ h(dij ). Such an assumption is implicit in all
decentralized algorithms using a metric for guidance.

Third, we note that the expected number of steps necessary
to reach node i from node j is

k̄ij =
⌈

gij

λ

⌉
≈

⌈
h(dij )

λ

⌉
,

where λ denotes a characteristic edge length of a network and

x� (which is called the “ceiling” of x) denotes the smallest
integer that is at least as large as x.

Fourth, we assume that the weight t̄ incurred by making
a step towards the target is representative of the network and
has a PDF p̄(t). We estimate the weight of the unknown path
�̄ from j to i to be

t�̄ =
k̄ij∑

k=1

t̄ .

Using Eq. (1), we obtain an estimate

f (i,j ; t) =
⎧⎨
⎩

∫ t

0 dt ′
(

k̄ij∗
k=1

p̄

)
(t ′), if i �= j,

1, if i = j

of the CDF. We thereby use physical distance to evaluate the
number of steps between two nodes, and we assume that the
random weight associated with each edge is uncorrelated with
the length of the edge. In Sec. VIII, we discuss different choices
of the characteristic edge length λ and the characteristic
distribution p̄(t). In Appendix B, we show that the order of
carrying out mixtures and convolutions is irrelevant.

VII. DECENTRALIZED ALGORITHM

Our algorithm explores a network by using local informa-
tion, and it chooses a locally optimal node according to one of
the criteria discussed in Sec. IV. The visited nodes NV and the
“frontier nodes” NF constitute a known subgraph GK (i.e., the
parts of the graph that the traveler has discovered). Frontier
nodes are neighbors of visited nodes but have not yet been
visited themselves. The known subgraph includes all edges
of G that are connected to the visited nodes NV. Importantly,
naively stepping towards a node that is a locally optimal choice
without incorporating information about the journey to date
can trap a traveler in a dead end. Developing an algorithm
with knowledge of GK enables a traveler to navigate out of
dead ends.

In this local approach, we build on Fan et al.’s algorithm
[19,26] and apply it to GK by changing the initial conditions
of the sequences {vs

i (t)} and {ws
i (t)} for frontier nodes using

the estimation function:

v0
j (t) = w0

j (t) = f (j,r; t), ∀ j ∈ NF.

We initialize nodes that have been visited in the same manner
as before (so ws

j � vs
j is satisfied for all known nodes j ∈ NF ∪

NV). We iterate the two sets of sequences until they converge to
within a chosen tolerance ε. The traveler subsequently moves
to a successor node that is identified by one of the criteria. We
then update GK and reduce the remaining budget by the weight
incurred by making the step. We repeat this process until the
traveler reaches the target or the budget is exhausted. Figure 2
illustrates this routing process on a lattice.

We require wk
i (t) to provide upper bounds for the CDFs. In

centralized routing, such an upper bound is equal to 1 because

(a) (b) (c) (d)

FIG. 2. (Color online) (a) A lattice with the origin node repre-
sented by a square and the target node represented by a star. (b) The
data available to a decentralized algorithm before the first step. We
show a network traveler’s current node as a square and the frontier
nodes as triangles. We enclose the known subgraph GK with a dashed
contour. Panel (c) shows the available data before the second step,
and panel (d) shows the available data before the third step.

022815-3



TILL HOFFMANN, RENAUD LAMBIOTTE, AND MASON A. PORTER PHYSICAL REVIEW E 88, 022815 (2013)

the target is part of the network under consideration. In our
decentralized situation, the upper bound for the CDF of a node
in GK is

f r
max(t) = max

j∈NF

[f (r,j ; t)].

Changing the initial conditions of visited nodes to

w0
i (t) = fmax(t), ∀ i ∈ NV

accelerates the convergence of the two sets of sequences
because it reduces the initial differences between them.
In Appendix A, we give pseudocode for our decentralized
algorithm.

VIII. SIMULATIONS ON A SMALL-WORLD NETWORK

We test our algorithm on a variant of Kleinberg’s small-
world network [28]. We start with a 10 × 10 square lattice
with undirected edges between neighboring nodes in the grid;
we also assign an undirected shortcut edge from each node
to exactly one other node. For each shortcut, we determine
the destination node using independent random trials so that
the probability of such a long-range edge is proportional to
1/D2

ij , where Dij is the lattice distance between i and j . (In
determining shortcuts, we discard duplicate edges.)

Noland et al. [18] (and references therein) investigated
traffic-flow data sets and reported that travel times have
log-normal distributions. For the purpose of our numerical
simulations, we let the random edge weights be distributed
log-normally with PDF

pln(μ,σ ; t) = 1

x
√

2πσ 2
exp

[
− 1

2

(
ln x − μ

σ

)2
]
.

We assign a random variable to each edge by choosing the
parameters μ and σ uniformly at random from the interval
[0.5,1.5].

We consider Fan et al.’s centralized algorithm and our
new decentralized algorithm with the joint criterion that we
described previously. Note that the joint criterion reduces to
Fan et al.’s criterion in the limit θ → 1. We let dij be the
Euclidean distance between nodes i and j , and we approximate
the network distance by gij ≈ h(dij ) ≡ dij .

We investigate two different choices for the characteristic
edge length λ and the characteristic distribution p̄(t). First, we
let λ be the mean length of all edges in a network. Without
further knowledge about a network, we assume that the weight
t̄ incurred by making a step towards the target node is chosen
uniformly at random from the weights associated with the
edges. The PDF of t̄ is the mixture distribution [27]

p̄(t) = 1

m

∑
(i,j )∈E

pij (t).

We call this method global estimation (GE), because we make
indirect use of global knowledge in the calculation of λ and
p̄(t).

Second, we restrict the sample from which we calculate
λ and p̄(t) to edges that are connected to visited nodes. In

this way, we use only local information. In particular, we
calculate

EV = {(i,j ) ∈ E|j ∈ NV},
λ = 1

|EV|
∑

(i,j )∈EV

dij ,

p̄(t) = 1

|EV|
∑

(i,j )∈EV

pij (t).

We call this method local estimation (LE).
Suppose that the origin of a routing process is (2,2) and

that the target is (9,9), where (x,y) designates a node using
its lattice coordinates. We run each test 103 times for several
budgets [see Fig. 3(a)], several CDF thresholds [see Fig. 3(b)],
and a tolerance of ε = 10−3. (An error in arrival probability
smaller than a tenth of a percent will not affect real travelers.)

As shown in Fig. 3(a), the arrival fraction—i.e., the fraction
of routing attempts that reach the target node within a
given budget—increases with increasing budget. Centralized
algorithms know the entire network topology and can thus
make better decisions, so they have larger arrival fractions.
The LE algorithms have the same arrival fraction as the GE
algorithms. Thus, it is sufficient to sample the network locally,

FIG. 3. (Color online) (a) Fraction of routing attempts that
successfully reach the target node in (a variant of) the Kleinberg
network as a function of budget for a CDF threshold of θ = 0.8 and
a tolerance of ε = 10−3. (We do not show the results of GE because
they agree with those of LE.) (b) Arrival fractions obtained by Fan
et al.’s centralized algorithm as a function of CDF threshold for a
tolerance of ε = 10−3 and several different budgets. The error bars
in the two panels correspond to three standard deviations from the
mean.
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FIG. 4. (Color online) Mean travel time of successful routing
attempts on (a variant of) the Kleinberg network as a function of
budget. We separate small, intermediate, and large budgets using
dashed vertical lines. (We do not show the results of GE because they
agree with those of LE.) The error bars correspond to three standard
deviations from the mean.

and global knowledge is not required as long as the network
is sufficiently homogeneous (i.e., if a sample of the network
provides representative estimates of λ and p̄). In some cases,
some global characteristics of a network might even be known
a priori, and such information can be used to inform sampling
strategies.

As shown in Fig. 3(b), the arrival fraction of Fan et al.’s
centralized algorithm using the joint criterion is almost
independent of the threshold. Because the local neighbors
(i.e., the neighbors in the underlying lattice network) of each
node are located in the cardinal directions, the arrival CDFs
are sufficiently different for CDF maximization and travel
time minimization to agree. We obtain the same results using
our decentralized algorithm. Travelers thus choose the same
successor node irrespective of the threshold θ ; this results in
the same arrival fraction.

Because centralized algorithms are aware of all shortcuts
in a network, they have smaller mean travel times than
decentralized ones (see Fig. 4). For small budgets (τ � 40),
the travel times of all algorithms increase with increasing
budget. The algorithms choose neighboring nodes to maximize
the CDF, which results in longer travel times because it is
advantageous to exhaust the budget. For budgets τ that satisfy
40 � τ � 90, the travel times using Fan et al.’s criterion and
our joint criterion start to differ. The joint criterion starts
to minimize travel times in this regime until they approach
a steady value. Fan et al.’s criterion, however, continues to
maximize CDFs such that travel times grow with increasing
budget. For larger budgets (τ � 90), Fan et al.’s criterion is
unable to distinguish between the CDFs of neighboring nodes,
and algorithms using this criterion enter an unguided phase
(i.e., one can construe a traveler to be “lost”). The algorithm
steps to neighbor nodes seemingly at random until the budget
decreases sufficiently for Fan et al.’s criterion to discriminate
among CDFs. As illustrated in Fig. 4, the travel time using
Fan et al.’s criterion increases linearly with the budget in this
regime.

See Ref. [20] for a thorough comparison of arrival fractions
for algorithms that treat edge weights as stochastic variables
versus algorithms that minimize expected travel time.

FIG. 5. (Color online) The Chicago sketch network, which has
n = 542 nodes and m = 1084 edges. We show a path in red (thick
line).

IX. SIMULATIONS ON THE CHICAGO
SKETCH NETWORK

We also test our algorithm on the Chicago sketch network
(CSN), which represents an aggregated version of the Chicago
metropolitan road network that was developed and provided
by the Chicago Area Transportation Study [30,32]. The CSN,
which we show in Fig. 5, has n = 542 nodes and m = 1084
edges.

In Sec. VI, we claimed that there exists a function h such
that the network distance between two nodes i and j is well-
approximated by h(dij ). Our investigation of the CSN allows us
to examine this claim more closely. In Fig. 6, we show the joint
PDF for the Euclidean distance dij and network distance gij for
the CSN. To estimate the PDF, we calculate the Euclidean and
network distance for all 1

2n(n − 1) = 146 611 distinct pairs of
nodes and bin the data on a 200 × 200 grid.

The Euclidean distance

dij =
√

(xi − xj )2 + (yi − yj )2

is strongly correlated with the network distance. Based on a
linear bootstrap fit [31], the best choice for h(dij ) ≈ gij is

h(dij ) ≈ 1.67(2) km + 1.1176(4)dij ,

FIG. 6. (Color online) Joint PDF for the Euclidean distance dij

and network distance gij on the Chicago sketch network. The Pearson
correlation coefficient between the two distance measures is ρ ≈
0.985, which justifies the linear fit (bright red line). The blue dashed
line corresponds to the lower bound on the network distance (i.e.,
g = d).
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where dij has units of km. [Recall that “1.67(2)” means that
the error bars place the value between 1.65 and 1.69.] The
slope of the linear fit is larger than 1 because the Euclidean
distance between each pair of nodes provides a lower bound
for the network distance between those two nodes.

We obtain similar results when using the lattice distance

dij = |xi − xj | + |yi − yj | (5)

between nodes i and j . In this case, the slope of the linear
fit is smaller than 1 because the lattice distance provides an
approximate upper bound for the network distance. Compli-
cated paths, such as zigzag paths, can of course violate this
approximate bound.

The mean edge length of the network is λ ≈ 5.77 km. Note
that the mean edge length exceeds the typical length of roads in
metropolitan areas because the CSN is aggregated: there is no
one-to-one correspondence between nodes and junctions. We
choose the origin and target nodes uniformly at random such
that their Euclidean distance lies in the interval [40,50] km.
We consider the same four tests as in Sec. VIII and run each
test 103 times for several budgets, several CDF thresholds, and
a numerical tolerance of ε = 10−3.

In Fig. 7(a), we illustrate the arrival fractions as a function
of budget. We observe the same qualitative behavior as on the
(variant of the) Kleinberg small-world network. As with the
Kleinberg network, the arrival fraction for algorithms that use

FIG. 7. (Color online) (a) Fraction of routing attempts that
successfully reach the target on the CSN as a function of budget
for a CDF threshold of θ = 0.8 and a tolerance of ε = 10−3. (We do
not show the results of GE because they agree with those of LE.) (b)
Arrival fractions obtained by Fan et al.’s centralized algorithm as a
function of CDF threshold for a tolerance of ε = 10−3 and several
different budgets. The error bars in the two panels correspond to three
standard deviations from the mean.

FIG. 8. (Color online) Mean travel time of successful routing
attempts on the CSN as a function of budget. We separate small,
intermediate, and large budgets using dashed vertical lines. (We do
not show the results of GE because they agree with those of LE.) The
error bars correspond to three standard deviations from the mean.

the joint criterion depends very little on the CDF threshold
θ [see Fig. 7(b)]. In Fig. 8, we show that the travel times of
centralized algorithms are smaller than those of decentralized
algorithms (because the former know all shortcuts in the
network).

X. ADDITIONAL REMARKS

To investigate the computational time of Fan et al.’s
algorithm and our decentralized algorithm, we perform 100
simulations for several sizes of a Kleinberg small-world
network. Fan et al.’s algorithm needs to consider the entire
network to construct a routing table (see Sec. V). Hence, its
computational time increases approximately linearly with the
number of nodes (see Fig. 9). However, our decentralized
algorithm only considers nodes that are near nodes it has
already visited, so its computational time increases sublinearly
with the number of nodes. This sublinear scaling illustrates that
decentralized routing is possible for networks with stochastic

FIG. 9. (Color online) Mean computational times for Fan et al.’s
centralized algorithm and our decentralized algorithm as a function
of the number of nodes in a Kleinberg small-world network. The fits
represent power-law scalings with exponents of 1.16 (Fan et al.) and
0.36 (decentralized). The error bars correspond to three standard
deviations from the mean. We determined the values of these
exponents using mean-square regression, and we note that it does
not matter whether these curves follow precise power laws.
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edge weights because travelers do not explore networks
uniformly.

A routing table depends on network topology and the
PDFs of the edge weights (but not on the edge weights
themselves). Fan et al.’s algorithm is more appropriate than
ours when network topology is constant (and completely
known) and the PDFs (which must also be completely known)
do not change during routing, because one can use the same
routing table for all travelers who wish to reach the same
destination node. Importantly, note that one can use the same
routing table if the edge weights change but the PDFs stay
the same. Our decentralized algorithm is more appropriate
if edges appear and/or disappear or, more generally, if the
PDFs change during the routing process (and, clearly, when
information is unknown).2 It constructs a local routing table
in a computationally inexpensive way before each step that a
traveler makes. Because of its formulation and flexibility, our

2Note that letting PDFs change during routing gives a more general
formulation of an SSSP than the one that we studied in this paper.
Our decentralized algorithm is also appropriate for this more general
problem.

decentralized algorithm is a more appropriate match than Fan
et al.’s algorithm for applications to traveling in real life.

Another interesting problem is routing on a network
whose topology is known but whose edge-weight distributions
are unknown. Without any knowledge about the PDFs, we
assume that all edge weights are independently and identically
distributed with PDF p̂(t). The arrival CDF along some path
� depends only on the number of steps k and is given by

Uk(t) =
∫ t

0
dt ′

(
k∗

k′=1
p̂

)
(t ′).

Fan et al. [26] showed that Uk(t) is a nondecreasing series in
k for a given t [i.e., Uk+1(t) � Uk(t)].

Because the criteria in Sec. IV favor larger values of Uk(t),
paths with the smallest number of steps are optimal. Hence,
the problem reduces to a DSSP unless some information about
the edge weights is available.

XI. CONCLUSIONS

We have examined decentralized routing on networks with
stochastic edges weights. Our contributions are twofold. First,
we have introduced a new criterion to discriminate among the

Algorithm 1 Our decentralized routing algorithm (which builds on the iterative approximation scheme developed by Fan and Nie
[26]). The input parameters are a network G, an origin node, a target node, a time budget τ , a CDF threshold θ , and a CRITERION

to identify successor nodes.
function DECENTRALIZED ROUTING(G, origin, target, τ, θ , CRITERION)

(current, traveltime) ← (origin,0)
steps ← {(current, traveltime)}
NV ← {current}

5: while traveltime � τ and current �= target do
NF ← i ∀{(i,j ) ∈ E : j ∈ NV and i /∈ NV} � Obtain frontier nodes.
v0

i (t) ← w0
i (t) ← f (i,target; t) ∀ i ∈ NF � Initialize frontier nodes.

f
target
max (t) = maxi∈NF [f (i,target; t)] � Obtain upper bound.

v0
j (t) ← 0 ∀ j ∈ NV � Initialize visited nodes.

10: w0
j (t) ← f

target
max (t) ∀ j ∈ NV

unstable ← NV

s ← 0
while current ∈ unstable do

vs+1
i (t) = maxj∈Ji

[ ∫ t

0 pij (t ′)vs
j (t − t ′) dt ′

] ∀ i ∈ unstable � Update the sequences.

15: ws+1
i (t) = maxj∈Ji

[ ∫ t

0 pij (t ′)ws
j (t − t ′) dt ′

] ∀ i ∈ unstable
s ← s + 1
for i ∈ unstable do

if ws
i (t) − vs

i (t) < ε ∀ t then � Check for convergence.
remove i from unstable

20: end if
end for

end while
qcurrent(t) = arg maxj∈Jcurrent

[ ∫ t

0 pcurrent j (t ′)vs
j (t − t ′) dt ′

]
successor ← CRITERION(vs

current(t),qcurrent(t),τ − traveltime, θ ) � Obtain the successor node.
25: traveltime ← traveltime + random sample of Tsuccessor, current � Update the travel time.

add successor to NV � Extend the known subgraph.
current ← successor � Make the step to the successor.
add (current, traveltime) to steps

end while
30: return steps

end function
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CDFs of paths. Our criterion circumvents the limitations of
the criteria proposed by Fan et al. and Frank, but it retains
the desirable properties of both because it minimizes travel
times without sacrificing reliability. It also provides a better
caricature of the behavior of real travelers [29]. Second,
we have developed a decentralized routing algorithm that
is applicable to networks with stochastic edge weights. Our
algorithm employs a CDF estimation function that captures
a notion of proximity in space and guides network travelers
without the need to incorporate global knowledge about a
network. Our simulation results demonstrate that decentralized
routing on networks with stochastic edge weights is viable.

Our approach appears to be very promising. Investigating
both its limitations and the situations in which it is most suc-
cessful are important topics for future research. In particular,
it is important to examine the effects of inhomogeneities and
different classes of PDFs on routing performance. Possible
improvements of our algorithm include the development
of more sophisticated choices of estimation functions that
incorporate the dependence of edge weights on edge lengths,
correlations between the weights of different edges, and more.
We expect such work to be particularly interesting in studies
of routing on temporal networks, in which the existence and
other properties of edges are time-dependent.
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APPENDIX A: PSEUDOCODE FOR OUR
DECENTRALIZED ALGORITHM

In Algorithm 1, we give pseudocode for our decentralized
routing algorithm for networks with stochastic edge weights.

APPENDIX B: MIXTURE OF CONVOLUTIONS VERSUS
CONVOLUTION OF MIXTURES

Let F = {fi(x)} and G = {gj (y)} be two finite sets of
probability density functions (PDFs), and let the mixtures of
the elements of the sets be given by

f̄ (x) =
∑

i

ωfi
fi(x), ḡ(y) =

∑
j

ωgj
gj (y),

where ωfi
and ωgj

are, respectively, the independent weights
associated with the elements of F and G. Taking the mixture
after convolving the elements of F and G gives∑

ij

ωfi
ωgj

(fi ∗ gj )(z) =
∫ z

0
dx

∑
ij

ωfi
fi(z − x)ωgj

gj (x)

=
∫ z

0
dx f̄ (z − x)ḡ(x)

= (f̄ ∗ ḡ)(z).

Therefore, as long as the assumption of independent weights
holds, it follows that mixing the result of a convolution is
equivalent to taking the convolution of two mixtures.

Consider b sets of probability distributions {F1, . . . ,Fb}.
Let each set Fi have ci elements. Carrying out the convolutions
of all pairs of probability distributions in the sets first and
taking the mixture afterwards requires (

∏b
i=1 ci) convolutions

and additions. However, carrying out the mixtures first and
then performing the convolutions requires b convolutions and
(
∑b

i=1 ci) additions. It is thus much more efficient compu-
tationally to compute the mixtures first and subsequently
perform the convolutions.
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