
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=rquf20

Download by: [UCLA Library] Date: 16 May 2017, At: 17:03

Quantitative Finance

ISSN: 1469-7688 (Print) 1469-7696 (Online) Journal homepage: http://www.tandfonline.com/loi/rquf20

Quasi-centralized limit order books

Martin D. Gould, Mason A. Porter & Sam D. Howison

To cite this article: Martin D. Gould, Mason A. Porter & Sam D. Howison (2017) Quasi-centralized
limit order books, Quantitative Finance, 17:6, 831-853, DOI: 10.1080/14697688.2016.1247980

To link to this article:  http://dx.doi.org/10.1080/14697688.2016.1247980

Published online: 09 Jan 2017.

Submit your article to this journal 

Article views: 47

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=rquf20
http://www.tandfonline.com/loi/rquf20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/14697688.2016.1247980
http://dx.doi.org/10.1080/14697688.2016.1247980
http://www.tandfonline.com/action/authorSubmission?journalCode=rquf20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=rquf20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/14697688.2016.1247980
http://www.tandfonline.com/doi/mlt/10.1080/14697688.2016.1247980
http://crossmark.crossref.org/dialog/?doi=10.1080/14697688.2016.1247980&domain=pdf&date_stamp=2017-01-09
http://crossmark.crossref.org/dialog/?doi=10.1080/14697688.2016.1247980&domain=pdf&date_stamp=2017-01-09


Quantitative Finance, 2017
Vol. 17, No. 6, 831–853, https://doi.org/10.1080/14697688.2016.1247980

Quasi-centralized limit order books
MARTIN D. GOULD∗†1, MASON A. PORTER‡§¶ and SAM D. HOWISON‡‖

†Imperial College, CFM–Imperial Institute of Quantitative Finance, London SW7 2AZ, UK
‡Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

§CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP, UK
¶Department of Mathematics, University of California, Los Angeles, CA 90095, USA

‖Oxford–Man Institute of Quantitative Finance, University of Oxford, Oxford OX2 6ED, UK

(Received 1 February 2015; accepted 28 September 2016; published online 9 January 2017)

A quasi-centralized limit order book (QCLOB) is a limit order book (LOB) in which financial
institutions can only access the trading opportunities offered by counterparties with whom they possess
sufficient bilateral credit. In this paper, we perform an empirical analysis of a recent, high-quality
data set from a large electronic trading platform that utilizes QCLOBs to facilitate trade. We argue
that the quote-relative framework often used to study other LOBs is not a sensible reference frame
for QCLOBs, so we instead introduce an alternative, trade-relative framework, which we use to study
the statistical properties of order flow and LOB state in our data. We also uncover an empirical
universality: although the distributions that describe order flow and LOB state vary considerably
across days, a simple, linear rescaling causes them to collapse onto a single curve. Motivated by this
finding, we propose a semi-parametric model of order flow and LOB state for a single trading day.
Our model provides similar performance to that of parametric curve-fitting techniques but is simpler
to compute and faster to implement.
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1. Introduction

More than half of the world’s financial markets use electronic
limit order books (LOBs) to facilitate trade (Roşu 2009). In
contrast to quote-driven systems, in which prices are set by
designated market makers, trades in an LOB occur via a contin-
uous double-auction mechanism, in which institutions submit
orders that state their desire to buy or sell a specified quantity of
an asset at a specified price.Active orders reside in a queue until
they are either cancelled by their owner or executed against
an order of opposite type. Upon execution, the owners of the
relevant orders trade the agreed quantity of the asset at the
agreed price.

During the past 20 years, a large body of empirical and
theoretical work has addressed a specific type of LOB in
which all institutions are able to trade with all others (see Gould
et al. (2013) for a review). We call this market organization a
centralized LOB. Although several large platforms—including
the London Stock Exchange (LSE) Electronic Trading Ser-
vice (The London Stock Exchange 2015), Nasdaq (Nasdaq
2015) and the Euronext Universal Trading Platform (Euronext
2013)—employ centralized LOBs, many other platforms use
alternative LOB configurations. In contrast to the wealth of

∗Corresponding author. Email: gouldm@maths.ox.ac.uk
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publications on centralized LOBs, discussion of alternative
LOB configurations is limited to a handful of technical descrip-
tions of matching mechanisms on specific platforms (Sarno
and Taylor 2001, Rime 2003, Barker 2007, Gallardo and Heath
2009). Given their widespread use, detailed study of alternative
LOB configurations is an important task.

A prominent example of an alternative LOB configuration
is an LOB in which financial institutions can only access the
trading opportunities offered by counterparties with whom they
possess sufficient bilateral credit. We call this market orga-
nization a quasi-centralized limit order book (QCLOB) be-
cause different institutions have access to different subsets
of a centralized liquidity pool. QCLOBs are used by several
major multi-institution trading platforms in the foreign ex-
change (FX) spot market, including Reuters (Thomson–Reuters
2011), EBS (EBS 2011) and Hotspot FX (Knight Capital Group
2015a), which together facilitate a mean turnover in excess of
0.6 trillion US dollars (USD) each day (Bank for International
Settlements 2010).

Despite this enormous volume of trade, a lack of adequate
data has hindered investigation of many important questions
regarding QCLOBs. Do the statistical properties of QCLOBs
differ from those of centralized LOBs? Do arbitrage oppor-
tunities arise? How do institutions assess market state when
deciding how to act? In this paper, we present an empirical
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study of a recent, high-quality data set from Hotspot FX that
enables us to address these issues.

In comparison to the statistics that are widely reported in
empirical studies of centralized LOBs (see Gould et al. (2013)),
we observe much lower levels of order flow at the prevailing
quotes and a much higher ratio of active liquidity to market or-
der flow. We also identify periods during which the global bid–
ask spread is negative. Due to the extremely high levels of mar-
ket activity on Hotspot FX, we are able to perform both cross-
sectional (i.e. across different currency pairs) and longitudinal
(i.e. across different time periods) comparisons of our findings.
We find several longitudinal differences in market activity,
and we thus argue that using long-run statistical averages to
formulate short-run forecasts may produce misleading results.
We also uncover a striking empirical universality: applying a
simple, linear rescaling to the distributions that describe order
flow and market state causes the data to collapse onto a single
curve. Motivated by this finding, we propose a semi-parametric
model of these distributions that gives similar performance to
parametric curve-fitting techniques but is simpler to compute
and faster to implement.

Our findings are important for several reasons. First, they
provide a detailed overview of recent trading activity on a large
electronic trading platform. Second, they illustrate similarities
and differences between market activity on different trading
days. Third, they highlight how several properties of QCLOBs
differ from those of centralized LOBs. Fourth, they motivate a
semi-parametric model for the distributions that describe order
flow and market state in a QCLOB. Together, our results help to
illuminate the delicate interplay between order flow, liquidity,
and price formation for a widely used but hitherto unexplored
market organization.

The paper proceeds as follows. In section 2, we present
several definitions that we use throughout the paper, provide
a detailed description of centralized LOBs and QCLOBs, and
highlight the important differences between these mechanisms.
In section 3, we describe the data that forms the basis for our
empirical study and discuss the Hotspot FX platform. In section
4, we describe the methodology that we use for our empirical
study. We present our main results in section 5 and discuss our
findings in section 6. We conclude in section 7. In appendix
1, we describe our method of performing parametric fits to
daily data. In appendix 2, we describe how we quantify the
strength of curve collapse when rescaling each day’s data in
our semi-parametric model.

2. Centralized and Quasi-centralized LOBs

Let � = {θ1, θ2, . . .} denote the set of institutions that trade a
given asset on a given platform. In an LOB, these institutions
interact by submitting orders. An order x = (px , ωx , tx ) sub-
mitted at time tx with price px and size ωx > 0 (respectively,
ωx < 0) is a commitment by its owner to sell (respectively,
buy) up to |ωx | units of the asset at a price no less than (respec-
tively, no greater than) px .

Whenever an institution submits a buy (respectively, sell)
order x , an LOB’s trade-matching algorithm checks whether it
is possible for x to match to an active sell (respectively, buy)
order y such that py ≤ px (respectively, py ≥ px ). If so, the
matching occurs immediately and the owners of the relevant

orders agree to trade the specified amount at the specified
price. If |ωx | >

∣∣ωy
∣∣, any residue of x is then considered for

matching to other active sell (respectively, buy) orders until
either x becomes fully matched or there are no further active
sell (respectively, buy) orders eligible for matching to x . Any
portion of x that does not match becomes active at the price
px , and it remains active until it either matches to an incoming
sell (respectively, buy) order or is cancelled.

Orders that match completely upon arrival are called mar-
ket orders. Orders that do not match upon arrival—instead
becoming active in the LOB—are called limit orders.† Some
platforms allow other order types—such as fill-or-kill, stop-
loss, or peg orders (Knight Capital Group 2015b)—but it is
always possible to decompose the resulting order flow into
limit and/or market orders. Therefore, we study LOBs in terms
of these simple building blocks.

The global‡ LOB L(t) is the set of all active orders for
a given asset on a given platform at time t . The global bid
price b(t) is the highest price among active buy orders in L(t).
The global ask price a(t) is the lowest price among active sell
orders in L(t). The global bid–ask spread is s(t) = a(t)−b(t).
The global mid price is m(t) = [b(t) + a(t)] /2.

2.1. Centralized LOBs

In a centralized LOB, all institutions can trade with all others.
Whenever an institution θi submits a buy (respectively, sell)
market order, the order matches to the highest-priority active
sell (respectively, buy) order that is owned by another institu-
tion θ j , irrespective of the identities of θi and θ j . Therefore,
all institutions in a centralized LOB face the same trading
opportunities. A sell order with px > b(t) or a buy order with
px < a(t) is always a limit order, a sell order with arbitrarily
small px or a buy order with arbitrarily large px is always
a market order, and a sell order with px ≤ b(t) or a buy
order with px ≥ a(t) at least partially matches immediately
upon arrival. For a detailed discussion of centralized LOBs,
see Gould et al. (2013).

2.2. Quasi-centralized LOBs

In a QCLOB, each institution can specify the maximum level
of counterparty credit exposure that it is willing to extend to
each other institution trading on the platform.§ Specifically,
each institution θi in a QCLOB notifies the exchange of its
counterparty credit limit (CCL) c(i, j) ≥ 0 for each other insti-
tution θ j . Assigning a CCL to a given counterparty does not
require posting collateral; instead, it simply involves notifying
the exchange of the relevant value c(i, j). Institution θi cannot
access any trading opportunities offered by another institution
θ j that would make θi ’s total exposure to θ j exceed c(i, j) or that

†Some orders match partially upon arrival. Such orders can be
construed as partly a market order and partly a limit order.
‡We use the term ‘global’ to highlight the differences between these
definitions and the local definitions in section 2.2.
§In the FX spot market, trades agreed on day d are settled on day d+2.
Therefore, each trade by an institution in this market entails exposure
to the counterparty during the period between trade agreement and
trade settlement. Mitigation of the resulting counterparty risk is one
reason for the use of CCLs.
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Figure 1. Two weighted network representations of the CCLs in a
QCLOB; see the main text for details. (Top) Directed network with
edge weights equal to the corresponding CCLs. (Bottom) Undirected
network with edge weights equal to the corresponding bilateral CCLs.
In both networks, edges with zero weight are omitted.

would make θ j ’s total exposure to θi exceed c( j,i). Hence the
maximal amount that θi and θ j can trade is min

(
c(i, j), c( j,i)

)
.

We call this quantity the bilateral CCL between θi and θ j . The
bilateral CCLs determine the subset of trading opportunities
available to each institution. This subset changes over time
according to the relevant institutions’ trading activity.

Institution θi can ensure that it never trades with θ j by setting
c(i, j) = 0, because arranging any trade with θ j would result
in a non-zero exposure and would thereby violate this CCL.
Institution θi can also assign an unlimited amount of credit to θ j

by setting c(i, j) = ∞. Irrespective of the CCL set by θi , it still
remains open to θ j to further restrict the bilateral exposure by
choosing c( j,i) appropriately. In particular, the choice c( j,i) = 0
indicates unwillingness to trade at all.

In figure 1, we show two possible network representations
of the CCLs in a QCLOB populated by institutions � =
{θ1, θ2, θ3, θ4} with CCLs

c(1,2) = ∞, c(1,3) = ∞,

c(2,1) = 3, c(2,3) = 10,

c(3,2) = 12, c(3,4) = 2,

c(4,2) = 100, c(4,3) = ∞, (1)

and with all other CCLs equal to 0. In both representations,
nodes corresponds to institutions and edge weights to CCLs.
The first representation is a directed network in which the
weight of the edge from node i to node j is equal to the
CCL c(i, j). The second representation is an undirected net-
work in which the weight of the edge between nodes i and
j is equal to the bilateral CCL between institutions i and j
(i.e. min

(
c(i, j), c( j,i)

)
). In this example, the CCL structure is

akin to a core of two creditworthy institutions (θ2 and θ3),
which can trade freely with each other, and two peripheral,
less creditworthy institutions (θ1 and θ4), each of which can
only trade with one core partner.

Institutions trading on a QCLOB platform cannot in general
see the state of the global LOB L(t). Instead, each institution
θi sees only the active orders that correspond to trading oppor-
tunities that it can access (i.e. do not violate any of its bilateral
CCLs) at time t .† This filtering of L(t) yields local versions of
several key concepts (see figure 2). Institution θi ’s local LOB
Li (t) is the subset of active orders in L(t) that θi can access.
More precisely, for each j �= i , the volume of each separate
limit order placed by θ j is reduced (if necessary) in Li (t) so

†Some QCLOB platforms (such as Reuters and EBS) offer institutions
the ability to access an additional data feed that provides snapshots of
the global LOB L(t) at regular time intervals in exchange for a fee.

that its size does not exceed the bilateral CCL between θi and
θ j .

Institution θi ’s local bid price bi (t) is the highest stated price
among active buy orders inLi (t). Institution θi ’s local ask price
ai (t) is the lowest stated price among active sell orders in Li (t).
Institution θi ’s local bid–ask spread is si (t) = ai (t) − bi (t).
Institution θi ’s local mid price is mi (t) = [bi (t) + ai (t)] /2.

When an institution θi submits a buy (respectively, sell)
market order, the order matches to the highest-priority active
sell (respectively, buy) order in Li (t). Importantly, there may
be higher-priority active sell (respectively, buy) orders in the
global LOB L(t) owned by another institution θ j with whom θi

has insufficient bilateral credit to perform the trade, but such
orders are not considered for matching to θi ’s market order
because they do not appear in θi ’s local LOB Li (t).

A noteworthy difference between a QCLOB and a central-
ized LOB follows from the partial nature of each institution’s
local LOB. In a QCLOB, the global spread s(t) (which is
observable in our data) can be negative even though the local
spreads si (t) (which are not observable in our data) are positive.
In section 5, we report that negative global spreads occur
reasonably frequently, but do not persist for long.

In addition to viewing their local LOB Li (t), each institution
in a QCLOB can access a trade-data stream that lists the price,
time, and direction (buy/sell) of each trade that occurs. All
institutions can see all entries in the trade-data stream in real
time, irrespective of their bilateral CCLs with the institutions
involved in a given trade. Therefore, although institutions in
a QCLOB do not have access to information regarding which
trading opportunities are available to other institutions, they do
have access to a detailed historical record of previous trades.

In figure 2, we illustrate an example of a QCLOB’s global
and local LOBs. The figure shows a simple global LOB and
the corresponding local LOBs for the four institutions shown
in figure 1. In the figure, we label each order according to
its owner, although this information is not visible to traders. In
this example, the global spread is negative, but all local spreads
are positive. Observe that in L1(t), the order owned by θ2 is
truncated to size 3, because this is the value of the bilateral
CCL between θ1 and θ2. Similarly, in L4(t), the orders owned
by θ3 are truncated to size 2, because this is the value of the
bilateral CCL between θ3 and θ4.

2.3. Coordinate frames

Because a financial institution’s activity is driven by its trad-
ing needs, its individual actions can appear extremely erratic.
However, many empirical studies of centralized LOBs (see,
e.g. Biais et al. (1995), Bouchaud et al. (2002), Chakraborti et
al. (2011), Challet and Stinchcombe (2001), Cont et al. (2010),
Gu et al. (2008a, 2008b), Mike and Farmer (2008), Potters
and Bouchaud (2003), and Zovko and Farmer (2002)) have
noted that when measured in a suitable coordinate frame that
aggregates order flows from many different institutions, robust
statistical properties can emerge from the ensemble.

Most studies of centralized LOBs perform such aggregation
in a coordinate frame that we call quote-relative coordinates,
in which prices are measured relative to the global bid price
b(t) or the global ask price a(t). Specifically, the quote-relative
price of an order x at time t is
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Figure 2. Schematic of (top) a global LOB L(t) and (top left) θ1’s local LOB L1(t), (top right) θ2’s local LOB L2(t), (bottom left) θ3’s
local LOB L3(t), and (bottom right) θ4’s local LOB L4(t) for a QCLOB with the CCLs described in figure 1. To illustrate the role of CCLs,
we label each order in the figure according to its owner. However, trading platforms do not disseminate this information to traders, nor do we
have access to this information in the Hotspot FX data (see section 3.2).



Quasi-centralized limit order books 835

φ(px , t) :=
{

b(t) − px , if x is a buy order,
px − a(t), if x is a sell order.

(2)

The difference in signs between the definitions for buy and
sell orders ensures that all active orders have a non-negative
quote-relative price at all times.

The use of quote-relative coordinates in centralized LOBs is
motivated by the notion that institutions monitor b(t) and a(t)
when deciding how to act. There are many reasons why this
is the case. For example, b(t) and a(t) define the boundary
conditions that dictate whether an incoming order is a limit
order or a market order, they are observable to all institutions
in real time, and they are common to all institutions. Therefore,
they constitute suitable reference points for aggregating order
flows across different institutions.

In a QCLOB, by contrast, the boundary conditions between
limit order and market order placement for a given institution θi

are determined by θi ’s local bid price bi (t) and local ask price
ai (t), rather than the global values b(t) and a(t). Moreover, in-
stitutions cannot see the state of the global LOBL(t), so they do
not know the values of b(t) and a(t). Therefore, quote-relative
coordinates are not a natural framework for studying QCLOBs.
This provides strong motivation to explore alternative avenues.

Given complete information regarding each institution’s lo-
cal LOB Li (t), one possible approach would be to measure
each institution’s order flow relative to its local quotes bi (t) and
ai (t) and to aggregate the corresponding relative prices across
institutions. However, this approach would require calculating
each institution’s local LOB Li (t), which is not possible using
the Hotspot FX data (see section 3.2).

Another possibility is to measure all institutions’ order flow
relative to a benchmark price that is common to all institutions
and visible to all institutions in real time. Recall from section
2.2 that QCLOBs disseminate a trade-data stream that lists the
prices of all previous trades. This trade-data stream thereby
facilitates the use of an alternative coordinate frame, which we
call trade-relative coordinates, in which prices are measured
relative to those of the most recent trades. Let B(t) and A(t)
denote, respectively, the price of the most recent seller-initiated
and buyer-initiated trades (across all institutions) that occur at
or before time t . The trade-relative price of an order x at time
t is then given by

�(px , t) :=
{

B(t) − px , if x is a buy order,
px − A(t), if x is a sell order.

(3)

In contrast to quote-relative prices, all institutions in a
QCLOB can calculate trade-relative prices in real time. More-
over, we can calculate trade-relative prices directly from our
Hotspot FX data (see section 3.2). Therefore, trade-relative co-
ordinates are a useful alternative to quote-relative coordinates
in a QCLOB.

To highlight their similarities and differences, we perform
our calculations throughout the paper in both quote-relative and
trade-relative coordinates. We find that using quote-relative
coordinates produces relatively weak statistical signals with
high variance, but that using trade-relative coordinates helps
to uncover stable and robust statistical regularities.

3. Hotspot FX

3.1. The Hotspot FX platform

We have been granted access to a recent, high-quality data
set from Hotspot FX (Knight Capital Group 2015a, 2015b),
which is one of the largest multi-institution trading platforms
in the FX spot market. The data describes all limit order ar-
rivals, cancellations, and trades during May and June 2010.
According to the 2010 Triennial Central Bank Survey (Bank
for International Settlements 2010), the mean daily turnover of
the global FX market around this time was approximately 4.0
trillion USD. Approximately 37% of this volume was due to
spot trades, of which approximately 40% was conducted elec-
tronically. In total, the mean daily volume traded on all multi-
institution electronic trading platforms was approximately 0.6
trillion USD (Bank for International Settlements 2010). The
mean daily volume traded on Hotspot FX during the same
period was approximately 21.5 billion USD (Knight Capital
Group 2015c). Therefore, trade on Hotspot FX accounted for
approximately 4% of all volume traded electronically in the
FX spot market during this period.

Hotspot FX offers trade for more than 60 different currency
pairs. Each currency pair is traded within a separate QCLOB
with price-time priority, in which priority is first given to the
active orders with the best (i.e. highest buy or lowest sell)
price, and ties are broken by selecting the active order with the
earliest submission time tx . The platform serves a broad range
of trading professionals, including banks, financial institutions,
hedge funds, high-frequency traders, corporations, and com-
modity trading advisers (Knight Capital Group 2015a).†

3.2. The Hotspot FX data

The data that we study describes all limit order arrivals, cancel-
lations, and trades between 08:00:00 and 17:00:00 GMT for the
EUR/USD (Euro/US dollar), GBP/USD (Pounds sterling/US
dollar), and EUR/GBP (Euro/Pounds sterling) currency pairs‡
on 30 trading days during May and June 2010. According to
the Bank for International Settlements (2010), global trade for
EUR/USD, GBP/USD, and EUR/GBP constituted about 28%,
9% and 3%, respectively, of the FX market’s total turnover
during this period. For each of EUR/USD, GBP/USD, and
EUR/GBP, the Hotspot FX platform enforces a minimum order
size of 0.01 units of the base currency and a tick size (i.e.
smallest permissible price interval between different orders)
of 0.00001 units of the counter currency.

For each currency pair and each day, the Hotspot FX data
consists of two files. The first file is the tick-data file, which
lists all limit order arrivals and departures and is time-stamped
to the nearest millisecond. For each limit order arrival, this
file lists the price, size, direction (buy/sell), arrival time, and
a unique order identifier. For each limit order departure, this
file lists the departure time and the departing order’s unique
identifier. A limit order departure can occur for two reasons:

†See http://www.hotspotfx.com/download/userguide/HSFX/HSF_U
serGuide_wrapper.html.
‡A price for the currency pair XXX/YYY denotes how many units of
the counter currency YYYare exchanged per unit of the base currency
XXX.

http://www.hotspotfx.com/download/userguide/HSFX/HSF_U
serGuide_wrapper.html
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(1) because the order is matched by an incoming market order
or (2) because the order is cancelled by its owner. The data
provides no way to deduce with certainty whether a given order
departure relates to a cancellation or a complete matching.†

The second file is the trade-data file, which lists all trades.
For each trade, this file lists the price, size, direction (buy/sell),
and trade time, time-stamped to the nearest millisecond. If a
market order matches to several different active orders, then
the trade-data file reports each partial matching as a separate
line, with a time-stamp that differs from the previous line by
at most 1 ms. In the absence of explicit details regarding order
ownership, we regard all entries that correspond to a trade of
the same direction and that arrive within 1 ms of each other
as originating from the same market order. For each of the
three currency pairs, the mean inter-arrival time between trades
is of the order of several seconds, so it is unlikely that two
separate market orders would arrive within 1 ms. We regard
any incorrectly grouped market orders as a source of noise in
the data.

By processing each order arrival or departure listed in the
tick-data file, we are able to reconstruct the global LOB L(t) at
any time during 08:00:00–17:00:00 GMT. However, Hotspot
FX does not disclose any information regarding CCLs on the
platform, and the data contains no information about insti-
tutions’ identities. Therefore, we are not able to reconstruct
any given institution θi ’s local LOB Li (t) from the data. By
processing each trade listed in the trade-data file, we are able
to reconstruct the trade-price series B(t) and A(t) at any time t
during the same period. We are therefore able to calculate both
the quote-relative and trade-relative price of any order at any
time (see section 2.3).

The data does not provide a reliable way to perform infer-
ence about incoming orders that partially match and partially
become active. For such orders, we treat the matched part
as a market order and the unmatched part as a separate limit
order.

4. Methodology

4.1. Time scales

We perform all of our calculations in event time, whereby we
advance the clock by 1 unit whenever a limit order arrives.‡
Measuring time in this way helps to remove the nonstation-
arities that occur in calendar time due to irregular bursts of
trading activity (Stephan and Whaley 1990, Gouriéroux et al.
1999, Mantegna and Stanley 1999, Chakraborti et al. 2011,
Toke 2011). The number of market order arrivals and active
order cancellations varies in each time unit. We reset the clock
at the start of each trading day so that the first limit order
arriving after 08:00:00 GMT has tx = 1.

†When studying order-flow distributions, we treat all active order
departures as cancellations. The percentage of active order departures
that are actually due to complete matching is extremely low,
because market orders constitute about 0.05%, about 0.02%, and less
than 0.01% of arriving order flow for EUR/USD, GBP/USD, and
EUR/GBP, respectively (see table 1). Incorrectly classifying a tiny
fraction of departures in this way should have a negligible impact on
our results.
‡This includes orders that are partially, but not completely, filled upon
arrival.

4.2. Trading days

To obtain sufficiently many data points to perform statistically
stable estimation, some older empirical studies of LOB data
aggregate market activity from multiple trading days or mul-
tiple different assets (Biais et al. 1995, Bouchaud et al. 2002,
Zovko and Farmer 2002, Potters and Bouchaud 2003, Farmer
et al. 2005, Gu et al. 2008a, 2008b, Mike and Farmer 2008,
Cont et al. 2010, Chakraborti et al. 2011). However, thanks to
increased levels of market activity, technological innovations
that facilitate analysis of ever-larger data sets, and improved
data quality,§ aggregating data in this way is less important in
empirical studies of more recent LOB data.

Due to the high levels of activity on Hotspot FX and the
high quality of the data to which we have access, we are
able to study order flow and LOB state on each trading day
and for each currency pair separately. We choose a single
trading day as our longitudinal unit for three reasons. First,
a single trading day represents a structural cycle on Hotspot
FX because the platform automatically cancels all active or-
ders at the end of each day (Knight Capital Group 2015b).
Second, a single trading day provides a compromise between
including enough data points to ensure statistical stability and
including enough longitudinal units to perform useful compar-
isons. Third, several empirical studies have reported that most
institutions implement their investment decisions and trading
strategies over a single trading day (Bjønnes and Rime 2005,
Sager and Taylor 2006, Axioglou and Skouras 2011). To such
institutions, statistics that describe market behaviour over this
time horizon are likely to be the most useful.

4.3. Buy and sell orders

The use of quote-relative and trade-relative coordinates facili-
tates the aggregation of buy and sell orders into a single data set
(see section 2.3). Throughout this paper, we report all of our
results for buy and sell orders together, because aggregating
the data in this way increases the sample size when compared
to studying buy or sell orders separately. We repeated all of our
calculations for buy and sell orders separately, and we obtained
qualitatively similar results to those that we report, albeit with
a smaller sample size and a correspondingly larger statistical
noise.

5. Results

5.1. LOB activity

In table 1, we list summary statistics that describe aggregate
LOB activity for EUR/USD, GBP/USD, and EUR/GBP on
Hotspot FX across all 30 trading days in our sample. In terms
of both limit order and market order arrivals, EUR/USD is
the most active and EUR/GBP is the least active of the three
currency pairs. The total volume of arriving limit orders is
about 30% larger for GBP/USD and about 60% larger for

§Several LOB platforms now record data at the accuracy of
milliseconds (Hasbrouck and Saar 2013) or even nanoseconds (Gai
et al. 2013, Bonart and Gould 2016, Gould and Bonart forthcoming).
See Menkveld (2016) for a survey of several studies that examine
recent LOB data from a wide range of different sources.
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EUR/USD than it is for EUR/GBP. The corresponding results
for market orders are even more extreme: the total size of
market order arrivals for GBP/USD outstrips that of EUR/GBP
by a factor of about 4, and the total size of market order
arrivals for EUR/USD outstrips that of EUR/GBP by a factor
of more than 10. Therefore, comparing our subsequent results
for the three different currency pairs enables us to contrast the
behaviour of the QCLOBs for currency pairs with substantially
different levels of trading activity.

For each of the three currency pairs, limit order arrivals
outstrip market order arrivals by more than three orders of
magnitude. Market orders constitute less than 0.05% of the
total arriving order flow, which indicates that the vast majority
of limit orders end in cancellation rather than matching. Indeed,
in each case, the total size of cancellations is very close to the
total size of limit order arrivals. The remaining volume of limit
orders (not accounted for either by matching or by cancella-
tion) indicates that the mean total size of active orders in each
currency pair’s global LOB increases on average through the
trading day.

For both limit orders and market orders, the modal size
is exactly 1 million units of the base currency. The empirical
cumulative density functions (ECDFs) of order sizes (see figure
3) reveal that institutions favour orders with round-number
sizes that are integer multiples of 1 million, even though the
minimum order size on Hotspot FX is just 0.01 units of the
base currency (see section 3). Despite their common mode,
the mean size of arriving limit orders for each currency pair is
more than double the corresponding number for market orders
due to the higher concentration of small market order sizes
than of small limit order sizes.

For each of the three currency pairs, the mean total depth at
the best quotes (i.e. the mean total size of active orders at b(t)
or a(t)) is less than 1% of the total size of all active orders.
Despite this relatively small fraction of liquidity at the global
best prices, it still exceeds the mean size of market orders by
a factor of almost 10 in each case. Moreover, only a small
percentage of market orders match at more than one price.
Together, these results suggest that institutions employ selec-
tive liquidity-taking, in the sense that they carefully monitor
the market state to ensure that they only conduct trades at
favourable prices.†

We now assess the relationship between the sizes of market
orders and the sizes of the queues to which they match. In Panel
A of figure 4, we show how the mean order size varies among
market orders that match to a queue of a given length. For all
queue lengths, the mean size of arriving market orders is strictly
smaller than the queue length. This result is consistent with our
observation that it is relatively rare for market orders to match
at more than one price. For queue lengths up to about 1 million,
the mean size of market orders grows approximately linearly
with the queue length, with a scale factor that varies across the
three currency pairs but is less than 1 in each case. However,
this does not persist for queue sizes longer than about 1 million,
for which the mean market order size becomes approximately
constant for each of the three currency pairs. This finding
contrasts to the results reported by Farmer et al. (2004) for

†For a detailed introduction to selective liquidity-taking, see
Bouchaud et al. (2009).

order flow on the LSE (which operates as a centralized LOB),
in which the approximately linear relationship that we observe
for small queue lengths persists across the whole domain, even
when the total depth of active orders at the best quotes is very
large. In section 6, we return to this discussion and propose
two possible explanations for the behaviour that we observe
on Hotspot FX.

To further illustrate the presence of selective liquidity-taking,
we also calculate the fraction of the relevant queue depth that
each market order consumes upon arrival. For a sell market
order x submitted at time tx with price px and size ωx > 0, we
calculate the ratio

hx =
∣∣∣∣ ωx

nb(px , tx )

∣∣∣∣ ,
where nb(px , tx ) denotes the total size of active buy orders in
the global LOB with price px immediately before the market
order arrival at time tx . For a buy market order x , we calculate
the same ratio hx , but we use the corresponding total size
na(px , tx ) of active sell orders. In Panel B of figure 4, we
show the ECDFs of hx .

Our results paint an interesting picture of selective liquidity-
taking on Hotspot FX. On the one hand, about 33% of mar-
ket orders for EUR/USD, about 36% of market orders for
GBP/USD, and about 43% of market orders for EUR/GBP
consume the entire queue to which they match. This suggests
that a considerable fraction of institutions condition their mar-
ket order size to match the depth of active orders available. On
the other hand, some market orders consume a relatively small
fraction of the relevant queue depth. For example, about half of
all market orders for EUR/USD consume less than 20% of the
relevant queue depth. This may indicate that the institutions
that submit these market orders do not wish to perform large
trades, despite large depths being available to them. However, it
may also be the case that these institutions do not have sufficient
CCLs to access the full depths available in the global LOB, and
that they therefore instead condition their market order sizes
to the depth available in their local LOB. We also return to this
discussion in section 6.

In table 2, we list summary statistics for the global bid–
ask spread s(t). Both the mean and median values of s(t) are
similar for GBP/USD and EUR/GBP, but they are much smaller
for EUR/USD. This implies that s(t) tends to be smaller for
EUR/USD than for the other two currency pairs. In a cen-
tralized LOB, a smaller value of s(t) is often construed as a
sign of greater liquidity (Ding and Hiltrop 2010), because s(t)
determines the cost of conducting a round-trip trade (i.e. buying
a single unit at a(t) and selling a single unit at b(t) using a pair
of simultaneous market orders). In a QCLOB, by contrast, s(t)
does not have such a clear interpretation because the liquidity
available to each institution θi depends on its local LOB Li (t).

Another important contrast between centralized LOBs and
QCLOBs is that the global spread s(t) is always strictly positive
in a centralized LOB, but can become negative in a QCLOB
(see figure 2). This occurs whenever there exist a buy limit
order x and a sell limit order y such that py < px . In a
centralized LOB, the arrival of the second such order would
trigger an immediate matching, so x and y would never coexist
in L(t). In a QCLOB, however, if the CCLs between the
institutions that own x and y do not permit them to perform the
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Table 1. Summary statistics for aggregate activity on all 30 trading days that we study.

EUR/USD GBP/USD EUR/GBP

Total size (units of base currency ×109)
Limit orders 301 136 235 934 184 597
Market orders 137 46 12
Cancellations 300 959 235 868 184 580

Total number (orders ×103)
Limit orders 136 009 131 088 87 982
Market orders 168 87 15
Cancellations 135 805 130 987 87 964

Mean inter-arrival time (seconds)
Limit orders 0.00715 0.00741 0.011
Market orders 5.78 11.1 62.9
Cancellations 0.00716 0.00742 0.011

Modal size (units of base currency ×106)
Limit orders 1.00 1.00 1.00
Market orders 1.00 1.00 1.00
Cancellations 1.00 1.00 1.00

Mean size (units of base currency ×106)
Limit orders 2.21 1.8 2.1
Market orders 0.818 0.523 0.777
Cancellations 2.22 1.8 2.1

Percentage of market orders that match at several different prices 8.41% 6.3% 4.25%
Mean total size of active orders (units of base currency ×106) 579 330 189
Mean total depth at best quotes (units of base currency ×106) 6.04 4.8 4.97
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Table 2. Summary statistics for the global bid–ask spread s(t).

EUR/USD GBP/USD EUR/GBP

Minimum (ticks) −365 −270 −60
Maximum (ticks) 69 147 152
Median (ticks) 4 10 10
Mean (ticks) 3.62 9.54 10.11
Percentage of time for which s(t) < 0 9.99% 4.08% 0.23%
Mean duration for which s(t) < 0 (seconds) 0.10 0.12 0.16
Mean crossed volume (units of base currency ×106) 9.50 7.61 5.11

corresponding trade, then both x and y can be active simulta-
neously. Therefore, the global bid–ask spread can be negative
in a QCLOB. However, as discussed in section 2.2, negative
spreads need not indicate the existence of tradable arbitrage
opportunities, because such opportunities may not be permitted
by the CCL structure.

In PanelAof figure 5, we show the ECDF of s(t). As we also
illustrate in table 2, the global bid–ask spread is negative for
almost 10% of the time for EUR/USD and for more than 4% of
the time for GBP/USD, but it is rarely negative for EUR/GBP.
In the most extreme case (which occurs for EUR/USD), the
spread is more than 350 ticks negative. Among the times when
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s(t) is negative, the mean crossed volume (i.e. the total size of
all sell orders with px < b(t) and all buy orders with p(x) >

a(t)) is about 10 million for EUR/USD, about 7.5 million for
GBP/USD and about 5 million for EUR/GBP. In Panel B of
figure 5, we show the ECDF of time durations for which s(t)
remains negative (i.e. the ECDF of time differences between
when the spread becomes negative and when it next becomes
positive). The global bid–ask spread typically remains negative
for extremely short durations.

5.2. Daily activity levels

In figure 6, we show the total size of arriving limit orders and
market orders on each of the 30 days in our sample. Although
aggregate market activity levels vary considerably across trad-
ing days, especially active or especially quiet days tend to
coincide for each of the three currency pairs (particularly for
limit order arrivals). This suggests that common, exogenous
factors play an important role in institutions’ trading deci-
sions. In May 2010, the European Central Bank announced

and implemented a series of measures to combat financial
instability within the Eurozone; these included providing loans
to countries in financial difficulties, recapitalizing financial
institutions, and purchasing bonds from member states (The
European Financial Stability Facility 2014, 2015). The large
changes in daily aggregate activity levels during May 2010
suggest that the implementation of such measures and the un-
certainty surrounding their announcements strongly influenced
activity in the FX spot market.

5.3. Activity on a single trading day

We next calculate these distributions in a single trading day, to
help understand the distributions of order flow and LOB state
across different quote- and trade-relative prices. We arbitrarily
choose to present the results for 4 May 2010, which is the first
day in our sample. In section 5.4, we investigate how these
distributions vary across trading days.

In figure 7, we show the quote-relative and trade-relative
price distributions of limit order arrivals on 4 May 2010. For
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Figure 6. Total size of arriving (top panel) limit orders and (bottom panel) market orders for (solid green curve with circles) EUR/USD,
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each of the three currency pairs, the maximum limit order
arrival rate occurs at a strictly positive relative price in both
quote-relative (12 ticks for EUR/USD, 18 ticks for GBP/USD,
and 14 ticks for EUR/GBP) and trade-relative (12 ticks for
EUR/USD, 20 ticks for GBP/USD, and 15 ticks for EUR/GBP)
coordinates. Some institutions place limit orders with extremely
large quote- and trade-relative prices, which suggests that they
seek to profit from large price swings on long time horizons.

In figure 8, we show the quote-relative and trade-relative
distributions of cancellations for each of the three currency
pairs. In contrast to limit order arrivals, cancellations can only
occur at non-negative quote-relative prices, because the lowest
possible quote-relative price of an active order is 0 (which oc-
curs for orders at b(t) or a(t)). Each of the three currency pairs’
quote-relative cancellation distributions have a local maximum
at 0. Cancellations for GBP/USD tend to occur further from
the best quotes and cancellations for EUR/USD tend to occur
closer to the most recently traded price than do those for the
other two currency pairs. For strictly positive quote-relative
prices, the cancellation distributions have qualitatively simi-
lar shapes to the corresponding distributions for limit order
arrivals. In trade-relative coordinates, the cancellation distri-
butions are extremely similar to the corresponding limit order
arrival distributions at all prices.

In figure 9, we show the mean depths (i.e. the mean total
size of active orders in the global LOB L(t)) at given quote-
relative and trade-relative prices. By definition, the mean depth
is 0 for all negative quote-relative prices. Although all three
currency pairs have a local maximum in mean depth at the best
quotes, in each case, it is much smaller than the corresponding
local maximum in the cancellation distributions. In both quote-
relative and trade-relative coordinates, the mean depth at small
quote-relative prices is substantially larger for EUR/USD than
it is for GBP/USD and EUR/GBP. In trade-relative coordi-
nates, each currency pair’s local maximum occurs at a strictly
positive relative price (20 ticks for EUR/USD and EUR/GBP,
and 30 ticks for GBP/USD). The upper tails of the distri-
bution of mean depths are much heavier than those of the
corresponding distributions of limit order arrivals and cancella-
tions. This suggests that some institutions leave active orders
far from the best quotes for long periods of time. Although
such orders constitute a tiny fraction of the aggregate order
flow, their long lifetimes cause them to contribute significantly
to the mean depths when averaged across the whole sample
period.

Figures 7 and 8 illustrate an interesting round-number effect
in order flow: limit order arrivals and cancellations occur more
frequently at relative prices that are integer multiples of 10
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Figure 9. Mean depths at given (top) quote-relative and (bottom) trade-relative prices for (solid green curves with circles) EUR/USD, (dashed
orange curves with squares) GBP/USD, and (dotted-dashed pink curves with triangles) EUR/GBP on 4 May 2010. The plots show the total
absolute size of both buy and sell orders at the given relative prices. The main plots show the empirical mean depths (in units of the base
currency), and the inset plots show the normalized empirical cumulative mean depths (i.e. the empirical cumulative mean depths expressed
as a fraction of the mean total size of all active orders at all prices).

than they do at neighbouring relative prices. Similarly, figure
9 illustrates that the total depth in L(t) tends to be larger at
relative prices that are integer multiples of 10 than it does at
neighbouring relative prices.

To help quantify the strength of this effect, we calculate
magnitude spectra by applying the fast Fourier transform (FFT)
to the corresponding empirical density functions. In figure 10,
we show the magnitude spectra of limit order arrivals on 4
May 2010. The corresponding plots for cancellations and mean
depths are qualitatively similar (however, they are slightly
noisier). In quote-relative coordinates, the magnitude spectra
exhibit a weak periodicity at integer multiples of 0.1 (which
corresponds to a period of 10 ticks), but they also contain
several other local maxima close to these peaks. In trade-
relative coordinates, the magnitude spectra exhibit a much
stronger signature of periodicity at integer multiples of 0.1,
with clear local maxima corresponding to these frequencies.

We obtain additional insights into round-number effects by
calculating the mean cancellation ratio, which we measure by
rescaling the total size of cancelled active orders at a given
relative price by the corresponding mean depth (see figure 11).
The mean cancellation ratio is a useful quantity for helping
to understand order cancellations, because simply calculating
the total size of active order cancellations at a given relative

price (as in figure 8) does not take into account that the mean
depth, and therefore the mean total size of active orders that
could be cancelled, varies substantially across relative prices
(see figure 9).

In quote-relative coordinates, the mean cancellation ratios
vary considerably with relative price, with no discernible trend
or pattern. However, this is unsurprising because institutions
in a QCLOB are unable to calculate quote-relative prices and
therefore cannot use such information when deciding whether
to cancel an order. In trade-relative coordinates, by contrast,
two interesting results emerge. First, each of the three currency
pairs’ mean cancellation ratios exhibit a strong round-number
periodicity: The mean lifetime of an active order at a trade-
relative price that is an integer multiple of 5 is longer than
that of an active order at a neighbouring trade-relative price.
Second, aside from this round-number effect, the mean cancel-
lation ratios for EUR/USD and GBP/USD are approximately
constant for negative trade-relative prices and decrease for
positive trade-relative prices. At all trade-relative prices, the
cancellation ratio for EUR/GBP is higher than it is for the
other two currency pairs. However, the round-number effect is
particularly strong for EUR/USD, so it is difficult to discern
the variation in mean cancellation ratio across trade-relative
prices.
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Figure 11. Mean cancellation ratio (i.e. total size of cancelled active orders at a given relative price divided by the corresponding mean
depth) at given (top) quote-relative and (bottom) trade-relative prices for (solid green curves with circles) EUR/USD, (dashed orange curves
with squares) GBP/USD, and (dotted-dashed pink curves with triangles) EUR/GBP on 4 May 2010.

5.4. Comparisons across trading days

We now investigate how the distributions of order flow and
LOB state vary across trading days. In figure 12, we show
the ECDFs of limit order arrivals for EUR/USD. Each curve

indicates the given distribution for a single trading day. The
results for cancellations and normalized mean depths, and the
corresponding results for the other currency pairs, are all quali-
tatively similar. In each case, the ECDFs suggest that there are
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Figure 12. ECDFs for EUR/USD limit order arrivals at given (left panel) quote-relative and (right panel) trade-relative prices. Each curve
indicates the ECDF on a single day.

Figure 13. Distances between ECDF Fd of limit order arrivals on a given day d and ECDF F−d of limit order arrivals on all other days at
given (left panel) quote-relative and (right panel) trade-relative prices for (green curves) EUR/USD, (orange curves) GBP/USD, and (pink
curves) EUR/GBP. Each curve indicates the distances for a single day d .

substantial differences across different days. On some days,
the majority of order arrivals and cancellations occur over a
narrow range of small relative prices; on other days, the range
of relative prices over which such activity occurs is wider,
which indicates that a larger fraction of activity occurs deeper
into the global LOB.

To help quantify the differences between these daily distri-
butions, we also calculate the distance between a given day’s
ECDF and the corresponding ECDF for the aggregate data
from all other 29 days in our sample. For example, when

studying EUR/USD limit order arrivals on 4 May 2010, we
first calculate the ECDF using the data for just this day (as in
figure 12), then calculate the ECDF for EUR/USD limit order
arrivals on all other days in our sample. We write Fd(p) to
denote the ECDF for the data on day d , and we write F−d(p)

to denote the ECDF for the data on all days except day d . We
then calculate the difference Fd(p) − F−d(p). In figure 13,
we show the resulting plots for limit order arrivals. The results
for cancellations and normalized mean depths are qualitatively
similar.
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As we also illustrate in figure 12, the distributions on individ-
ual trading days often differ substantially from the aggregate
distributions from the other trading days. To investigate the
extent to which differences in the first two moments account
for the observed differences between the daily distributions,
we rescale each day’s data according to its sample mean and
standard deviation. When calculating these sample moments,
we use a trimmed sample mean and trimmed sample standard
deviation to exclude all order arrivals and cancellations that
occur with a relative price of more than 1000 ticks.† This trim-
ming removes a very small number of orders with extremely
large relative prices. For example, all EUR/USD trades in the
data occur in the price interval $1.10–$1.40, but some sell limit
orders arrive with a price of more than $500.00. Such orders
do not seem to represent a serious intention to trade. For each
of the three currency pairs, for both buy and sell orders, and
in both quote-relative and trade-relative coordinates, trimming
the data in this way removes less than 0.05% of the total order
flow. We also obtain qualitatively similar results if we instead
trim all orders whose relative prices are within the the top 1
percentile of the respective distributions.

In figure 14, we show the ECDFs of EUR/USD limit order
arrivals after rescaling the data to account for the daily dif-
ferences in the first two moments. The results for the other
currency pairs are qualitatively similar. In quote-relative coor-
dinates, the rescaling causes a reasonably strong collapse for
limit order arrivals and cancellations, but daily differences in
the distributions’ upper tails prevents a stronger collapse in
this region. In trade-relative coordinates, the rescaling causes
a strong collapse onto what appears to be a single, universal
curve over the whole domain. In both quote-relative and trade-
relative coordinates, the collapse for the distributions of nor-
malized mean depths is slightly weaker than for the order-flow
distributions due to a handful of orders with extremely large
relative prices that remain active for long periods on some
days.‡

To investigate the strength of this curve collapse, we calcu-
late the distance between a given day’s ECDF and the corre-
sponding ECDF for the aggregate data from all other 29 days
in our sample (as in figure 13) after performing the rescaling to
account for daily differences in the first two moments. Specif-
ically, for a given day d , we first rescale the data from each of
the other 29 days by subtracting each day’s sample mean and
dividing by its sample standard deviation. We then aggregate
the rescaled data from these 29 days, multiply the result by
the sample standard deviation on day d , and add the sample
mean on day d . Finally, we calculate this rescaled, aggregated
data set’s ECDF, which we label F̂−d , and we then calculate its
distance from Fd . We perform our calculations in this way to
ensure that the domain of our distance measurements matches
that of the data from day d . This enables us to perform direct
comparisons to our results for the non-rescaled data.

†For a detailed discussion of trimmed sample moments, see Huber
and Ronchetti (2009).
‡To verify that such extreme-priced orders are indeed the primary
reason for the weaker collapse of these distributions, we repeated our
calculations after excluding all active orders with a relative price of
more than five standard deviations from the mean. We found that the
resulting curve collapse was similar to that for limit order arrivals and
cancellations.

Table 3. Mean CvM ratios C (see the description in the main text
and in appendix 2) for limit order arrivals, cancellations, and mean
depths. Values larger than 1 indicate that rescaling each day’s data
to account for differences in its first two moments reduces the mean
distance between the daily distributions. Larger values correspond to

stronger curve collapse.

Coordinates Order flow EUR/USD GBP/USD EUR/GBP

Quote relative
Limit orders 4.36 4.10 5.11
Cancellations 3.92 3.83 4.92
Mean depths 1.45 2.03 2.83

Trade relative
Limit orders 20.73 25.13 21.78
Cancellations 20.20 24.37 21.65
Mean depths 3.04 10.06 11.07

In figure 15, we show the distances Fd − F̂−d for limit order
arrivals; the results for cancellations and normalized mean
depths are qualitatively similar. In quote-relative coordinates,
rescaling the data to account for daily differences in the first
two moments produces a considerable reduction in distances
between the daily ECDFs. This reduction is particularly strong
for the days whose distributions are furthest from the aggregate
distribution across the other days (see figure 13). In trade-
relative coordinates, the rescaling causes very strong curve
collapse across the entire domain and on all days.

To quantify the strength of this curve collapse, we compute
the mean ratio C of the Cramér–von Mises (CvM) distances
(Cramér 1928, Huber-Carol et al. 2012) between the distribu-
tions before and after applying the rescaling (see table 3). § We
give a detailed discussion of our methodology in appendix 2.

In quote-relative coordinates, the reductions in CvM dis-
tance for limit orders and cancellations range from a factor of
about 4 to a factor of about 5. This indicates a moderately strong
curve collapse. The corresponding reductions for normalized
mean depths are weaker because of a small number of extreme-
priced orders that remain active for long periods of time and
thereby prevent stronger collapse in the upper tails of these dis-
tributions. In trade-relative coordinates, the reductions in CvM
distance for limit order arrivals and cancellations range from
a factor of about 20 to a factor of more than 25. This indicates
very strong curve collapse. Again, the corresponding reduc-
tions for normalized mean depths are weaker (particularly for
EUR/USD), but they still indicate a moderate curve collapse
for EUR/USD and a strong curve collapse for GBP/USD and
EUR/GBP.

5.5. Models of order flow and LOB state

In recent years, many authors have studied simple models of
order flow and LOB state to help understand the complex
dynamics that occur in financial markets (see Gould et al.
(2013)). When constructing such models, it is often desirable
to incorporate simple, statistical descriptions of order flow and
LOB state that capture the salient features of real market activ-

§We also find qualitatively similar results when using the
Kolmogorov–Smirnov (KS) distance (Smirnov 1939, Wasserman
2004). There are many other possible distance measures (Deza and
Deza 2006) that we could use; we choose the CvM and KS distances
because they are widely used, easy to interpret, and fast to compute.
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Figure 14. ECDFs for EUR/USD limit order arrivals at given (left panel) quote-relative and (right panel) trade-relative prices after rescaling
each day’s data by subtracting its sample mean and dividing by its sample standard deviation. Each curve indicates the ECDF on a single day.
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Figure 15. Distances between ECDF Fd of limit order arrivals on a given day d and rescaled ECDF F̂−d of limit order arrivals on all other
days, at given (left panel) quote-relative and (right panel) trade-relative prices for (green curves) EUR/USD, (orange curves) GBP/USD, and
(pink curves) EUR/GBP. Each curve indicates the distances for a single day d .

ity. In this section, we use our results from the previous sections
to motivate two approaches to this problem in a QCLOB.

The first approach that we consider is a parametric approach.
In their study of order flow on the LSE, Mike and Farmer
(2008) used a generalized t distribution to model the distribu-
tions of quote-relative prices of arriving orders. For order flow
and LOB state on Hotspot FX, we find that this distribution
provides a moderate fit in quote-relative coordinates and a
strong fit in trade-relative coordinates. Several other parametric
distributions with more than four parameters (most notably,
the five-parameter logistic distribution (Gottschalk and Dunn

2005)) also fit the data well, but the inclusion of additional
parameters increases the computational complexity of the re-
quired optimization, and could also lead to over-fitting. We
therefore restrict our attention to the generalized t distribution.

In figure 16, we show our fit of the generalized t distribution
to the quote-relative and trade-relative distributions of limit
order arrivals for EUR/USD on 4 May 2010. We describe our
method of fitting the distribution in appendix 1. The results
for the other currency pairs and other dates are qualitatively
similar. Although the distribution fails to capture some of the
features of the order flow that we observe on Hotspot FX
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Figure 16. Fits of the generalized t distribution to the distribution of limit order arrivals for EUR/USD on 4 May 2010 in (top) quote-relative
and (bottom) trade-relative coordinates. The main plots show (green circles) the empirical density functions and (green curves) our fits of
the generalized t distribution. In the inset, we show quantile–quantile (Q–Q) plots of (vertical axis) the ECDFs vs. (horizontal axis) our fits
of the generalized t distribution. The points indicate the 1st, 2nd, . . . , 99th percentiles of the distributions. The solid black lines indicate the
diagonal. The results for the other currency pairs are qualitatively similar.

(such as the tendency for orders to arrive more frequently
at round-number relative prices), the fits perform reasonably
well. In quote-relative coordinates, the fits match the approxi-
mate shape of the empirical density in the middle of the domain,
but they fail to capture the strong kurtosis of the data, and they
therefore do not perform very well in the upper and lower
tails. In trade-relative coordinates, the fits perform well over
the whole domain.

In trade-relative coordinates, we again find that a generalized
t distribution provides a good fit to the distribution of active or-
der cancellations (see figure 17 for EUR/USD on 4 May 2010;
the results for the other currency pairs and other dates are all
qualitatively similar). In quote-relative coordinates, the local
maximum in active order cancellations at a quote-relative price
of 0 hinders this approach because the shape of the generalized t
distribution does not capture this feature of the data. Therefore,
the fits for quote-relative cancellations are outperformed by the
fits for quote-relative limit order arrivals (see figure 16). The
results for the normalized mean depths are qualitatively similar
to those for cancellations, so we omit these plots.

The results in figure 15 and table 3 also motivate an alterna-
tive, semi-parametric approach to modelling the distributions

of order flow and LOB state. For a single trading day d , let μd

and σd denote, respectively, the mean and standard deviation
of a specified property (e.g. EUR/USD limit order arrivals in
trade-relative coordinates). Given data from a set D of trading
days, we rescale the data on each day d by subtracting μd

then dividing by σd , and we then aggregate the rescaled data
for all days into a single data set. To obtain the model for the
distribution on another trading day d ′ /∈ D, we multiply each
entry in the aggregated data set by σd ′ then add μd ′ .

In figure 18, we show the result of applying this semi-
parametric approach to model the trade-relative distribution of
limit order arrivals for EUR/USD on 4 May 2010. The results
for cancellations, for the other currency pairs, and for the other
days in our sample are all qualitatively similar. As illustrated
by the Q–Q plot, the fit performs well over the whole domain.
The corresponding fits for normalized mean depths and for
the distributions in quote-relative coordinates perform slightly
less well because of a small number of extreme-priced orders
in the upper tail (see figure 9), but given that such activity
corresponds to limit orders with very low fill probabilities, we
do not regard a close fit in this region to be as important as it is
for the main body of the distribution, where the fits are strong.
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Figure 17. Fits of the generalized t distribution to the distribution of cancellations for EUR/USD on 4 May 2010 in (top) quote-relative
and (bottom) trade-relative coordinates. The main plots show (green circles) the empirical density functions and (green curves) our fits of
the generalized t distribution. In the inset, we show Q–Q plots of (vertical axis) the ECDFs vs. (horizontal axis) our fits of the generalized t
distribution. The points indicate the 1st, 2nd, . . . , 99th percentiles of the distributions. The solid black lines indicate the diagonal. The results
for the other currency pairs are qualitatively similar.
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Figure 18. Semi-parametric fit of the distribution of limit order arrivals for EUR/USD on 4 May 2010 in trade-relative coordinates. The
main plot shows (green circles) the empirical density function for limit orders and (solid green curve) the corresponding semi-parametric
fit obtained by rescaling and aggregating the data from all other days in our sample then inverting the rescaling according to the mean and
standard deviation on 4 May 2010. In the inset, we show a Q–Q plot of (vertical axis) the ECDFs vs. (horizontal axis) our semi-parametric
fits of the distribution. The points indicate the 1st, 2nd, . . . , 99th percentiles of the distributions. The solid black line indicates the diagonal.
The results for cancellations, for the other currency pairs, and for the other days in our sample are all qualitatively similar.
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In all cases, the performance of our semi-parametric method
is similar to that of fitting the generalized t distribution directly
to the data (see figure 16). However, our semi-parametric ap-
proach offers a considerable computational advantage: After
computing the aggregated data set—which, given a histori-
cal database of trading days, can be performed offline and in
advance of fitting a single trading day—performing the semi-
parametric fit requires only a multiplication and an addition.
By contrast, fitting the generalized t distribution requires nu-
merical optimization of a nonlinear objective function (see
appendix 1), which is much slower to perform.

In some applications, the simplicity of employing a well-
known parametric distribution may outweigh the possible gains
of our semi-parametric approach. In others, the reduction in
computational overhead offered by our semi-parametric ap-
proach may outweigh the benefits of using a parametric distri-
bution. Therefore, we anticipate that both of these approaches
will be useful in different contexts.

6. Discussion

In this section, we address several interesting points raised
by our results, and we compare our findings for QCLOBs to
those reported by empirical studies of centralized LOBs in
order to highlight some important differences between these
two market organizations.

One important difference between QCLOBs and centralized
LOBs is the shape of the distributions of order flow. Several
empirical studies of centralized LOBs have reported that the
maximum limit order arrival rate occurs at a quote-relative
price of 0 (Biais et al. 1995, Bouchaud et al. 2002, Potters and
Bouchaud 2003, Hollifield et al. 2004, Gu et al. 2008a, Mike
and Farmer 2008), whereas the maximum limit order arrival
rate on Hotspot FX occurs at a strictly positive quote-relative
price (see figure 7). We propose the following explanation
for this observation. In a QCLOB, each institution θi sees the
values of bi (t) and ai (t), but cannot see the values of b(t) and
a(t). By definition, bi (t) ≤ b(t) and ai (t) ≥ a(t), so if each
institution bases its trading decisions on bi (t) and ai (t), and if
bi (t) and ai (t) both typically reside at strictly positive quote-
relative prices, then the maximum arrival rate of the aggregate
limit order flow generated by all institutions will occur at a
strictly positive quote-relative price.

Similarly, several empirical studies of centralized LOBs
have reported that cancellations occur most often among active
orders at b(t) and a(t), and less often among active orders
deeper into the LOB (Potters and Bouchaud 2003, Cont et al.
2010). Several authors have conjectured that the high number
of cancellations at these prices indicate that many institutions
compete for priority at the best quotes, and that the lower
cancellation rates among other orders indicate that their own-
ers aim to profit from large price movements on longer time
horizons (Challet and Stinchcombe 2001, Zovko and Farmer
2002, Potters and Bouchaud 2003). We also observe a local
maximum in the distribution of cancellations at a quote-relative
price of 0 (see figure 8), but we find the distribution’s global
maximum to be strictly positive. After rescaling to account
for differences in the mean depths, we find that the quote-
relative cancellation ratios vary considerably, with no clear
trend (see figure 11). In trade-relative coordinates, we find that

the cancellation distributions closely resemble those of limit
order arrivals, with a slightly lower cancellation ratio among
orders with larger trade-relative prices.

Many centralized LOBs have been reported to exhibit a
‘hump’ shape that first increases and then subsequently de-
creases away from the best quotes (Bouchaud et al. 2002,
Potters and Bouchaud 2003, Hollifield et al. 2004, Gu et al.
2008b). Roşu (2009) conjectured that such a hump represents
a trade-off between an optimism that limit orders placed far
from the spread may eventually result in a significant profit
and a pessimism that such orders may never match. We also
observe a hump shape in the mean state of L(t) in both quote-
relative and trade-relative coordinates (see figure 9). For the
LOBs examined in other empirical studies, however, market
orders accounted for about 10–30% of the total arriving order
flow, and they therefore played an important role in maintain-
ing the hump shape of L(t) (Challet and Stinchcombe 2001,
Hasbrouck and Saar 2002, Potters and Bouchaud 2003, Gereben
and Kiss 2010, Lo and Sapp 2010). On Hotspot FX, market
orders constitute less than 0.05% of the total arriving order flow
(see table 1). Therefore, the hump shapes that we observe are
primarily a consequence of similar shapes in the distributions
of limit order arrivals and cancellations.

Why do institutions submit so many limit orders, given that
so few result in trades? We propose two possible explanations.
First, institutions may place limit orders on several different
trading platforms simultaneously to increase their chance of
receiving a matching. If one such order matches, an institution
can simply cancel the duplicates on other platforms. Cont
and Kukanov (2014) recently noted that this strategy, which
they called ‘overbooking’, becomes more prominent as the
number of venues for a given asset increases. In some markets,
overbooking exposes an institution to the risk of receiving near-
simultaneous matchings on multiple platforms, but several FX
spot trading platforms (including Hotspot FX) allow liquidity
providers to apply a ‘last look’feature to their limit orders. This
feature enables liquidity providers to reject an incoming market
order after it arrives.† Even though the total volumes of trade on
Hotspot FX are very large, they constitute only a small fraction
of the total volumes across all electronic trading platforms in
the FX spot market (see section 3.1). Together, the availability
of alternative trading opportunities on other platforms and the
protection offered by last look against unintended matches
make overbooking extremely attractive, and could therefore
result in a large volume of cancellations from institutions that
adopt this strategy. Second, many high-frequency and algorith-
mic trading techniques involve the submission and cancellation
of large numbers of limit orders (Biais et al. 2011, Chaboud
et al. 2014, Hendershott et al. 2011, Kirilenko et al. 2011).
The recent surge in popularity of trading strategies that utilize
such techniques could account for a high percentage of the
cancellations that we observe.

Another important difference between QCLOBs and cen-
tralized LOBs is the possibility of the appearance of mar-
ket configurations that would not be possible in a centralized
LOB. On Hotspot FX, we observe a negative global spread
reasonably often for EUR/USD and GBP/USD (see table 2).

†For a detailed discussion of last look, see Cartea and Jaimungal
(2015).
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This observation motivates another question: What fraction
of the global liquidity in L(t) can an institution θi typically
access in its local LOB Li (t)? Although the Hotspot FX data
does not provide a way to reconstruct local LOBs for specific
institutions, several of our results and observations provide
insight into this question.

First, as noted above, we observe periods during which the
global bid–ask spread for a given currency pair is negative for
several seconds. This suggests that among the institutions that
place limit orders close to the best quotes, there exist some
pairs of institutions, θ j and θk , such that no other institution
θi is able to access the limit orders posted by both θ j and
θk . Otherwise, θi would submit a pair of buy and sell market
orders to capitalize on the arbitrage opportunity, and would
thereby widen the spread to a non-negative size. In section 2.2,
we exhibited a toy QCLOB (suggestive of a core–periphery
structure) in which negative global bid–ask spreads are caused
by institutions that have relatively poor CCLs. If an institution
with only one trading partner posts a limit order that exceeds
its bilateral CCL, at least part of that order will be unseen by
any other institution at all, and could in principle cause an
arbitrarily large negative bid–ask spread.

Second, we also observe surprising results when studying
selective liquidity-taking on Hotspot FX (see figure 4). In-
stitutions appear to condition their market order sizes on the
depth available when this depth is small, but they appear not
to do so when this depth is large. One possible explanation is
that when an institution θi seeks to submit a buy (respectively,
sell) market order, if the total depth of active orders at ai (t)
(respectively, bi (t)) is larger than θi ’s desired market order
size, then it may no longer be necessary for the institution to
condition its order size according to the available liquidity.
However, in a similar study of selective liquidity-taking on
the LSE (which operates as a centralized LOB), Farmer et al.
(2004) reported the approximately linear relationship that we
observe for smaller queue lengths to persist across the whole
domain (i.e. even when the queue length is very large). An
alternative explanation is that the effect that we observe is a
consequence of the CCLs in a QCLOB, and specifically that
some institutions are only able to access a relatively small
fraction of the active orders at a given price in the global LOB.
When the depth at ai (t) (respectively, bi (t)) is small, it is likely
to consist of a single active order. In this scenario, the linear
relationship that we observe for small queue lengths could be
caused by θi conditioning its market order size according to
the size of this single active order. When the depth at ai (t)
(respectively, bi (t)) is larger, however, it is more likely to
consist of several different active orders, each with a different
owner. Because the Hotspot FX data describes the global LOB
L(t), we are able to see all such orders at the given price.
However, a given institution θi that trades on the platform can
only see the subset of these orders that are owned by other
institutions with whom it has sufficient CCLs. Therefore, θi

may only see a small subset of the liquidity that is available
globally, and it may therefore condition its market order size
according to the depth that it sees.

Third, the ratio of the mean total size of market orders on
a single day to the mean total size of active orders (which is
often used as a simple measure of liquidity) is much smaller on
Hotspot FX than has been reported byWyart et al. (2008) for the

LSE and Paris Stock Exchange, which operate as centralized
LOBs. Specifically, Wyart et al. (2008) reported ratios in the
range 100–1000 for the stocks that they studied, and they ar-
gued that this provides strong evidence that available liquidity
(in the form of limit orders) is generally in short supply. On
Hotspot FX, the same ratios (see table 1) vary between roughly
2 (for EUR/GBP) and roughly 10 (for EUR/USD). One simple
explanation for this result is that liquidity is much more plen-
tiful on Hotspot FX than is the case in other markets. Although
this explanation is somewhat plausible, it seems unrealistic
that the corresponding results for the different markets should
differ by a factor of 50 or more. In a QCLOB, the appropriate
quantity to assess the liquidity available to a given institution
θi is not the mean total size of all active orders in the global
LOB L(t), but rather the mean total size of active orders in
θi ’s local LOB Li (t). If the fraction of liquidity from L(t)
available in Li (t) is also small, then the corresponding ratio
of the mean total size of market orders on a single day to the
mean total size of active orders available to θi could be similar
to the range reported by Wyart et al. (2008) for centralized
LOBs.

Our results suggest that institutions monitor Li (t) carefully
when deciding how to act. For example, we observe few mar-
ket orders that match at several different prices (see table
1). This suggests that many institutions implement selective
liquidity-taking strategies by monitoring Li (t) and only
submitting market orders with a size smaller than the depth
at bi (t) or ai (t). Correspondingly, we find that the mean size
of market orders is less than half of the mean size of limit orders
(see table 1).

Our results suggest that trade-relative coordinates provide
a useful perspective for studying QCLOBs. Naturally, there
are some weaknesses with this approach: For example, an
institution θi may not regard the most recent trade prices as
particularly important if they deviate significantly from its local
quotes bi (t) and ai (t). Moreover, the mean inter-arrival time
for EUR/GBP market orders is more than 1 min (see table 1),
so the values of B(t) and A(t) update relatively infrequently,
yet our results suggest that some institutions act extremely
quickly to capitalize on possible arbitrage opportunities that
arise in their local LOB Li (t). Together, these results suggests
that institutions may regard the information in their local LOB
to be more important when making quick-fire trading decisions
on short timescales of seconds or milliseconds, but may regard
the values of B(t) and A(t) to be more important when making
less rapid trading decisions on longer time scales.

The slow updating of B(t) and A(t) may also be regarded as
a benefit of trade-relative coordinates, because it ensures that
price measurements are stable over time. The rise in popularity
of electronic trading has led to a sharp increase in the frequency
of order arrivals near the best quotes (Biais et al. 2011, Chaboud
et al. 2014, Cont 2011, Hendershott et al. 2011, Kirilenko
et al. 2011), which cause the values of b(t) and a(t)—and
therefore the quote-relative prices of all orders—to fluctuate
rapidly. By contrast, trade-relative prices change only when
a trade occurs, and they consequently avoid the difficulties
caused by the extremely fast update frequency of the best
quotes.

The strong round-number effects that we observe in the
trade-relative distributions (see figures 7–9 and 11) suggest
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that institutions do indeed calculate and consider trade-relative
prices. In centralized LOBs, quote-relative distributions often
contain strong round-number periodicities at integer multiples
of 10 ticks (Challet and Stinchcombe 2001, Gu et al. 2008b,
Mu et al. 2009, Zhao 2010). We find relatively weak evidence
for this behaviour on Hotspot FX (see figure 10). The strong
periodicities that we observe in trade-relative coordinates are
extremely unlikely to emerge by chance, so it seems that institu-
tions regard B(t) and A(t) as important sources of information
when deciding how to act.

In both quote-relative and trade-relative coordinates, the
distributions of limit order arrivals, cancellations, and normal-
ized mean depths on Hotspot FX exhibit considerable varia-
tion across different trading days (see figure 12). In all cases,
however, rescaling the data to account for differences in the
first two moments significantly reduces the mean pairwise
CvM distance between daily distributions (see figure 14 and
table 3). In trade-relative coordinates, the resulting curve col-
lapse for limit order arrivals and cancellations is particularly
strong. Given the turbulent macroeconomic activity that oc-
curred during this period, such strong curve collapse is sur-
prising, because it indicates that the first two moments pro-
vide significant explanatory power for daily order flow and
highlights that the vast majority of daily variations in order
flow appear to be linear transformations of a single, universal
curve.

7. Conclusions and outlook

During the past decade, a rich and diverse literature has helped
to illuminate many important aspects of trading via LOBs. To
date, however, almost all work in this area has addressed only
centralized LOBs, in which all institutions can trade with all
others. In this paper, we have provided a detailed description
of an alternative LOB configuration, which we call a QCLOB,
and performed an empirical analysis of a recent, high-quality
data set from a large electronic trading platform, Hotspot FX,
which utilizes this mechanism to facilitate trade.

Our results reveal some important differences between
QCLOBs and centralized LOBs. For example, we observed
many instances in the Hotspot FX data where the global bid-
ask spread was negative, whereas this is not possible in a
centralized LOB. We also observed differences between the
distributions of order flow and LOB state on Hotspot FX and
the corresponding distributions reported by empirical studies
of centralized LOB. These differences underline the need for
detailed investigations of other widely used market organi-
zations to complement the sizeable literature on centralized
LOBs.

Our use of trade-relative coordinates illuminated several
interesting properties of order flow and LOB state that are
not apparent when measuring prices relative to the prevailing
quotes, as is common when studying centralized LOBs. The
strong round-number effects that we observed in trade-relative
coordinates suggest that institutions trading on Hotspot FX
regard the most recent trade prices as an important source
of information when deciding how to act. Although our use
of trade-relative coordinates was motivated by the structure
of a QCLOB, we conjecture that this coordinate frame may
also provide useful insight into centralized LOBs. It would be

interesting to perform an empirical analysis of a centralized
LOB in trade-relative coordinates to facilitate comparisons
with our findings. To our knowledge, no such empirical studies
have yet been conducted. We therefore believe this to be an
interesting avenue for future research.

In a recent study of the LSE, Axioglou and Skouras (2011)
conjectured that the statistical properties of financial markets
change every day. At present, however, many of the most
widely discussed LOB models operate under the assumption
that order flow is governed by stochastic processes with fixed
rate parameters (Challet and Stinchcombe 2001, Smith et al.
2003, Farmer et al. 2005, Mike and Farmer 2008, Cont et al.
2010, Tóth et al. 2011). The empirical verification of such
models has typically consisted of comparing their output to
long-run statistical averages from large data sets. Our results,
together with those of Axioglou and Skouras (2011), bring into
question the usefulness of using long-run statistical averages
to forecast activity on a specific day. It would be interest-
ing to study the performance of several existing LOB mod-
els to assess their performance on shorter timescales. Given
that regulators require many institutions to make risk calcu-
lations on a daily basis, this is an important task for future
research.

Finally, we note that our statistical analysis mainly examined
aggregate order flow and the global LOB L(t). An interesting
challenge for future research will be to gain a deeper un-
derstanding of the subset of liquidity in L(t) that individual
institutions can access in their local LOBs. There are several
aspects to this question—including understanding the struc-
ture of the network of CCLs between individual institutions,
understanding how Li (t) varies across different institutions,
and assessing how the restriction of trading opportunities to
institutions with sufficient CCLs impacts price formation and
market stability. We aim to address these, and many other
related questions, in our forthcoming work.
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Appendix 1. Fitting the generalized t distribution

Let Z be a random variable from the standard normal distribution,
and let V be an independent random variable from the chi-squared
distribution with ν degrees of freedom. The random variable

T = σ
Z + ξ√

V/ν
+ μ (A1)

then follows a generalized t distribution. The parameters μ, σ and ξ
extend the classical Student’s t distribution by providing explicit con-
trol over the distribution’s mean, variance and skewness, respectively
(Gosset 1908).

For each day d ∈ {1, 2, . . . , 30}, we fit the generalized t distribu-
tion to a given property of the Hotspot FX data (e.g. EUR/USD limit

order arrivals in trade-relative coordinates) by minimizing the CvM
distance (Cramér 1928)

C =
∫

p
[Fd (p) − F(p; μ, σ, ξ, ν)]2 dF(p; μ, σ, ξ, ν) (A2)

between the ECDF Fd of the given property on day d and the cu-
mulative density function F of the generalized t distribution with
parameters μ, σ , ξ and ν. We use Newton’s method (Dennis and
Schnabel 1983) to optimize the objective function in equation (A2)
over these parameters. On a standard desktop computer with a 2 GHz
processor and 8GB RAM, this process requires approximately 1–
2 min of computation to fit the distribution of a given property for a
given currency pair on a given day.

Fitting a distribution by minimizing the CvM distance is equivalent
to minimizing a least-squares objective function that assigns more
weight to the regions of the distribution with greater density. It is also
possible to fit the generalized t distribution via moment-matching
(Hall 2005) or maximum-likelihood (Casella and Berger 2001) tech-
niques, but the resulting estimates do not perform as well due to the
existence of a handful of orders with extremely large relative prices
that strongly impact the sample moments and maximum-likelihood
estimates.

Appendix 2. Quantifying the strength of curve collapse

To quantify the strength of curve collapse from rescaling each day’s
data, we calculate the mean of the ratio of CvM distances (see equation
(A2)) between the ECDFs of a chosen property on a given pair of
trading days before and after applying the rescaling. More precisely,
we calculate

C = 1

30 × 29

∑
d1,d2
d1 �=d2

C(1)
d1,d2

C(2)
d1,d2

, (B3)

where C(1)
d1,d2

denotes the CvM distance between the ECDFs of a
chosen property (e.g. EUR/USD limit order arrivals in quote-relative
coordinates) on days d1 and d2, and C(2)

d1,d2
denotes the CvM distance

between the same ECDFs after rescaling the data on day d2 by sub-
tracting the mean for day d2 and dividing by the standard deviation
for day d2, then multiplying the result by the standard deviation for
day d1, and finally adding the mean for day d1. Larger values of
C correspond to stronger collapse of the ECDFs. Note that we do
not rescale the data from both days to measure the distance between
the rescaled distributions directly, but we instead apply the inverse
rescaling from day d1 to the rescaled data from day d2. This ensures
that we measure our results in units of price for both C(1)

d1,d2
and C(2)

d1,d2
,

rather than using units of rescaled price for C(2)
d1,d2

.
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