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We consider oscillations of the length and width in rectangular quantum billiards, a two “degree-
of-vibration” configuration. We consider several superpositon states and discuss the effects of
symmetry (in terms of the relative values of the quantum numbers of the superposed states)
on the resulting evolution equations and derive necessary conditions for quantum chaos for
both separable and inseparable potentials. We extend this analysis to n-dimensional rectan-
gular parallelepipeds with two degrees-of-vibration. We produce several sets of Poincaré maps
corresponding to different projections and potentials in the two-dimensional case. Several of
these display chaotic behavior. We distinguish between four types of behavior in the present
system corresponding to the separability of the potential and the symmetry of the superposition
states. In particular, we contrast harmonic and anharmonic potentials. We note that vibrating
rectangular quantum billiards may be used as a model for quantum-well nanostructures of the
stated geometry, and we observe chaotic behavior without passing to the semiclassical (~→ 0)
or high quantum-number limits.

1. Introduction

Quantum billiards have been studied extensively in
recent years. These systems describe the motion of
a point particle undergoing perfectly elastic colli-
sions in a bounded domain with Dirichlet boundary
conditions. Blümel and Esser [1994] observed quan-
tum chaos in the one-dimensional vibrating quan-
tum billiard. Porter and Liboff [2001b] extended
these results to a class of quantum billiards with
one degree-of-vibration (dov). They found necessary
conditions for chaotic behavior to occur in such bil-
liards in addition to the general form of the equa-
tions describing the dynamics of two superposition
states in one dov quantum billiards. One of the
goals of this paper is to explore a generalization of
these results by considering a two dov billiard sys-
tem. The present paper thereby accomplishes two
things. First, it expands the theory of quantum
chaos by analyzing billiard systems with more than

one dov. Second, it offers a model for quantum-well
nanostructures of rectangular geometry.

In the present paper, we consider vibrations
with two degrees-of-freedom in rectangular quan-
tum billiards. We consider several superposition
states and discuss the effects of symmetry on the
equations of motion produced. We extend this anal-
ysis to n-dimensional rectangular parallelopipeds
with two degrees-of-vibration. We produce several
sets of Poincaré maps corresponding to different
projections and potentials that display chaotic be-
havior for the two-dimensional case. We distinguish
between four cases corresponding to the separabil-
ity of the billiard potential and the symmetry of the
superposition states. In particular, we contrast har-
monic and anharmonic oscillators. Lastly, we note
that the present analysis does not require passage to
the semiclassical (~→ 0) or high quantum-number
limits, as is commonly believed to be necessary in
the study of quantum chaos [Gutzwiller, 1990].
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2318 M. A. Porter & R. L. Liboff

2. Statement of the Problem

The rectangular quantum billiard problem ad-
dresses the system of a point particle of mass m
undergoing perfectly elastic collisions inside a rect-
angular well. The vertices of the rectangle are at
(−a/2, −b/2), (−a/2, b/2), (a/2, −b/2), and (a/2,
b/2). If a and b are independent of time — that is,
if we consider the zero dov problem — a solution of
the Schrödinger equation is given by the following
superposition of eigenstates:

ψ(x, y, t) =
∞∑

nx=1

∞∑
ny=1

α(a, b)Anxnyψnxny(x, y)

× exp

[
−
iEnxnyt

~

]
, (1)

where Anxny represents the (complex) amplitude of
the state with quantum numbers (nx, ny), Enxny ≡
εa(nx) + εb(ny) is the nxnyth eigenenergy, and
ψnxny is the corresponding eigenstate of the system,
given by

ψnxny(x, y) = ψnx(x)ψny(y) , (2)

where

ψl(w) = cos

(
πlw

q

)
(3)

if l is even and

ψl(w) = sin

(
πlw

q

)
(4)

if l is odd. We absorb the nxnyth (time-dependent)
phase

exp

[
−
iEnxny t

~

]
(5)

into the coefficient Anxny as in [Porter & Liboff,
2001b]. In the above equations, note that for the
length w = x, l = nx and q = a, and for the width,
w = y, l = ny and q = b. Additionally,

α(a, b) =
2√
ab

(6)

represents the normalization for the state with
quantum numbers (nx, ny).

Allowing the walls to vibrate corresponds to
a and b depending on time and Anxny having a
time-dependence other than the phase factor (5).
All other parameters in the above equations remain
constant with respect to time.

In the two dov rectangular quantum billiards,
one has a rectangular-well potential with mov-
able walls described by its length a(t) and width
b(t). The kinetic energy of the confined particle is
given by

K = − ~
2

2m
∇2, x ∈

[
−a(t)

2
,
a(t)

2

]
,

y ∈
[
−b(t)

2
,
b(t)

2

]
,

(7)

where m is the mass of the confined particle and
the Laplacian ∇2 is represented in Cartesian coor-
dinates. The Hamiltonian for the entire system is
given by

H(a, Pa, b, Pb) = K +
P 2
a

2Ma
+

P 2
b

2Mb

+ V (a, b) , (8)

where

Pa = −i~ ∂
∂a

(9)

is the momentum of the horizontal walls (which
have mass Ma � m), and

Pb = −i~ ∂
∂b

(10)

is the momentum of the vertical walls (which have
mass Mb � m). The billiard boundary moves in
a potential V (a, b). Note that the Hamiltonian (8)
consists of both a classical component (P 2

a /2Ma +
P 2
b /2Mb) and a quantum one (K + V ). In the

present paper, we utilize the Born–Oppenheimer
approximation [Blümel & Esser, 1994] in using only
the quantum-mechanical component of the Hamil-
tonian in the Schödinger equation. This scheme is
often used in systems that have both a slow (clas-
sical) and fast (quantum) component, and it is a
common approximation in mesoscopic physics. In
the present analysis, we will also be ignoring geo-
metric phases [Zwanziger et al., 1990].

3. Special Cases: Reduction to One
Degree-of-Vibration

If either the length a(t) or the width b(t) (but
not both) is independent of time, then the present
problem reduces to the one-dimensional vibrating
quantum billiard [Blümel & Esser, 1994; Blümel &
Reinhardt, 1997]. Either Pa or Pb vanishes iden-
tically, so this corresponds exactly to the one-
dimensional vibrating billiard. The general form
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Quantum Chaos for the Vibrating Rectangular Billiard 2319

of such one dov quantum billiards was established
recently [Porter & Liboff, 2001b].

If a(t) = b(t) for all time, the rectangular
quantum billiard is constrained to be a square. By
considering the diagonal, one obtains a single dov
problem, as the motion of the boundary is described
by the motion along a single dimension. The anal-
ysis of the problem is similar to but not precisely
the same as previous analyses of one dov quantum
billiards [Porter & Liboff, 2001b; Liboff & Porter,
2000]. The difference lies in the fact that in a su-
perposition state, one may consider different levels
of excitation in the length and width. One cannot
directly apply the theorems on one dov quantum bil-
liards derived by Porter and Liboff [2001b], because
the vibrating dimension does not correspond to one
of the dimensions obtained using separation of vari-
ables. In other words, this procedure results in co-
ordinates with which we cannot satisfy the global
separability requirement of those theorems. (That
is, the geometry of the boundary does not corre-
spond precisely to the geometry we would have to
use in the separation of variables procedure in this
case.) Hence, even though the problem reduces to
a one dov problem, one cannot apply previous theo-
rems derived for that situation because one does not
have global separability in the diagonal coordinates
in a square quantum billiard. (It is likely, how-
ever, that a generalization of those theorems can be
applied.)

For a rectangular geometry, one obtains vari-
ables corresponding to the length and width when
using separation of variables to solve the station-
ary Schrödinger (Helmholz) equation. To apply the
cited theorems directly, one needs a basis of quan-
tum numbers that correspond to these dimensions.
The dimensions in question in the present case are
parallel to the vectors x̂+ŷ and x̂−ŷ, where x̂ and ŷ
are unit vectors parallel to the x and y axes, respec-
tively. In order to apply these theorems, one would
first have to check if the Helmholz equation is sepa-
rable using this geometric configuration. Applying
the boundary conditions in the present situation
is more complicated because of the different ge-
ometries of the boundary and the variables. (The
boundaries have a nontrivial functional dependence
on the variables. Define x′ ≡ x+ y and y′ ≡ x− y.
Applying Dirichlet boundary conditions requires
solving ψ(1/2[x′ + y′], 1/2[x′− y′] = ±a) = 0 for all
(x′, y′) and ψ(1/2[x′ + y′] = ±a, 1/2[x′ − y′]) = 0
for all (x′, y′). It is simpler to obtain results for the

vibrating square billiard directly as a special case
of the vibrating rectangular quantum billiard.)

One can generalize this idea of geometric con-
straints and the dov of a quantum billiard. Of
course, as is the case with the vibrating square
above, this procedure does not in general preserve
global separability in a manner easily applied so
one has to be careful about applying known the-
orems for one dov quantum billiards. This caveat
aside, consider as an example the vibrating ellip-
soidal quantum billiard with major and minor axes
with characteristic radii a1(t), a2(t), and a3(t). If
the eccentricities of the ellipse are constrained to
be constants, then this billiard has a single dov. If
one eccentricity (e.g. that relating a1(t) and a2(t) so

that a1(t) = a2(t)
√

1− e2
12 for a constant eccentric-

ity e) is constrained to be constant but the others
are not so that a3(t) is independent of the other two
radii, the billiard has two dov. If all three radii are
permitted to vary independently, then the billiard
has three dov. The radially vibrating spherical bil-
liard is the special case of this example in which
a(t) ≡ a1(t) = a2(t) = a3(t) (since the eccentric-
ities e12 = e13 = e23 ≡ 0). It has only one dov
precisely because it is constrained to vibrate in the
radial direction [Liboff & Porter, 2000]. If angular
vibrations are permitted in the spherical billiard,
then there are additional degrees-of-vibration cor-
responding to the fact that the billiard has fewer
geometric constraints.

4. Equations of Motion

Consider a two-state superposition of a two dov
quantum billiard, so that

ψ(x, y, t) = A1(t)α(a(t), b(t))ψnxny(x, y, t)

+A2(t)α(a(t), b(t))ψn′xn′y(x, y, t) ,

(11)

which we may write using Dirac notation [Sakurai,
1994] as

|ψ〉 = ψ1|nxny〉+ ψ2|n′xn′y〉 . (12)

We note that even in the special case of the square,
the states corresponding to the length and width
need not have the same level of excitation despite
the fact that we impose the constraint a(t) ≡ b(t).
That is, some outside force imposes the constraint,
so a different level of excitation in the length and
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2320 M. A. Porter & R. L. Liboff

width does not cause the square to deform into
a rectangle. Equivalently, the eigenstates may be
excited separately in the variables x and y, even
though the Hamiltonian for the vibrating square
billiard has one degree-of-vibration.

The time-dependent Schrödinger equation for
the present system is

i~
∂ψ(x, y, t)

∂t
= − ~

2

2m
∇2ψ(x, y, t) ,

x ∈
[
−a(t)

2
,
a(t)

2

]
, y ∈

[
−b(t)

2
,
b(t)

2

]
,

(13)

where the kinetic energy K of the particle confined
within the billiard is as before and the total Hamil-
tonian of the system is given by

H = K(a, b) +
P 2
a

2Ma
+

P 2
b

2Mb
+ V, (14)

where the walls of the quantum billiard have mo-
menta Pa and Pb conjugate (respectively) to the
length a and width b. These walls have respective
masses Ma and Mb and move in a potential

V = V (a, b) , (15)

which is assumed to not have any explicit time-
dependence.

Inserting the two-term superposition into the
Schrödinger equation (13) and taking expectations
gives the following relations:〈
ψ

∣∣∣∣∣− ~2

2m
∇2ψ

〉
=

1

a2
(ε

(1)
a |A1|2+ε

(2)
a |A2|2)

+
1

b2
(ε

(1)
b |A1|2+ε

(2)
b |A2|2) ,

i~
〈
ψ

∣∣∣∣∂ψ∂t
〉

= i~[Ȧ1A
∗
2+Ȧ2A

∗
1+ν11|A1|2

+ ν22|A2|2+ν12A1A
∗
2+ν21A2A

∗
1],

(16)

where νij are the coefficients of the quadratic form.
In Eq. (16),

ε
(1)
a ≡

(nxπ~)2

2m
, ε

(2)
a ≡

(n′xπ~)2

2m
,

ε
(1)
b ≡

(nyπ~)2

2m
, ε

(2)
b ≡

(n′yπ~)2

2m
.

(17)

Recall that the energy Enxny of the nxnyth
eigenstate is given by

Enxny = ε(1)
a + ε

(1)
b (18)

The assumption of a two-term superposition
state corresponds to a two-term Galërkin pro-
jection, an idea that has been used in fluid
mechanics and finite-element numerical methods
[Guckenheimer & Holmes, 1983; Temam, 1997;
Johnson, 1987]. This method is used to analyze the
dynamics of partial differential equations approxi-
mately using a system of ordinary differential equa-
tions. Note that if one considers a superposition of
every possible state in the above procedure, one ob-
tains an infinite set of coupled ordinary differential
equations exactly describing the dynamics of the
full system. One thus applies a finite-dimensional
projection in order to both make the subsequent
analysis tractable and to isolate the effects of par-
ticular eigenstates. Which two eigenstates one con-
siders in a two-term superposition determines the
values of the coupling coefficients µjk, which are
defined by the relation

νjk ≡ µjk
ȧ

a
or νjk = µjk

ḃ

b
(see Theorem 1). (19)

Analogous to the radially vibrating spherical quan-
tum billiard [Liboff & Porter, 2000], the dynamical
behavior of the present system depends in a funda-
mental manner on whether these coefficients vanish.
By computing the expectations above and recalling
orthogonality relations of harmonic functions, we
obtain the following result:

Theorem 1. The coefficients µjk and µkj, (j 6= k)
for a superposition of two eigenstates in the two dov
rectangular quantum billiard do not vanish if and
only if either nx = n′x or ny = n′y. The coeffi-
cients µjj and µkk always vanish, and the relation
µjk = −µkj always holds. Moreover, νjk is propor-

tional to ȧ/a if ny = n′y and to ḃ/b if nx = n′x. This
proportionality constant is exactly as in the one-
dimensional vibrating quantum billard. Using the
indices n and n′ to represent either the pair (nx, n

′
x)

or (ny, n
′
y) corresponding to which of the two pairs

has distinct values and also taking n < n′ without
loss of generality gives the coupling coefficient

µjk ≡ µnn′ =
2nn′

(n′ + n)(n′ − n)
. (20)

If considering a superposition of more than two
states, this theorem applies pairwise. If the billiard
resides in a “separable” potential such as the har-
monic potential, it has parameter regions in which
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Quantum Chaos for the Vibrating Rectangular Billiard 2321

it behaves chaotically if and only if the coupling
coefficient is nonzero.

The above theorem is a statement of the neces-
sary and sufficient conditions for a two dov quantum
billiard in a separable potential to exhibit chaos.
(If the billiard resides in an “inseparable” potential,
however, we will show that it can behave chaotically
even if the coupling coefficient vanishes.) In partic-
ular, Theorem 1 implies that a two dov rectangular
quantum billiard has only four types of two-term
superpositions that give nonvanishing cross terms
µjk and µkj. (This follows from orthogonality con-
ditions and the application of trigonometric identi-
ties.) These are

ψ = A1α cos

(
nxπx

a

)
cos

(
nyπy

b

)

+A2α cos

(
n′xπx

a

)
cos

(
n′yπy

b

)
,

ψ = A1α cos

(
nxπx

a

)
sin

(
nyπy

b

)

+A2α cos

(
n′xπx

a

)
sin

(
n′yπy

b

)
,

ψ = A1α sin

(
nxπx

a

)
cos

(
nyπy

b

)

+A2α sin

(
n′xπx

a

)
cos

(
n′yπy

b

)
,

ψ = A1α sin

(
nxπx

a

)
sin

(
nyπy

b

)

+A2α sin

(
n′xπx

a

)
sin

(
n′yπy

b

)
,

(21)

where in each of the above equations, either nx = n′x
or ny = n′y (but not both). Note that this result is
a special case of that in [Porter & Liboff, 2001b].
Even though the present problem has two dov, we
note that there are additional requirements on the
quantum numbers than those previously derived.
The quantum numbers corresponding to movable-
boundary variables have symmetry requirements
that must be met so that the cross terms one ob-
tains by taking the expectation of the Schrödinger
equation do not vanish. Porter and Liboff [2001b]
proved that there are symmetry requirements for
quantum numbers corresponding to fixed-boundary

variables, but the conditions they found are not suf-
ficient ones for the two dov rectangular quantum bil-
liard. Indeed, we have just shown that this billiard
has stronger requirements than those previously de-
rived. It is not currently known whether this is true
for all two dov billiards or whether the symmetry
requirements are more stringent specifically for the
present configuration.

4.1. Case One: Absence of Coupling
Between States

Let us now examine the case without cross terms.
That is, µjk vanishes for all j, k ∈ {1, 2}. We will
show in the present section the conditions under
which this case leads to chaotic behavior. Taking
the expectation of the Schrödinger equation (13),
one obtains the equations of motion:

iȦj =
1

~

(
ε

(j)
a

a2
+
ε

(j)
b

b2

)
, j ∈ {1, 2} . (22)

Integrating these equations for j ∈ {1, 2} gives

Aj = Cj exp

[
− i
~

∫ (
ε

(j)
a

a2
+
ε

(j)
b

b2

)
dt

]
, (23)

where Cj is a constant of integration. Since Aj ’s
only time-dependence is a phase factor, it follows
that |Aj |2 = |Cj |2 is a constant. Recall that the
evolution of the present system is determined by
the Hamiltonian

H(a, Pa, b, Pb) ≡
P 2
a

2Ma
+

P 2
b

2Mb
+K(A1, A2, a, b)

+ V (a, b) , (24)

where the kinetic energy K(A1, A2, a, b) is separa-
ble in the sense that

K(A1, A2, a, b) = K1(A1, A2, a) +K2(A1, A2, b)

(25)

and is given by

K =

(
ε

(1)
a

a2
+
ε

(1)
b

b2

)
|A1|2 +

(
ε

(2)
a

a2
+
ε

(2)
b

b2

)
|A2|2

=
ε

(1)
a |C1|2 + ε

(2)
a |C2|2

a2
+
ε

(1)
b |C1|2 + ε

(2)
b |C2|2

b2
.

(26)
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2322 M. A. Porter & R. L. Liboff

The evolution of this Hamiltonian system is
described by

ȧ =
Pa
Ma

Ṗa = −∂V
∂a

+
2

a3
(ε

(1)
a |C1|2 + ε

(2)
a |C2|2)

ḃ =
Pb
Mb

Ṗb = −∂V
∂b

+
2

b3
(ε

(1)
b |C1|2 + ε

(2)
b |C2|2) .

(27)

Stationary points (27) satisfy Pa = Pb = 0,

∂V

∂a
=

2

a3
(ε(1)
a |C1|2 + ε(2)

a |C2|2) , (28)

and
∂V

∂b
=

2

b3
(ε

(1)
b |C1|2 + ε

(2)
b |C2|2) . (29)

Defining

ηa ≡ ε(1)
a |C1|2 + ε(2)

a |C2|2 , (30)

ηb ≡ ε(1)
b |C1|2 + ε

(2)
b |C2|2 , (30′)

one finds that, for any equilibrium point of (27), if

∂2V

∂a2

∂2V

∂b2
−
(
∂2V

∂a∂b

)2

+
6ηa
a4

∂2V

∂b2

+
6ηb
b4

∂2V

∂a2
+

36ηaηb
a4b4

≥ 0 , (31)

then every eigenvalue corresponding to that equilib-
rium point has zero real part, so it is elliptic (and
hence linearly stable). (Equilibrium points are de-
fined to be elliptic when the real part of all of their
associated eigenvalues is zero.) In particular, if the
potential has a single minimum, then every equilib-
rium point is elliptic. Note that the curve on which
equality holds in (31) is a bifurcation curve, as the
topology of the equilibria changes with the sign
of the expression. Recall that V (a, b) is a known
function so that the left-hand side of (31) is also
known.

The above analysis also holds if one considers
only a single state. In other words, in a two dov
quantum billiard in an inseparable potential, one
obtains a system that exhibits chaotic behavior even
if one considers only one state. (The equations are
of the same form as those above, since there is no
coupling in the present case.) For one dov quantum

billiards, a two-term superposition state is required
for chaos to occur [Liboff & Porter, 2000; Porter
& Liboff, 2001b]. We may state this result as the
following theorem.

Theorem 2. Consider a quantum billiard with
more than one dov in an inseparable potential. Any
superposition state — even one with a single wave-
function — will exhibit chaotic behavior in some
region of parameter space.

If, however, the potential V is separable in the
sense that

V (a, b) = V1(a) + V2(b) , (32)

then the Hamiltonian H(a, Pa, b, Pb) is separable
in the same sense. That is,

H(a, Pa, b, Pb) = H1(a, Pa) +H2(b, Pb) , (33)

and this decoupling of the two degree-of-freedom
(dof ) into two one dof Hamiltonians corresponds
to a decoupling of the present four-dimensional au-
tonomous evolution equations into a pair of two-
dimensional autonomous dynamical systems, whose
nonchaotic properties are known [Guckenheimer &
Holmes, 1983; Wiggins, 1990; Strogatz, 1994]. The
fact that the present quantum billiard is nonchaotic
if there are no cross terms and a separable poten-
tial also follows from the discussion in [Porter &
Liboff, 2001b], in which the following theorem was
proved:

Theorem 3. Consider a quantum billiard on a
Riemannian manifold with s dov satisfying a couple
of technical, geometric conditions. If all the cross
terms µjk of a superposition state vanish and the
Hamiltonian is separable, then there is a decoupling
into a set of two-dimensional autonomous dynam-
ical systems, which implies that the superposition
state is nonchaotic.

If the potential is inseparable, however, one can
obtain chaotic behavior even if the cross term µjk
vanishes. Consider, for example, the anharmonic
potential

V (a, b) =
Va

a2
0

(a− a0)2 +
Vb
b20

(b− b0)2

+
V0

a0b0
(a− a0)(b− b0) . (34)
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In this case,

∂2V

∂a2
=

2Va
a2

0

,
∂2V

∂b2
=

2Vb
b20
,

∂2V

∂a∂b
=

V0

a0b0
, (35)

so an equilibrium point of (27) is elliptic if and only
if

4VaVb
a2

0b
2
0

− V 2
0

a2
0b

2
0

+
12ηaVb
a4b20

+
12ηbVa
a2

0b
4

+
36ηaηb
a4b4

≥ 0 . (36)

In (36), a and b refer to equilibrium values. Note
that the present system of Eq. (27) has a bifurcation
curve when equality holds in the above equation.

Figures 1–6 show various Poincaré maps for the
superposition state

ψ = αA1 cos

(
πx

a

)
cos

(
3πy

b

)

+ αA2 sin

(
2πx

a

)
sin

(
4πy

b

)
. (37)

Each figure has the parameter values ~ = 1,

m = 1, ε
(1)
a = ~2π2/2m ≈ 4.93480220054,

ε
(1)
b = 9~2π2/2m ≈ 44.4132198049, ε

(2)
a =

4~2π2/2m ≈ 19.7392088022, ε
(2)
b = 15~2π2/2m ≈

78.9568352087, a0 = 1.25, b0 = 0.75, |C1|2 = 4,
|C2|2 = 8, Ma = 10 and Mb = 5. Figure 1
shows the Poincaré map corresponding to the cut
Pa = 0 in the (b, Pb)-plane for the parameter val-
ues V0/(a0b0) = 5, Va/(a

2
0) = 10 and Vb/(b

2
0) = 2.

Figure 2 shows the corresponding projection in the
(a, b)-plane. Figures 3–6 have the parameter val-
ues V0/(a0b0) = 12, Va/(a

2
0) = 1 and Vb/(b

2
0) = 3.

Figures 3 and 5 depict Poincaré maps for Pa = 0
for different initial conditions in the (b, Pb)-plane.
Figures 4 and 6 correspond respectively to Figs. 3
and 5 and show projections of the Poincaré maps
in the (a, b)-plane. Note that the plots are of the
same form for any constant c > 0, |C1|2 + |C2|2 =
|A1|2 + |A2|2 = c, so where only the relative sizes of
|C1|2 and |C2|2 are relevant.

We note that the chaotic behavior in the vari-
ables (a, b, Pa, Pb) is classical Hamiltonian chaos,
since the displacements and momenta of the
boundaries are classical quantities. However, the
quantum-mechanical wave ψ(x, y, t; a(t), b(t)) de-
pends on the chaotic variables a and b. The in-
dividual normal modes (eigenfunctions) depend on
these variables as well. The wavefunction ψ as

well as the normal modes are hence examples of
so-called quantum-mechanical wave chaos [Blümel
& Reinhardt, 1997]. (The wave ψ is a linear com-
bination of chaotic normal modes.) This is one of
the signatures of quantum chaos. We note, how-
ever, that it is important to contrast this with
chaos that one obtains in the coupled classical and
quantum systems that occurs when there is cou-
pling between two or more superposition states.
In this case, one observes chaotic quantum waves
resulting from a classical system that is chaotic
by itself. Previously, Porter and Liboff [Liboff &
Porter, 2000; Porter & Liboff, 2001a; Porter &
Liboff, 2001b] and Blümel and Esser [1994] observed
chaotic classical and quantum subsystems that were
integrable if considered separately. (In one dov
quantum billiards, the Hamiltonian has a single
classical degree-of-freedom due to the motion of the
boundary.) The distinction, then, is that in the
present case (without coupling), the classical Hamil-
tonian chaos drives the quantum-mechanical wave
chaos, whereas previously, the quantum-mechanical
wave chaos was due to coupling between classical
and quantum systems. (That is, we examined the
coupling between the billiard’s boundary and the
particle bouncing around inside it.)

4.2. Case Two: Presence of Coupling
Between States

We now examine an example of a two-term super-
position with nonvanishing cross terms. We showed
earlier that in a two-term superposition

|ψ〉 = ψ1|nxny〉+ ψ2|n′xn′y〉 , (38)

one must have either nx = n′x or ny = n′y in order to
obtain nonzero coupling coefficients. Without loss
of generality, consider the case in which ny = n′y.
The evolution equations for nx = n′x are obtained
by reversing the roles of the variables (a, Pa) and
(b, Pb). Taking expectations and equating coeffi-
cients gives

iȦn =
2∑
j=1

DnjAj , (39)

where

(Dnj) =


1

~

(
ε

(1)
a

a2
+
ε

(1)
b

b2

)
−iµnq

ȧ

a

iµnq
ȧ

a

1

~

(
ε

(2)
a

a2
+
ε

(2)
b

b2

)

(40)
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2324 M. A. Porter & R. L. Liboff

Fig. 1. Poincaré section for the cut Pa = 0 in the (b, Pb)-plane with potential parameters V0 = 5, Va = 10 and Vb = 2.

Fig. 2. Poincaré section for the cut Pa = 0 in the (a, b)-plane with potential parameters V0 = 5, Va = 10 and Vb = 2.
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Quantum Chaos for the Vibrating Rectangular Billiard 2325

Fig. 3. Poincaré section for the cut Pa = 0 in the (b, Pb)-plane with potential parameters V0 = 12, Va = 1 and Vb = 3.

Fig. 4. Poincaré section for the cut Pa = 0 in the (a, b)-plane with potential parameters V0 = 12, Va = 1 and Vb = 3.
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2326 M. A. Porter & R. L. Liboff

Fig. 5. Poincaré section for the cut Pa = 0 in the (b, Pb)-plane with potential parameters V0 = 12, Va = 1 and Vb = 3.

Fig. 6. Poincaré section for the cut Pa = 0 in the (a, b)-plane with potential parameters V0 = 12, Va = 1 and Vb = 3.
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and µnq is the coefficient of AnA
∗
q . Defining the

density matrix [Liboff, 1998] ρmn ≡ AmA
∗
n and

transforming to Bloch variables [Allen & Eberly,
1987]

x = ρ12 + ρ21, y = i(ρ21 − ρ12), z = ρ22 − ρ11

(41)

and noting that ε
(1)
b = ε

(2)
b gives the following

equations:

ẋ = −ω
(a)
0 y

a2
− 2µnqPaz

Maa
, (42a)

ẏ =
ω

(a)
0 x

a2
, (42b)

ż =
2µnqPx

Maa
. (42c)

In these equations,

ω
(a)
0 ≡ ε

(2)
a − ε(1)

a

~
. (43)

Note that the above equations depend only on the
dimension a and not on b. When taking expecta-
tions, this follows from the fact that ny = n′y. Recall
that with the complementary condition nx = n′x,
the roles of the displacements a(t) and b(t) are
reversed.

Using Bloch variables (41), one computes

K(A1, A2, a, b) =
(ε+
a + zε−a )

a2
+
ε+
b

b2
(44)

where

ε±a ≡
ε

(2)
a ± ε(1)

a

2
(45)

and

ε±b ≡
ε

(2)
b ± ε

(1)
b

2
. (46)

Note that because ε
(1)
b = ε

(2)
b , ε−b vanishes for the

present superposition state. In a two-term super-
position for which nx = n′x, the parameter ε−a = 0.

The present superposition state has a Hamilto-
nian given by

H(a, Pa, b, Pb) =
P 2
a

2Ma
+

P 2
b

2Mb
+K(z, a, b)

+ V (a, b) . (47)

This leads to Hamilton’s equations

ȧ =
∂H

∂Pa
,

Ṗa = −∂H
∂a

,

ḃ =
∂H

∂Pb
,

Ṗb = −∂H
∂b

.

(48)

We thus find that

ȧ =
Pa
Ma

(49)

and

ḃ =
Pb
Mb

. (49′)

One also finds that

Ṗa ≡ −
∂V

∂a
− ∂K

∂a

= −∂V
∂a

+
2

a3
[ε+
a + ε−a (z − µnqx)] , (50)

and that

Ṗb ≡ −
∂V

∂b
− ∂K

∂b
= −∂V

∂b
+

2ε+
b

b3
. (51)

Stationary points of the present vector field sat-
isfy Pa = Pb = x = y = 0, z = ±1, a = a± and
b = b±, where a± satisfies the equation Ṗa = 0 for
the z = 1 and z = −1, respectively, and b± does
the same with the equation Ṗb = 0. That is, a±
satisfies

2

a3
±

(ε+
a ± ε−a ) =

∂V

∂a

∣∣∣∣
a=a±

(52)

and b± satisfies

2ε+
b

b3±
=
∂V

∂b

∣∣∣∣
b=b±

. (53)

As in the case without cross terms, one can
examine both separable potentials and inseparable
potentials. In the former case, one observes a de-
coupling in the dynamical equations so that the
evolution of (x, y, z, a, Pa) and that of (b, Pb) are
completely independent of each other. In this situa-
tion, the analysis of (x, y, z, a, Pa) reduces to that
for a one dov quantum billiard, although one can
still obtain meaningful information by comparing a
and Pa to b and Pb. In general, one can take the
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2328 M. A. Porter & R. L. Liboff

point of view that (b, Pb), whose dynamics are in-
tegrable when V is separable, produce useful in-
sights when compared side-by-side with (a, Pa),
as demonstrated by Figs. (7)–(11). This point of
view should prove illuminating for future research
when considering the rectangular quantum billiard
in which some motion (such as a(t)) is prescribed.

For numerical simulations, consider the super-
position state

ψ = αA1(t) cos

(
πx

a(t)

)
cos

(
πy

b(t)

)

+ αA2(t) cos

(
3πx

a(t)

)
cos

(
πy

b(t)

)
. (54)

In this case, µ12 = 3/4. Recall once more that if
nx = n′x rather than ny = n′y, then the roles of
(a, Pa) and (b, Pb) are reversed. This includes the
results concerning decoupling in the present super-
position state.

Consider first the harmonic potential

V (a, b) =
Va

a2
0

(a− a0)2 +
Vb
b20

(b− b0)2, (55)

which is separable. The (x, y, z, a, Pa) components
of the equilibria are just as in the linear vibrating
billiard. A simple calculation shows that all equi-
libria also satisfy

2ε+
b

b3±
=

2Vb
b20

(b± − b0) . (56)

Poincaré maps for the harmonic potential are shown
in Figs. 7–11. These depict, respectively, the cut
x = 0 projected into the (a, b)-plane, the cut x = 0
in the (a, Pa)-plane, the cut x = 0 in the (b, Pb)-
plane, the cut x = 0 in the (Pa, Pb)-plane, and the
cut Pa = 0 in the (x, y)-plane. In units of ~ = 1, we

used the paramter values m = 1, Ma = 10, ε
(1)
a =

~2π2/2 ≈ 4.9348022, ε
(2)
a = 9~2π2/2 ≈ 44.4132198,

ε
(1)
b = ε

(2)
b = ~2π2/2, Va/a

2
0 = 3, Vb/b

2
0 = 2,

V0/(a0b0) = 0 (since the potential is harmonic),
a0 = 1.25 and b0 = 1.75 with the initial condi-
tions x(0) = sin(0.95π) ≈ 0.156434, y(0) = 0,
z(0) = cos(0.95π) ≈ −0.987688, a(0) ≈ 0.67880794,
Pa(0) ≈ −17.6821192, b(0) = 2 and Pb(0) = 3.

Notice that Figs. 8 and 11 are very similar to
chaotic Poincaré maps observed in one dov quan-
tum billiards [Porter & Liboff, 2001b]. However,

Fig. 7. Poincaré map for the harmonic potential with the cut x = 0 projected into the (a, b)-plane.
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Fig. 8. Poincaré map for the harmonic potential with the cut x = 0 projected into the (a, Pa)-plane.

Fig. 9. Poincaré map for the harmonic potential with the cut x = 0 projected into the (b, Pb)-plane.
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2330 M. A. Porter & R. L. Liboff

Fig. 10. Poincaré map for the harmonic potential with the cut x = 0 projected into the (Pa, Pb)-plane.

Fig. 11. Poincaré map for the harmonic potential with the cut Pa = 0 projected into the (x, y)-plane.
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Fig. 9 shows that integrable motion is observed in
the (b, Pb)-plane, as has to be the case in this de-
coupled situation. In contrast, the projection of
the motion in the (a, Pa)-plane is simultaneously
chaotic. This follows from the fact that the second
term in the superposition state was excited only
with respect to the length a(t). We will discuss the
behavior in Fig. 8 in detail shortly.

As another example, consider the anharmonic
potential

V (a, b) =
Va

a2
0

(a− a0)2 +
Vb
b20

(b− b0)2

+
V0

a0b0
(a− a0)(b− b0) , (57)

which is inseparable. Figures 12–19 depict, respec-
tively, the cut x = 0 projected into the (a, b)-plane,
the cut x = 0 in the (a, Pa)-plane, the cut x = 0 in
the (b, Pb)-plane, the cut x = 0 in the (Pa, Pb)-
plane, the cut Pa = 0 in the (b, Pb)-plane, the
cut Pa = 0 in the (x, y)-plane, the cut Pa = 0
in the (x, z)-plane and the cut Pa = 0 in the
(y, z)-plane. Each figure has the parameter val-
ues ~ = 1, m = 1, Ma = 10, εa1 = ~2π2/2m ≈
4.93480220054, εa2 = 9~2π2/2m ≈ 44.4132198049,
εb1 = εb2 = ~2π2/2m, µ12 = 0.75, V0/(a0b0) = 5,
a0 = 1.25, b0 = 1.75, Mb = 10, Va/(a

2
0) = 3 and

Vb/(b
2
0) = 2. Additionally, each plot has initial

conditions x(0) = sin(0.95π) ≈ 0.156434, y(0) =
0 and z(0) = cos(0.95π) ≈ −0.987688, a(0) ≈
1.57284768, Pa(0) ≈ 1.920529801, b(0) = 2, and
Pb(0) = 3. Each plot except Fig. 14 exhibits chaotic
behavior. (In general, the regions in parameter
space in which the projection of the motion in the
(b, Pb)-plane is integrable are larger than those in
any other two-dimensional projection. For separa-
ble potentials such as the harmonic potential, more-
over, the projection of the motion in this plane is
always integrable because of the decoupling.)

We now contrast the behavior observed in a
harmonic potential with that in an anharmonic one.
The behavior of the two dov vibrating rectangu-
lar quantum billiard in the anharmonic potential is
clearly distinguishable from that observed in sin-
gle dov billiards. In both the (a, Pa)-plane and
the (b, Pb)-plane, there are two distinct elliptical
regions. Additionally — as expected — the behav-
ior in the (b, Pb)-plane is more complicated than it
was in the harmonic case, since one no longer has a
decoupling in the evolution equations. In this par-
ticular plot, the behavior appears to be nonchaotic.

Note, however, that for the anharmonic potential,
the Poincaré map can exhibit chaos in the (b, Pb)-
plane and also that the double-ellipse structure is
not present for all initial conditions. Therefore, one
can distinguish plots from the vibrating rectangu-
lar billiard in the harmonic potential from those in
an anharmonic potential. The present graphs are
merely one example of behavioral differences. Also
observe that the regions of space occupied in the
configuration plane (a, b) as well as the momentum
plane (Pa, Pb) are markedly more complicated for
an anharmonic potential than they are for a har-
monic one. This is due to the decoupling. In the
present example, the two regions are simply con-
nected in the harmonic case but not in the anhar-
monic one. Lastly, while the Bloch sphere in the
harmonic case resembles those from one dov quan-
tum billiards as it must, the Bloch sphere in the
anharmonic case has much more structure in both
chaotic and integrable situations.

Just as with one dov quantum billiards, one
commonly obtains Poincaré maps that indicate that
the billiard’s boundary more often takes values cor-
responding to low a(t) than high a(t). Mathemati-
cally, this follows from the 1/a2 dependence of the
particle’s kinetic energy. Let us discuss the physi-
cal context of this behavior in some detail, in par-
ticular with reference to Fig. 8, which is similar
to many plots from the radially vibrating spheri-
cal quantum billiard [Liboff & Porter, 2000; Porter
& Liboff, 2001b, 2001a]. A low value of a(t) leads
to a larger kinetic energy, as the frequency of the
particle’s wavefunctions increases as a result of the
smaller enclosure. The derivative of K with respect
to a (which depends on 1/a3) becomes very large
as well, and so |Ṗa| also becomes large. This of-
ten leads to a sign change in Pa and consquently
a change in direction of the motion of that compo-
nent of the wall. One thus often observes a large
range of momenta Pa for small a. For large a, the
potential V (a, b) (as well as its derivative with re-
spect to a) often becomes large and so one often
observes a sign change in Pa around that point as
well. (More complicated behavior can also occur,
but this is the standard chaotic configuration that
is depicted in Fig. 8.) The potential V (a, b) is pro-
portional to a2 (and so its derivative with respect
to a is proportional to a), whereas the derivative of
the kinetic energy is proportional to 1/a3. There-
fore, the range of momenta Pa is larger for small
a than it is for large a. For a quartic potential
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2332 M. A. Porter & R. L. Liboff

Fig. 12. Poincaré map for the anharmonic potential with the cut x = 0 projected into the (a, b)-plane.

Fig. 13. Poincaré map for the anharmonic potential with the cut x = 0 projected into the (a, Pa)-plane.
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Fig. 14. Poincaré map for the anharmonic potential with the cut x = 0 projected into the (b, Pb)-plane.

Fig. 15. Poincaré map for the anharmonic potential with the cut x = 0 projected into the (Pa, Pb)-plane.
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Fig. 16. Poincaré map for the anharmonic potential with the cut Pa = 0 projected into the (b, Pb)-plane.

Fig. 17. Poincaré map for the anharmonic potential with the cut Pa = 0 projected into the (x, y)-plane.
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Fig. 18. Poincaré map for the anharmonic potential with the cut Pa = 0 projected into the (x, z)-plane.

Fig. 19. Poincaré map for the anharmonic potential with the cut Pa = 0 projected into the (y, z)-plane.
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Porter & Liboff, 2001a], one computes that

∂V (a, b)

∂a
∝ a3 , (58)

so the analogous configuration has an equally large
range for Pa for both the upper and lower regimes
of a(t). In between a’s low and high regimes, the
terms from the potential energy V and the kinetic
energy K compete with each other, so |Ṗa| is not
very large and the momentum Pa does not change
signs. For small a, moreover, one often observes a
higher density of points in the Poincaré map (for
the cut x = 0). Indeed, the Bloch variable x often
changes sign as a result of a change in sign of Pa, so
such behavior is expected to occur for many initial
conditions.

We note that the analytical methods that have
been developed for vibrating quantum billiards
correspond to applying the Born–Oppenheimer ap-
proximation [Blümel & Esser, 1994]. This approxi-
mation allows one to separate the time-dependence
of the phase from that of the rest of the wave. In
particular, this approximation reflects the fact that
the eigenenergies of the vibrating quantum billiard
are approximated as being equal to those of the
associated stationary quantum billiard of the rel-
evant geometry. The next term of the perturba-
tive scheme (that we applied implicitly) includes
the effect of so-called geometric phase (also known
as Berry phase) [Zwanziger et al., 1990]. The Born–
Oppenheimer approximation corresponds to an adi-
abatic approximation. The quantity K + V is the
adiabatic potential of the (slow) classical variables
a and b. The quantum variables (resepresented by
Bloch variables) are the fast variables in the present
system. Blümel and Esser [1994] claim that the
mixed quantum-classical system of vibrating quan-
tum billiards is a caricature of diatomic molecules.
In this interpretation, the preference for small val-
ues of a that is commonly observed corresponds to
the preference for small inter-atomic distances in
such dimers.

5. Comparison with One Degree-of-
Vibration Quantum Billiards

It was shown previously that for an n-term super-
position state of a one dov quantum billiard that
at least one pair of the states must have the same
fb quantum numbers in order for the superposition
to exhibit quantum chaos [Porter & Liboff, 2001b].

Examination of the two dov rectangular quantum
billiard in an anharmonic potential shows that one
can observe quantum chaos without an analogous
symmetry result in billiards with greater than one
dov if the potential is inseparable. (The origin
of this chaotic behavior, however, is the classical
Hamiltonian chaos of the billiard’s boundary rather
than the coupling of classical (slow) and quantum-
mechanical (fast) variables as is the case when two
or more eigenstates are coupled.) If the potential
is separable, we showed that an analogous symme-
try requirement does hold. Moreover, even in the
chaotic case, two dov billiards in separable poten-
tials (as demonstrated by the harmonic potential)
resemble the anologous single dov case because of
the decoupling induced by the potential’s separa-
bility. When one examines inseparable potentials
(such as the anharmonic potential), one observes
more complicated behavior.

6. Two Degrees-of-Vibration in
n-Dimensional Rectangular
Parallelepiped Quantum Billiards

One may generalize Theorem 1 to the case of a
two dov n-dimensional rectangular parallelepiped
quantum billiard. That is, n − 2 of the boundary
dimensions are constant, but the other two vary in
time. The case n = 2 is simply the rectangular
quantum billiard with time-dependent length and
width. This result follows almost immediately from
Theorem 1. One does n − 2 integrations corre-
sponding to the fb quantum numbers (which are the
quantum numbers corresponding to time-invariant
boundary variables), which gives unity by normal-
ization considerations. This gives the same integral
as in the previous case, and so the result follows
by applying Theorem 1. We state Theorem 4 as
follows:

Theorem 4. Consider the n-dimensional rectan-
gular parallelepiped quantum billiard with two dov.
Consider a superposition of two eigenstates. The
cross-term coefficients µjk and µkj (j 6= k) vanish if
and only if one of the pair of mb-quantum numbers
is symmetric. In other words, these coupling coeffi-
cients are nonzero if and only if either nx = n′x or
ny = n′y, where we assume without loss of generality
that the time-dependent dimensions (ax(t), ay(t)) of
the billiard’s boundary are those along the x̂ and ŷ
axes. The coefficients µjj and µkk always vanish,
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and the relation µjk = −µkj always holds. More-
over, µjk acts as a proportionality constant in front
of a term of the form ȧx/ax if ny = n′y and ȧy/ay if
nx = n′x, and it is exactly as in the one-dimensional
vibrating quantum billard [Blümel & Esser, 1994;
Blümel & Reinhardt, 1997 ]:

µjk ≡ µnn′ =
2nn′

(n′ + n)(n′ − n)
. (59)

In considering a superposition of more than two
states, this theorem applies pairwise. (That is, there
must exist some pair of states among those being su-
perposed such that the above condition holds.)

7. Conclusion

In the present paper, we considered vibrations with
two degrees-of-freedom in rectangular quantum bil-
liards. We analyzed several superpositon states
and discussed the effects of symmetry on the equa-
tions of motion. (We stated and proved several
theorems concerning these results.) We general-
ized this discussion to n-dimensional rectangular
parallelepipeds with two degrees-of-vibration. We
produced several sets of Poincaré sections, and we
divided the analysis into four cases corresponding
to the presence or absense of coupling terms and
the choice of the harmonic or anharmonic potential.
The behavior of the two dov rectangular quantum
billiard in the harmonic potential was similar to the
behavior of single dov systems, while its behavior
in the anharmonic potential was considerably more
complicated.
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