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a b s t r a c t 

We construct two ordinary-differential-equation models of a predator feeding adaptively on two prey 

types, and we evaluate the models’ ability to fit data on freshwater plankton. We model the predator’s 

switch from one prey to the other in two different ways: (i) smooth switching using a hyperbolic tangent 

function; and (ii) by incorporating a parameter that changes abruptly across the switching boundary as 

a system variable that is coupled to the population dynamics. We conduct linear stability analyses, use 

approximate Bayesian computation (ABC) combined with a population Monte Carlo (PMC) method to fit 

model parameters, and compare model results quantitatively to data for ciliate predators and their two 

algal prey groups collected from Lake Constance on the German–Swiss–Austrian border. We show that the 

two models fit the data well when the smooth transition is steep, supporting the simplifying assumption 

of a discontinuous prey-switching behavior for this scenario. We thus conclude that prey switching is 

a possible mechanistic explanation for the observed ciliate–algae dynamics in Lake Constance in spring, 

but that these data cannot distinguish between the details of prey switching that are encoded in these 

different models. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Ciliates are eukaryotic single-celled organisms that propel us-

ing small protuberances (called cilia ) that project from their cell

body. They feed on small algae and are an important link between

the bottom and higher levels of aquatic food webs ( Tirok and

Gaedke, 2007a ). In addition to seasonal variation, ciliates and

their algal prey populations vary at shorter-than-seasonal tem-

poral scales. During years when the spring bloom lasts for sev-

eral weeks (corresponding to approximately 15–30 ciliate gener-

ations), algal and ciliate biomasses exhibit recurring patterns of

growth followed by decline ( Tirok and Gaedke, 2007a ). Ciliates

have different modes of predatorial behavior, and they can be cat-

egorized roughly in terms of more-selective or less-selective feed-
∗ Corresponding author at: Department of Mathematics, University of Michigan, 
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0022-5193/© 2018 Elsevier Ltd. All rights reserved. 
ng habits ( Verity, 1991 ). Some ciliate species can be construed

s selective predators, because they hunt as “interception feed-

rs” that scavenge on food particles and intercept them directly.

y contrast, “filter-feeder” ciliates sieve suspended food particles

nd are an example of a less-selective ciliate species. A laboratory

xperiment on ciliate predator and phytoplankton prey species in

ake Constance reported prey preference and selective feeding in

iliates ( Müller and Schlegel, 1999 ), and it has been suggested

hat predator–prey interactions between diverse predator and prey

lankton communities are the driving force for the sub-seasonal

emporal variability observed in ciliate–algal dynamics, especially

uring periods of the year in which environmental conditions are

elatively stable ( Tirok and Gaedke, 2010 ). 

In the present paper, we aim to obtain biological insight into

he sub-seasonal oscillations in ciliate populations during spring

n Lake Constance and more generally into the ecological concept

f prey switching ( Murdoch, 1969 ), in which predators express a

reference (e.g., for more-abundant prey). To do this, we construct

https://doi.org/10.1016/j.jtbi.2018.07.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2018.07.005&domain=pdf
mailto:piltz@umich.edu
https://doi.org/10.1016/j.jtbi.2018.07.005
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3 Mathematically, one can derive different smooth approximations to the same 

piecewise-smooth system either by “smoothing out” a discontinuity of a piecewise- 

smooth system using a differentiable transition function of sigmoidal form 

( Colombo et al., 2012 ) or by “regularizing” a piecewise-smooth dynamical system 

( Kuehn, 2015 ) into a singular perturbation problem ( Hinch, 1991; Jones, 1994 ) that 

includes multiple time scales by “blowing up” the switching boundary ( Sotomayor 

and Teixeira, 1996; Teixeira and da Silva, 2012 ). In this work, we do not consider 

regularizations that include multiple time scales. A subset of us were among the 

authors of a recent paper ( Piltz et al., 2017 ) on a multiple time-scale system that 
ultiple modeling frameworks for a ciliate predator that adap-

ively changes its diet in response to changes in the abundances

f its two prey. 1 Using ciliate–algae interactions in Lake Constance

s an example, we focus on adaptive feeding of a predator group

etween its two different types of prey to investigate both the

haracteristics of prey switching (specifically, whether it is best de-

cribed with a steep or a gradual switching function) and whether

t is justified to use a reduced modeling framework (specifically,

 piecewise-smooth dynamical system 

2 ) as an approximation of a

mooth system. 

One can model prey switching with smooth dynamical systems

y considering either density-dependent switching ( Abrams and

atsuda, 2003 ) or density-independent switching ( Post et al.,

0 0 0 ), or by using information on which prey type was last con-

umed ( van Leeuwen et al., 2013; 2007 ). By contrast, a piecewise-

mooth system arises when one assumes that a switch in a preda-

or’s feeding behavior depends on prey abundances. For example,

ne can posit that a predator behaves as an optimal forager, as its

hoice to switch prey depends on which diet composition maxi-

izes its rate of energy intake ( Boukal and K ̌rivan, 1999; K ̌rivan,

996; K ̌rivan and Eisner, 2003; 2007; K ̌rivan and Sikder, 1999;

tephens and Krebs, 1987 ). Using a piecewise-smooth model, it

as suggested recently that prey switching gives a possible mech-

nistic explanation for the dynamics observed in ciliate and algae

opulations in Lake Constance ( Piltz et al., 2014 ). 

In addition to their ecological applications, piecewise-smooth

ynamical systems occur in a wide variety of applications

 di Bernardo et al., 2008 ), ranging from mechanical oscillators such

s a rocking block (see, e.g., Hogan, 1989 ) to relay-feedback sys-

ems (in which an electrically-operated switch is used to control a

rocess or an electromechanical system ( di Bernardo et al., 2001 )).

ther biological applications include genetic regulatory networks,

n which transcription factors either initiate or inhibit the pro-

uction of proteins after reaching some threshold concentration

 Casey et al., 2006; Glass, 1975 ), and conceptual climate models,

n which an abrupt change in a piecewise-smooth system can rep-

esent a transition between different regimes in, e.g., large-scale

cean circulation ( Stommel, 1961 ) or the Earth’s reflectivity due to

ce cover ( Abbot et al., 2011 ). In a finite-dimensional piecewise-

mooth dynamical system, the phase space is divided into two

r more smooth regions by one or more switching manifolds that

ark transitions between the regions. For prey switching, each re-

ion corresponds to one of a predator’s diet choices, so a model

hat describes the dynamics has a discontinuous right-hand side.

pecifically, in this example, the system satisfies a different set

f ordinary differential equations (ODEs) in different regions of

hase space. In a piecewise-smooth framework, one assumes that

 switch from one diet to another occurs instantaneously. Conse-

uently, piecewise-smooth expressions are also used to approxi-

ate nonlinear terms, such as sigmoidal or cubic functions, in sys-

ems that have sharp transitions between two or more states. 

In ecology and numerous other applications, it is important to

onduct detailed investigations into different approaches for how

o model sharp changes in governing dynamics. On one hand, it is

nclear whether there exist “discontinuous predators” who switch

heir feeding strategy instantaneously, as assumed in a piecewise-

mooth model for prey switching. On the other hand, we have not
1 Note that “prey switching” in a system of 1 predator and 1 prey refers to a 

ituation in which predation is low at low prey densities but saturates quickly at 

 large value when the prey is abundant. In such a scenario, one can model the 

redator–prey interaction using a Holling type-III functional response ( Gause et al., 

936; Holling, 1965 ). 
2 Piecewise-smooth dynamical systems are a class of discontinuous systems that 

escribe behavior using smooth dynamics of variables, along with abrupt events 

hat change characteristics of the smooth dynamics ( di Bernardo et al., 2008; 

hampneys and di Bernardo, 2008 ). 
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ound evidence for how to distinguish among the possible smooth

ransition functions that one can choose to model prey switching.

y using data on ciliate and algal population dynamics, we illus-

rate an important example situation in which exploiting differ-

nt modeling frameworks increases understanding of prey switch-

ng and allows one to gain biological insight into it. Consequently,

e conclude that it is justified to examine a piecewise-smooth dy-

amical system, which has fewer parameters than the associated

mooth models introduced in this paper, as a simplifying approx-

mation of a smooth dynamical system. We also show that the

iecewise-smooth model in Piltz et al. (2014) is both biologically

nd mathematically consistent as the limit of two smooth systems,

hich we construct by (i) using a hyperbolic tangent as a transi-

ion function from one diet choice to another and (ii) incorporating

 parameter that changes abruptly across the discontinuity in the

forementioned model as a system variable with dynamics on a

ime scale that is comparable to that of the population dynamics

f a predator and its two prey. In the second construction, we ex-

mine a system with one more dimension than the corresponding

iecewise-smooth system. 3 

The remainder of our paper is organized as follows. In

ection 2 , we present and briefly discuss the equations for the 1

redator–2 prey piecewise-smooth model from Piltz et al. (2014) .

his piecewise-smooth dynamical system includes a tilted switch-

ng manifold that marks a transition between two smooth parts

f phase space. Biologically, these parts represent the predator’s

daptive feeding behavior and its two different diet choices: on

ne side of the switching manifold, the predator’s diet consists

olely of its preferred prey; on the other side, it consists solely

f the alternative prey. We consider two possible regularizations

f the model in Sections 2.1 and 2.2 , and we derive analytical ex-

ressions and carry out linear stability analysis for the coexistence

quilibrium (i.e., where all three species coexist at nonzero den-

ities) for each of the two smooth models. We are interested in

oexistence steady states because the data that we use include

oexistence of predators and multiple prey. In Section 3 , we dis-

uss and use these data on adaptively feeding plankton predators

o fit model parameters and compare the biomass predictions of

ur two smooth models. We summarize and discuss similarities

nd differences between the piecewise-smooth system (analyzed

n Piltz et al., 2014 ) and its two smooth analogs (analyzed in this

aper) in Section 4 , and we conclude our study in Section 5 . We

ive additional details about our calculations and analysis in a trio

f appendices. 
escribes the dynamics of one predator and two prey populations in the presence of 

apid evolution of the predator’s diet choice. One can also include nonlinear terms 

hen constructing a smooth dynamical system by smoothing out an instantaneous 

witch using the method developed in Jeffrey (2014, 2016a) . These nonlinear terms 

ake into account small effects that are observable only during a switch and vanish 

or the corresponding piecewise-smooth system ( Jeffrey, 2016b ). Comparing differ- 

nt smoothed-out or regularized systems both with each other and with an asso- 

iated piecewise-smooth system is crucial for understanding the relationships be- 

ween a piecewise-smooth system and its smooth analogs. Relationships between 

iecewise-smooth systems and the smooth systems that they approximate were in- 

estigated from a theoretical point of view in Hogan (2004) and Dankowicz (2007) . 
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2. Methods 

We construct two smooth analogs of a piecewise-smooth dy-

namical system describing a predator population z that can ad-

just the extent of its consumption of its preferred prey p 1 . When

not consuming its preferred prey p 1 , the predator feeds on an

alternative prey p 2 . Before introducing our two smooth models

(see Sections 2.1 and 2.2 ), we present the model equations for

the piecewise-smooth dynamical system that was developed in

Piltz et al. (2014) . For each of the three models, we consider stan-

dard nonlinearities in the form of Lotka–Volterra predator–prey in-

teractions. Although these nonlinearities are standard, it is conve-

nient for us to use nonstandard notation for the model coefficients

that describe them. This notation allows us both to derive the

switching condition introduced previously in Piltz et al. (2014) and

to compare the two smooth models that we develop in the present

paper to this piecewise-smooth system. 
We assume that the predator switches to consume only an al-

ternative prey p 2 when it maximizes its fitness by doing so. To
describe this situation, Piltz et al. (2014) developed the following
piecewise-smooth dynamical system: 

˙ x = 

⎡ 

⎣ 

˙ p 1 

˙ p 2 

˙ z 

⎤ 

⎦ = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

f + = 

⎡ 

⎣ 

( r 1 − β1 z ) p 1 

r 2 p 2 

( eq 1 β1 p 1 − m ) z 

⎤ 

⎦ , if h = β1 p 1 − a q β2 p 2 > 0 , 

f − = 

⎡ 

⎣ 

r 1 p 1 

( r 2 − β2 z ) p 2 

( eq 2 β2 p 2 − m ) z 

⎤ 

⎦ , if h = β1 p 1 − a q β2 p 2 < 0 , 

(2.1)

where r 1 and r 2 (with r 1 > r 2 > 0) are the respective per capita

growth rates of the preferred and alternative prey, β1 and β2 are

the respective death rates of the preferred and alternative prey due

to attack, m > 0 is the predator per capita death rate per day, and

e > 0 is the predator conversion efficiency. The coefficients q 1 and

q 2 are nondimensional parameters that represent the predator’s

respective desire to consume the preferred and alternative prey.

Thus, the proportion of predation that goes into predator growth

is given by eq 1 for the preferred prey and by eq 2 for the alter-

native prey. In other words, the model in Eq. (2.1) preserves the

idea of a predator’s benefit from consuming prey being propor-

tional to predation amount, as is the case in the standard Lotka–

Volterra model. Specifically, we consider constant conversion effi-

ciency as a fraction e for each prey, so the benefits from feeding on

the preferred and alternative prey are represented by eq 1 and eq 2 ,

respectively. With 0 ≤ q 2 < q 1 ≤ 1, we emphasize the reduced ben-

efit that the predator obtains from the alternative prey compared

to its preferred prey. The difference in the benefit is also where

the assumed tradeoff lies, as the alternative prey p 2 invests energy

in building predator defense mechanisms and is thus a “less edi-

ble” prey compared to the preferred prey p 1 , which does not invest

energy in predator defense mechanisms. Consequently, we assume

that the growth rate of the preferred prey is larger than that of the

alternative prey (i.e., r 1 > r 2 ). 

To facilitate our comparison between the piecewise-smooth and

smooth systems, in our constructions (see Sections 2.1 and 2.2 )

of two smooth analogs of (2.1) , we take β1 = β2 = 1 for simplic-

ity. We thereby assume that the predator exhibits adaptive feed-

ing behavior by adjusting its preference (rather than its attack

rate) to the governing prey densities. The parameter a q corre-

sponds mathematically to the slope of the tilted switching mani-

fold, h = β1 p 1 − a q β2 p 2 = 0 , between the two vector fields in (2.1) .

Biologically, a q is the slope of the assumed linear tradeoff in the

predator’s preference for prey. In other words, an increase in spe-

cialization towards the preferred prey comes at a cost of preda-

tor population growth from feeding on the alternative prey. See
iltz et al. (2014) for a biological justification of these model as-

umptions, analysis of the model (2.1) , and inferred parameter val-

es for data from Lake Constance. 

In the present paper, we construct and carry out linear sta-

ility analyses of two novel (to our knowledge) smooth mod-

ls for an adaptively feeding predator and its two prey. First, in

ection 2.1 , we formulate an analog of the model in (2.1) as a

hree-dimensional (3D) smooth dynamical system with hyperbolic

angent functions. Second, in Section 2.2 , we construct a four-

imensional (4D) smooth analog of (2.1) by supposing that the de-

ire q 1 to consume the preferred prey changes across the discon-

inuity in the piecewise-smooth system (2.1) . More specifically, we

ssume that q 1 can change between 1 and 0 as a system variable

hat is coupled to the population dynamics. 

.1. Smooth model I 

We construct a smooth analog (which we call “smooth model

”) of (2.1) using a hyperbolic tangent as a transition function. This

ields the following equations of motion: 

˙ p 1 = r 1 p 1 − β1 p 1 z 

(
1 + tanh ( k ( β1 p 1 − a q β2 p 2 ) ) 

2 

)
≡ f ( p 1 , p 2 , z )

˙ p 2 = r 2 p 2 − β2 p 2 z 

(
1 − tanh ( k ( β1 p 1 − a q β2 p 2 ) ) 

2 

)
≡ g ( p 1 , p 2 , z )

˙ z = eq 1 β1 p 1 z 

(
1 + tanh ( k ( β1 p 1 − a q β2 p 2 ) ) 

2 

)

+ eq 2 β2 p 2 z 

(
1 − tanh ( k ( β1 p 1 − a q β2 p 2 ) ) 

2 

)
−mz 

≡ l ( p 1 , p 2 , z ) , (2.2

here k determines the steepness of the transition function and

hus of switches in the predator’s feeding behavior. The dynami-

al system in Eq. (2.2) incorporates Lotka–Volterra dynamics, and

ne can construe eq 1 and eq 2 (where 0 ≤ q 2 < q 1 ≤ 1), respectively,

s one predator’s benefit from eating its preferred and alternative

rey. In Section 3.1 , we will infer values of k that best fit data from

 particular freshwater plankton system. The data were collected

n Lake Constance between 1979 and 1999, were presented origi-

ally in Tirok and Gaedke (20 06, 20 07a) , and were subsequently

nalyzed further in several papers (e.g., Tirok and Gaedke, 2007b;

irok and Gaedke, 2010 ). See Section 3 for a description of the

ata. 

.1.1. Linear stability analysis of smooth model I 

We are interested in a steady state of (2.2) with p 1 , p 2 , z > 0.

e calculate 

f = p 1 

(
r 1 − z 

(
1 + tanh (k (p 1 − a q p 2 )) 

2 

))
= 0 

⇒ z 

(
1 + tanh (k (p 1 − a q p 2 )) 

2 

)
= r 1 (2.3)

nd 

 = p 2 

(
r 2 − z 

(
1 − tanh (k (p 1 − a q p 2 )) 

2 

))
= 0 

⇒ z 

(
1 − tanh (k (p 1 − a q p 2 )) 

2 

)
= r 2 . (2.4)

y setting β1 = β2 = 1 and substituting (2.3) and (2.4) into the

hird equation in (2.2) , we obtain 

 = eq 1 p 1 r 1 + eq 2 p 2 r 2 − mz 

= ( eq 1 p 1 − m ) r 1 + ( eq 2 p 2 − m ) r 2 = 0 . (2.5)
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We obtain the steady-state solution ( ̃  p 1 , ˜ p 2 , ̃  z ) , where 

˜ z = r 1 + r 2 , 

(eq 1 ̃  p 1 − m ) r 1 + (eq 2 ̃  p 2 − m ) r 2 = 0 , (2.6) 

tanh (k ( ̃  p 1 − a q ̃  p 2 )) = 

r 1 − r 2 
r 1 + r 2 

. 

aking the inverse hyperbolic tangent on both sides of the third

quation in (2.6) results in linearly independent equations for ˜ p 1 
nd ˜ p 2 . We thereby obtain a unique coexistence steady state at 

˜ p 1 = 

a q m (r 1 + r 2 ) + 

eq 2 r 2 arctanh 

(
r 1 −r 2 
r 1 + r 2 

)
k 

e (q 1 a q r 1 + q 2 r 2 ) 
, 

˜ p 2 = 

m (r 1 + r 2 ) −
eq 1 r 1 arctanh 

(
r 1 −r 2 
r 1 + r 2 

)
k 

e (q 1 a q r 1 + q 2 r 2 ) 
, (2.7) 

˜ z = r 1 + r 2 . 

ll three population densities are positive at the steady state

( ̃  p 1 , ˜ p 2 , ̃  z ) when 

 > k 0 = 

eq 1 r 1 arctanh 

(
r 1 −r 2 
r 1 + r 2 
)

m (r 1 + r 2 ) 
. (2.8)

e use the Routh–Hurwitz criterion ( Hurwitz, 1895; Routh, 1877 )

o investigate the stability of the coexistence steady state (2.7) . 

roposition 2.1. If a q ≥ q 2 / q 1 , then the steady state (2.7) is asymp-

otically stable if and only if k > k 0 . 

roof. See Appendix A . �

roposition 2.2. If a q < q 2 / q 1 , then there exists k 1 ∈ ( k 0 , ∞ ) such that

he steady state (2.7) is asymptotically stable if and only if k ∈ ( k 0 , k 1 ).

roof. See Appendix A . �

From these results, we see that when a q is large, which cor-

esponds to a predator with a sharp tradeoff in its prey prefer-

nce (i.e., a small increase in specialization towards its preferred

rey comes at a large cost in growth from feeding on the alter-

ative prey), the coexistence steady state (2.7) is stable for all

 > k 0 . When the prey switching is steep (i.e., when k → ∞ ), the

oexistence steady state (2.7) is the same as the steady state of

he piecewise-smooth system that lies on the switching mani-

old (the latter steady state is a pseudoequilibrium ), and it has

 complex-conjugate pair of eigenvalues with negative real part

hen a q > q 2 / q 1 ( Piltz et al., 2014 ). However, in contrast to the

iecewise-smooth system, in which the coexistence steady state is

epelling for shallow or flat prey preference tradeoffs (i.e., when

 q < q 2 / q 1 ), the smooth system (2.2) has an interval of intermediate

rey-switching slopes k ∈ ( k 0 , k 1 ) (see Eq. (A.9) for the expression

or k 1 ) for which the coexistence state is also stable for a q < q 2 / q 1 .

f k 
∈ ( k 0 , k 1 ), then the coexistence steady state in the smooth sys-

em (2.2) is unstable when a q < q 2 / q 1 . 

For population densities at the stable coexistence steady state,

mooth model I implies that the predator density is determined

olely by the prey growth rates, so it is affected neither by the

lope of the tradeoff nor by the steepness of the diet switch (see

q. (2.7) ). For a nearly flat tradeoff (i.e., when a q is small), the sta-

le coexistence steady-state solution for the preferred prey p 1 is

t its minimum. (See, e.g., the parameter values in the caption of

ig. 1 .) However, if in addition to a mild tradeoff, the predator’s

rey switching is also gradual (i.e., k is very small), then p 1 is large

t the stable equilibrium (see the left panel of Fig. 1 ). This pattern

f minimum and maximum values is the reverse for the alternative

rey: The steady-state concentration of the alternative prey p 2 has

 large value when a q is small, except for very small k , when the

teady-state value of p is small (see the right panel of Fig. 1 ). Such
2 
ehavior of the steady state (2.6) suggests that k → 0 is a singular

imit of smooth system I (2.2) . 

.2. Smooth model II 

As an alternative to the 3D smooth dynamical system with hy-

erbolic tangent functions that we formulated in Section 2.1 , we

ow construct a 4D smooth analog of (2.1) by supposing that

he predator’s desire q 1 to consume the preferred prey is a sys-

em variable q that changes along with the population dynamics.

o smooth out the 3D piecewise-smooth system (2.1) into a 4D

mooth system, we construct expressions for the temporal evolu-

ion of the predator’s trait to accompany the population dynamics

f the predator and the two prey. Biologically, we are assuming

hat the predator’s desire to consume its preferred prey undergoes

ither rapid evolution ( Fussmann et al., 2007 ) or phenotypic plastic-

ty ( Kelly et al., 2012 ), which are the two main forms of adaptiv-

ty in organisms. We will comment on these model assumptions

n Section 4 . We thereby turn the parameter q 1 , which changes

bruptly across the discontinuity in the piecewise-smooth model

2.1) (i.e., q 1 = 1 when h > 0 and q 1 = 0 when h < 0), into a system

ariable q that changes in response to prey abundance on the same

ime scale as the population dynamics in a smooth dynamical sys-

em. 

To ensure similarity with the piecewise-smooth model (2.1) , we

ssume that no preference towards the preferred prey amounts

o a feeding mode of consuming only the alternative prey (i.e.,

 = 0 ) and that maximum preference towards the preferred prey

mounts to a feeding mode of consuming only the preferred prey

i.e., q = 1 ). We incorporate this assumption with a bounding func-

ion q (1 − q ) in the expression for the temporal evolution of the

redator’s trait. From the condition for prey switching that we de-

ived using optimal-foraging theory ( Stephens and Krebs, 1987 ) in

iltz et al. (2014) , we impose that the rate of change of the mean

rait value is proportional to p 1 − a q p 2 . That is, we assume that

he predator’s choice to switch prey depends on prey abundances

nd which diet composition maximizes its rate of energy intake

 Stephens and Krebs, 1987 ). For simplicity, we also assume expo-

ential prey growth and a linear functional response, as in the

iecewise-smooth system (2.1) ( Piltz et al., 2014 ). We thereby ob-

ain the following dynamical system for the population dynamics

oupled with temporal evolution of the predator trait: 

d p 1 
d t 

= g 1 (p 1 , p 2 , z, q ) = r 1 p 1 − qp 1 z , 

d p 2 
d t 

= g 2 (p 1 , p 2 , z, q ) = r 2 p 2 − (1 − q ) p 2 z , (2.9) 

d z 

d t 
= g 3 (p 1 , p 2 , z, q ) = eqp 1 z + e (1 − q ) q 2 p 2 z − mz , 

d q 

d t 
= f (p 1 , p 2 , q ) = q (1 − q )(p 1 − a q p 2 ) . 

s with the piecewise-smooth system (2.1) and smooth system I

2.2) , the predator–prey interaction in (2.9) (which we call “smooth

odel II”) is of standard Lotka–Volterra type, so the benefit of con-

uming prey is proportional to the amount of predation. Conse-

uently, the proportion of predation that goes into predator growth

s given by eq for the preferred prey and by e (1 − q ) q 2 for the al-

ernative prey, where e ∈ (0, 1) is a parameter that represents con-

ersion efficiency. For q 1 = 1 in the piecewise-smooth system (2.1) ,

mooth model II (2.9) reduces to f + in (2.1) when q = 1 and to f −
n (2.1) when q = 0 . Biologically, these two cases correspond, re-

pectively, to the situations in which the predator’s diet is com-

osed solely of the preferred prey and solely of the alternative

rey. Note that the model in (2.9) does not include a time-scale

ifference, which we incorporated between demographic and trait
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Fig. 1. Numerical computations for prey population densities at the steady state in Eq. (2.7) for the parameter values (e, β1 , β2 , r 1 , r 2 , m, q 1 , q 2 ) = 

(0 . 25 , 1 , 1 , 1 . 3 , 0 . 26 , 0 . 14 , 1 , 0 . 5) (where we determine the values of r 1 , r 2 , and m from our parameter fitting of the piecewise-smooth model in Piltz et al., 2014 ) of 

(left) the preferred prey p 1 and (right) the alternative prey p 2 at the indicated values of the slope a q of the preference tradeoff (vertical axis) and steepness k of the predator 

switching (horizontal axis). The predator population density at steady state is ˜ z = r 1 + r 2 ≈ 1 . 56 . We indicate the value of the prey density at steady state in color and 

numerically compute the steady-state solution of smooth system I (2.7) . The steady state is stable above the gray curve. (See the equation for k 1 in Eq. (A.9) .) With these 

parameter values, k 0 in Eq. (2.8) is approximately 1.197. 
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(i.e., q 1 ) dynamics in a similar 4D smooth system and analyzed us-

ing singular perturbation theory in Piltz et al. (2017) . 

2.3. Linear stability analysis of smooth model II 

The population densities of the two prey and the predator at

the coexistence steady state in smooth system II (2.9) are given by

( ̃  p 1 , ˜ p 2 , ̃  z ) , with 

˜ p 1 = 

a q m (r 1 + r 2 ) 

e (r 1 a q + r 2 q 2 ) 
, 

˜ p 2 = 

m (r 1 + r 2 ) 

e (r 1 a q + r 2 q 2 ) 
, 

˜ z = r 1 + r 2 , (2.10)

˜ q = 

r 1 
r 1 + r 2 

. 

The same densities occur both for the coexistence steady state of

smooth system I (2.7) with steep prey switching (i.e., when k → ∞ )

and at the pseudoequilibrium point of the piecewise-smooth sys-

tem (2.1) (for q 1 = 1 ) that is located on the discontinuity bound-

ary of the piecewise-smooth 1 predator–2 prey model ( Piltz et al.,

2014 ). 

We summarize the results of linear stability analysis of smooth

system II (2.9) in the following two propositions. 

Proposition 2.3. If a q = q 2 , then all eigenvalues of the steady-state

solution are purely imaginary. 

Proof. See Appendix B . �

Proposition 2.4. If a q 
 = q 2 , then the steady state is linearly unstable.

Proof. See Appendix B . �

Consequently, smooth system II (2.9) has an unstable coex-

istence steady state irrespective of whether one can construe a

predator as selective with a sharp preference tradeoff with respect

to its preferred and alternate prey or as unselective with a mild

tradeoff in its preference towards the two prey. Our results also

imply that our smoothing of the piecewise-smooth system (2.1) by

adding an extra dimension as in Eq. (2.9) changes the stability of

the coexistence steady state. 
. Results 

To obtain insight into the steepness of the prey switching in

he two smooth models that we constructed in Section 2 , we con-

ider data from Lake Constance (see Tirok and Gaedke, 2006; Tirok

nd Gaedke, 2007b ) for ciliate predators and two different types

f their algal prey groups. The Lake Constance data set consists

f over 23,0 0 0 observations of abundances (expressed either as

ndividuals or as cells per milliliter) and biomass (expressed as

nits of carbon per square meter) of various plankton species ob-

ained at least once in a sample of a few milliliters to a liter of

ater between March 1979 and December 1999. We compare the

bundances predicted by our two smooth models with data from

ears 1991 and 1998. (For a comparison between the piecewise-

mooth model (2.1) and data, see Piltz et al., 2014 .) During these

wo years, the spring bloom lasted for several weeks ( Tirok and

aedke, 2006; 2007b ). 

In Lake Constance, ciliates coexist with their algal prey for sev-

ral generations (and at a high biomass) during years when the

pring bloom occurs under mildly variable environmental condi-

ions ( Tirok and Gaedke, 2007a ). Additionally, the ciliate and al-

al biomasses exhibited recurring patterns (which are often in-

erpreted as a result of predator–prey interactions) of increases

ollowed by declines in the years 1991 and 1998 ( Tirok and

aedke, 2007a ). We are interested in spring abundances, because

revious studies have suggested that predator–prey feeding inter-

ctions are an important factor in explaining the ciliate–algae dy-

amics in that season ( Tirok and Gaedke, 2010 ). Thus, during these

ears, our principal model assumptions (e.g., we do not include

uctuating environmental conditions) are more likely to hold than

uring other years in the Lake Constance data set. Moreover, pre-

ious studies have shown that predator–prey interactions are more

mportant than environmental conditions, especially during spring,

or explaining the ciliate–algae dynamics ( Sommer et al., 2012 ). We

herefore choose the spring period in these two years for our com-

arison between model simulations and data. 

Müller and Schlegel observed that ciliates actively select against

ertain types of prey when offered a mixed diet of different types

f their algal prey ( Müller and Schlegel, 1999 ). They suggested

hat adaptive feeding in ciliates occurs because different species

enefit differently in a way that depends on the match between

heir feeding mode and the species that are abundant in the prey
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4 Using Bayesian estimation (BEST) ( Kruschke, 2013 ) to compare the posterior 

distributions for the selective and unselective predator groups, we find that the 

mode of the difference of the k values is 30 and that the 95% highest posterior 

density interval (HDPI) (i.e., the total mass of points inside the 95% HDPI consti- 

tutes 95% of the distribution) is from 5 to 45. Because 0 is not part of this interval, 

we conclude that our parameter fitting implies that one can model the selective 

predator group with a credibly larger k than for the unselective predator group. 
ommunity. That is, ciliates select against their less-edible prey

e.g., a prey type that develops a hard silicate cover as a preda-

or defense mechanism) when offered a mixed diet of both easily-

igested and less-edible prey ( Müller and Schlegel, 1999 ). As a

epresentative of an easily-digested prey group (i.e., the preferred

rey p 1 in our models), we consider data for Cryptomonas ovata,

ryptomonas marssonii, Cryptomonas reflexa, Cryptomonas erosa,

hodomonas lens , and Rhodomonas minuta in the Lake Constance

ata set. For the less-edible prey (i.e., the alternative prey group

 2 ), we use data for small and medium-sized Chlamydomonas spp.

nd Stephanodiscus parvus . In addition to different prey groups,

ne can categorize ciliate predators, which dominate the herbivo-

ous zooplankton community in spring ( Tirok and Gaedke, 2007a ),

oughly in terms of being more-selective or less-selective preda-

ors ( Verity, 1991 ). To represent differences in selectivity between

ifferent predator species, our unselective filter-feeder predator

roup consists of data for Rimostrombidum lacustris , and our se-

ective interception-feeder predator group consists of data for

alanion planctonicum . 

We use the Lake Constance data on ciliate predators and their

lgal prey to infer the steepness k of the prey-switching function

n smooth model I (2.2) ; a perturbation parameter (which we de-

ote by ν and discuss in Sections 3.2 ) in the predator popula-

ion that measures its departure from the coexistence steady state

2.10) of smooth model II (2.9) ; and the prey growth, predator

eath rates, and other parameters of our models. For our compari-

on between the Lake Constance data and the two smooth models

n Sections 3.1 and 3.2 , we first normalize both the data points and

he model predictions for the predator density z by their L 2 norm

i.e., by Euclidean distance). We consider the time window from 1

arch to 15 June, for which there are 31 data points for the se-

ective predator and 19 data points for the unselective predator

n 1991. In 1998, there are 15 data points for both the selective

nd unselective predator species between 1 March and 15 June.

e fit parameters to data with approximate Bayesian computa-

ion (ABC) combined with a population Monte Carlo (PMC) method

 Beaumont et al., 2009 ). This combination allows us to study the

esults from the posterior parameter distribution, rather than just

rom a single value that gives the best fit as a result of an op-

imization method. The posterior parameter distribution, which is

n output of the fitting algorithm, is especially useful for assess-

ng how well the piecewise-smooth model (2.1) approximates prey

witching, which we represent with a hyperbolic tangent function

n smooth model I (2.2) and by incorporating an additional system

ariable in smooth model II (2.9) . 

.1. Comparison of simulations of smooth model I with Lake 

onstance data 

We compare our simulations of smooth model I with Lake

onstance data on selective and unselective predator groups, and

e report the results of our parameter fitting for the selec-

ive and unselective predator groups using the PMC–ABC method

 Beaumont et al., 2009 ). See Fig. 2 for our results for 1991 and

ig. 3 for our results from 1998. In our comparison, we use fit-

ed values for the growth rates ( r 1 and r 2 , respectively) of the pre-

erred and alternative prey, the predator mortality rate m , the slope

 of the prey-switching function, and the slope a q of the prey-

reference tradeoff of smooth model I (2.2) . Additionally, we use a q 
s a bifurcation parameter. (See Propositions 2.1 and 2.2 .) However,

or simplicity (and similar to the study of the piecewise-smooth

ystem in Piltz et al., 2014 ), we assume that the nondimensional

reference parameters are fixed (and we take q 1 = 1 and q 2 = 0 . 5 ).

hus, given our choice of the preference parameters and using a q 
s a bifurcation parameter, we investigate linear preference trade-
ffs that all go through point (q 1 , q 2 ) = (1 , 0 . 5) , but they do so

ith different slopes. 

Smooth model I (2.2) reproduces the peak abundances in the

ake Constance data and yields an oscillatory pattern for both the

elective and unselective predator populations during the springs

f 1991 and 1998 (see Figs. 2 and 3 , respectively). Additionally, our

arameter fitting suggests that adaptive feeding of the selective

redator is best represented with a steep switching function. In

articular, for 1998, we obtain gradual prey-switching functions for

n unselective predator more frequently than we do for a selective

ne at the smallest tolerance level of the fitting algorithm. 4 See the

enter rows of Figs. 2 and 3 . Note that the coexistence steady state

s unstable for the inferred parameter values that we use in the

op-right panels in Figs. 2 and 3 . In these two figures, this steady

tate is thus unstable for k > k 1 ≈ 1.3 and k > k 1 ≈ 2.9, respectively

see also Fig. 1 ). 

.2. Comparison of simulations of smooth model II with Lake 

onstance data 

To compare simulations of the smooth model (2.9) to data,

e use the fitted prey growth rates r 1 and r 2 , the predator

ortality rate m , and a perturbation parameter ν that mea-

ures the departure of the predator population from the co-

xistence steady state (2.10) for a q = q 2 = 0 . 5 (so that all four

igenvalues of the coexistence steady state are purely imaginary).

e thus use (p 1 (0) , p 2 (0) , z(0) , q (0)) = (a q m (r 1 + r 2 ) / [ e (r 1 a q +
 2 q 2 )] , m (r 1 + r 2 ) / [ e (r 1 a q + r 2 q 2 )] , ν(r 1 + r 2 ) , r 1 / (r 1 + r 2 )) as our

nitial value for the model simulations to infer values for ν that

inimize the distance in Eq. (C.1) between the data points and

he model for these points. Thus, a small perturbation ν suggests

 gradual diet change and that q oscillates around its steady-state

alue, whereas one can interpret a large perturbation ν from the

teady state as a rapid change in the diet (and the dynamics of q ). 

Smooth model II (just like smooth model I) reproduces the peak

redator densities, and it seems that smooth model II best fits

he data when there is a large perturbation from the coexistence

teady state. See Figs. 4 and 5 . For the year 1991, we find that the

elective predator group switches its diet less frequently than the

nselective predator. Additionally, q ( t ) reaches its maximum value

of 1) and minimum value (of 0). By contrast, for the unselective

redator, there is a change from decreasing q ( t ) to increasing q ( t )

t some intermediate value (and not only after reaching the mini-

um value of 0). See the dynamics of q ( t ) in the bottom portions

f the top panels of Figs. 4 and 5 . We find (see Fig. 5 ) that the

witching (with q ( t ) alternating between 0 and 1) of the selective

redator occurs more often in year 1998 than in year 1991. In 1998,

e also find that the selective predator switches more often than

he unselective predator. In 1991, however, the selective predator

witches less often than the unselective predator. 

To evaluate how well smooth model II (2.9) predicts prey abun-

ance data (to which it was not fitted), we simulate it with param-

ter values that we obtain by fitting the model to the unselective

redator in year 1991. Our model output for prey abundances sug-

ests for an unselective predator in year 1991 that the preferred

rey has smaller-amplitude oscillations than the alternative prey.

s we show in Fig. 6 , this differs qualitatively from the data. We

btain the same result for smooth model I (2.2) (comparison not
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Fig. 2. Comparison of smooth model I and 1991 Lake Constance data for (left) selective and (right) unselective predators. (Top panels) The red asterisks give the normalized 

predator abundance z ( t ) for simulations of smooth model I (2.2) , and the blue circles give the normalized data for the (left) selective and (right) unselective predator groups 

in spring in Lake Constance in 1991. We show bar plots for the frequency of (center panels) k values and (bottom panels) a q values at the strictest tolerance level using the 

PMC–ABC method ( Beaumont et al., 2009 ). We simulate the model using the parameter values q 1 = 1 , q 2 = 0 . 5 , e = 0 . 25 , and β1 = β2 = 1 and fitted values of (left) r 1 ≈ 1.64, 

r 2 ≈ 0.62, m ≈ 0.11, a q ≈ 0.02, and k ≈ 31 and (right) r 1 ≈ 2.54, r 2 ≈ 0.61, m ≈ 0.21, a q ≈ 0.04, and k ≈ 67. For the fitted parameter values, we use (left) the maximum likelihood 

estimate and (right) the estimate in the posterior distribution that yield the minimum distance between the model and the data. To guide the eye, we show simulation results 

in red between the asterisks and we plot blue lines between the data points. Each frequency plot (center and bottom panels) represents a random weighted sample (of size 

10,0 0 0) from the PMC–ABC’s posterior distribution of the parameter values accepted at the strictest tolerance level (i.e., Tol 10 ≈ 0.00789 in the left panels and Tol 15 ≈ 0.0258 

in the right panels). (We use Matlab ’s ( The MathWorks, Inc., 2014 ) ‘randsample’ function to produce the random sample.) The squared distances (see Eq. (C.1) ) between 

the asterisks (model) and circles (data) are (left) 0.0094 and (right) 0.0102. For more details on parameter fitting, see Appendix C . The unselective predator group consists 

of data for Rimostrombidum lacustris , and the selective predator group consists of data for Balanion planctonicum . (To interpret the references to color in this figure legend, 

see the electronic version of this article.) 



S.H. Piltz et al. / Journal of Theoretical Biology 456 (2018) 108–122 115 

Month/Day
03/06 03/26 04/15 05/05 05/25N

or
m

al
iz

ed
 p

re
da

to
r 

bi
om

as
s 

(z
(t

))

0

0.1

0.2

0.3

0.4

0.5

0.6

Month/Day
03/06 03/26 04/15 05/05 05/25N

or
m

al
iz

ed
 p

re
da

to
r 

bi
om

as
s 

(z
(t

))

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 510 20 30 40 50 60 70 80 90 100
k

0

500

1000

1500

2000

2500

3000

3500

fr
eq

ue
nc

y

0 510 20 30 40 50 60 70 80 90 100
k

0

500

1000

1500

2000

2500

3000

3500

fr
eq

ue
nc

y

0 0.2 0.4 0.6 0.8
a

q

0

500

1000

1500

2000

2500

3000

3500

fr
eq

ue
nc

y

0 0.2 0.4 0.6 0.8
a

q

0

500

1000

1500

2000

2500

3000

3500

fr
eq

ue
nc

y

Fig. 3. Comparison of smooth model I and 1998 Lake Constance data for (left) selective and (right) unselective predators. (Top panels) The red asterisks give the normalized 

predator abundance z ( t ) for simulations of smooth model I (2.2) , and the blue circles give the normalized data for the (left) selective and (right) unselective predator groups 

in spring in Lake Constance in 1998. We show bar plots for the frequency of (center panels) k values and (bottom panels) a q values at the strictest tolerance level using 

the PMC–ABC method ( Beaumont et al., 2009 ). We simulate the model using the parameter values e = 0 . 25 and β1 = β2 = 1 and fitted values of (left) r 1 ≈ 1.12, r 2 ≈ 0.76, 

m ≈ 0.25, a q ≈ 0.42, and k ≈ 38 and (right) r 1 ≈ 2.32, r 2 ≈ 0.51, m ≈ 0.27, a q ≈ 0.027, and k ≈ 16. For the fitted parameter values, we use those in the posterior distribution that 

yield the minimum distance between the model and the data. To guide the eye, we show simulation results in red between the asterisks and we plot blue lines between 

the data points. Each frequency plot (center and bottom panels) represents a random weighted sample (of size 10,0 0 0) from the PMC–ABC’s posterior distribution of the 

parameter values accepted at the strictest tolerance level (i.e., Tol 15 ≈ 0.0213 in the left panels and Tol 15 ≈ 0.0229 in the right panels). The squared distances (see Eq. (C.1) ) 

between the asterisks (model) and circles (data) are (left) 0.0090 and (right) 0.0061. For more details on parameter fitting, see Appendix C . The unselective predator group 

consists of data for Rimostrombidum lacustris , and the selective predator group consists of data for Balanion planctonicum . (To interpret the references to color in this figure 

legend, see the electronic version of this article.) 
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Fig. 4. Comparison of smooth model II and 1991 Lake Constance data for (left) selective and (right) unselective predators. (Top panels) The red asterisks give the normalized 

predator abundance z ( t ) for simulations of smooth model II (2.9) , and the blue circles give the normalized data for the (left) selective and (right) unselective predator 

groups in spring in Lake Constance in 1991. (Bottom panels) We show bar plots for the frequency of ν values at the strictest tolerance level using the PMC–ABC method 

( Beaumont et al., 2009 ). We simulate the model with an initial value of z(0) = ν(r 1 + r 2 ) (where the parameter ν indicates the perturbation of the predator population 

from the coexistence steady state); the steady-state densities in (2.10) ; parameter values of e = 0 . 25 , β1 = β2 = 1 , and a q = q 2 = 0 . 5 ; and fitted values of (left) r 1 ≈ 3.00, 

r 2 ≈ 0.62, m ≈ 0.12, and ν ≈ 4.8 and (right) r 1 ≈ 2.21, r 2 ≈ 0.33, m ≈ 0.48, and ν ≈ 4.6. For the fitted parameter values, we use those in the posterior distribution that yield the 

minimum distance between the model and the data. To guide the eye, we show simulation results in red between the asterisks and we plot blue lines between the data 

points. Each frequency plot (bottom panels) represents a random weighted sample (of size 10,0 0 0) from the PMC–ABC’s posterior distribution of the parameter values at the 

strictest tolerance level (i.e., Tol 10 ≈ 0.00815 in the left panel and Tol 13 ≈ 0.0233 in the right panel). The squared distances (see Eq. (C.1) ) between the asterisks (model) and 

circles (data) are (left) 0.0038 and (right) 0.0151. For more details on parameter fitting, see Appendix C . The unselective predator group consists of data for Rimostrombidum 

lacustris , and the selective predator group consists of data for Balanion planctonicum . (To interpret the references to color in this figure legend, see the electronic version of 

this article.) 
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shown). Nevertheless, although we only use predator data to fit

parameters, smooth model II (2.9) is able to successfully capture

some features of the prey data. As we illustrate in the left panel of

Fig. 6 , these features include the periodicity of the peak densities

of the preferred prey populations. 

4. Discussion 

From a biological perspective, using a smooth dynamical sys-

tem allows us to relax the assumption of a “discontinuous” preda-

tor of the piecewise-smooth system (2.1) . When the discontinuity

is smoothed out using hyperbolic tangent functions, as in smooth

model I (2.2) , we can use data to determine the steepness of the

transition in the predator’s feeding behavior for a particular preda-

tor type. Indeed, our parameter fitting to Lake Constance data sug-

gests that one can model prey switching of either selective or uns-

elective predator species with a steep hyperbolic tangent function.
dditionally, our parameter fitting of smooth model I (2.2) indi-

ates that the best fit to the data occurs in the parameter regime

n which the coexistence steady state is unstable. Additionally, sim-

lations of smooth model II (2.9) , which smooths out the abrupt

hange in the predator’s diet choice by considering a predator trait

s a system variable, exhibits rapid predator-trait dynamics (i.e.,

he temporal evolution of the predator’s desire to consume the

referred prey p 1 ), suggesting that the best fit to data occurs when

he change of diet is abrupt. 

From a modeling perspective, the piecewise-smooth system

2.1) incorporates the effects of a predator’s adaptive change of

iet in response to prey abundance, whereas smooth system II

2.9) (with an appropriate choice of parameter values) explores

apid evolutionary change in a predator’s desire to consume its

referred prey ( Piltz et al., 2017 ). Consequently, smooth sys-

em II models a different mechanism (namely, rapid evolution ;

ussmann et al., 2007 ) than the piecewise-smooth system (which
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Fig. 5. Comparison of smooth model II and 1998 Lake Constance data for (left) selective and (right) unselective predators. (Top panels) The red asterisks give the normalized 

predator abundance z ( t ) for simulations of smooth model II (2.9) , and the blue circles give the normalized data for the (left) selective and (right) unselective predator 

groups in spring in Lake Constance in 1998. (Bottom panels) We show bar plots for the frequency of ν values at the strictest tolerance level using the PMC–ABC method 

( Beaumont et al., 2009 ). We simulate the model with an initial value of z(0) = ν(r 1 + r 2 ) (where the parameter ν indicates the perturbation of the predator population 

from the coexistence steady state); the steady-state densities in (2.10) ; parameter values of e = 0 . 25 , β1 = β2 = 1 , and a q = q 2 = 0 . 5 ; and fitted values of (left) r 1 ≈ 1.62, 

r 2 ≈ 0.40, m ≈ 0.30, and ν ≈ 4.8 and (right) r 1 ≈ 1.95, r 2 ≈ 0.24, m ≈ 0.72, and ν ≈ 3.58. For the fitted parameter values, we use those in the posterior distribution that yield the 

minimum distance between the model and the data. To guide the eye, we show simulation results in red between the asterisks and we plot blue lines between the data 

points. Each frequency plot (bottom panels) represents a random weighted sample (of size 10,0 0 0) from the PMC–ABC’s posterior distribution of the parameter values at the 

strictest tolerance level (i.e., Tol 13 ≈ 0.0245 in the left panel and Tol 13 ≈ 0.0231 in the right panel). The squared distances (see Eq. (C.1) ) between the asterisks (model) and 

circles (data) are (left) 0.0043 and (right) 0.0039. For more details on parameter fitting, see Appendix C . The unselective predator group consists of data for Rimostrombidum 

lacustris , and the selective predator group consists of data for Balanion planctonicum . (To interpret the references to color in this figure legend, see the electronic version of 

this article.) 
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odels phenotypic plasticity ; Kelly et al., 2012 ) for how rapid

daptation affects population dynamics ( Shimada et al., 2010; Ya-

amichi et al., 2011 ). (For a recent review on theoretical models of

co-evolutionary feedbacks, see Govaert et al. (2018) .) It has been

uggested that one should be more likely to expect a stable steady

tate from models that account for phenotypic plasticity than from

hose that account for rapid evolution, because plastic genotypes

espond faster than nonplastic genotypes to fluctuating environ-

ental conditions ( Yamamichi et al., 2011 ). Our modeling work is

onsistent with this hypothesis, as the piecewise-smooth system

2.1) converges to a steady state for a large region of phase space

 Piltz et al., 2014 ), but the same steady state is unstable — except

or one specific scenario ( a q = q 2 ), at which it is linearly stable but

onhyperbolic — in smooth model II (2.9) . 

The piecewise-smooth system (2.1) and smooth system I

2.2) produce similar behavior for a sufficiently steep hyperbolic
angent function that corresponds to a large value of k . However,

or small k , smooth system I predicts coexistence at steady-state

evels when a q < q 2 / q 1 . (For a discussion of what we mean by “suf-

ciently large” k , see our linear stability analysis in Section 2.1 ;

or a comparison between the piecewise-smooth system (2.1) and

he Lake Constance data, see Piltz et al., 2014 .) Smooth model I

2.2) necessitates the incorporation of a parameter k that influ-

nces the system’s qualitative behavior, whereas smooth system

I (2.9) has the same number of parameters as the piecewise-

mooth system (2.1) but includes an additional system variable. It

an thus be advantageous to study the piecewise-smooth system,

specially if one is considering many species, because it allows

ne to avoid adding new parameters and/or variables. The hyper-

olic tangent functions in (2.2) and the increased dimensionality

f (2.9) both add complications to analytical calculations and pa-

ameter fitting. On the bright side, there are many more standard
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numerical techniques and more theory both to determine the sta-

bility of steady states and to study bifurcations for smooth dynam-

ical systems than there are for piecewise-smooth ones. One needs

to use more involved methods for theory and numerical compu-

tations for piecewise-smooth dynamical systems, and development

of these techniques is an active area of research ( di Bernardo et al.,

2008 ). However, one can derive an analytical expression (using the

equation h = β1 p 1 − a q β2 p 2 = 0 ) for the flow at the discontinuity

boundary of (2.1) , and the available theory for piecewise-smooth

dynamical systems identifies the bifurcation that takes place in

(2.1) as a q crosses the value a q = q 2 /q 1 ( Piltz et al., 2014 ). These

results help facilitate understanding of the behavior of (2.1) , and

they are useful for analyzing the ciliate–algae dynamics that are

predicted by this piecewise-smooth model ( Piltz et al., 2014 ). 

Both of our smooth models successfully reproduce the peak

population densities and suggest a parameter regime — when

a q < q 2 / q 1 for smooth model I (2.2) and for a large perturbation

from the coexistence steady state for smooth model II (2.9) — that

fits the data for ciliate predators in Lake Constance in the springs

of 1991 and 1998. (Note that our initial distributions for these pa-

rameters in the fitting algorithm include both parameter regimes

in which the coexistence steady state is stable and ones in which it

is unstable.) Additionally, when using the parameters that we ob-

tain from fitting smooth model II to data for the unselective preda-

tor in 1991, we observe agreement between our model’s output

and both (i) the periodicity of the peak preferred-prey abundances

and (ii) the timing of large alternative-prey abundances. Both of

our smooth models produce a higher frequency of peak densities

than what we observe in the available data. A large period in pop-

ulation oscillations is possible for small organisms, such as plank-

ton, with short lifespans and large population densities. Making

measurements more frequently would be a good way to try to

validate or refute the periodicity of our smooth models. Addition-

ally, using comparisons with data to help choose between different

models is an effective way to increase understanding of the use

of a piecewise-smooth model as a simplification when there is a

steep transition in plankton-feeding behavior. More generally, such

comparisons are also valuable in numerous applications. In prac-

tice, one can carry out such a model comparison by implementing

algorithms for model-based statistical inference (e.g., approximate

Bayesian computation, as in the present paper) ( Toni et al., 2009 )

c  

t

r by using existing toolboxes for system identification (e.g., the

nes implemented in Matlab ( The MathWorks, Inc., 2014 )). 

One can further investigate model predictions for trait dynam-

cs and compare them to results from controlled laboratory ex-

eriments by considering genetically diverse prey and/or predator

opulations in which one records the dynamics of the genetic di-

ersity. Parameter fitting to Lake Constance data suggests that the

est fit occurs in a parameter regime in which the predator-trait

ynamics oscillate abruptly between the maximum and minimum

alues. In a study of two plankton predators and their evolving al-

al prey, Hiltunen et al. (2014) showed computationally (and dis-

ussed experimental evidence) that there are periods of dominance

f one predator followed by a rapid switch to dominance by the

ther. In Hiltunen et al. (2014) , the switch in predator dominance

rose from interactions between changes in the predator popula-

ions and changes in the frequency of a prey type that develops

 predator defense mechanism against one of the two predators.

otivated by the above findings, it is also interesting to consider

 model that incorporates a time-scale difference between demo-

raphic and predator-trait dynamics ( Piltz et al., 2017 ). 

. Conclusions 

To increase biological insight into the experimentally-observed

daptive feeding behavior of unselective and selective ciliate

redators on two different types of prey, we constructed two

rdinary-differential-equation models for prey switching. In one

odel (“smooth model I”), we represented the transition from one

iet to another using a hyperbolic tangent function; in the other

“smooth model II”), we added a new system variable to describe

he diet switch in the system (and we hence increased the system’s

imensionality by 1). In constructing these models, we relaxed the

implifying assumption of a “discontinuous” predator feeding be-

avior in a piecewise-smooth dynamical system that a subset of us

sed previously to suggest prey switching as a possible mechanis-

ic explanation for the observed dynamics ( Piltz et al., 2014 ). Based

n our results from fitting parameters of the two smooth systems

o data on freshwater plankton, we conclude that the best fit to the

ata occurs when prey switching is rapid (and hence steep in the

ontinuous models) and that the simplifying assumption of discon-

inuous predator feeding behavior appears to be justified. 
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7) 
Similar to earlier investigations, such as those by

effrey (2011) and Leifeld et al. (2015) , our study provides an

llustrative example of both similarities and differences be-

ween a discontinuous system and smooth regularizations of it.

hen piecewise-smooth dynamical systems are used to sim-

lify transitions in applications — such as approximating a cubic

unction in a membrane potential in models of spiking neurons

 McKean, 1970 ), Hill functions in models of genetic regulatory

etworks ( Glass, 1975 ), changes in the Earth’s reflectivity due

o ice melt in climate models ( Abbot et al., 2011 ), and more

understanding the extent to which the behavior of corre-

ponding smooth and piecewise-smooth systems agree is crucial

or generating both accurate model simplifications and accurate

redictions. 

Finally, using the data that we currently possess, it is difficult

o determine which of the three models (i.e., a piecewise-smooth

odel and the two smooth systems with an adaptive predator)

rovides a better mechanistic explanation for the observations of

iliate–algae dynamics in spring in Lake Constance. To enhance

odel selection, it would be very useful to collect data to im-

rove analysis of the steepness of prey switching, the functional

orm of the preference tradeoff, and the periodicity of the popu-

ation oscillations. Nevertheless, the construction of models using

lternative mathematical frameworks, examining the relationships

etween them, and comparing them to data can greatly increase

nderstanding of the underlying mechanisms in biological systems.
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ppendix A. Stability of the coexistence steady state in smooth 

odel I 

In this appendix, we prove Propositions 2.1 and 2.2 . 

roof. The Jacobian for Eq. (2.2) is 
 

 

r 1 − z 
2 

B ( 1 + p 1 kC ) 
zp 1 ka q 

2 
BC 

zp 2 k 
2 

BC r 2 − z 
2 
C ( 1 + p 2 ka q B ) 

eq 1 z 
2 

B ( 1 + p 1 kC ) − eq 2 p 2 zk 
2 

BC eq 2 z 
2 

C ( 1 + p 2 ka q B ) − eq 1 p 1 zka q 
2 

BC 

here 

 = tanh ( k ( p 1 − a q p 2 ) ) , 

B = 1 + A , (A.2) 

 = 1 − A . 

t the coexistence steady state (2.7) , the Jacobian (A.1) is 

1 

r 1 + r 2 

[ −2 r 1 r 2 k ̃  p 1 
2 r 1 r 2 k ̃  p 2 −

eq 1 r 1 (r 1 + r 2 ) + 2 er 1 r 2 k (q 1 ̃  p 1 − q 2 ̃  p 2 ) eq 2 r 2 (r 1 + r 2 ) +
−p 1 
2 

B 

−p 2 
2 

C 
 B + 

eq 2 p 2 
2 

C − m 

⎤ 

⎦ , (A.1) 

 

ka q ̃  p 1 −r 1 ̃  p 1 
 2 ka q ̃  p 2 −r 2 ̃  p 2 
 1 r 2 ka q (q 2 ̃  p 2 − q 1 ̃  p 1 ) 0 

] 
, (A.3) 

hich we henceforth denote by J for the rest of the present ap-

endix. The characteristic polynomial of (A.3) is 

et ( λI − J ) = λ3 + aλ2 + bλ + c , (A.4) 

here 

 = 

2 k (p 1 + a q p 2 ) r 1 r 2 
r 1 + r 2 

, 

 = 

1 

(r 1 + r 2 ) 2 
e 
(
2 kp 2 1 q 1 r 

2 
1 r 2 + p 2 q 2 r 

2 
2 (r 1 + 2 a q kp 2 r 1 + r 2 ) 

+ p 1 r 1 (−2 kp 2 q 2 r 1 r 2 + q 1 (r 2 1 + r 1 r 2 − 2 a q kp 2 r 
2 
2 )) 
)
, 

c = 

2 ekp 1 p 2 r 1 r 2 (a q q 1 r 1 + q 2 r 2 ) 

r 1 + r 2 
. (A.5) 

y the Routh–Hurwitz criterion ( Hurwitz, 1895; Routh, 1877 ), the

oexistence steady state (2.7) is asymptotically stable if and only

f the coefficients in (A.5) satisfy a > 0, c > 0, and ab − c > 0 . The

onditions a > 0 and c > 0 are satisfied because of the positivity of

he system parameters. To study the third condition, we write ab −
as a polynomial in k . We thereby obtain 

b − c = 

2 r 1 r 2 
e (a q q 1 r 1 + q 2 r 2 ) 2 (r 1 + r 2 ) 2 

( p 1 r 1 − a q p 2 r 2 ) s (k ) , 

here 

 (k ) = s 2 k 
2 + s 1 k + s 0 , (A.6)

ith 

 0 = 

1 

2 

e 2 q 1 q 2 r 1 r 2 log 

(
r 1 
r 2 

)
×
[ 

2 a q q 1 r 1 + 2 q 2 r 2 + (−a q q 1 r 1 + q 2 r 2 ) log 

(
r 1 
r 2 

)] 
, 

 1 = em 

[
(r 1 + r 2 )(a 2 q q 

2 
1 r 

2 
1 − q 2 2 r 

2 
2 ) − r 1 r 2 (a 2 q q 

2 
1 r 1 + q 2 2 r 2 

−3 a q q 1 q 2 (r 1 + r 2 )) log 

(
r 1 
r 2 

)] 
, 

 2 = 4 a q m 

2 (a q q 1 − q 2 ) r 1 r 2 (r 1 + r 2 ) . 

sing the steady state (2.7) , we see that 

p 1 r 1 − a q p 2 r 2 = 

a q km 

(
r 2 1 − r 2 2 

)
+ e ( a q q 1 + q 2 ) r 1 r 2 arctanh 

(
r 1 −r 2 
r 1 + r 2 
)

ek ( a q q 1 r 1 + q 2 r 2 ) 
> e 0 . 

e have thus established that ab − c > 0 ⇔ s (k ) > 0 . 

The value of s at k = k 0 in Eq. (2.8) is positive: 

 ( k 0 ) = 

e 2 q 1 r 1 ( a q q 1 r 1 + q 2 r 2 ) 
2 log 
(

r 1 
r 2 

)[
r 1 + r 2 + r 2 log 

(
r 1 
r 2 

)]
2 ( r 1 + r 2 ) 

> 0 .

(A.
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5 Before using our implementation of the PMC–ABC algorithm to fit the parame- 

ters of our models, we verified our implementation by (i) reproducing results in 

Beaumont et al. (2009) and (ii) inferring parameters of a Lotka–Volterra system 

with simulated (and noisy) data. 
6 Such a procedure results in several candidate parameter sets that need to be re- 

jected (e.g., because they yield a steady state); this increases computation time. An 

alternative to using a phase shift is to fit the initial values simultaneously with the 

model parameters. In such an approach, one can compare the distances between 

the periodic orbits that result from the model to those in the data. However, it is 

not clear how one should choose a reasonable time window for fitting the initial 

values and whether such a modification would yield more effective parameter fit- 

ting than our current approach. 
For a q ≥ q 2 / q 1 , the function s ( k ) is concave up with a positive

derivative at k 0 , because 

s ′ ( k 0 ) = em ( a q q 1 r 1 + q 2 r 2 ) 

×
[ 
( r 1 + r 2 ) ( a q q 1 r 1 − q 2 r 2 ) + ( 3 a q q 1 − q 2 ) r 1 r 2 log 

(
r 1 
r 2 

)] 
> 0 . 

(A.8)

Therefore, a q ≥ q 2 / q 1 implies that s ( k ) > 0 for all k > k 0 . Finally, if

a q < q 2 / q 1 , we see that s ( k ) is a downward-opening parabola. Be-

cause s ( k 0 ) > 0, it follows that s ( k ) is positive for k ∈ ( k 0 , k 1 ), where

k 1 = 

−s 1 + 

√ 

s 2 
1 

− 4 s 2 s 0 

2 s 2 
. (A.9)

�

Appendix B. Stability of the coexistence steady state in smooth 

model II 

In this appendix, we prove Propositions 2.3 and 2.4 . Both proofs
use the characteristic polynomial of the Jacobian of smooth system
II (2.9) . This Jacobian is 

J = 

⎛ 

⎜ ⎝ 

r 1 − ˜ q ̃ z 0 − ˜ q ̃  p 1 − ˜ p 1 ̃ z 

0 r 2 − (1 − ˜ q ) ̃ z −(1 − ˜ q ) ̃  p 2 ˜ p 2 ̃ z 

e ̃ q ̃ z e (1 − ˜ q ) q 2 ̃ z e ̃ q ̃  p 1 + e (1 − ˜ q ) q 2 ̃  p 2 − m e ̃  p 1 ̃ z − eq 2 ̃  p 2 ̃ z 

˜ q (1 − ˜ q ) −a q ̃  q (1 − ˜ q ) 0 (1 − 2 ̃ q )( ̃  p 1 − a q ̃  p 2 ) 

⎞ 

⎟ ⎠ 

. 

(B.1)

At the coexistence steady state (2.10) , the Jacobian (B.1) is 

J = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 

−r 1 a q m 

e (r 1 a q + r 2 q 2 ) 
−a q m (r 1 + r 2 ) 2 
e (r 1 a q + r 2 q 2 ) 

0 0 

−r 2 m 

e (r 1 a q + r 2 q 2 ) 
m (r 1 + r 2 ) 2 

e (r 1 a q + r 2 q 2 ) 

er 1 er 2 q 2 0 

e (a q −q 2 ) m (r 1 + r 2 ) 2 
e (r 1 a q + r 2 q 2 ) 

r 1 r 2 
(r 1 + r 2 ) 2 

−a q r 1 r 2 
(r 1 + r 2 ) 2 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (B.2)

whose eigenvalues are given by the roots of the characteristic poly-

nomial 

det (λI − J) = λ4 + 

m 

(
eq 2 r 

2 
2 + a q r 1 (er 1 + 2 r 2 ) 

)
e (a q r 1 + q 2 r 2 ) 

λ2 

+ 

a q r 1 r 2 m 

2 (a q − q 2 )(r 1 − r 2 ) 

e (a q r 1 + q 2 r 2 ) 2 
λ

+ 

a q r 1 r 2 m 

2 (r 1 + r 2 ) 

e (a q r 1 + q 2 r 2 ) 
. (B.3)

Proof. ( Proposition 2.3 ) 

For a q = q 2 , the O(λ) term in Eq. (B.3) vanishes. Substituting

u = λ2 yields 

u 

2 + 

m [2 r 1 r 2 + e (r 2 1 + r 2 2 )] 

e (r 1 + r 2 ) 
u + 

m 

2 r 1 r 2 
e 

. (B.4)

One can write the discriminant of (B.4) as 

D = 

m 

2 

e 2 (r 1 + r 2 ) 2 

( 

(r 2 1 + r 2 2 ) 
2 

(
e − 4 r 2 1 r 

2 
2 

(r 2 
1 
+ r 2 

2 
) 2 

)2 

+ 

4 r 2 1 r 
2 
2 (r 2 1 − r 2 2 ) 

2 

(r 2 
1 
+ r 2 

2 
) 2 

) 

. 

(B.5)

Note that D is always positive, so the two roots ( u 1 and u 2 ) of

(B.4) are both real. Furthermore, because the polynomial (B.4) is

increasing and positive at the intersection of (B.4) with the verti-

cal axis, the roots of the polynomial (B.4) are both negative. Con-

sequently, the four eigenvalues λj (with j ∈ {1, 2, 3, 4}) consist

of two complex-conjugate pairs with 0 real part: λ1 , 2 = ±√ −u 1 i

and λ3 , 4 = ±√ −u 2 i . We thus see that all eigenvalues are purely

imaginary. �
roof. ( Proposition 2.4 ) 

First, we prove by contradiction that there is at least one eigen-

alue with a nonzero real part. Assume that all four eigenvalues

re purely imaginary. One can then write the characteristic poly-

omial (B.3) as 

( λ) = 

4 ∏ 

j=1 

(
λ − iy j 

)
, y j ∈ R . (B.6)

xpanding χ , we see that the O(λ) coefficient is 

 ( y 1 y 2 y 3 + y 1 y 2 y 4 + y 1 y 3 y 4 + y 2 y 3 y 4 ) , 

hich is purely imaginary. However, (B.3) has a real coefficient for

(λ) that is nonzero for a q 
 = q 2 . Therefore, there exists at least one

igenvalue with a nonzero real part. 

To complete the proof, we show that there are two eigenval-

es whose real parts have opposite signs. We denote the roots of

B.3) by λj (with j ∈ {1, 2, 3, 4}), and we order the roots so that

he real part of λ1 is nonzero. Because 
∑ 4 

j=1 λ j = Tr (J) = 0 , at least

ne of λ2 , λ3 , or λ4 must have a real part whose sign is opposite

o that of λ1 . Consequently, the steady state is unstable. �

ppendix C. Parameter fitting 

We perform parameter fitting using Bayesian inference. In con-

rast to least-squares fitting, this allows one to study the re-

ults from the posterior parameter distribution, rather than just

rom a single value that gives the best fit as a result of an op-

imization method. We fit parameters to data with approximate

ayesian computation (ABC) combined with a population Monte

arlo (PMC) method. 5 See p. 987 of Beaumont et al. (2009) . 

1. Smooth model I 

Let z ( t ; r 1 , r 2 , m, a q , k ) denote the solution of (2.2) with initial

alues (p 1 (0) , p 2 (0) , z(0)) = (1 , 1 , 1) , and let z denote the avail-

ble measurement data for the predator population. The data were

easured at time instances t i , so — without measurement errors —

he data would be z i = z(t i ; r 1 , r 2 , m, a q , k ) for some unknown, true

arameter values. We account for the presence of measurement

rrors by incorporating normally-distributed noise into the results

f our model simulations. Specifically, for given parameter values

 σ , r 1 , r 2 , m, a q , k ), the model prediction z ∗ is described element-

ise as z ∗
i 

∼ N (z(t i ; r 1 , r 2 , m, a q , k ) , σ 2 (1 + P ∗, max ) 
2 ) , where P ∗, max

s the maximum predator density in a model trajectory. We com-

ute a model trajectory by simulating the model for about 400

ays and discarding the first approximately 60 days (correspond-

ng to the two winter months January and February) as a tran-

ient. We then align the peak abundances in the data and in the

odel trajectory that we obtain by simulating the model with

he given parameter values. One can construe this procedure as

ntroducing a phase shift in the model results before calculating

he distance between the model output and the data. 6 Because

e do not know the variance of measurement errors in advance,
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e incorporate the estimation of σ into our parameter-fitting

rocess. 

We assume that the estimated parameters are mutually in-

ependent and have known, finite lower and upper bounds. In

he employed Bayesian framework, this information is described

y independent uniform probability densities. Consequently, we

et σ ∼ U (0 , 0 . 1) , r 1 ∼ U (1 , 3) , r 2 ∼ U (0 . 01 , 0 . 8) , m ∼ U (0 . 1 , 1) ,

 q ∼ U (0 . 01 , 2) , and k ∼ U (1 , 100) . We choose these lower and

pper bounds based on studying the literature (see, for example,

irok and Gaedke, 2010 ), simulating smooth systems I and II nu-

erically, and testing our implementation of the PMC–ABC method

ith several different uniform priors. Because of the independence

f the parameters, one can express the joint prior as the product

f the probability density functions of the parameters. 

As a measure of discrepancy, we use the Euclidean distance be-

ween normalized data and model trajectories. We calculate 

(z ∗, z ) = 

1 

N 

∣∣∣∣ z ∗

| z ∗| −
z 

| z | 
∣∣∣∣

2 

. (C.1)

e determine a decreasing sequence of tolerance thresholds by

etting the threshold of the subsequent iteration to be either (i)

he largest distance between the data and the model output of

he best 10% quantile of the current step or (ii) equal to the tol-

rance threshold of the current step (if the distance using the 10%

uantile is larger than the current tolerance threshold). Based on

everal test runs, we choose the following initial tolerance lev-

ls. For smooth model I (2.2) , we choose an initial tolerance of

ol 1 ≈ 0.022 for a selective predator in 1991, Tol 1 ≈ 0.038 for an un-

elective predator in 1991, Tol 1 ≈ 0.0525 for a selective predator in

998, and Tol 1 ≈ 0.0475 for an unselective predator in 1998. 

Finally, to obtain an approximation of the posterior, we iterate

he PMC–ABC algorithm 10–15 times to collect 20 0 0 candidate pa-

ameters (i.e., values for σ , r 1 , r 2 , m, a q , and k ) at each iteration

hat yield a distance between the perturbed model output and the

ata that is smaller than a given tolerance threshold. (Before com-

uting the distance, if a candidate set of parameters is not in the

omain of the prior, we reject the candidate and draw a new sam-

le.) We indicate the final tolerances in the figure captions. 

2. Smooth model II 

Our parameter-fitting procedure for smooth model II deviates

nly slightly from the process that we described in Appendix C.1 .

e now assume that m ∼ U (0 . 05 , 1) and ν ∼ U (1 . 1 , 5) . The pa-

ameter ν represents a perturbation of the predator popula-

ion from the coexistence steady state, so we simulate smooth

odel II with (p 1 (0) , p 2 (0) , z(0) , q (0)) = (a q m (r 1 + r 2 ) / [ e (r 1 a q +
 2 q 2 )] , m (r 1 + r 2 ) / [ e (r 1 a q + r 2 q 2 )] , ν(r 1 + r 2 ) , r 1 / (r 1 + r 2 )) as the

nitial value. We also omit the parameter a q , because it is fixed at

 q = q 2 = 0 . 5 . We choose the tolerance thresholds using an analo-

ous procedure as the one that we described in Appendix C.1 . Our

olerance values are Tol 1 ≈ 0.02 for a selective predator in 1991,

ol 1 ≈ 0.03 for an unselective predator in 1991, Tol 1 ≈ 0.0375 for

 selective predator in 1998, and Tol 1 ≈ 0.032 for an unselective

redator in 1998. 
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