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In the study of infectious diseases on networks, researchers calculate epidemic thresholds to help forecast
whether or not a disease will eventually infect a large fraction of a population. Because network structure
typically changes with time, which fundamentally influences the dynamics of spreading processes and in
turn affects epidemic thresholds for disease propagation, it is important to examine epidemic thresholds in
models of disease spread on temporal networks. Most existing studies of epidemic thresholds in temporal
networks have focused on models in discrete time, but most real-world networked systems evolve continu-
ously with time. In our work, we encode the continuous time-dependence of networks in the evaluation of
the epidemic threshold of a susceptible–infected–susceptible (SIS) process by studying an SIS model on
tie-decay networks. We derive the epidemic-threshold condition of this model, and we perform numerical
experiments to verify it. We also examine how different factors—the decay coefficients of the tie strengths
in a network, the frequency of the interactions between the nodes in the network, and the sparsity of the
underlying social network on which interactions occur—lead to decreases or increases of the critical val-
ues of the threshold and hence contribute to facilitating or impeding the spread of a disease. We thereby
demonstrate how the features of tie-decay networks alter the outcome of disease spread.

Keywords: temporal networks; tie-decay networks; epidemic thresholds; network epidemiology.

1. Introduction

Infectious diseases spread on social networks, and there is thus much research on the spread of diseases
on networks [1–3]. The simplest type of network is a graph, in which each node represents an entity (e.g.
an individual who is prone to infection) and each edge represents a tie (such as a social relationship)
between two entities. Disease transmission occurs across edges. Each node has an associated state—such
as susceptible, infected, recovered, zombified, or something else—and different states are appropriate
for different diseases. Each state is called a ‘compartment’, and models of infectious diseases with such
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compartments are called ‘compartmental models’ [4]. Common compartmental models of infectious dis-
eases include susceptible–infected–susceptible (SIS) processes, susceptible–infected–recovered (SIR)
processes, and susceptible–exposed–infected–recovered (SEIR) processes. By modeling the contact pat-
terns of a set of individuals as a network, one can examine the spread of an infectious disease on that
network. This, in turn, helps improve forecasts of disease spread. For example, researchers have used
network models to study the spread of COVID-19 [5, 6]. Such work has important policy implications
[7, 8].

Many studies of the spread of infectious diseases on social networks aim to determine whether a
disease will die out or spread to a large fraction of a population. To do this, scholars often try to calculate
an epidemic threshold to give a condition that characterizes whether or not a disease eventually leads to
a large outbreak in a population [1, 3]. The critical value of an epidemic threshold depends on the choice
of compartmental model, the values of the parameters of the model, and the structure of the network on
which a disease spreads. There are several theoretical approaches for estimating the epidemic threshold of
a model of disease spread on a network. For example, one can use a heterogeneous mean-field theory [9], a
quenched mean-field theory [10, 11], or a dynamic message-passing theory [12]. These three approaches
tend to work well for forecasting the outcome of the spread of a disease on a large and sparse network
[13], and they have been used to study how various factors (e.g. degree–degree correlations [14] and
clustering [15]) can affect an epidemic threshold.

Early research on epidemic thresholds focused on time-independent contact networks with specific
topological structures [16, 17], but real-world contact networks evolve with time because of seasonal
changes in human interaction patterns and in response to various situations (such as illness, policies that
ask people to ‘shelter in place’ during a pandemic, and so on) [18–20]. Such temporal changes in network
structure can significantly impact the spread of a disease, and an important area of study is the dynamics
of disease propagation on temporal networks [21–23]. Leitch et al. [22] recently reviewed research on
estimating epidemic thresholds of disease dynamics on different models of temporal networks. Existing
approaches include neighbor-exchange models [24], activity-driven models [25, 26], and models that use
a sequence of network snapshots [27, 28]. Different approaches can often result in the same epidemic
threshold. For example, Aditya et al. [27] and Valdano et al. [28] used different derivations to obtain
the same epidemic threshold for an SIS process on a temporal network. We discuss and compare their
approaches in Section 3. Some recent work has examined epidemic thresholds in certain continuous-time
temporal networks. For instance, Valdano et al. [29] extended the approach in [28] to a continuous-time
setting in the special case in which adjacency matrices are ‘weakly commuting’ (specifically, when an
adjacency matrix at a particular time commutes with an aggregated adjacency matrix up until that time).

Recently, Ahmad et al. [30] introduced a type of temporal network that they called a tie-decay
network. Their approach, which draws on conceptual ideas from sociology [31] and has some features
in common with the model of social-network evolution in [32], takes into account the fact that social
relations experience continuous changes and decay over time. A tie-decay network distinguishes between
‘ties’ and ‘interactions’: a tie is a social relationship between two entities that evolves continuously with
time, whereas an interaction is some type of instantaneous contact between two entities. Unlike in most
temporal network models, in which time has a discrete nature, a tie-decay network models ties between
agents in a continuous manner. A tie strengthens whenever there is an interaction between two entities,
and it weakens between such interactions. For example, perhaps the strength of a tie decays exponentially
following an interaction. This modelling assumption also is common in point-process models such as
Hawkes processes [33, 34].

Because a tie-decay network is a type of temporal network with distinctive features, it is useful to
investigate how standard dynamical systems, such as compartmental models of infectious diseases [4],
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are affected by the structure of a tie-decay network. Studying a standard model (such as an SIS model of
disease spread) on a tie-decay network allows one to examine how tie-decay networks affect dynamical
processes that occur on them. In particular, by considering SIS dynamics on tie-decay networks, we
seek to gain insights into models of disease spread on tie-decay networks. Many studies in network
epidemiology examine the spread of diseases in a so-called ‘quenched’ state (in which the spreading
process is faster than the evolution of the network on which it spreads) or in a so-called ‘annealed’ state
(in which a network evolves more rapidly than a spreading process on it) [35], but a tie-decay network
need not possess such a separation into distinct time scales. On a tie-decay network, the evolution of
the network and the spreading process can take place at comparable time scales. The tie strengths of a
tie-decay network evolve continuously as a disease spreads, thereby influencing both the final outbreak
size and the time at which the disease dies out or leads to a large-scale outbreak. Another way in which
a tie-decay network differs from many other types of networks, such as those that arise from activity-
driven models or from a sequence of network snapshots, is that tie strengths are not specified arbitrarily
or determined by time-invariant activity rates that are associated with each node. Instead, the tie strengths
in a network are governed both by the frequencies of the interactions between nodes and by the decay
rates of these strengths. These features of tie-decay networks make them relevant for modeling social
relationships, and we are thus motivated to investigate how these features influence the dynamics of
disease spread.

In the study of the spread of infectious diseases, it is common to assume that a disease spreads
only when two entities interact with each other [1, 3]. A tie-decay network is able to model the spread
of a disease both through direct ‘contact’ from close proximity (i.e. when an interaction takes place)
and through indirect means (such as transmission through the air or by touching the same contaminated
surface). A decaying tie can perhaps model the decrease in the likelihood of disease transmission following
a direct interaction between individuals. For instance, when there is a direct contact between an infected
individual and a susceptible individual, a disease may not spread immediately from the former to the
latter. It is also possible for disease transmission to occur after the susceptible individual touches an
item that was exposed previously to the infected individual. Such indirect disease transmissions occur
with lower probability as time elapses, and decaying ties between individuals can perhaps capture such
situations. Employing tie-decay networks thus allows the possibility of disease spread even when there are
no face-to-face interactions between entities. This indicates one way in which studying disease dynamics
on tie-decay networks can contribute to the understanding of how diseases spread in a real-world social
network that evolves continuously with time. Additionally, compartmental models such as SIS processes
have also been applied to studying the spread of information or attitudes in a population [36, 37]. It seems
potentially suitable to use tie-decay networks in such settings. For instance, an interaction can encode
one entity informing another entity about some information, but the receiver of the information does not
change their opinion until an ‘infection’ event takes place. Additionally, because the strength of the tie
between these two entities decays over time, the likelihood that the entity that receives the information
changes their beliefs from a new interaction between these two entities decreases with the amount of
time that has elapsed since their last interaction. The use of tie-decay networks to study the spread of
information or opinions allows one to differentiate an instantaneous transmission of information (through
an interaction) from the long-lasting influence of information that was received in the past (as encoded
in tie strength).

In the present article, we study the dynamics of disease spread on tie-decay networks by examining
the epidemic threshold of an SIS process. We first discuss the modeling choices that we make to associate
the tie strengths with the spreading rates. Our mathematical formulation allows us to derive the epidemic
threshold of an SIS process on a tie-decay network by extending the derivation of the epidemic threshold
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on other types of temporal networks. In our study, we build on methods that were designed for a sequence
of network snapshots [27, 28].1 We then evaluate our theoretical expression for the epidemic threshold
using numerical experiments on both synthetic and real-world networks, and we explore the impact of
the network parameters on the spreading process.

Our article proceeds as follows. In Section 2, we mathematically formalize an SIS process on a
tie-decay network. In Section 3, we derive the epidemic threshold of an SIS process on a tie-decay
network using two different methods. One is based on a nonlinear dynamical system, and the other is
based on a tensor representation. In Section 4, we construct tie-decay networks from both synthetic
and real-world data, and we simulate SIS processes on them. The results of our numerical experiments
validate our theoretical expression for the epidemic threshold, and they also illustrate the influence of the
network parameters on the spreading dynamics. In Section 5, we conclude and propose future research
directions.

2. Model setup

We first construct a tie-decay network using the formulation from [30]. Let B(t) be an N × N matrix of
the tie strengths between node pairs in an N-node undirected network. The entry bij(t) of B(t) encodes
the tie strength between nodes i and j at time t. Following an interaction (which we assume is undirected)
between nodes i and j, the strength of the tie between them decays exponentially according to the
differential equation b′

ij(t) = −αbij(t), where α > 0 is the decay coefficient. If nodes i and j interact at
time t, then the strength of the tie between them increments by 1 at time t. Therefore, if nodes i and j
interact with each other at times t = t1, t2, . . ., the tie strength between them satisfies

bij(t) = bij(0)e−αt +
∑

{k:tk<t}
H(t − tk)e

−α(t−tk ) , (2.1)

where H(t) is the Heaviside step function. The following ordinary differential equation (ODE) describes
the dynamics of the tie strengths:

b′
ij(t) = −αbij +

∑
{k:tk<t}

δ(t − tk)e
−α(t−tk ) . (2.2)

The interactions between nodes i and j are undirected in nature, so bij(t) = bji(t) for all times t. We do
not consider self-interactions, so bii(t) = 0 for any node i and any time t.

In practice, to model and analyze the spread of an infectious disease on a tie-decay network, we
discretize time with a small time step of duration �t. Ahmad et al. [30] chose a value of �t that
is sufficiently small such that there is at most one interaction between agents in one time step. With
this choice, one can convert a tie-decay network into a discrete set of networks with adjacency matrices
B(τ ) = B(τ�t), where τ = 0, 1, 2, . . . indicates the time step. At each of these time steps, we suppose that
the disease spreads, such that any change in network structure directly impacts the spreading properties
at the τ th time step. Although we discretize our tie-decay networks, we treat the underlying time as
continuous. The time-τ adjacency matrix B(τ ) is related to the time-(τ − 1) adjacency matrix B(τ−1) by

B(τ ) = e−α�tB(τ−1) + A(τ ) , (2.3)

1 There has been some work on deriving epidemic thresholds on networks that evolve in continuous time (see e.g. [29]), but
their formulations make assumptions on network structure that do not apply to our tie-decay networks.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/10/1/cnab031/6490114 by guest on 30 D
ecem

ber 2021



EPIDEMIC THRESHOLDS OF INFECTIOUS DISEASES ON TIE-DECAY NETWORKS 5

where A(τ ) is a binary (i.e. unweighted) matrix in which either 2 or 0 entries are nonzero. A pair of
nonzero entries represents a single undirected interaction that takes place during the τ th time step.
Although Ahmad et al. [30] required �t to be small enough such that there is at most one interaction in
one time step, in practice, one can relax this requirement as long as the number of interactions in any
time step ((τ − 1)�t, τ�t] is not too large. We thereby avoid binning interactions into time intervals
of a fixed duration. In Section 4.5, we compare the results that we obtain using a tie-decay network to
those that we obtain using a traditional temporal network in which we bin interactions into adjacent time
windows of a fixed duration. If there is an interaction between nodes i and j at a time t′ that satisfies
(τ − 1)�t < t′ ≤ τ�t, we set A(τ )

ij = A(τ )

ji = 1 and set all other entries of A(τ ) to 0. This interaction
thus changes the network structure and influences the spreading behavior of a disease during the τ th time
step. In Section 4.4, we discuss how we choose �t for networks that we construct from empirical data.
Because we discretize our tie-decay networks using a small time step, we obtain a number of temporal
snapshots that tends to be much larger than the number of temporal snapshots that are often studied in
practice in discrete-time temporal networks. In Section 4.3, we show that if we discretize a tie-decay
network into T temporal snapshots, it is possible to estimate the epidemic threshold of a compartmental
model of disease dynamics on that network using only the first T0 � T snapshots. This enables us to use
a reasonable amount of computational time for studying disease dynamics on tie-decay networks.

As a case study, we consider a susceptible–infected–susceptible (SIS) model [1, 4] (one of the most
common types of compartmental models), where the nodes are either in a susceptible state or in an
infected state (i.e. a ‘compartment’ in the language of mathematical epidemiology). At each time step, a
susceptible node can be infected by each of its infected neighbors with independent probability λ, and each
infected node can recover from the disease and become susceptible again with independent probability
μ. We make a slight modification to the definition of a traditional SIS model to incorporate the traits of a
tie-decay network. Suppose that an SIS process occurs on a tie-decay network with a tie-strength matrix
B(t) with entries bij(t). We also assume that λmax is the maximum possible infection probability and that
the probability that an infected node i infects a susceptible node j at time t is λmaxmin{bij(t), 1}. When
nodes i and j have a tie strength bij(t) that exceeds 1, the infection probability is λmax. If the tie strength
between them is less than or equal to 1, then the infection probability is λmaxbij(t). When bij(t) = 0,
there is no tie between nodes i and j, so no infection event can take place between them. Therefore, the
infection probabilities, which are different for different pairs of nodes, in a tie-decay network depend on
how the network evolves with time. At each time t, an infected node recovers with probability μ, and it
is then in the susceptible state again at time t + 1.

When modeling an SIS process on a tie-decay network, we first determine the duration of the time
step �t in our discretization, and we discretize the network into a total of T temporal snapshots. At each
time step, we update the tie strengths B(τ ) by letting all ties decay exponentially and then incrementing
the ties for which an interaction takes place. For each infected node, we then see if there are any infection
or recovery events. After the T th time step, the dynamics stop and we examine the final outbreak size of
the epidemic. In Table 1, we summarize the main notation in our paper.

3. Derivation of the epidemic threshold

We now derive the epidemic threshold of an SIS process on a tie-decay network. The way that we perform
time discretization allows us to extend methods that were designed for deriving epidemic thresholds in
discrete temporal-network models to tie-decay networks.

We derive the same epidemic threshold using two different methods. The first method is based on a
derivation in Aditya et al. [27], who modeled an SIS process as a nonlinear dynamical system and derived
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6 Q. CHEN AND M. A. PORTER

Table 1 The main notation in our article

Notation Description
B(t) The tie-strength matrix of a tie-decay network at time t
bij(t) The (undirected) tie strength between entities (i.e. nodes) i and j at time t
B(τ ) B(τ ) = B(τ�t), the tie-strength matrix of a tie-decay network at the τ th time step after

we discretize a network
b(τ )

ij The tie strength between entities i and j at the τ th time step after we discretize a network
A(τ ) A symmetric matrix whose nonzero entries (there are either 0 or 2 of them) encode

which interaction takes place at the τ th time step
p(τ )

i The probability that node i is infected in the τ th time step
λ

(τ)

ij The infection probability between nodes i and j in the τ th time step
λmax The maximum infection probability in the SIS process
�(i) The set of neighbors of node i
μ The recovery probability in the SIS process
N The total number of nodes in a tie-decay network
p The edge-creation probability of an Erdős–Rényi network
α The decay coefficient of the tie strengths in a tie-decay network
�t The duration of one time step
T The total number of temporal snapshots after we discretize a tie-decay network
l The minimum duration of the time period for which the periodic boundary condition

B(τ ) = B(τ+l) is satisfied
S The system matrix of an SIS process on a tie-decay network
ρcr(S) The spectral radius of the matrix S (if S is the system matrix of the SIS process, then

ρcr(S) is the critical value of the epidemic-threshold condition)
G(N , p) The ensemble of Erdős–Rényi networks with N nodes and edge-creation probability p
G(N , p) An instance of an Erdős–Rényi network with N nodes and edge-creation probability p

the epidemic threshold using linear stability analysis. The second method that we use was employed by
Valdano et al. [28], who modeled disease transmission using a multilayer representation [38, 39] of a
temporal network and an associated adjacency tensor. We discuss both methods to demonstrate two distinct
approaches for deriving an epidemic threshold. We thereby illustrate that methods that are designed for
an arbitrary sequence of network snapshots are also potentially suitable for tie-decay networks. Both
approaches rely on the use of a periodic boundary condition in time to derive an epidemic threshold. This
boundary condition was important for the arguments in [27, 28] to guarantee stability of the disease-free
state (in which no nodes are infected), and we thus also use such a boundary condition in our derivations.

3.1 Derivation using a nonlinear dynamical system

We derive the epidemic threshold of an SIS model on a tie-decay network by extending the approach in
Aditya et al. [27], who modeled an SIS process using a nonlinear dynamical system. As we discussed in
Section 2, we discretize a tie-decay network such that each time step has duration �t. We thereby convert a
tie-decay network into a discrete set of networks with tie-strength matrices B(τ ), where τ ∈ {0, 1, . . . , T}.
At each time step, an infection of a susceptible node j by an infected node i occurs with probability
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EPIDEMIC THRESHOLDS OF INFECTIOUS DISEASES ON TIE-DECAY NETWORKS 7

λ
(τ)

ij = λmaxmin{b(τ )

ij , 1} and each infected node recovers with independent probability μ. Let ξτ (i) denote

the probability that node i does not become infected in the τ th time step, and let p(τ )

i denote the probability
that node i is in the infected state at time τ . We use �(i) to denote the set of neighbors of node i, and we
assume that the states of the nodes in �(i) are uncorrelated with each other. The following relationship
holds:

ξτ (i) =
∏

j∈�(i)

(
p(τ )

j (1 − λ
(τ)

ij ) + 1 − p(τ )

j

)
=

∏
j∈{1,...,N}

(
1 − λ

(τ)

ij p(τ )

j

)
=

∏
j∈{1,...,N}

(
1 − λmaxmin{b(τ )

ij , 1}p(τ )

j

)
.

(3.1)

Additionally,

1 − p(τ+1)

i = μp(τ )

i + (1 − p(τ )

i )ξτ (i) , (3.2)

which implies that

p(τ+1)

i = 1 − μp(τ )

i − (1 − p(τ )

i )
∏

j∈{1,...,N}

(
1 − λmaxmin{b(τ )

ij , 1}p(τ )

j

)
. (3.3)

We let pτ = (p(τ )

1 , p(τ )

2 , . . . , p(τ )

N )T and write (3.3) in the form

pτ+1 = gτ (pτ ) , (3.4)

where gτ is a function that depends on B(τ ). The nonlinear dynamical system (3.4) describes the dynamics
of disease spread on a tie-decay network. To determine whether a disease dies out or leads to an outbreak,
we assume that we have periodic boundaries in time (see [27]). That is, after we discretize a tie-decay
network, we assume that B(τ ) = B(τ+l) for some constant l, which allows us to examine the asymptotic
stability of the system by looking at just one period. Although a periodic boundary condition in time is
not something that one expects to observe in temporal networks that one constructs from empirical data,
we choose l to be arbitrarily large so that we do not need to lose generality, because we can set l = T
(where we recall that T is the final time). Additionally, in Section 4.3, we demonstrate that even with this
periodic boundary condition, we can approximately characterize SIS spreading dynamics on a tie-decay
network using a shorter period l.

Given the discrete dynamical system (3.4), we recall the following theorem [40].

Theorem 3.1 The system xτ+1 = g(xτ ) is asymptotically stable at the fixed point x∗ if the magnitude of
the dominant eigenvalue of the Jacobian J = ∇g(x∗) is less than 1.

Using this result gives the following corollary. For notational convenience, we use min{
, 1} to denote
the matrix whose ijth entry is min{θij, 1}, where θij is the ijth entry of the matrix 
.
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8 Q. CHEN AND M. A. PORTER

Corollary 3.1 Let S = ∏l−1
τ=0 Sτ , where Sτ = (1 − μ)I + λmaxmin{B(τ ), 1}. If the magnitude of the

dominant eigenvalue of S is less than 1, then plτ = 0 is asymptotically stable.

Proof. Because of the periodic boundary condition in time, it follows that Sτ = Sτ+l. The choice
of τ is arbitrary, so it suffices to show that plτ = 0 is asymptotically stable. Consider pl(τ+1) = gl−1

(gl−2(· · · (g1(g0(plτ ))) · · · )). The Jacobian matrix at plτ = 0 is

∂pl(τ+1)

∂plτ

∣∣∣∣
plτ =0

=
(

∂pl(τ+1)

∂plτ+l−1

× · · · × ∂plτ+1

∂plτ

)∣∣∣∣
plτ =0

=
(

∂pl(τ+1)

∂plτ+l−1

∣∣∣∣
plτ+l−1=0

)
× · · · ×

(
∂plτ+1

∂plτ

∣∣∣∣
plτ =0

)
= Sl−1 × · · · × S0

= S .

(3.5)

Consequently, by Theorem 3.1, if the magnitude of the dominant eigenvalue of S is less than 1, it follows
that plτ = 0 is asymptotically stable. We also obtain asymptotic stability of plτ+1 = 0, . . . , plτ+l−1 = 0
because the dominant eigenvalue of the product of these invertible matrices is invariant under a cyclic
permutation. �

If the magnitude of the dominant eigenvalue of each matrix Sτ is less than 1, then the magnitude of
the dominant eigenvalue of S is also less than 1 and the system is asymptotically stable at 0. However,
this is a much more conservative condition than our epidemic-threshold condition

ρcr(S) = ρcr

(
l−1∏
τ=0

Sτ

)
= 1 , (3.6)

where ρcr(
) is the spectral radius of the matrix 
. Even when the dominant eigenvalues of some of the
Sτ matrices have magnitudes that are larger than 1, a disease can still die out asymptotically, depending
on the spectrum of S. We refer to S as the system matrix of our SIS process on a tie-decay network, and
we refer to ρcr(S) as the critical value of the epidemic-threshold condition (and hence of the epidemic
threshold).

3.2 Derivation using a multilayer representation

We now derive the epidemic threshold of an SIS process on a tie-decay network by extending the derivation
in [28] that is based on a multilayer representation of a temporal network. We again consider our SIS
model on a tie-decay network with tie-strength matrix B(t), which we discretize into snapshots B(τ ),
where τ ∈ {0, 1, . . . , T}. As in Section 3.1, we use the periodic boundary condition B(τ ) = B(τ+l) with
period l and we seek an asymptotically stable solution for one period. We define a tensor M̃ with entries

M̃
ττ ′
ij = δτ ,τ ′−1[(1 − μ)δij + λmaxmin{b(τ )

ij , 1}] (3.7)

to reflect the dynamics of (3.3). This tensor encodes information about the probability that node i is
infected by node j when we advance from time step τ to time step τ +1. One can also represent M̃ using a
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EPIDEMIC THRESHOLDS OF INFECTIOUS DISEASES ON TIE-DECAY NETWORKS 9

supra-adjacency matrix M ∈ R
Nl×Nl (see [38, 41]), where N is the total number of nodes. Let p(k) be the

state vector of the kth time period, which covers time steps in the interval (kl, (k + 1)l]. Let2 α = Nτ + i,
and let the entry pα(k) of the vector p(k) denote the probability that node i is in the infected state at time
kl + τ . Using this notation, we write (3.3) as

pα(k) = 1 −
∏
β

[1 − Mβαpβ(k − 1)] . (3.8)

The asymptotically stable solution of the state vector p̂ for one period is the vector with entries

p̂α = 1 −
∏
β

[1 − Mβαp̂β] . (3.9)

By the analysis in [28], the epidemic-threshold condition is

ρcr(M) = ρcr(S)1/l = 1 , (3.10)

where S = ∏l
τ=1[(1 − μ)I + λmaxmin{B(l−τ), 1}], which matches the formulation in Corollary 3.1. This

again yields the epidemic-threshold condition (3.6).

4. Numerical experiments

We now conduct numerical experiments in which we simulate an SIS process on various tie-decay
networks. We perform our computations on a workstation using code that we wrote in Python

3. In each
of our numerical simulations, we choose one node uniformly at random to start in the infected state; all
other nodes start in the susceptible state. In Section 4.1, we validate the epidemic-threshold condition
(3.6) by comparing our theoretical results with our numerical simulations. In Section 4.2, we construct
tie-decay networks with different decay coefficients, temporal interactions, and sparsities4 to explore how
these factors influence the outcome of disease spread. In Section 4.3, we discuss the periodic boundary
condition B(τ ) = B(τ+l) that we stated in Section 3 and check numerically how the choice of period l
affects the epidemic threshold. In Section 4.4, we explore disease dynamics on tie-decay networks that we
construct from empirical data. Finally, in Section 4.5, we compare the results on a tie-decay network that
we construct from an Erdős–Rényi (ER) network with those on a traditional temporal network that we
construct from binning interactions of the same ER network. This further motivates the use of tie-decay
networks as a viable modeling framework for studying dynamical processes on temporal networks.

To simplify our notation, we use λ to denote the maximum infection probability λmax throughout this
section.

4.1 Validation of our epidemic threshold

To validate the epidemic-threshold condition (3.6) in Section 3, we construct a tie-decay network from
an ER network in the following way. Let G(N , p) be an instance of the G(N , p) ensemble of ER networks,

2 Following the notation in [28], we use the indices α and β in this derivation. This usage of α and β is distinct from our other
uses of these symbols in this paper.

3 Our code is publicly available on GitHub at https://github.com/qinyichen/tie-decay-epidemic-threshold. [Accessed 9 August
2021.]

4 We use Erdős–Rényi networks in our experiments. We say that an Erdős–Rényi network is ‘sparser’ than another Erdős–Rényi
network if its edge-creation probability p is smaller than the one in the other network.
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10 Q. CHEN AND M. A. PORTER

where N is the number of nodes and p is the probability of an edge between each pair of nodes. To create
a tie-decay network, we assign a sequence Te = t1, t2, . . . of time stamps to each edge e = (i, j); these
time stamps indicate the times of the interactions between nodes i and j. We generate the sequences of
time stamps using an exponential waiting-time distribution with scale β. That is, the difference tk+1 − tk

between two consecutive event times, tk and tk+1, has a mean of β. We suppose that our tie-decay network
starts from a tie-strength matrix B(0) with all edges of equal tie strength 0.5. The tie strengths then evolve
continuously following (2.1). We increment the tie strength of edge e at each ti ∈ Te, and the strength of
a tie decays exponentially when there are no interactions. We discretize the tie-decay network (see our
discussion in Section 2) and simulate an SIS process with maximum infection probability λ and recovery
probability μ on this network.

In our numerical experiments in Fig. 1, we construct a tie-decay network from an instance G(1)

ER of
the G(N , p) ER network ensemble with N = 100 nodes and edge-creation probability p = 0.1 (where
we ensure that G(1)

ER has a single connected component) and a tie-decay coefficient of α = 10−1. We
generate interactions with an exponential distribution with scale β = 100, and the simulations each last
103 time steps. We simulate our SIS process on this tie-decay network with various infection and recovery
probabilities that each range from 0.05 to 1. In Fig. 1, we show the outbreak sizes that we obtain at the
end of our simulations and the associated critical value ρcr(S) of the epidemic-threshold condition (3.6).
In our examination of different pairs of infection and recovery probabilities, we observe transitions in
both the final outbreak sizes and the critical values. In Fig. 1b, for a fixed maximum infection probability
λ, we highlight the recovery probability μ for which the critical value is closest to 1. We highlight the
same (λ, μ) pairs in Fig. 1a. (We also highlight such pairs in subsequent figures.) We observe for all of
the (λ, μ) pairs that yield critical values less than 1 that the disease always dies out by the end of our
simulations. This supports our theoretical result (3.6) that if ρcr(S) is less than 1, then the disease-free
state (in which no nodes are infected) is asymptotically stable. Because we perform our simulations on a
network with finitely many nodes over finitely many time steps, there are some (λ, μ) pairs for which the
critical values are slightly larger than 1 but have 0 final outbreak sizes. Typically, however, we observe
that after a critical value exceeds 1, a larger value of it usually corresponds to a larger final outbreak size
at the end of our simulations.

To further illustrate the correlation between the final outbreak size and the critical value of the
epidemic-threshold condition, we plot their relationships as a scatter plot. In Fig. 2a, we again work with
the tie-decay network that we constructed from the network G(1)

ER, the decay coefficient α = 10−1, and the
scale β = 100. In the scatter plot, we see that when we reach the disease-free state (i.e. when the final
outbreak size is 0), most of the critical values of the epidemic-threshold condition are less than 1, which
again agrees with our theoretical results in (3.6). Additionally, when the final outbreak size exceeds 0, its
value appears to be positively correlated with the critical value ρcr(S) of the epidemic-threshold condition
(3.6). We also study this correlation on tie-decay networks that we construct from the same network G(1)

ER

with different decay coefficients (α = 10−1, α = 10−2, and α = 10−3) and scales (β = 10, β = 50, and
β = 100). In Fig. 2b, we show the Pearson correlation coefficient (PCC) between the final outbreak size
and the critical value for each of these tie-decay networks. All of our scenarios have a PCC of at least
0.5, which confirms the strong positive correlation between the final outbreak size and the critical value
ρcr(S).

4.2 Influence of tie-decay networks and their parameters on disease spread

We just demonstrated (see Section 4.1) that the final outbreak size and the critical value ρcr(S) of the
epidemic-threshold condition (3.6) have a strong, positive correlation. Therefore, we can potentially use
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EPIDEMIC THRESHOLDS OF INFECTIOUS DISEASES ON TIE-DECAY NETWORKS 11

Fig. 1. (a) The final outbreak sizes in our numerical simulations of an SIS model on a tie-decay network that we construct from
an Erdős–Rényi (ER) network and (b) the associated critical values of the epidemic-threshold condition. (See the text for more
details.) For each numerical simulation, we simulate an SIS process using a specified pair of infection and recovery probabilities
for 103 time steps. We do each simulation 10 times, and we report the means of the final outbreak sizes.
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12 Q. CHEN AND M. A. PORTER

(a) (b)

Fig. 2. Illustrations of the correlation between the final outbreak size and the critical value ρcr(S).

this critical value as an indicator of the scale of the spread of a disease. Because the critical value is
an important quantity, we study how different factors influence disease spread on tie-decay networks by
comparing their critical values. There are three primary parameter choices that influence the spreading
dynamics: (1) the tie-decay coefficient α, which determines how fast tie strengths decay; (2) the interaction
frequency between the nodes, which one can tune using the scale β of the exponential waiting-time
distribution; and (3) the sparsity of the underling network, which we determine using the edge-creation
probability p of an ER network. We have an intuitive expectation of how each of these features influences
disease dynamics. For instance, when interactions take place more frequently, one usually expects a
disease to spread more easily and hence to infect more people. When a network is sparse (i.e. there are
many fewer edges in it than the maximum possible number of edges), it tends to be more difficult for
a disease outbreak to occur. By computing the critical values of SIS dynamics on different tie-decay
networks, we examine whether or not our intuition is correct.

Decay coefficient.

We construct tie-decay networks using one network G(2)

ER of the G(N , p) ER network ensemble with
N = 100 nodes and edge-creation probability p = 0.05 (where we ensure that G(2)

ER has a single connected
component), and we generate time stamps for each edge using an exponential waiting-time distribution
with scale β = 100. We then create three variants of this tie-decay network by using decay coefficients
of α = 10−1, α = 10−2, and α = 10−3. In Fig. 3, we compute the critical values of SIS processes with
different infection rates and recovery probabilities for each of these tie-decay networks. As in Section 4.1,
we highlight the (λ, μ) pairs that have critical values that are closest to 1. This enables us to roughly
divide the (λ, μ) parameter plane into two regions. For (λ, μ) pairs in the upper-right part of each plot in
Fig. 3, the disease eventually dies out. For the rest of the (λ, μ) pairs, the initial infection tends to result
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EPIDEMIC THRESHOLDS OF INFECTIOUS DISEASES ON TIE-DECAY NETWORKS 13

Fig. 3. The critical values ρcr(S) (with darker colors signifying larger values) that we compute for tie-decay networks with decay
coefficients of (left) α = 10−1, (center) α = 10−2, and (right) α = 10−3 that we construct from the ER network G(2)

ER. For each
fixed value of the maximum infection probability λ, the star symbol indicates the smallest recovery probability μ that gives the
critical value that is closest to 1. The line signifies the rough boundary between critical values that are larger than 1 and those that
are smaller than 1. We draw the lines manually to guide human eyes; we do not generate them using either mathematical reasoning
or computations.

in an outbreak. In Fig. 3, we observe that there are many more (λ, μ) pairs for which the disease dies out
for α = 10−1 than for α = 10−2 and α = 10−3. For progressively smaller values of α, it becomes more
likely for an outbreak to occur. A larger decay coefficient α leads to stronger tie strengths in the long run.
(See the discussion in [30].) This, in turn, makes it easier for a disease to spread because the transmission
of an infection between two nodes is positively correlated with the strength of the tie between them.

Interaction frequency.

We also examine the influence of interaction frequency on disease spread in our SIS model. We construct
tie-decay networks using the same ER network G(2)

ER and a decay coefficient of α = 10−2. For each edge,
we generate time stamps using an exponential waiting-time distribution with scales β = 10, β = 50,
and β = 100. The interactions between nodes are most frequent when β = 10; in this case, the mean
time between two consecutive interactions is 10�t, where �t is the duration of a time step. In Fig. 4,
we observe that the dividing line for the epidemic threshold shifts gradually to the left for progressively
larger values of β. We also observe this in the colors of the heat maps; a darker shade of green indicates
a larger critical value. For progressively larger values of β (i.e. for decreasingly frequent interactions
between nodes), the number of grid squares that are covered in dark green also becomes smaller. In other
words, when interactions between nodes occur more frequently, it is easier for a disease to spread through
a population.

Network sparsity.

We construct tie-decay networks using three networks from the G(N , p) ER network ensemble with
N = 100. The network G(1)

ER (which we examined previously) has an edge-creation probability of p = 0.10,
the network G(2)

ER (which we also examined previously) has an edge-creation probability of p = 0.05, and
the network G(3)

ER has an edge-creation probability of p = 0.02. We ensure that each of the three networks
consists of a single connected component. We generate the time stamps for each edge from an exponential
distribution with scale β = 100, and we use a decay coefficient of α = 10−2. We compare the dividing
line of the epidemic threshold and the colors of the heat maps in Fig. 5. In the densest tie-decay network
(which we construct using G(1)

ER), almost all (λ, μ) pairs lead to an eventual outbreak of the disease.
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14 Q. CHEN AND M. A. PORTER

Fig. 4. The critical values ρcr(S) (with darker colors signifying larger values) for tie-decay networks with different interaction
frequencies. We construct the tie-decay networks from the ER network G(2)

ER and generate interactions from exponential waiting-
time distributions with scales (left) β = 10, (center) β = 50, and (right) β = 100. The stars and lines have the same meaning as in
Fig. 3.

Fig. 5. The critical values ρcr(S) (with darker colors signifying larger values) that we compute for tie-decay networks that we
construct from ER networks of different sparsities. Each of the three networks has N = 100 nodes; their edge-creation probabilities
are p = 0.10, p = 0.05, and p = 0.02. The star symbols and the lines have the same meanings as in Fig. 3.

By contrast, for sparser tie-decay networks, such as the one that we construct from G(3)

ER, outbreaks are
less likely to occur. This matches our intuition about SIS disease dynamics on tie-decay networks with
different sparsities.

4.3 Choice of the time period for examining the epidemic threshold

In Section 3, we used the periodic boundary condition B(τ ) = B(τ+l), which requires the tie-strength matrix
to be periodic in time with period l. However, for most tie-decay networks, such periodic behavior does
not occur. Tie strengths increment instantaneously and decay continuously with time, so it would be very
surprising for such periodicity to occur. Valdano et al. [28] proposed that as long as the data-collection
time period l is long enough, the data gives ‘an approximately complete reconstruction of the temporal
network properties’, and one hence ought to be able to accurately estimate the epidemic threshold of a
contagion model on a temporal network, even if it is constructed from empirical data. In our tie-decay
networks, we demonstrate using numerical computations that one can obtain a good understanding of the
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EPIDEMIC THRESHOLDS OF INFECTIOUS DISEASES ON TIE-DECAY NETWORKS 15

Fig. 6. The critical values ρcr(S) that we compute for different time periods l for SIS processes. In each case, the SIS process occurs
on a tie-decay network that we construct using the ER network G(2)

ER, a decay coefficient of α = 10−1, and interactions that we
generate from an exponential waiting-time distribution with scale β = 100.

outcome of an SIS process by computing the epidemic threshold over a time period that is smaller than
the entire time span.

We simulate two SIS processes on a tie-decay network that we construct from the ER network G(2)

ER

using a decay coefficient of α = 10−1. We generate the interactions from an exponential waiting-time
distribution with scale β = 100. The first SIS process has a maximum infection probability of λ = 0.3
and a recovery probability of μ = 0.7, and the second SIS process has a maximum infection probability
of λ = 0.4 and a recovery probability of μ = 0.6. We simulate each SIS process for 103 time steps.
When we compute the critical threshold ρcr(S) using the period l = 103, we obtain ρcr(S1) ≈ 0.816 for
the first SIS process and ρcr(S2) ≈ 1.088 for the second SIS process. In Fig. 6, we plot the evolution of
the critical values for different choices of the time period l. In Fig. 6a, we see that although the critical
value starts above the threshold and changes rapidly at first, it stabilizes after a fairly small number of
time steps. When (λ, μ) = (0.3, 0.7), we observe for all l ≥ 140 that all of the critical values lie in the
interval (0.80, 0.82). In Fig. 6b, the critical values again converge quickly after a small number of time
steps. When (λ, μ) = (0.4, 0.6), we observe for all l ≥ 143 that all of the critical values lie in the interval
(1.07, 1.09). From these two examples, we see that regardless of whether the critical value ρcr(S) is above
1 or below 1, we are able to accurately estimate the epidemic threshold by using a period l that is fairly
small in comparison to the entire time span. The fast convergence of the critical values is a feature of our
tie-decay network model. Valdano et al. [28] studied the influence of the time period on estimations of
the epidemic threshold of an SIS process on a temporal network by using a multilayer representation of
the network as a sequence of temporal snapshots. In their experiments, for time periods that are small in
comparison to the entire time span, they did not always observe convergence of the critical values. The
fast convergence of the critical values for our tie-decay networks enables us to estimate the outcome of an
SIS process using data from only the early stages of an epidemic. By calculating the epidemic threshold
using (3.6), we can potentially characterize the spreading dynamics of an epidemic that lasts for several
years using data from the first hundred days.
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16 Q. CHEN AND M. A. PORTER

Because we compute the system matrix only for the first l time steps, instead of for the entire time
span, the fast convergence of critical values also allows us to save computation time when estimating
critical values of the epidemic-threshold condition. Let ρcr(S

(l)) denote the estimated critical value that
we compute when the period is l. For the numerical experiments in Sections 4.1 and 4.2, we estimate the
critical value for each period l until we satisfy the following stopping criterion: ‖ maxk∈{l−9,...,l} ρcr(S

(k))−
mink∈{l−9,...,l} ρcr(S

(k))‖ ≤ 0.02. We usually finish this computation of critical values within about 100–200
time steps, which is much smaller than the 103 time steps that we use in our numerical simulations of
SIS dynamics over an entire time span.

4.4 Experiments on real-world examples

We now construct tie-decay networks using data from real-world examples and explore the dynamics
of our SIS model on these networks. We consider two real-world data sets: (1) a workplace network
of interactions between individuals in an office building in France between 24 June and 3 July in 2013
[42] and (2) a conference network of face-to-face contacts over 2.5 days between attendees of the ACM
Hypertext 2009 conference [43]. For each data set, we use the time stamps of the interactions between
people when we construct an associated tie-decay network. Given a data set, we initialize the state of
a tie-decay network as follows: (1) we use the nodes that are present in the data set; (2) an edge exists
between each pair of distinct nodes with an independent, homogeneous probability of 0.1 (i.e. we create
a network from the ensemble G(N , 0.1), where N is the number of nodes), and we assign an initial tie
strength of 0.5 to each edge that exists. For each data set, we consider only a single initial network. We
use the time stamps from the empirical data for the interactions and hence to determine the evolution
of the tie strengths. The ties decay exponentially with a decay coefficient of α = 10−2, and we then
increment a tie strength by 1 whenever an interaction takes place. As before, we validate our theoretical
results using numerical simulations of SIS dynamics. We also examine the influence of different choices
of the time period l on our computational estimates of the epidemic thresholds.

In Figs. 7 and 8, we compare the final outbreak sizes and estimated critical values in the workplace
network and the conference network, respectively. These two real-world examples are both fairly small;
the workplace network has 93 nodes, and the conference network has 113 nodes. The interactions in
the workplace network have a roughly periodic pattern, with individuals interacting more frequently
during work hours than during other hours. The conference network (which also was used in Valdano et
al. [28] to validate their epidemic threshold) has a different interaction pattern—e.g. some individuals
have many interactions in a short period of time, but then have few or no further interactions—than
the workplace network because of the nature of a scientific conference. Despite the differences between
the two real-world examples, we observe a strong correlation between the estimated critical values and the
final outbreak sizes in both of them. Although the epidemic-threshold condition (3.6) does not explicitly
state that a larger critical value corresponds to a larger number of nodes in the infected state at t = T
(when we finish our simulations), this positive correlation tends to hold for both real-world networks.
As in Section 4.1, we highlight the (λ, μ) pairs that yield critical values that are closest to 1 and we
indicate their corresponding outbreak sizes. In both real-world examples, whenever the critical values
fall below 1, the disease dies out at the end of a simulation. This supports our theoretical formulation of
the epidemic-threshold condition in (3.6).

As we discussed in Section 2, to discretize time in the real-world networks, we choose a sufficiently
small �t so that there are not too many interactions in the time interval ((τ − 1)�t, τ�t]. Specifically,
for each of our real-world networks, we choose �t to ensure that the number of interactions in each time
interval is no more than 10. In the workplace data set, interactions were recorded every 20 seconds, and
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EPIDEMIC THRESHOLDS OF INFECTIOUS DISEASES ON TIE-DECAY NETWORKS 17

Fig. 7. (a) The final outbreak sizes of our SIS process and (b) the associated estimated critical values of the epidemic-threshold
condition for the workplace tie-decay network. We simulate the SIS dynamics for 988 time steps (where one time step consists of
1000 seconds) after discretization, and we estimate the critical values using a time period of duration l = 100.
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18 Q. CHEN AND M. A. PORTER

Fig. 8. (a) The final outbreak sizes at the end of simulations of our SIS process and (b) the associated critical values of the
epidemic-threshold condition for the conference tie-decay network. We simulate the SIS dynamics for 1062 time steps (where one
time step consists of 200 seconds) after discretization, and we estimate the critical values using a time period of duration l = 100.
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EPIDEMIC THRESHOLDS OF INFECTIOUS DISEASES ON TIE-DECAY NETWORKS 19

we take �t to be 1000 seconds in our discretization. Interactions were also recorded every 20 seconds
in the conference data set, but this time we take �t to be 200 seconds in our discretization. We define
one time step �t differently in the two data sets because of distinct features that we observe in their
contact patterns. In the workplace network, there are many time intervals without any interactions, so we
use a coarse discretization to ensure that the evolution of tie strengths is meaningful. In the conference
network, interactions are more frequent, so we use a finer discretization. After our discretization, each of
the real-world networks has about 1000 time steps in total. For each network, we estimate the epidemic
threshold using approximately one tenth of the entire time span; specifically, we use a time period of
l = 100. For the workplace network, this choice entails examining the critical value of the epidemic-
threshold condition using all contacts from the first day; for the conference network, we use all contacts
from the first 5.5 hours. Our discussion in Section 4.3 suggests that data from the early stages of these
temporal networks is sufficiently representative of the entire data set to allow us to successfully estimate
the epidemic thresholds for the entire time span. Furthermore, for the workplace network, it is reasonable
to assume that the contact patterns of the workers are somewhat periodic, with similar patterns during
each work day. The contact patterns in the conference network also appear to be somewhat periodic;
there is a spike in the number of contacts approximately every 6 hours. In summary, for both networks,
using the period l = 100 seems to give a good estimate of the epidemic threshold. With this choice, we
observe a close relationship between the magnitudes of the critical values and the final outbreak sizes.

Our accurate estimations of critical values of the epidemic-threshold condition using only early times
in disease dynamics suggests the possibility of control measures for slowing down the spread of a disease.
For instance, government regulations such as rules for physical distancing (which is also called ‘social
distancing’) can decrease the interaction frequencies of social contacts. As we saw in Fig. 4, as we
decrease the interaction frequency (i.e. as we decrease the scale β of the waiting-time distribution), the
dividing line for the epidemic threshold shifts to the left. Therefore, for fixed infection and recovery
probabilities, when the interaction frequency is sufficiently small, the critical value can become smaller
than 1, so a disease outbreak is unlikely. Additionally, the use of personal protective equipment (PPE)
like masks can reduce infection probabilities, thereby also leading to a decrease of the critical value of
the epidemic threshold.

4.5 Comparison with SIS dynamics on a traditional temporal network

To highlight how features of tie-decay networks assist in the forecasting of epidemic outbreaks, we
compare the epidemic thresholds that we obtain using a tie-decay network with ones that we obtain
using a traditional temporal network that we construct from binning interactions in a time window. We
also illustrate some challenges that arise when simulating a model of disease spread on a network that
aggregates interactions into adjacent time windows of uniform duration. This further motivates the use
of tie-decay networks for studying spreading behavior on temporal networks.

To construct a traditional temporal network by binning interactions, we work with the ER network
G(1)

ER and the same sequence of interactions (with time stamps Te = t1, t2, . . . for each edge e = (i, j))
that we used in Section 4.1. We build a traditional temporal network using adjacent windows of duration
w = 10 [44]. That is, we first divide the time span into adjacent, disjoint time windows (10(k − 1), 10k]
and we then aggregate all of the interactions within each window (which we index by k). Let A′

k denote the
adjacency matrix that is associated with the kth window (10(k − 1), 10k]. To ensure that it is reasonable
to compare our results from tie-decay networks with those from traditional temporal networks, we also
rescale the tie strengths of A′

k so that their sum is equal to the time-averaged sum of the tie strengths B(t)
within the kth time window. We then simulate an SIS process with a maximum infection probability of
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20 Q. CHEN AND M. A. PORTER

Fig. 9. The critical values and final outbreak sizes that we obtain by simulating an SIS process on a tie-decay network and on a
traditional temporal network with a time-window duration of w = 10. We build the two networks using the same underlying ER
network. (See the text for details.) The SIS process has a maximum infection probability of λ (which we vary) and a fixed recovery
probability of μ = 0.5. In each network, we simulate the SIS process for 103 time steps. We repeat each simulation 10 times and
report the means of the final outbreak sizes and critical values. We color the critical values and the final outbreak sizes for the
tie-decay network in dark blue and those for the traditional temporal network in light blue. We mark the critical values with discs
and the final outbreak sizes with triangles. The dotted red line indicates the threshold value, which is 1.

λ = λmax and a recovery probability of μ on a traditional temporal network that consists of the sequence
{A′

1, A′
2, . . .} of adjacency matrices. In the kth window (10(k − 1), 10k], we simulate the SIS process for

10 steps; within this window, the tie strengths are constant and given by A′
k−1. Using methods that were

designed for discrete temporal networks [27, 28], we derive the epidemic-threshold condition for the
traditional temporal network to be ρcr(S

′) = 1, where S′ = ∏
k

[
(1 − μ)I + λ min{A′

k , 1}] is the system
matrix that is associated with the traditional temporal network and ρcr(
) denotes the spectral radius of
the matrix 
. As in our terminology for tie-decay networks, we refer to ρcr(S

′) as the ‘critical value’ of
the traditional temporal network.

In our comparison, we simulate an SIS process with different maximum infection probabilities λ and a
fixed recovery probability of μ = 0.5 on the tie-decay network (see Section 4.1 for details of its properties)
and the traditional temporal network that we construct from G(1)

ER and the same sequence of interactions.
In Fig. 9, we plot their critical values and final outbreak sizes versus the maximum infection probability
λ. One major difference between the dynamics on the two types of networks is the magnitudes of their
critical values. The critical values ρcr(S) for the tie-decay network range from 0.64 to 3.40, whereas the
critical values ρcr(S

′) for the traditional temporal network range from 0.94 to 1.06 and remain close to 1.
The proximity of ρcr(S

′) to the threshold value 1 poses two challenges. First, although theoretical results
[27] suggest that, as time t → ∞, one can successfully predict whether or not an outbreak will take place
based on the epidemic-threshold condition, it may be difficult to obtain an accurate prediction in networks
with finitely many nodes that one examines for only a finite amount of time. When the critical value is
close to 1, even a very small perturbation can change whether or not an epidemic-threshold condition
is satisfied. In Fig. 9, the critical value of the traditional temporal network exceeds 1 for λ ≥ 0.4, but
we observe outbreaks only for λ ≥ 0.7. The second challenge is that the proximity of ρcr(S

′) to 1 also
makes it difficult to discern the extent to which the critical values correlate with the final outbreak sizes.
In Section 4.1, we examined the positive correlation between the critical value and final outbreak size
for an SIS process on a tie-decay network. However, one can see in Fig. 9 that such a correlation is less
evident for an SIS process on a traditional temporal network.
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Another difficulty in constructing a traditional temporal network is determining an appropriate
time-window duration w (or multiple such durations, if one allows them to be nonuniform) [45]. When one
has prior knowledge of seasonality (or other regularity, such as periodicity) in data, it can be worthwhile
to use a traditional network that is divided into a sequence of time windows. However, in many applica-
tions, such prior knowledge is typically not available. Modeling the spread of an infectious disease on a
tie-decay network does not require tuning a time-window duration, and it is thus worthwhile to investigate
disease dynamics on tie-decay networks.

5. Conclusions and discussion

We studied the epidemic threshold of an SIS process on tie-decay networks, which model relation-
ships between nodes in a way that distinguishes between ties and interactions between the nodes. In
these tie-decay networks, the strength of a tie increases instantaneously when there is an interaction
and decays continuously with time between interactions. We demonstrated how to mathematically for-
mulate an SIS process on a tie-decay network and then derived the epidemic threshold of this process
by extending methods that were designed for networks that consist of sequences of temporal snap-
shots. Based on our theoretical results, we performed numerical simulations on both synthetic and
real-world networks to obtain several insights into SIS dynamics on tie-decay networks. We demon-
strated using numerical simulations that the epidemic-threshold condition is successful at estimating
final outbreak sizes. We also showed that the critical value of the epidemic threshold is positively cor-
related with the final outbreak size of a disease. Our numerical experiments on synthetic networks
illustrated how various factors—the decay coefficient of the tie strengths, the interaction frequency
between nodes, and the sparsity of a network—impact the spread of a disease on a tie-decay network.
Our numerical experiments on the duration of the time period over which we computationally esti-
mate the epidemic threshold demonstrated the possibility of estimating the critical values of disease
dynamics using data from the early stages of disease spread. Finally, we demonstrated that one can
estimate the epidemic threshold successfully in tie-decay networks that one constructs from real-world
contact data.

There are a variety of interesting ways to build on our work. When deriving the epidemic threshold of
our SIS model on a tie-decay network, we first discretized the network using a sufficiently small time step
and we then applied methods that were designed for discrete-time temporal networks. It is also important
to extend approaches for deriving epidemic thresholds that were designed for continuous-time temporal
networks (see [29, 46]). Although the existing approaches to do this do not appear to be immediately
applicable to tie-decay networks (because, given the particular structure of tie-decay networks, one cannot
necessarily assume that the adjacency matrix at any time t commutes with the aggregated matrix up to
time t), it should be possible to modify them to incorporate the features of tie-decay networks. Another
worthwhile research direction is to study epidemic thresholds in more complicated epidemic models, such
as SEIR processes (and models of disease spread with many more compartments), on tie-decay networks.
It is valuable to examine new approaches on simplistic models such as SIS processes and SIR processes,
but realistic models of disease dynamics are typically more complicated [4]. When studying such models,
it will be especially interesting to examine whether or not it is still possible to accurately estimate critical
values of disease dynamics at early stages of disease spread. It is also relevant to compare disease dynam-
ics on tie-decay networks to disease dynamics in different types of continuous-time network models
(such as Hawkes processes [33, 34]) that integrate a point process with a network of interacting entities.
Because of the self-exciting properties of a Hawkes process, the interactions in such a process cluster in
time. Prior studies have illustrated that such burstiness in contact patterns impacts epidemic-threshold
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conditions [47], so it will be interesting to investigate how to incorporate such point-process models
into a tie-decay framework. Researchers continue to develop new types of temporal networks, and it is
important to compare disease dynamics on tie-decay networks to disease dynamics on these temporal
networks. For example, as in the tie-decay networks that we employed, Gelardi et al. [48] recently exam-
ined temporal network data in the form of evolving weighted networks with edge weights that update
with each interaction. However, unlike in our tie-decay networks, they took interconnections between
social relationships into account. For example, an interaction between two individuals may simultane-
ously strengthen their relationship with each other and weaken their relationships with other individuals.
It is important to explore how such interdependencies affect disease dynamics and other spreading
processes.
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43. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J. & Van den Broeck, W. (2011) What’s in a crowd?
Analysis of face-to-face behavioral networks. J. Theor. Biol., 271, 166–180.

44. Braha, D. & Bar-Yam, Y. (2009) Time-dependent complex networks: Dynamic centrality, dynamic motifs,
and cycles of social interactions. Adaptive Networks: Theory, Models and Applications (T. Gross & H. Sayama
eds). Heidelberg, Germany: Springer-Verlag, pp. 39–50.

45. Psorakis, I. (2013) Probabilistic Inference in Ecological Networks: Graph Discovery, Community Detection
and Modelling Dynamic Sociality. D.Phil. Thesis, University of Oxford.
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