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WHAT IS…

a Multilayer Network?
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We are surrounded by networks. People communicate
with other people using online social networks like Face-
book and Twitter (and occasionally even in person in
offline social networks). They also travel or perform daily
routines using transportation networks. Animals interact
with each other in numerous ways in their social networks.
Plants and fungi transport nutrients through networks.
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Figure 1. A graph consists of nodes (which I show as
disks) that are connected to each other by edges
(which I show as arcs).

The simplest type of network, which I show in Figure 1,
is a graph 𝐺 = (𝑉,𝐸) [3], where the nodes (or “vertices”)
are elements of the set 𝑉 of 𝑁 entities in a network and
𝐸 ⊆ 𝑉×𝑉 is a set of edges (or “links” or “ties”) that encode
pairwise interactions between the entities. A graph can
be either undirected or directed. One can encode the
information in a graph 𝐺 as an 𝑁×𝑁 adjacency matrix A,
whose entry 𝐴𝑖𝑗 is equal to 1 if there is an edge from node
𝑖 to node 𝑗 and is otherwise equal to 0. In an undirected
network, 𝐴𝑖𝑗 = 1 if and only if 𝐴𝑗𝑖 = 1. One can learn a lot
about a graph 𝐺, and about many dynamical processes
on it, by studying the properties (e.g., the eigenvalues) of
its associated adjacency matrix A. One can also assign
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weights to edges to represent connections with different
strengths (e.g., stronger friendships, larger transportation
capacity, and so on) by defining 𝑤∶ 𝐸 ⟶ 𝑋. The most
common choice is 𝑋 = ℝ+, so that all edge weights are
positive real numbers.

The study of networks in the form of graphs has a
long, rich history in a variety of fields, including math-
ematics, statistics, computer science, sociology, physics,
ecology, economics, and many others [3]. However, most
real networks are much more complicated than ordinary
graphs. For example, the nodes, edges, and edge weights
can change in time; there can be multiple types of nodes
or multiple types of relationships; and nodes can rep-
resent entities at different levels of granularity (e.g., a
mathematics department, an applied-mathematics group,
or an individual). One common type is a multirelational
network, such as the air-transportation and social net-
works in Figure 2, in which there are multiple types of
edges between nodes. We depict the social network in
Figure 2b as an edge-colored multigraph, where different
colors (i.e., annotations or “labels”) represent different
types of relationships: friendship, arguments, horseplay,
and so on.

The formalism of multilayer networks [2], a general-
ization of graphs, was developed recently to help study
multitudinous types of networks and to unify them into
one framework. Many of these, such as multirelational
networks in sociology and interconnected networks of dif-
ferent subsystems in engineering, have been studied for
decades, but the development of the multilayer-network
formalism to analyze such systems is very recent.

Even with its relatively short history, the study of
multilayer networks has becomevery prominent. In briefly
introducing this idea, I mostly follow the terminology and
conventions from the review article [2].

A multilayer network 𝑀 = (𝑉𝑀, 𝐸𝑀, 𝑉,L), as illustrated
in Figure 3, has an underlying set 𝑉 of 𝑁 physical
nodes (representing entities), often labeled 1, 2, 3,… ,𝑁,
that manifest on layers in L that are constructed from
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Figure 2. Two examples of multilayer networks: (a) part of an air-transportation network, in which each layer
has flights from a different airline; and (b) a social network of individuals, with layers representing different
types of relationships between them, in a bank-wiring room.

Figure 3. (a) An example of a multilayer network 𝑀 = (𝑉𝑀, 𝐸𝑀, 𝑉,L) with four physical nodes and two aspects,
which have corresponding elementary-layer sets 𝐿1 = {𝐴,𝐵} and 𝐿2 = {𝑋,𝑌}. The four layers of 𝑀 are (𝐴,𝑋),
(𝐴,𝑌), (𝐵,𝑋), and (𝐵,𝑌). Each layer includes a subset of the physical nodes in 𝑉. The set of state nodes is
𝑉𝑀 = {(1,𝐴,𝑋), (2,𝐴,𝑋), (3,𝐴,𝑋), (2,𝐴,𝑌), (3,𝐴,𝑌), (1, 𝐵,𝑋), (3, 𝐵,𝑋), (4, 𝐵,𝑋), (1, 𝐵,𝑌)}. One can connect nodes
to each other in a pairwise manner both within layers and across layers. I show intralayer edges as solid lines
and interlayer edges as dotted lines and arcs. (b) The graph 𝐺𝑀 = (𝑉𝑀, 𝐸𝑀) associated the multilayer network 𝑀.
I again show intralayer edges as solid lines and interlayer edges as dotted lines. The adjacency matrix of this
graph, which has accompanying labels (in both nodes and edges) from the layer information, is the multilayer
network’s supra-adjacency matrix. (See Figure 4 for an example.) Intralayer edges, which correspond to an
ordinary type of edge in a graph, are associated with nonzero entries in the diagonal blocks of a
supra-adjacency matrix, whereas interlayer edges are associated with nonzero entries in off-diagonal blocks.

elementary-layer sets 𝐿1,… , 𝐿𝑑, where 𝑑 is the number
of “aspects” (i.e., types of layering). One layer in L is a
combination, through theCartesianproduct𝐿1×⋯×𝐿𝑑, of
an elementary layer from each aspect. In Figure 3, the sets
of elementary layers are 𝐿1 = {𝐴,𝐵} and 𝐿2 = {𝑋,𝑌}. The
set of node-layer tuples (sometimes called “state nodes”)

in 𝑀 is 𝑉𝑀 ⊆ 𝑉× 𝐿1 ×⋯× 𝐿𝑑, and the set of multilayer
edges is 𝐸𝑀 ⊆ 𝑉𝑀 × 𝑉𝑀. The edge ((𝑖,𝛼), (𝑗, 𝛽)) ∈ 𝐸𝑀
indicates that there is an edge from node 𝑖 on layer 𝛼
to node 𝑗 on layer 𝛽 (and vice versa, if 𝑀 is undirected).
Each aspect of 𝑀 represents a type of layering: a type
of social tie, a point in time, and so on. For example,
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a multirelational network that does not change in time,
such as the bank-wiring network in Figure 2b, has one
aspect; a multirelational network that has layers covering
multiple time points has two aspects; and so on. To
consider weighted edges, one proceeds as in ordinary
graphs by using a function 𝑤∶ 𝐸𝑀 ⟶ 𝑋.

For example, suppose that Figure 3 represents a mul-
tilayer network of collaborations and citations among
scientists. In this network, Buffy (physical node 1), Wil-
low (2), Angel (3), and Wesley (4) are writing papers
on the mathematical theory of vampire slaying and us-
ing this information in vampire-slaying expeditions. The
elementary layers 𝐴 and 𝐵 encode different types of in-
teractions: paper coauthorships (𝐴) and joint expeditions
(𝐵). Suppose that the elementary layers 𝑋 (2017) and 𝑌
(2018) represent years. Thus, the intralayer edge between
state nodes (1,𝐴,𝑋) and (2,𝐴,𝑋) signifies that Buffy
and Willow went on a joint vampire-slaying expedition in
2017. Let’s suppose that interlayer edges, which are often
harder to interpret than intralayer ones, represent the
use of information from a paper or an exposition. Such
an an interaction is directed, although I don’t indicate any
directions on the edges in Figure 3. To give an example,
the edge from (3,𝐴,𝑌) to (4, 𝐵,𝑋) represents the fact
that, in a 2018 paper, Angel used information from one
of Wesley’s 2017 expeditions.

Eachunweightedmultilayernetworkwith𝑑 aspects and
the same number of nodes in each layer has an associated
adjacency tensor 𝒜 of order 2(𝑑 + 1). Analogous to the
case of ordinary graphs, each directed edge in 𝐸𝑀 is
associated with a 1 entry of 𝒜 (undirected edges are
each associated with two such entries) and the other
entries (the “missing” edges) are 0. If a multilayer network
does not have the same number of nodes in each layer,
one can add empty nodes so that it does, but the
edges attached to such nodes are “forbidden” edges.
When studying multilayer networks, missing edges and
forbidden edges need to be treated differently (e.g., when
normalizing quantities such as clustering coefficients or
measures of node-layer or edge importance). One can
flatten 𝒜 into a “supra-adjacency matrix” A𝑀, which is
the adjacency matrix of the graph 𝐺𝑀 associated with
𝑀 (as in Figure 3b). Intralayer edges are associated with
entries on thediagonal blocks of a supra-adjacencymatrix,
and interlayer edges are associated with matrix entries
on the off-diagonal blocks. Figure 4, which illustrates a
type of multilayer network known as a cognitive social
structure, gives an example supra-adjacency matrix and
associatedmultilayernetwork. Inpractice,mostnumerical
computations with multilayer networks employ supra-
adjacency matrices.

Multilayer networks allow one to investigate a diverse
set of complicated network architectures and to integrate
different types of data into one mathematical object. Two
key types of multilayer networks arise from (i) labeling
edges or (ii) labeling nodes. When one labels edges, one
thinksof edges indifferent layers as representingdifferent
types of relationships. This is the case for a “multiplex
network,” a type of multilayer network in which the

only permitted types of interlayer edges are those that
connect manifestations of the same physical node in
different layers. A special case of a multiplex network
is an edge-colored multigraph, like the one in Figure 2b.
Interlayer edges in a multiplex network occur on diagonal
elements of off-diagonal blocks in a supra-adjacency
matrix (as in Figure 4b). By contrast, when one labels
nodes, one can think of different layers as representing
different subsystems (in “interconnected networks” or
“networks of networks,” such as in coupled infrastructure
networks), andone canhave interlayer edgeswithnonzero
supra-adjacencymatrix elements in both the diagonal and
off-diagonal entries of the off-diagonal blocks.

Multilayer networks have rich structural properties,
and dynamical processes on them behave in fascinating
ways—including experiencing novel phase transitions,
where system behavior changes qualitatively. For further
discussion of dynamical processes on multilayer net-
works, see [2] and a recent survey article [1] on spreading
processes on multilayer networks. An important idea is
that interlayer edges are fundamentally different from
intralayer edges, and it is often less straightforward
to assign weights from data to interlayer edges than
to intralayer ones. A conceptually easy situation is a
multimodal transportation network, in which one might
calculate an interlayer edge weight based on how long it
takes to change modes of transportation (e.g., from the
subway to a bus). For communication on a social network,
one might construe an interlayer edge as representing a
transition probability between differentmodes of commu-
nication. For other applications, interlayer edges can run
into significant conceptual difficulties, and researchers
struggle with how to make sense of them. For example,
in protein interaction networks, a layer can represent a
type of interaction; there are dependencies across layers,
and interlayer edges can encode them, but how does one
determine meaningful values for the weights of those
edges?

Examining consequences of the relative weights of
intralayer and interlayer edges has also led to interesting
theoretical results. A valuable example started with a pa-
per by Filippo Radicchi and Alex Arenas (Nature Physics,
2013); it has been built on subsequently by them and
others [2]. Considering a multiplex network, Radicchi and
Arenas constructed the combinatorial supra-Laplacian
matrix ̃L𝑀 = D𝑀 − A𝑀, where D𝑀 is the diagonal supra-
matrix that has node-layer strengths along the diagonal.
Each diagonal entry of ̃L𝑀 consists of the sum of the corre-
sponding row in A𝑀, and each nondiagonal element of ̃L𝑀
consists of the corresponding element of A𝑀 multiplied
by −1. Using the case in which counterpart nodes in each
pair of layers are connected with a homogeneous inter-
layer edge weight as an illustrative example, Radicchi and
Arenas showed that ̃L𝑀’s smallest nontrivial eigenvalue
Λ2, which is related to many structural and dynamical
features of the corresponding multilayer network 𝑀, has
two distinct regimes when examined as a function of the
relative weights of the interlayer and intralayer edges.
They also showed that there is a discontinuous phase
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Figure 4. (a) Representation of a cognitive social structure as a multilayer network (without drawing any
interlayer edges). In a cognitive social structure, each “perceiver” can have a different view of which edges
exist in a network. Such data can arise, for example, from survey questions in which one asks people to fill in
edges whenever they think a given type of relationship exists between two people. The depicted network has
two aspects: perceiver and type of social connection. (b) Illustration of (a subset of) the supra-adjacency matrix
that represents this cognitive social structure. This example has a nested block-diagonal structure: the interior
block-diagonal structures (in blue and green) correspond to intralayer connections, and the two large blocks on
the block diagonal have edges between different perceivers when the edge-type (i.e., friendship or advice)
aspect is fixed to one of the two alternatives. One can represent this multilayer network as a multiplex network,
because the only nonzero off-block-diagonal entries occur in the diagonal entries of the depicted blocks. (In
the figure, I show nodes and layers only for persons 1–4.)

transition between those regimes. In one regime, Λ2 is
independent of the intralayer network structure and is
thus determined by the weight of the interlayer edges.
In the other regime, Λ2 is bounded above by a constant
multiplied by the smallest nontrivial eigenvalue of the un-
weighted superposition of the layers. This thread of work
has important implications for interpretation of results
in many investigations of multilayer networks, including
for the behavior of dynamical processes on multilayer
networks, evaluating node importances in such networks,
and partitioning such networks into dense “communities”
of nodes.

Before closing, it is also worth highlighting that there
are two categories of dynamical processes on multilayer
networks: (i) a singleprocess that is definedonamultilayer
network and (ii) interacting dynamical processes that are
defined separately ondifferent layers of suchanetwork [1].
An important example of the first category is a random
walk, where the qualitative behavior depends on the
relative speeds and probabilities of intralayer versus
interlayer steps. To examine the time scales of diffusion
of such a dynamical process, one calculates the smallest
nontrivial eigenvalues of ̃L𝑀, related supra-matrices, and
matrices that are associated with individual network
layers. Another example of this category of process is

the spread of memes on social media. An example of
the second category of dynamical process is interactions
between multiple strains of a disease.

Excellent available software to both visualize and
analyze multilayer networks includes MuxViz by Manlio
De Domenico (http://muxviz.net; in R) and Pymnet
by Mikko Kivelä (http://www.mkivela.com/pymnet/; in
Python).

The study of multilayer networks—including their
structure, dynamical processes on them, and numerous
applications—is among themost vibrant areas of network
science. They offer a promising avenue both for further
mathematical study and for numerous applications.
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