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CLASSICAL AND QUANTUM RANDOM-WALK CENTRALITY
MEASURES IN MULTILAYER NETWORKS∗

LUCAS BÖTTCHER† AND MASON A. PORTER‡

Abstract. Multilayer network analysis is a useful approach for studying networks of entities
that interact with each other via multiple relationships. Classifying the importance of nodes and
node-layer tuples is an important aspect of the study of multilayer networks. To do this, it is common
to calculate various centrality measures, which allow one to rank nodes and node-layers according
to a variety of structural features. In this paper, we formulate occupation, PageRank, betweenness,
and closeness centralities in terms of node-occupation properties of different types of continuous-time
classical and quantum random walks on multilayer networks. We apply our framework to a variety
of synthetic and real-world multilayer networks, and we identify notable differences between classical
and quantum centrality measures. Our computations give insights into the correlations between
certain centralities that are based on random walks and associated centralities that are based on
geodesic paths.
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1. Introduction. Centrality measures [4] are useful quantities to rank nodes
in a network according to various notions of importance [36]. Depending on the
centrality measure that one calculates, highly central nodes may be nodes with the
most neighbors (degree centrality), ones that lie on many shortest paths between two
nodes (geodesic betweenness centrality), ones that have a small distance (e.g., via a
sum of shortest-path lengths) to many other nodes (closeness centrality), and so on.
These and other centrality measures have a large variety of applications, including
identifying important spreaders of diseases or information [29, 51], ranking websites
and other things [15], and characterizing granular and particulate structures [34,39].

A variety of centrality measures have been developed for monolayer networks
and generalized to multilayer networks [3, 24, 56]. One prominent approach is to
exploit the node-sampling properties of different types of classical random walks
(CRWs) [12,31,37,52,53,54]. Additionally, the study of quantum versions of CRWs
called continuous-time quantum walks (CTQWs) [9,45] has led to several insights into
the influence of quantum effects on the propagation properties of random walks on
networks. Quantum walks have been implemented in various experimental settings,
including nuclear-magnetic-resonance setups [47], trapped neutral-atom systems [23]
and trapped ion systems [49,63], and photonic structures [7,13,42,50]. One appealing
property of quantum walks is that they can detect a “marked” (i.e., target) node
quadratically faster than their classical counterparts on certain networks [9]. One can
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CLASSICAL AND QUANTUM RANDOM-WALK CENTRALITY 2705

achieve full quantum speedup on many networks, including regular graphs [21], Erdős–
Rényi (ER) networks [8], and d-dimensional cubic periodic lattices with d ≥ 5 [9].
The advantage of quantum search strategies has been termed the “Grover speedup”
in recognition of Lov Grover’s foundational work on this topic [17, 18]. Recent stud-
ies [5, 30] have analyzed connections between the run times and success probabilities
(where the success probability is the probability of finding a quantum walker at a
target node at a certain time) of quantum search algorithms and the centralities of
target nodes. For discrete-time quantum walks, it has been shown that success prob-
ability does not necessarily increase with closeness centrality [5]. However, for Cayley
trees, the success probability is large for nodes with small “eccentricities” [30], where
the eccentricity of a node is the maximum distance from it to any other node. A
later study [43] illustrated that the run time of a CTQW-based search algorithm on
a balanced binary tree is correlated with the closeness centrality of a preselected tar-
get node. Notably, all of these works computed centrality measures using classical
algorithms. However, as described in [46, 48], it is also possible to define centrality
measures that are based on the node-occupation statistics of quantum walks. Sub-
sequently, numerical and experimental implementations of CTQW-based occupation
centralities were compared to several classical centrality measures on random net-
works [19]. It has also been shown that one can tune node-occupation statistics of
CRWs and CTQWs by using appropriate stochastic resetting protocols [59].

In the present paper, we build on ideas from [53] and compare several classical
and quantum random-walk centrality measures on multilayer networks. Our paper
proceeds as follows. In section 2, we give an overview of the standard mathematical
formulation of multilayer networks. We then derive the evolution equations of CRWs
and CTQWs on multilayer networks in section 3. In section 4, we use these evolution
equations to define classical and quantum versions of random-walk occupation cen-
trality, PageRank centrality, random-walk betweenness centrality, and random-walk
closeness centrality. In section 5, we calculate these centrality measures for a variety
of synthetic and empirical multilayer networks. We also examine correlations in two
situations: (1) between random-walk and geodesic versions of betweenness central-
ity and (2) between random-walk and geodesic versions of closeness centrality. We
conclude our study in section 6. Our source code (and additional information on
parallelization methods) is publicly available at [6].

2. Multilayer networks. A graph (i.e., a monolayer network) G = (V,E) is an
ordered pair (V,E), where V is a set of N nodes and E ⊆ V ×V is a set of edges that
connect pairs of nodes. We label the nodes with the numbers 1, 2, . . . , N . For each
node v ∈ V , the degree deg(v) is the number of edges that are attached to v.

To allow more than one layer in a network (see Figure 1), we use the multilayer-
network formalism of [10, 24]. In addition to nodes and edges (as in a monolayer
network), a multilayer network M has layers with d distinct aspects (i.e., types of
layering, such as multiple types of relationships or multiple communication platforms)
[44]. Each aspect a has a corresponding set La of elementary layers. We denote the
sequence of sets of elementary layers by L = {La}da=1. All possible combinations of
elementary layers are given by the Cartesian product L1 × · · · × Ld, and elements of
this set are called “layers.” We denote the number of layers in M by K.

Not all nodes need to be present in all K layers. We use VM ⊆ V ×L to denote the
set of node-layer tuples (v, l) ∈ VM ; node v, which represents some entity, is present in
layer l ⊆ L1 × · · · ×Ld. We denote the total number of nodes in M by N = |VM | and
the subset of edges between node-layer tuples (i.e., “node-layers”) by EM ⊆ VM ×VM .
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2706 LUCAS BÖTTCHER AND MASON A. PORTER

Fig. 1. Example of a multilayer network. (a) We show a multilayer network M =
(VM , EM , V, L) with four nodes (i.e., V = {1, 2, 3, 4}) and two aspects. These two as-
pects have corresponding elementary-layer sets L1 = {A,B} and L2 = {X,Y }. The re-
sulting four layers of M are (A,X), (A, Y ), (B,X), and (B, Y ). Not all nodes are pres-
ent in all layers. In the depicted example, the set VM of node-layer tuples is VM =
{(1, A,X), (2, A,X), (4, A,X), (4, B,X), (1, A, Y ), (3, A, Y ), (1, B, Y ), (2, B, Y ), (4, B, Y )} ⊆ V ×L1×
L2. (b) The graph GM = (VM , EM ) that corresponds to the multilayer network M . We indicate
intralayer and interlayer edges using solid and dashed lines, respectively.

The edge ((u, α), (v, β)) ∈ EM indicates that there is an edge from node u in layer α
to node v in layer β (and vice versa, ifM is undirected). Each aspect ofM represents
a type of layering, such as connections between (classical or quantum) circuits, a point
in time, or some other property. We use the adjectives intralayer and interlayer to
refer to edges between nodes in the same layer and between nodes in different layers,
respectively. Using the above definitions, one can express a multilayer network (see
Figure 1) as a quadruplet M = (VM , EM , V, L) that consists of nodes (from the set
V ), node-layer tuples (from VM ), edges (from EM ), and layers (from L). A multiplex
network is a specific type of multilayer network; in such a network, all of the interlayer
edges occur between nodes and their counterparts in other layers.

3. Classical and quantum random walks. We consider an undirected and
unweighted multilayer network M with adjacency tensor A. The adjacency-tensor
components are

(3.1) Aiα
jβ =

{
1 if (i, α) is adjacent to (j, β)

0 otherwise .

Note that Aiα
jβ = Ajβ

iα for undirected networks. The transition probability of going

from node i in layer α to node j in layer β is T iα
jβ . To mathematically describe a CRW

on M , let pjβ(t) be the probability that a random walker is on node j in layer β in
the time interval t. The corresponding temporal evolution of pjβ(t) is

pjβ(t+∆t) = pjβ(t)−∆t

 ∑
(i,α)∈VM

T jβ
iα pjβ(t)−

∑
(i,α)∈VM

T iα
jβ piα(t)

 .(3.2)

As in the description of random-walk (and hence diffusion) dynamics on a monolayer
network with the combinatorial graph Laplacian, we write T iα

jβ = Aiα
jβ/kiα, where

kiα =
∑

(j,β)∈VM
Ajβ

iα is the degree of node i in layer α [22]. For brevity, we use the

Einstein summation convention and write kiα = Ajβ
iαujβ , where all components of
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CLASSICAL AND QUANTUM RANDOM-WALK CENTRALITY 2707

the covariant order-2 tensor ujβ are equal to 1. Using the Einstein convention and
T iα
jβ = Aiα

jβ/kiα, we rewrite (3.2) as

(3.3) pjβ(t+∆t) = pjβ(t)−∆t
[
δiαjβpiα(t)−Akγ

jβD
iα
kγ

−1
piα(t)

]
,

where the Kronecker delta δiαjβ = 1 if and only if (i, α) = (j, β) (so δiαjβ = 0 otherwise)
and

(3.4) Diα
jβ =

{
kiα if (i, α) = (j, β)

0 otherwise

are the components of the degree tensor. In (3.3), we used the fact that∑
(i,α)∈VM

T jβ
iα = 1 ,

which indicates that the probability of going from node j in layer β to some other
node-layer is 1 (because a random walker is required to move somewhere). This
multilayer formulation of random-walk dynamics leads naturally to the definition of
the components Liα

jβ = Diα
jβ −Aiα

jβ of the combinatorial Laplacian tensor [10].
For our analytical and numerical treatments of classical and quantum random

walks on multilayer networks, we apply a flattening function [24,25] to the adjacency
tensor and other tensors to transform them into associated N × N matrices with
entries in R≥0. The scalar N denotes the number of nodes in GM = (VM , EM ), which
is the flattened graph representation of M . In our paper, we refer to the elements
of VM as “node-layers” because each node of GM = (VM , EM ) is a node-layer of M .
The supra-Laplacian matrix [16] LM = DM − AM allows us to write the evolution
equation (3.3) in continuous time as

(3.5)
d

dt
p = −Hcp with Hc = LMD−1

M .

The classical Hamiltonian Hc is the generator of time translation of the flattened
stochastic vector p. Each component of p corresponds to a node-layer. In accordance

with [14, 59], we use the normalized supra-Laplacian matrix L̂M = D
−1/2
M LMD

−1/2
M

to formulate the evolution of a CTQW on multilayer networks according to the
Schrödinger equation1

(3.6)
d

dt
|ψ⟩ = −iHq |ψ⟩ with Hq = L̂M ,

where i =
√
−1. Because of the unitary and time-reversible evolution equation for

CTQWs, these walks (unlike their classical counterparts) do not approach a stationary
distribution. The stochastic nature of CTQWs comes from the measurement process
rather than from the underlying dynamics [59]. A key advantage of CTQWs over
their classical counterparts is that they are quadratically faster at detecting target
nodes in certain networks [9]. This is a useful feature of centrality measures that are
based on quantum walks.

1In this equation, we set ℏ = 1. Additionally, the choice of the quantum evolution operator is
not unique. Following common choices for monolayer networks, appropriate choices of a Hermitian
operator are the normalized supra-Laplacian matrix and the supra-adjacency matrix [61].

D
ow

nl
oa

de
d 

12
/2

3/
21

 to
 1

95
.1

76
.1

13
.1

34
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2708 LUCAS BÖTTCHER AND MASON A. PORTER

4. Classical and quantum centralities.

4.1. Random-walk occupation centrality. For an undirected and connected
multilayer network M , a CRW has a unique stationary state p∗ ∈ RN [38] that
satisfies

(4.1) Hcp
∗ = 0 and

N∑
ĩ=1

p∗
ĩ
= 1 ,

where ĩ denotes a node-layer. We use a tilde to distinguish a node-layer ĩ of GM from
a node i of M . The solution of (4.1) is

(4.2) p∗
ĩ
=

kĩ∑N
j̃=1 kj̃

,

where kĩ is the (total) degree of node-layer ĩ in flattened notation (i.e., in the graph
GM ). Each component of the stochastic vector p∗ corresponds to the stationary CRW
occupation probability (i.e., stationary density) of a certain node-layer and defines
a natural random-walk centrality measure for a multilayer network. For CTQWs,
however, unitary time evolution does not lead to a stationary state. Instead, the
long-time behavior of a quantum walk is characterized by its long-time mean [14]

(4.3) q∗
j̃
= lim

T→∞

1

T

∫ T

0

⟨j̃|ρ(t)|j̃⟩ dt ,

where dt is an infinitesimal time step, ρ(t) = |ψ(t)⟩ ⟨ψ(t)| is a density operator, and
|j̃⟩ ∈ CN is an orthonormal basis vector that satisfies

(4.4) ⟨̃i|j̃⟩ = δĩj̃ .

Similarly to our notation for CRW occupation probability, q∗
j̃
denotes the CTQW

occupation probability of node-layer j̃. Therefore, it gives a type of random-walk
centrality.

4.2. PageRank centrality. We generalize the above definitions of random-walk
occupation probabilities by incorporating teleportation events from (i, α) to (j, β) that
occur with probability 1−a ∈ (0, 1]. In the classical setting, we replace the transition
probability by

(4.5) T iα
jβ = aAiα

jβ/kiα +
(1− a)

NK
uiαjβ

for an undirected and connected multilayer network M [12, 53]. The order-4 tensor
components uiαjβ are equal to 1. In flattened notation, the resulting classical evolution
equation is

(4.6)
d

dt
pp = −Hp

cpp with Hp
c = aLMD−1

M + (1− a)
[
1−N−1U

]
,

where U is a matrix of 1 entries. The PageRank analog of (3.6) is

(4.7)
d

dt
|ψp⟩ = −iHp

q |ψp⟩ with Hp
q = aL̂M + (1− a)

[
1−N−1U

]
.
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CLASSICAL AND QUANTUM RANDOM-WALK CENTRALITY 2709

Note that Hp
q is Hermitian. In (4.6) and (4.7), we use a version of PageRank in which

a random walker can teleport to any node-layer. Other teleportation protocols are
also possible [15]. They lead to different PageRank Hamiltonians Hp

c and Hp
q.

For different teleportation probabilities 1 − a, we calculate classical PageRank
centrality by solving

(4.8) Hp
cp

∗
p = 0 and

N∑
ĩ=1

(p∗
p)ĩ = 1 .

The associated quantum PageRank centrality is

(4.9) (q∗p)j̃ = lim
T→∞

1

T

∫ T

0

⟨j̃|ρp(t)|j̃⟩ dt ,

where ρp(t) = |ψp(t)⟩ ⟨ψp(t)|. A discrete quantum-walk PageRank was proposed
in [40], and CTQW and quantum-stochastic-walk (QSW) versions of PageRank were
proposed in [28,55].

4.3. Random-walk betweenness centrality. The betweenness centrality of a
node quantifies the extent to which it lies on short paths that connect other nodes [36].
To formulate notions of betweenness centrality that are based on classical [35] and
quantum random walks, we denote the transition-tensor components for a random
walk with absorbing node ℓ in all layers by [53]

(4.10) (Tℓ)
iα
jβ =

{
0 if i = ℓ

T iα
jβ if i ̸= ℓ .

Because ℓ is an absorbing node, a random walk with transition-tensor components
(4.10) stops after reaching node ℓ. Alternatively, one can define an absorbing tran-
sition tensor in terms of node-layer tuples (ℓ, γ) and corresponding transition prob-

abilities (T(ℓ,γ))
iα

jβ
in a way that is analogous to (4.10).2 Given M realizations of a

classical or quantum random walk, the ensemble average of the number of times that
a random walk that starts at node-layer (o, σ) with destination ℓ passes through (j, β)
at time t is

(4.11) (τℓ)
oσ
jβ = lim

M→∞

1

M

M∑
m=1

∫ ∞

0

zoσjβ (t,m) dt ,

where zoσjβ (t,m) dt = 1 if the random-walk realization m ∈ {1, . . . ,M} is at (j, β) in
the time interval [t, t+ dt) and zoσjβ (t,m) dt = 0 otherwise. Using

(4.12) z̄oσjβ (t) =
1

M

M∑
m=1

zoσjβ (t,m)

yields

(4.13) (τℓ)
oσ
jβ =

∫ ∞

0

z̄oσjβ (t) dt .

2Centralities that are based on nodes and centralities that are based on node-layers are relevant
for different problems. It is important to consider the scientific question that one is asking. For
example, one can ask if a person is important on social media (and hence consider a node) or
alternatively ask if a person has an important Twitter account (and hence consider a node-layer).
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2710 LUCAS BÖTTCHER AND MASON A. PORTER

Note that (τℓ)
oσ
jβ diverges for j = ℓ because z̄oσjβ = 1 after a walker reaches the absorbing

node ℓ at some finite time.3 Averaging over all possible starting layers σ and adding
the number of times that a walk passes through node j in any of the K layers gives

(4.14) (τℓ)
o
j =

1

K
(τℓ)

oσ
jβu

βuσ ,

where all components of the contravariant and covariant order-1 tensors uβ and uσ
are equal to 1. After averaging over all possible origins o and destinations ℓ, the
random-walk betweenness centrality of node j is

(4.15) τj =
1

N(N − 1)

N∑
ℓ=1

(τℓ)
o
juo .

We now formulate CRW and quantum random-walk betweenness centralities. Let
τ cj denote the CRW betweenness centrality of node j, and let τqj denote the quan-
tum random-walk betweenness centrality of node j. To determine the occupation
probability z̄oσjβ (t) for CRW and CTQW dynamics with absorbing transition-tensor

components (Tℓ)
iα
jβ , we modify the classical and quantum evolution equations (3.5)

and (3.6). Reformulating (3.3) for an absorbing walk yields

(4.16)
d

dt
pjβ(t) = −


−Aℓγ

jβD
iα
ℓγ

−1
piα(t) if j = ℓ and i ̸= ℓ

δiαjβpiα(t)−Aℓγ
jβD

iα
ℓγ

−1
piα(t) if j ̸= ℓ and i ̸= ℓ

0iαjβpiα(t) if i = ℓ ,

where 0iαjβ is a tensor with entries that are equal to 0.
For our subsequent numerical calculations, we work in flattened notation and

write the corresponding components of the classical absorbing-walk Hamiltonian with
absorbing node-layer ℓ̃ as

[
(Hℓ̃)

a
c

]
ĩj̃
=

{
(Hc)ĩj̃ if j̃ ̸= ℓ̃

0 if j̃ = ℓ̃ .
(4.17)

Recall that, in flattened notation, the matrix element −(Hc)ĩj̃ (with ĩ ̸= j̃) describes

the movement of a classical random walker from node-layer j̃ to node-layer ĩ. We set[
(Hℓ̃)

a
c

]
ĩj̃
= 0 for j̃ = ℓ̃ because a random walker that reaches an absorbing node-layer

cannot leave it anymore.
Analogously to the classical absorbing-walk Hamiltonian (4.17), we write the

quantum absorbing-walk Hamiltonian with absorbing node-layer ℓ̃ as

[
(Hℓ̃)

a
q

]
ĩj̃
=

{
(Hq)ĩj̃ if j̃ ̸= ℓ̃

0 if j̃ = ℓ̃ .
(4.18)

Because of the absorbing nature of this random walk, (Hℓ̃)
a
q is not Hermitian. CTQWs

with non-Hermitian Hamiltonians have been used as models of excitations that decay
radiatively or via exciton recombination. See [32, 33, 62] for examples of applications
of non-Hermitian Hamiltonians to systems with absorption. One application of such

3Such a singularity also occurs in the discrete-time formulation of random-walk betweenness
centrality of [53], but this issue was not discussed in that paper.
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models is as a phenomenological description of how excitations in light-harvesting
systems propagate until they become trapped in reaction centers (i.e., absorbing
nodes) [62].

To determine the classical (τ c) and quantum (τ q) betweenness centralities using
the Hamiltonians (4.17) (for the classical case) and (4.18) (for the quantum case), we
employ a uniform walker distribution as an initial distribution for p(t) and |ψ(t)⟩,
respectively. Using a uniformly distributed initial walker configuration allows us to
determine the evolution of absorbing CRWs and CTQWs for different initial node-
layer configurations in parallel. This reduces the computational effort that is necessary
to take a mean over all N initial walker positions. (See the summation over σ and o
in (4.14) and (4.15).)

We now briefly summarize the steps that are necessary to compute the classical
betweenness centrality τ c.

In flattened notation, we identify z̄ with e−(Hℓ̃)
a
ctp(0) and reformulate (4.13)–

(4.15) as

τ c = lim
s→0

1

N (N − 1)

∑
ℓ̃

∫ ∞

0

e−ste−(Hℓ̃)
a
ctp(0) dt

= lim
s→0

1

N (N − 1)

∑
ℓ̃

[
s1+ (Hℓ̃)

a
c

]−1
p(0) ,

(4.19)

where we have inserted the prefactor e−st (with s > 0) because (Hℓ̃)
a
c is a singular

matrix and one cannot solve the integral in (4.13) in closed form for general networks.
This formalism also avoids the divergence of the integral in (4.13) that arises from the
presence of an absorbing state. The sum in (4.19) is over all node-layers ℓ̃, and the
integral over e−ste−(Hℓ̃)

a
ct yields the resolvent [s1+ (Hℓ̃)

a
c ]

−1 [41]. The discrete-time
formulation of random-walk betweenness centrality in [53] results in an expression that
is structurally similar to the continuous-time formulation of random-walk betweenness
centrality in (4.19).

To calculate the quantum betweenness τ q, one needs to compute the node-
occupation probabilities in (4.13) in terms of the squares of corresponding wavefunc-
tion entries. This yields

τq
j̃
=

1

N (N − 1)

∑
ℓ̃

∫ ∞

0

⟨j̃|ρℓ̃(t)|j̃⟩ dt ,(4.20)

where ρℓ̃(t) = |ψℓ̃(t)⟩ ⟨ψℓ̃(t)| is the density matrix of the quantum absorbing walk with

absorbing node-layer ℓ̃. We use |ψℓ̃(t)⟩ = e−i(Hℓ̃)
a
qt |ψ(0)⟩ and rewrite (4.20) as

(4.21)

τq
j̃
=

1

N (N − 1)

∑
ℓ̃

∫ ∞

0

∑
m,n

e−i(λ(ℓ̃)
m −λ(ℓ̃)

n )t ⟨e(ℓ̃)m |ψ(0)⟩ ⟨ψ(0)|e(ℓ̃)n ⟩ ⟨j̃|e(ℓ̃)m ⟩ ⟨e(ℓ̃)n |j̃⟩ dt ,

where e
(ℓ̃)
m and λ

(ℓ̃)
m , respectively, are the eigenvectors and corresponding eigenvalues

of (Hℓ̃)
a
q. That is,

(4.22) (Hℓ̃)
a
qe

(ℓ̃)
m = λ(ℓ̃)m e(ℓ̃)m .

The integral in (4.21) diverges if λ
(ℓ̃)
m −λ(ℓ̃)n = 0. Therefore, as with CRW betweenness
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2712 LUCAS BÖTTCHER AND MASON A. PORTER

Fig. 2. Influence of the regularization parameter s on classical and quantum betweenness
centralities. We show classical (orange crosses) and quantum (blue disks) betweenness centralities
for (a) s = 101, (b) s = 10−1, (c) s = 10−3, and (d) s = 10−5 in (4.19) and (4.23) for a multilayer
network with two Erdős–Rényi (ER) layers and N = 50 nodes in each layer. Interlayer edges
connect each node-layer with its counterpart in the other layer. The expected mean degree in one
layer is 2, and the expected mean degree in the other layer is 3. The dashed black line indicates
the value [sN (N − 1)]−1 ≈ 10−4/s. The product N (N − 1) is approximately 10−4 because the total
number of node-layers in the multilayer network is N = 100. As the initial condition, we use a
uniform distribution over all node-layers. In this figure and in all subsequent figures, the numerical
values along the vertical axes are multiplied by the number in parentheses (whenever there is one).

centrality (4.19), we incorporate an additional prefactor e−st (with s > 0) and obtain

(4.23) τq
j̃
= lim

s→0

1

N (N − 1)

∑
ℓ̃

∑
m,n

⟨e(ℓ̃)m |ψ(0)⟩ ⟨ψ(0)|e(ℓ̃)n ⟩

s+ i(λ
(ℓ̃)
m − λ

(ℓ̃)
n )

⟨j̃|e(ℓ̃)m ⟩ ⟨e(ℓ̃)n |j̃⟩ .

Observe the similarity in the mathematical structures of (4.21) and (4.23). In the
quantum case (4.23), product states emerge as a result of mixing wavefunction com-
ponents.

For our numerical calculations in section 5, we compute the classical (4.19) and
quantum (4.23) random-walk betweenness centralities with a value of s that is small
enough so that the “damping” term e−st is not the dominant mechanism in the
evolution of the classical and quantum absorbing random walks. As we detail in the
next paragraph, the value of s also needs to be large enough so that classical walkers
do not get trapped in absorbing states.

To study the influence of different values of s on continuous-time random-walk
betweenness centrality, we calculate τ c (see (4.19)) and τ q (see (4.23)) for s = 101,
s = 10−1, s = 10−3, and s = 10−5 and a multilayer network with two G(N, p) ER
layers and N = 50 nodes in each layer (see Figure 2). The total number of node-
layers is thus N = 100. A layer’s connection probability p determines the expected
mean degree of that layer. As the initial condition for both the classical and quantum
absorbing random walks, we use a uniform distribution over all node-layers. That is,
p(0) = N−1(1, 1, . . . , 1)⊤ and |ψ(0)⟩ = N−1/2(1, 1, . . . , 1)⊤. For these initial distri-
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butions and in the limit s → ∞ (i.e., with “strong damping”), τq
j̃
and τ c

j̃
approach

[sN (N − 1)]−1 for each j̃. In Figure 2, we indicate this limiting value with a dashed
black line. For s = 101, we observe that the values of classical and quantum between-
ness centralities are very close to the limiting value (see Figure 2(a)). For s = 10−1,
the values of both centrality measures increase with the node degree (see Figure 2(b)).
For progressively smaller values of s, CRW betweenness centrality again approaches
the limiting value [sN (N−1)]−1 (see Figure 2(c,d)) because the classical walks become
trapped in absorbing states. For small values of s, quantum random-walk between-
ness centrality is affected primarily by the magnitude of s because the mixing of the
wavefunction components in (4.23) suppresses the effect of the absorbing states. As
we illustrated in Figure 2, a value of s = 10−1 is useful for calculating random-walk
betweenness centrality. For the chosen initial conditions, substantially larger values of
s yield strong damping. This leads to uniform node-occupation statistics in both the
classical and the quantum random walks. If s is substantially smaller than 10−1, the
trapping of classical walks in absorbing states also leads to a uniform node-occupation
distribution that one cannot use to distinguish between different nodes.

4.4. Random-walk closeness centrality. The closeness centrality of a node
is based on the mean distance between that node and other nodes. One can compute
some types of closeness centrality using absorbing random walks [36]. The probability
that a random walker reaches the absorbing node ℓ at time h ≤ t is [53]

(4.24) (qℓ)
oσ(h ≤ t) = uoσ − z̄oσjβ (t)u

jβ ,

where z̄oσjβ (t) is given by the expression in (4.12). The probability that the first-passage
time (i.e., the time that a random walker takes to reach node ℓ) occurs in the interval
[t, t+ dt) is

(qℓ)
oσ(h = t)dt = lim

∆t→0
[(qℓ)

oσ(h ≤ t+∆t)− (qℓ)
oσ(h ≤ t)]

= − lim
∆t→0

[
z̄oσjβ (t+∆t)ujβ − z̄oσjβ (t)u

jβ
]

= − lim
∆t→0

[
z̄oσjβ (t+∆t)− z̄oσjβ (t)

∆t

]
ujβ∆t

= −z̄′oσjβ (t)ujβdt ,

(4.25)

where z̄′oσjβ (t) is the derivative of z̄oσjβ (t) with respect to time. After determining
(qℓ)

oσ(h = t)dt, we compute the mean first-passage time of a random walker that
starts at node-layer (o, σ) and stops after reaching node ℓ in any layer. We obtain

(Hℓ)
oσ =

∫ ∞

0

t(qℓ)
oσ(h = t) dt = −

∫ ∞

0

tz̄′oσjβ (t)ujβdt

= −tz̄oσjβ (t)ujβ
∣∣∞
0

+

∫ ∞

0

z̄oσjβ (t)u
jβdt

= − lim
t→∞

tz̄oσjβ (t)u
jβ +

∫ ∞

0

z̄oσjβ (t)u
jβdt

= (τℓ)
oσ
jβu

jβ .

(4.26)

In the last equality, we used the fact that z̄oσjβ (t) vanishes for long times because every
walker is eventually absorbed by node ℓ. Consequently, the mean first-passage time
(Hℓ)

oσ is equal to (τℓ)
oσ
jβu

jβ and is thus related to random-walk betweenness centrality
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2714 LUCAS BÖTTCHER AND MASON A. PORTER

(see (4.13)). For discrete-time CRWs, an analogous relationship between the mean
first-passage time and random-walk betweenness centrality was derived in [53].

Averaging over (Hℓ)
oσ for all nodes and layers yields the mean first-passage time

hℓ =
1

(N − 1)K
(Hℓ)

oσuoσ +
1

N
π−1
ℓ

=
1

(N − 1)K
(τℓ)

oσ
jβu

jβuoσ +
1

N
π−1
ℓ ,

(4.27)

where πℓ is the (classical or quantum) random-walk occupation probability of node
ℓ. Because of the absorbing nature of the random walk that underlies the definition
of (τℓ)

oσ
jβ , we explicitly include the mean return time π−1

ℓ in (4.27). The random-
walk closeness centrality of node ℓ is 1/hℓ. Equation (4.27) thus connects closeness,
betweenness, and occupation centralities.

As with random-walk betweenness centrality, the random-walk closeness central-
ity h−1

ℓ is based on the occupation probability z̄oσjβ (t) of an absorbing random walk.
We proceed as in section 4.3 and compute this probability, in flattened notation, using
(4.13), (4.19), and (4.23). We write

hℓ̃ =
1

N − 1
(τℓ̃)

õ
j̃
uj̃uõ +

1

N
π−1

ℓ̃
.(4.28)

In flattened notation, πℓ̃ is given by p∗
ℓ̃
in the classical case (see (4.8)) and q∗

ℓ̃
in

the quantum case (see (4.3)). In Table 1, we summarize the classical and quantum
multilayer random-walk centrality measures that we have discussed.

5. Numerical examples. In this section, we present some numerical examples
of the random-walk centrality measures from section 4. See Table 1 for a summary
of these centralities. We compare these classical and quantum random-walk central-
ities for two types of synthetic and empirical multilayer networks. In our numerical
examples (and when it is convenient for clarity), we often use the term “node” both
for the entities in a network and for their associated node-layers.

Our first example of a synthetic multilayer network consists of two G(N, p) ER
layers with N = 1000 nodes each and p = 0.04 and p = 0.06, respectively. The ex-
pected mean degree of one layer is 40, and the expected mean degree of the other layer
is 60. Our second synthetic multilayer network consists of one G(N, p) ER layer with
p = 0.04 and one Barabási–Albert (BA) layer. The former has an expected mean de-
gree of 40. To construct the latter, we start with two isolated nodes and iteratively add
new nodes until there are N = 1000 nodes. Each new node has 2 edges that connect
to existing nodes using linear preferential attachment [36]. Both layers have N = 1000
nodes. In both of these examples, each node-layer is adjacent to its counterpart in the
other layer but not to any other node-layers in the other layer. Consequently, both
synthetic multilayer networks are multiplex networks (see section 2).

We also calculate centralities for two empirical multilayer networks. The first
one is the Lazega Law Firm network [1, 27], which has 71 nodes and 2571 edges. It
has three different edge types, which encode different relationships between partners
and associates of a corporate law firm. The second empirical multilayer network
is the London metropolitan (“Tube”) network [2, 11], which has 369 nodes and 441
edges. It also has three edge types, which encode connections within the three layers
(Underground, Overground, and Docklands Light Railway) of London metro stations.
As in the synthetic networks, in each of these examples, each node-layer is adjacent
to its counterpart in the other layer (and not to any other node-layers in the other
layer).
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Fig. 3. Classical and quantum occupation centrality and PageRank centrality on synthetic
multilayer networks. We show classical (orange crosses) and quantum (blue disks) random-walk
centralities (with occupation centrality in panels (a,b) and PageRank centrality with a = 0.85 in
panels (c,d)) for two multilayer networks with two layers and N = 1000 nodes in each layer.
(a,c) The multilayer network consists of two ER layers and interlayer edges that connect each
node-layer with its counterpart in the other layer. The expected mean degree in one layer is 40,
and the expected mean degree in the other layer is 60. (b,d) The multilayer network consists of one
ER layer and one BA layer. Interlayer edges connect each node-layer with its counterpart in the
other layer. The expected mean degree of the ER layer is 40. In the BA layer, we start with two
isolated nodes and iteratively add new nodes until there are N = 1000 nodes. Each new node has
2 edges that connect to existing nodes using linear preferential attachment. As the initial condition
for each calculation, we use a uniform distribution over all node-layers.

To illustrate the results of our calculations, we plot node-layer centralities versus
node-layer degrees. In Figure 3(a,b), we show our results for classical and quantum
random-walk occupation centralities on our synthetic multilayer networks. The linear
dependence of the classical occupation centrality on node-layer degree that we observe
in our numerical results is explained by equation (4.2). Unlike classical walks, quan-
tum walks do not approach a stationary state and do not satisfy (4.2). Instead, their
long-time behavior is characterized by the long-time mean (4.3). Our results in Fig-
ure 3(a,b) suggest that the node-layer occupation properties of CTQWs are not cap-
tured by node-layer degree alone (so, in particular, they are not proportional to node-
layer degree). These properties also depend on other structural features of the net-
works. The minimum and maximum degrees of the BA layer of the multilayer network
in Figure 3(b,d) are 2 and 52, respectively. In the network’s ER layer, the minimum
and maximum degrees are 21 and 60, respectively. In Figure 3(d), we observe that
some of the node-layers (specifically, those with degrees that are smaller than 21) in
the BA layer have larger classical and quantum PageRank centralities than some of the
node-layers in the ER layer. These differences are associated with the deviations from
monotonic behavior of classical occupation centrality that we observe in Figure 3(b).

In our two synthetic multilayer networks, we observe more pronounced differ-
ences between classical and quantum occupation centralities than was the case for the
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Fig. 4. Classical and quantum random-walk betweenness centrality and random-walk closeness
centrality on synthetic multilayer networks. We show classical (orange crosses) and quantum (blue
disks) random-walk centralities (with betweenness centrality in panels (a,b) and closeness centrality
in panels (c,d)) for two multilayer networks with two layers and N = 1000 nodes in each layer.
In the resolvent (see Table 1), we set s = 0.01. (a,c) The multilayer network consists of two ER
layers and interlayer edges that connect each node-layer with its counterpart in the other layer. The
expected mean degree in one layer is 40, and the expected mean degree in the other layer is 60. (b,d)
The multilayer network consists of one ER layer and one BA layer. Interlayer edges connect each
node-layer with its counterpart in the other layer. The expected mean degree of the ER layer is
40. In the BA layer, we start with two isolated nodes and iteratively add new nodes until there are
N = 1000 nodes. Each new node has 2 edges that connect to existing nodes using linear preferential
attachment. As the initial condition for each calculation, we use a uniform distribution over all
node-layers.

monolayer ER and BA networks that were studied in [14]. Additionally, we observe
that the differences between these two formulations of occupation centrality are larger
in the synthetic multilayer network that includes a BA layer than in the network that
consists of two ER layers. This arises from the large degree heterogeneity in the BA
layer [14].

In Figure 3(c,d), we show the occupation probabilities for classical and quantum
PageRank with a teleportation probability of 1−a = 0.15. The classical and quantum
occupation statistics are almost identical, which differs starkly from our observations
for occupation centrality in Figure 3(a,b). This observation suggests that nonzero
teleportation probabilities counteract differences in the node-occupation statistics be-
tween classical and quantum walks. In the limit a→ 0 (in which there is teleportation
dynamics only), classical and quantum PageRank yield the same occupation statistics
because all nodes are occupied with the same probability.

To further compare the classical and quantum random-walk centralities on multi-
layer networks, we also compute random-walk betweenness and random-walk closeness
for our two synthetic multilayer networks. In Figure 4(a,b), we show our results for
betweenness centrality and observe notable differences in our two synthetic multilayer
networks. For the multilayer network with a BA layer, the quantum random-walk
betweennesses of small-degree nodes is larger than their CRW betweennesses. The
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Fig. 5. Correlations between random-walk and geodesic centralities on synthetic multilayer
networks. We show the correlations between random-walk (“rw”) and geodesic betweenness seness
on two multilayer networks with two layers and N = 1000 nodes in each layer. We use rc and
rq to denote the numerical values of the Pearson correlation coefficients for classical and quantum
centralities, respectively. We indicate the classical and quantum random-walk centralities using
orange crosses and blue disks, respectively. In the resolvent (see Table 1), we set s = 0.01. (a,c) The
multilayer network consists of two ER layers with interlayer edges that connect each node-layer with
its counterpart in the other layer. The expected mean degree in one layer is 40, and the expected
mean degree in the other layer is 60. (b,d) The multilayer network consists of one ER layer and
one BA layer. Interlayer edges connect each node-layer with its counterpart in the other layer. The
expected mean degree of the ER layer is 40. In the BA layer, we start with two isolated nodes and
iteratively add new nodes until there are N = 1000 nodes. Each new node has 2 edges that connect
to existing nodes using linear preferential attachment. As the initial condition for each calculation,
we use a uniform distribution over all node-layers.

opposite holds for most nodes with degrees that are at least 26 (see Figure 4(b)).
Our computation of closeness centralities in Figure 4(c,d) illustrates that classical
and quantum random-walk closeness centralities quantify node-layer importance in
the examined networks in a way that is similar to occupation centrality (see Fig-
ure 3(a,b)). This observation is intuitive because occupation centrality appears in
the definition (4.28) of random-walk closeness centrality. One can also calculate be-
tweenness and closeness centralities that are based on shortest paths instead of on
random walks. Such geodesic centrality measures give an alternative notion of be-
tweenness and closeness in networks. In Figure 5, we show the correlations between
the random-walk and geodesic versions of these centralities for our synthetic multilayer
networks. We observe that the random-walk and geodesic centralities are positively
correlated with each other. For the multilayer network with two ER layers, the Pear-
son correlation coefficients are 0.96 (classical) and 0.83 (quantum) for betweenness
centrality and 0.96 (classical) and 0.96 (quantum) for closeness centrality. For the
multilayer network with an ER layer and a BA layer, the Pearson correlation coef-
ficients are 0.77 (classical) and 0.94 (quantum) for betweenness centrality and 0.99
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Fig. 6. Classical and quantum occupation centrality and PageRank centrality on empirical
multilayer networks. We show classical (orange crosses) and quantum (blue disks) random-walk
centralities (with occupation centrality in panels (a,b) and PageRank centrality for a = 0.85 in pan-
els (c,d)) for two empirical multilayer networks. (a,c) The Lazega Law Firm network, which has
71 nodes and 2571 edges. It has three edge types, which represent different relationships between
partners and associates of a corporate law firm. (b,d) A multilayer network of the London met-
ropolitan (“Tube”) transportation network, which has 369 nodes and 441 edges. It has three edge
types, which encode connections within the three layers (Underground, Overground, and Docklands
Light Railway) of London metro stations. In both multilayer networks, interlayer edges connect each
node-layer with its counterpart in the other layer. As the initial condition for each calculation, we
use a uniform distribution over all node-layers.

(classical) and 0.67 (quantum) for closeness centrality. The p-values for all correlation
coefficients are smaller than (single) machine precision.

We now calculate classical and quantum occupation, PageRank, betweenness, and
closeness centralities for our two empirical networks. In Figure 6, we show the results
of our numerical calculations of occupation and PageRank centralities and observe
that the differences between these classical and quantum centralities are smaller than
those that we observed for the synthetic multilayer networks in Figure 3. Similarly,
the differences between classical and quantum betweenness and closeness centralities
that we show in Figure 7 are smaller than those that we observed for the synthetic
multilayer networks in Figure 4.

As with our two synthetic multilayer networks, we examine the correlations be-
tween geodesic betweenness and closeness and their random-walk counterparts (see
Figure 8). For the Lazega Law Firm network, the Pearson correlation coefficients
are 0.87 (classical) and 0.85 (quantum) for betweenness centrality and 0.95 (classical)
and 0.92 (quantum) for closeness centrality. For the London Tube transportation net-
work, the Pearson correlation coefficients are 0.74 (classical) and 0.74 (quantum) for
betweenness centrality and 0.21 (classical) and 0.21 (quantum) for closeness centrality.
The p-values for all correlation coefficients are smaller than (single) machine precision.

We find that the large differences between classical and quantum random-walk
occupation centrality are associated with a large degree heterogeneity in the layers of
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Fig. 7. Classical and quantum random-walk betweenness and random-walk closeness on empir-
ical multilayer networks. We show the classical (orange crosses) and quantum (blue disks) random-
walk centralities (with betweenness centrality in panels (a,b) and closeness centrality in panels (c,d))
for two empirical multilayer networks. In the resolvent (see Table 1), we set s = 0.01. (a,c) The
Lazega Law Firm network, which has 71 nodes and 2571 edges. It has three edge types, which encode
different relationships between partners and associates of a corporate law firm. (b,d) A multilayer
network of the London metropolitan (“Tube”) network, which has 369 nodes and 441 edges. It has
three edge types, which encode connections within the three layers (Underground, Overground, and
Docklands Light Railway) of London metro stations. In both multilayer networks, interlayer edges
connect each node-layer with its counterpart in the other layer. As the initial condition for each
calculation, we use a uniform distribution over all node-layers.

the examined networks. These observations are similar to the results in [14]. However,
our results for the multilayer network with a BA layer contrast starkly with those
of which we are aware. Specifically, the difference between classical and quantum
random-walk occupation centrality in this synthetic multilayer network is significantly
larger than those that were reported for monolayer networks in [14,59].

6. Conclusions and discussion. We formulated and analyzed classical and
quantum continuous-time random-walk centrality measures in multilayer networks.
We have three main contributions. First, we generalized the classical discrete-time
random-walk centralities of [53] to continuous time. Second, we introduced and stud-
ied continuous-time quantum-walk generalizations of occupation, PageRank, between-
ness, and closeness centralities. Third, we formulated continuous-time classical and
quantum centrality measures for both monolayer and multilayer networks. Our re-
sults complement earlier studies that focused on quantum occupation [19, 46, 48, 59]
and PageRank [28,55] centrality measures on monolayer networks.

In continuous time, the evolution of the underlying classical and quantum walks is
described by different Hamiltonians, which we summarized in Table 1. One can derive
other classical and quantum continous-time random-walk centralities by modifying
these Hamiltonians and tracking different properties of absorbing random walks, which
are what we used to define random-walk betweenness and closeness.
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Fig. 8. Correlations between random-walk and geodesic centralities on empirical multilayer
networks. We show the correlations between random-walk (rw) and geodesic betweenness and close-
ness on two empirical multilayer networks. We use rc and rq to denote the numerical values of the
Pearson correlation coefficients for classical and quantum centralities, respectively. We denote the
classical and quantum random-walk centralities using orange crosses and blue disks, respectively. In
the resolvent (see Table 1), we set s = 0.01. (a,c) The Lazega Law Firm network, which has 71
nodes and 2571 edges. (b,d) A multilayer network of the London metropolitan (“Tube”) network
with 369 nodes and 441 edges. It has three edge types, which encode connections in the three lay-
ers (Underground, Overground, and Docklands Light Railway) of London metro stations. In both
of these multilayer networks, interlayer edges connect each node-layer with its counterpart in the
other layer. As the initial condition for each calculation, we use a uniform distribution over all
node-layers.

There are various interesting ways to build on our work. One worthwhile di-
rection is to develop multilayer extensions of generalized versions of PageRank [15]
with various teleportation strategies and to compare classical and quantum versions
of these generalizations. One can use and adapt existing multilayer generalizations,
such as multilayer personalized PageRank [22] (in which the teleportation strategy
depends on the initial location of a random walker) and multilayer versions of Page-
Rank that include both node teleportation and layer teleportation [56]. One can also
generalize other versions of PageRank, such as ones with “smart teleportation” [26],
to multilayer networks and then compare classical and quantum versions of such gen-
eralizations. Another important research direction is to consider more general types
of quantum states. We considered pure quantum states in our derivations and nu-
merical experiments, and it will be interesting to explore the effects of entangled and
mixed states on the node-occupation properties of quantum walks. One can also use
the framework of quantum stochastic walks (QSWs) [59, 60] to interpolate between
classical and quantum walks, and it is worthwhile to study QSWs on multilayer net-
works.

Acknowledgments. We thank Sascha Wald for helpful discussions.
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2722 LUCAS BÖTTCHER AND MASON A. PORTER

REFERENCES

[1] Lazega Law Firm Network, https://networks.skewed.de/net/law firm, 2020.
[2] London Transport Network, https://networks.skewed.de/net/london transport, 2020.
[3] A. Aleta and Y. Moreno, Multilayer networks in a nutshell, Annu. Rev. Condens. Matter

Phys., 10 (2019), pp. 45–62.
[4] E. C. Baek, M. A. Porter, and C. Parkinson, Social network analysis for social neurosci-

entists, Soc. Cogn. Affect. Neurosc., 16 (2021), pp. 883–901.
[5] S. D. Berry and J. B. Wang, Quantum-walk-based search and centrality, Phys. A, 82 (2010),

042333.
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ERRATUM: CLASSICAL AND QUANTUM RANDOM-WALK
CENTRALITY MEASURES IN MULTILAYER NETWORKS\ast 

LUCAS B\"OTTCHER\dagger AND MASON A. PORTER\ddagger 

Abstract. This erratum clarifies that equations (4.21) and (4.23) in B\"ottcher and Porter [SIAM
J. Appl. Math., 81 (2021), pp. 2704--2724] assume that the underlying evolution operator has an
orthonormal basis. The results and conclusions of the paper are unaffected by this clarification.

Key words. multilayer networks, centrality, classical random walks, quantum random walks
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The derivation of equations (4.21) and (4.23) in [1] assumes implicitly that the
underlying evolution operator has an orthonormal basis. We used equation (4.23)
and a variant of it in our numerical calculations of quantum-walk betweenness and
closeness, respectively. In [1], we stated that we used equations (4.19) and (4.23) to
calculate the mean first-passage time in random-walk closeness centrality (4.28). To
clarify this statement, the equations that we employed for (4.28) are close analogues of
(4.19) and (4.23). Specifically, unlike in equations (4.19) and (4.23), equation (4.28)
does not sum over all absorbing nodes. Instead, to compute the mean first-passage
time in equation (4.28), we sum over all possible origins and intermediate walker
positions.

The starting point for the derivation of equation (4.23) is the quantum absorbing-
walk Hamiltonian (\scrH \~\ell )

a
q in equation (4.18). The subscript \~\ell indicates that node-layer

\~\ell is absorbing. Although the operator (\scrH \~\ell )
a
q is non-Hermitian, one can use it in

the quantum betweenness-centrality definition (4.20) to describe the evolution of the
initial state | \psi (0)\rangle according to | \psi \~\ell (t)\rangle = e - i(\scrH \~\ell )

\mathrm{a}
\mathrm{q}t| \psi (0)\rangle . To evaluate equation (4.20),

we derived equations (4.21) and (4.23) and assumed implicitly that the underlying
evolution operator has a set of orthonormal eigenvectors. In general, a non-Hermitian
operator need not (and usually does not) have an orthonormal basis, so one should
use a Hermitian operator in equations (4.21) and (4.23).

In our numerical experiments, we generated a Hermitian operator by symmetriz-
ing the quantum absorbing-walk Hamiltonian. That is, we treated the upper triangu-
lar part of the Hamiltonian as equal to the transpose of its lower-triangular part using
the library numpy.linalg.eigh (numpy version 1.23). Existing implementations of
many eigenvalue-problem solvers, such as scipy.linalg.eigh (scipy version 1.9.1)
and numpy.linalg.eigh (numpy version 1.23), for Hermitian matrices treat asym-
metric matrices as symmetric matrices without producing an error message. They
thus treat non-Hermitian matrices as Hermitian matrices. Although the convention
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in libraries such as numpy and scipy is that eigh is reserved for Hermitian matri-
ces and eig is used to solve eigenvalue problems that involve both Hermitian and
non-Hermitian matrices, there exist libraries that deviate from this convention. For
example, the function ulab.linalg.eig (ulab version 4.0.0) produces an error mes-
sage if the input includes an asymmetric matrix.

As a brief clarification, we also note that equation (4.24) refers to any time h \leq t
(and not to a specific time h).
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