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Variability in Fermi-Pasta-Ulam-Tsingou arrays can prevent recurrences
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In 1955, Fermi, Pasta, Ulam, and Tsingou reported recurrence over time of energy between modes in a
one-dimensional array of nonlinear oscillators. Subsequently, there have been myriad numerical experiments
using homogenous FPUT arrays in the form of chains of ideal, nonlinearly coupled oscillators. However,
inherent variations (e.g., due to manufacturing tolerance) introduce heterogeneity into the parameters of any
physical system. We demonstrate that such tolerances degrade the observance of recurrences, often leading to
complete loss in moderately-sized arrays. We numerically simulate heterogeneous FPUT systems to investigate
the effects of tolerances on dynamics. Our results illustrate that tolerances in real nonlinear oscillator arrays may
limit the applicability of results from numerical experiments on them to physical systems, unless appropriate
heterogeneities are taken into account.
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I. INTRODUCTION

Fermi, Pasta, Ulam, and Tsingou undertook what is widely
believed to be the first set of systematic “mathematical
experiments” of a nonlinear system in their now-famous
computations that they presented in their May 1955 technical
report [1]. They excited a one-dimensional (1D) system of
particles, with contiguous elements coupled to each other
through a nonlinear interaction (see Fig. 1), in the first mode.
They expected that the system’s nonlinearity would lead to
equipartition of energy between all modes. However, to their
surprise, their numerical experiments instead showed that
although energy does start to transfer from the first mode to
higher modes, over time it actually appears to return to the first
mode (see Fig. 2). This phenomenon constitutes a recurrence
of energy between modes. Such “FPUT recurrences” have
been the subject of much research in the past half century,
and the FPUT numerical experiments have led to a wealth
of work on recurrences, nonlinear lattice systems, and other
prominent topics [2–10].

The equations of motion for a quadratically coupled 1D
FPUT lattice (i.e., the FPUT-α model) are

ẍi = (xi+1 − xi ) + (xi−1 − xi )

+ α[(xi+1 − xi )
2 − (xi − xi−1)2] , (1)

where the index i (with i ∈ {1, . . . , N}) denotes the ith par-
ticle. The two ends of the lattice are fixed, so we take x0 =
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xN+1 = 0. Applying this to the example of a mass–spring
system in Fig. 1, the masses, springs, and spacing are all
identical, with homogeneous masses m, spring constants k,
and equilibrium spacing s all equal to 1. In Fig. 2, we show
the first four modes of a 1D array of N = 64 oscillators with
a nonlinear coupling coefficient of α = 0.25.

The recurrence phenomenon in these simulations has sig-
nificant implications in nonlinear dynamics, and extensive
computational and theoretical work has examined FPUT re-
currences [2,5,9,11,12]. However, there has been very little
experimental evidence of such recurrences [13,14]. We pro-
pose that this paucity of evidence may be because of variabil-
ity in system components due to manufacturing tolerances.
Most analytical and computational studies of FPUT systems
have assumed that the component particles and the couplings
between them are homogeneous [5,7,11,15–17].

Because we are approaching this problem from a practical
perspective, we subsequently refer to the particles as “oscilla-
tors”. We do this to convey the idea that one can implement an
FPUT system in more than one medium (e.g., as an electronic
circuit or a mechanical structure).

It is typically simpler to study homogeneous lattice sys-
tems than heterogeneous ones, but it is difficult (if not impos-
sible) to manufacture a large array of identical oscillators. In-
herent manufacturing variations always introduce a tolerance,
as is observed in any mechanical or electronic system [18–25].
Consequently, the individual oscillators of any real array will
not be identical. Additionally, most physical parameters asso-
ciated with real devices also vary with environmental condi-
tions such as temperature, pressure, and humidity. Therefore,
even if one could build an array of identical oscillators, it is
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FIG. 1. A 1D system of masses coupled via nonlinear springs in
a similar manner to that used by Fermi, Pasta, Ulam, and Tsingou in
their numerical experiments.

very likely that the individual oscillators would change while
the system is operating. Moreover, individual oscillators in
a system would likely change in different ways, leading to
further variability between the oscillators.

Although such tolerances are well studied in many phys-
ical systems [26,27], we are not aware of any investigations
on their effects on FPUT lattices. Impurities and defects in
lattices have attracted attention, including research on topics
like Anderson phenomena and defect modes, but this has an
extremely different focus from our engineering-oriented work
[10,28]. Additionally, it is not clear how to extrapolate the
results of these studies to phenomena such as tolerance-based
inhomogeneities in arrays.

To experimentally observe recurrences in practical lattice
systems, it is important as a model scenario to understand
the effects of tolerance on an FPUT system. This will enable
quantification of the constraints under which one can build
such a system, if indeed it is possible. To do this, we study
the FPUT system under the influence of typical manufacturing
tolerances of physical systems.

II. METHODOLOGY FOR OUR NUMERICAL
EXPERIMENTS

We consider the most basic scenario that was described in
the original FPUT report [1]. We focus on a 1D FPUT-α array
with an initial condition in which all of the energy is in the
first mode. For each oscillator in a chain of N oscillators,
the initial condition is xi = sin [πi/(N + 1)] and ẋi = 0. In
an FPUT lattice described by Eq. (1), each oscillator has its
own linear stiffness, and the oscillators interact with each

FIG. 2. The FPUT recurrence phenomenon in a 64-particle sys-
tem (1) with nonlinearity coefficient α = 0.25. We show the first four
modes of the system. Observe that the energy moves between the
modes, almost disappearing from the first mode before returning to
the first mode some time later.

other through nonlinear coupling. Unless we state otherwise,
our simulations have N = 64 oscillators and a coefficient of
α = 0.25 for the nonlinear coupling terms. A mass–spring
system, such as the one in Fig. 1, has tolerances tj as in the
following equation of motion:

ẍi = ti+1xi+1 + ti−1xi−1 − 2tixi

+ α[(ti+1xi+1 − tixi )
2 − (tixi − ti−1xi−1)2] . (2)

We have normalized for mass, so any variation in masses
is incorporated in the other tolerance terms. We study
the system in Eq. (2) to investigate the impact of sys-
tem heterogeneity due to tolerances on FPUT recurrences.
Typical passive electronic components have tolerances of
±0.1%, ±1%, ±5%, and ± 10% [29], so we use these val-
ues in our simulations.

The code that we use to simulate the FPUT equations
is based on that published by Dauxois et al. [30], and it
uses a standard method for solving such equations [31].
To ensure that our results are not the product of the cho-
sen software, we double-checked our computations by us-
ing both MATLAB (with a standard Runge-Kutta algorithm
in its ODE45 solver) and Python (with the SCIPY ordinary-
differential-equation solver that implements a standard LSODA

algorithm). We randomly generate the tolerance values for
each simulation from a Gaussian distribution. We use this
choice because it is the most common one in manufacturing
[32–34]. For a tolerance of τ %, this entails a value of ti
that we draw from a Gaussian distribution with a mean of 1
and a standard deviation of σ = 1/3 × 0.01τ . (For example,
for 1% tolerance, the standard deviation is 0.0033.) With a
6σ width (i.e., ±3σ ), we note that 99.73% of the values of
ti lie within the interval [1 − 0.01τ, 1 + 0.01τ ]. We place
any outlying values of ti on the corresponding edge of this
interval.

In light of manufacturing tolerances, the exact value of
each parameter is difficult to determine. Therefore, to help
understand the effects of a random tolerance spread, we use
Monte Carlo simulations and study 100 different sets of
tolerance values applied to the FPUT system, while keeping
all other system parameters and the initial condition fixed. We
run multiple simulations that each use an independent draw of
the tolerance values, and we then examine the dynamics of the
oscillator arrays. The figures in this article are representative
of the majority of our simulation results [35]. In Fig. 3, we
show example results for a tolerance of ±1%, and we note that
Fig. 3(a) is representative of the response in more than 85%
of the cases. However, for some combinations of tolerance
values, recurrence is occasionally weak [see Fig. 3(b)] or
breaks down [see Fig. 3(c)].

III. RESULTS

A. Effect of tolerance on recurrence

With a tolerance of ±0.1%, we observe that the FPUT
system in Eq. (2) usually exhibits a similar recurrence to
that of the ideal system in Eq. (1) (see Fig. 4). However,
the addition of tolerance does introduce a slight change in
the recurrence timescale. In this and subsequent figures, we
show a typical result from a Monte Carlo simulation with one
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(a)

(b)

(c)

FIG. 3. Simulations of a 1D FPUT-α array with N = 64 oscil-
lators and a nonlinearity coupling coefficient of α = 0.25 showing
examples of recurrence at a tolerance of ±1%. These are samples
of the range of responses when we use a set of tolerance values
that we generate randomly from a Gaussian distribution. Panel (a)
is representative of the response in more than 85% of the cases
with N = 64, α = 0.25, and a tolerance of ±1%. One can observe
that recurrence is present, but it is a bit different from what occurs
in the ideal scenario. In some cases, recurrence is weaker [as in
panel (b)] or the energy fails to return to the first mode [as in
panel (c)].

FIG. 4. Simulation of a 1D FPUT-α array with symmetric tol-
erances, 64 oscillators, and a coupling coefficient of α = 0.25 at
a tolerance of ±0.1%. Comparing this to Fig. 2, we see a slight
variation from the response of an ideal system.

randomly selected set of values of ti from the distribution. On
increasing the tolerance to ±1%, the recurrence phenomenon
starts to differ considerably from the ideal scenario of homo-
geneous system components [see Fig. 5(a)]. Increasing the
tolerance further to ±5% [see Fig. 5(b)], we see even less
energy transfer to the higher modes, and very little recurrence
of energy appears to be taking place. At a tolerance of ±10%
[see Fig. 5(c)], this steady decline in the quality of the recur-
rence is even more prominent.

These results are noteworthy. Any real oscillatory system
has mismatches between the components. We have illustrated
that with extremely tight tolerances of ±0.1%, the output is
close to the ideal, in the sense that the FPUT recurrences
resemble those from the case of homogeneous oscillators.
However, even at a tolerance of ±5%, the recurrence phe-
nomenon departs substantially from that in the ideal scenario,
and it is already noticeably imperfect at ±1%. To produce
a system with a tolerance of ±1% requires a high degree
of precision in manufacturing, which is expensive and often
impractical.

Additionally, due to accumulation of tolerances, individual
oscillators in electronic and mechanical systems often have
stacked tolerances of 5%–10% even when they are con-
structed of individual components with very tight tolerances.
At these values, recurrence starts to break down. This suggests
that with typical mechanical and electronic systems, one may
never see FPUT recurrences at all.

B. Significance of tolerances on linear versus nonlinear terms

The classical FPUT system has equations with two parts:
a discretized linear diffusion term and a nonlinear coupling
term. To identify whether tolerances in the linear or nonlinear
terms contribute more to the breakdown of recurrence, we
independently apply tolerances to the linear and nonlinear
terms. As the nonlinear coupling leads to recurrence, our
initial expectation was that any tolerance in nonlinear cou-
pling parameters should lead to a more severe breakdown
of recurrence than incorporating tolerance in the linear parts.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. The effect of tolerance on different parts of a 1D FPUT-α array with a coupling coefficient of α = 0.25 and N = 64 oscillators.
Panels (a)–(c) show examples with tolerance in both the linear and nonlinear terms, panels (d)–(f) show examples with tolerance in only the
linear terms, and panels (g)–(i) show examples with tolerance in only the nonlinear terms. Observe that adding tolerance to only the linear
terms has a comparable effect on recurrence to adding tolerance to only the nonlinear terms. Tolerance in both linear and nonlinear terms: (a)
±1%, (b) ±5%, and (c) ±10%. Tolerance in the linear terms: (d) ±1%, (e) ±5%, and (e) ±10%. Tolerance in the nonlinear terms: (g) ±1%,
(h) ±5%, and (i) ±10%.

However, our observations (see Fig. 5) suggest that this is not
the case.

In Figs. 5(d)–5(f), we show our results of incorporating
tolerance only in the linear parts of an FPUT-α array. We
observe that the system is not exhibiting full recurrence,
though there does appear to be some partial recurrence. As
we show in Figs. 5(g)–5(i), incorporating tolerance in only
the nonlinear terms has, for a fixed amount of tolerance,
a comparable effect to incorporating it in only the linear
terms. When we incorporate tolerance in both the linear and
nonlinear terms in an FPUT-α array, we observe more energy
transfer into the lower modes than in the above two scenarios
[see Figs. 5(a)–5(c)]. This is particularly evident at larger
tolerance values.

C. Impact of tolerance on arrays with different
numbers of oscillators

As we have seen, recurrence breaks down as we consider
progressively larger tolerances in a 1D FPUT array of 64
oscillators. It is worth examining what happens in arrays
with different numbers of oscillators. In our exploration, we
compare the results for 1D arrays with 8, 16, 32, 64, and
128 oscillators using a coupling coefficient of α = 0.25 and
a tolerance of ±5%.

In Fig. 6, we illustrate that 1D arrays with a larger number
of oscillators experience a larger impact from incorporating
tolerances. One can see clearly that recurrence is strong with
only eight oscillators [see Fig. 6(c)], whereas recurrence has
broken down completely when there are 128 oscillators [see
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(a) (b) (c)

(d) (e)

FIG. 6. Simulations of 1D FPUT-α arrays with different numbers of oscillators (N ) at a tolerance of ±5% with a coupling coefficient
of α = 0.25. (a) N = 8, (b) N = 16, (c) N = 32, (d) N = 64, and (e) N = 128. [Panel (d) appeared previously in Fig. 5(b).] This figure
illustrates that, for a given tolerance, arrays with fewer oscillators are more likely to exhibit recurrence (which does not occur if there are too
many oscillators).

Fig. 6(e)]. In light of typical manufacturing tolerances, this
implies that one can safely observe recurrences only for ar-
rays with very few oscillators. Additionally, for progressively
larger arrays, the recurrence stops occurring at ever smaller
tolerances; in practice, one may never be able to see tolerances
in any large array.

D. Asymmetric coupling

In our previous simulations, we showed results from sym-
metrically coupled FPUT systems. However, in a variety of
physical realizations of such a system, including an electronic
one, forward coupling (i.e., between xi and xi+1) and back-
ward coupling (i.e., between xi and xi−1) is not always the
same. This asymmetry leads to another source of error, which
we incorporate into the following asymmetric FPUT-α array:

ẍi = (ti+1xi+1 + ti−1xi−1 − 2tixi )

+ α
[
f nlin

i (xi+1 − xi )
2 − bnlin

i (xi − xi−1)2] , (3)

where we represent the tolerances on the “forward” and
“backward” nonlinear terms by f nlin

i and bnlin
i , respectively.

We conduct simulations of the FPUT system in Eq. (3) and
show our results in Figs. 7–9.

Comparing the results of this asymmetric system to those
of the symmetric system in Eq. (2), we observe that the
impact of tolerance is comparable in the two systems when
we incorporate tolerance into both the linear and nonlinear
terms (see Fig. 9). However, recurrence in the asymmetric
FPUT system breaks down for a smaller tolerance than it
does in the symmetric FPUT system. Additionally, as we

increase the number of oscillators in a system, we observe that
recurrence breaks down for a smaller number of oscillators in
the asymmetric FPUT system than in the symmetric system.
One interesting observation is that incorporating tolerance in
only the nonlinear terms of the symmetric FPUT system has
a comparable effect to that of adding it to only the linear
terms (see Fig. 5), whereas incorporating tolerance in only
the nonlinear terms in the asymmetric FPUT system seems

FIG. 7. Simulation of a 1D FPUT-α array with asymmetric tol-
erances, 64 oscillators, and a coupling coefficient of α = 0.25 at a
tolerance of ±0.1%. Comparing this simulation to that in Fig. 4, we
observe that this asymmetric system has a comparable deviation from
ideal recurrence (i.e., when there is no tolerance) to the symmetric
system.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 8. The effect of tolerance on different parts of an asymmetric 1D FPUT-α array with N = 64 oscillators and a coupling coefficient
of α = 0.25. Comparing this simulation to that in Fig. 5, we see that incorporating tolerance in only the nonlinear terms has a much smaller
effect on the qualitative dynamics than is the case in the symmetric system. Tolerance in both linear and nonlinear terms: (a) ±1%, (b) ±5%,
and (c) ±10%. Tolerance in the linear terms: (d) ±1%, (e) ±5%, and (f) ±10%. Tolerance in the nonlinear terms: (g) ±1%, (h) ±5%, and (i)
±10%.

to have significantly less impact than we expected, as we
observe recurrence that is close to that of an ideal asymmetric
system (see Fig. 8). One possible explanation for this may
be the difference in structure of the equations of motion
when we incorporate tolerances. We explore this briefly in
Appendix A.

IV. CONCLUSIONS AND DISCUSSION

The numerical experiments reported by Fermi, Pasta,
Ulam, and Tsingou in 1955 have led to an extensive body of
computational, theoretical, and experimental work in nonlin-
ear systems. However, it is commonly assumed in studies of
FPUT arrays and other lattice systems that the units are ho-
mogeneous. Physical systems, by contrast, are heterogeneous
by nature; and this can affect recurrence phenomena.

In the present paper, we examined the effect of incorpo-
rating heterogeneity on a 1D FPUT array. Such heterogeneity
arises from the inherent tolerances of various manufacturing

processes, so one must take it into consideration in laboratory
experiments. The results of our simulations illustrate that
tolerance has a significant impact on recurrences in an FPUT
system, destroying it in a 64-element system for tolerance
values that lie within the typical range for manufacturing
tolerances. However, by reducing the number of oscillators in
an FPUT system, one retains recurrence for some reasonable
amount of tolerance before it breaks down. Thus, by con-
trolling manufacturing tolerance between nominally identical
components, it may be possible to observe recurrence in an
FPUT system with a small number of oscillators. However,
tight tolerances are hard to achieve and are often very expen-
sive. Therefore, producing such a system may not be practical.
In large arrays of oscillators, even very small tolerances will
surely eliminate any chance of seeing recurrence in practice.

In this article, we used a typical sinusoidal initial condi-
tion in a 1D FPUT array; we have not yet explored other
initial conditions. There are numerous studies that investigate
FPUT systems with other initial conditions, alongside other
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(a) (b) (c)

(d) (e)

FIG. 9. Simulations of 1D FPUT-α arrays with different numbers of oscillators (N ) at a tolerance of ±5% with a coupling coefficient of
α = 0.25. (a) N = 8, (b) N = 16, (c) N = 32, (d) N = 64, and (e) N = 128. [Panel (d) appeared previously in Fig. 8(b).]

considerations (such as driven or damped systems [5,16]).
One can also examine similar considerations in other lattice
systems, such as granular crystals, which have Hertzian in-
teractions between components [36,37]. Incorporating toler-
ances into parameters for other initial conditions (and other
variants of FPUT systems and other types of nonlinear lat-
tices) can lead to behaviors other than those that we have
discussed in this article. Because tolerance has such a major
impact on a standard FPUT system with sinusoidal input, it
would be unreasonable to assume that other scenarios will
only be affected minimally. Consequently, it is necessary to
revisit investigations of FPUT systems and other nonlinear
lattices with tolerance in mind.

Our work is limited in its scope, and there are other areas
to explore when applying tolerance to an FPUT system. In
particular, we have not yet examined the impact of increasing
the energy in the nonlinear terms by increasing the coupling
strength. Other salient areas include FPUT-β lattices and the
impact of tolerances on the very long “superrecurrences”
that were discovered by Tuck and Menzel (née Tsingou)
[12].

There has also been work in other areas of nonlinear
science from which it is desirable to draw inspiration for
additional work. For example, in studies of synchronization
on networks, there is also a long history of examining the
collective properties of coupled phase oscillators (a rather
different type of system from the one that we studied) with
natural frequencies drawn from some distribution [38]. With
practical laboratory experiments in mind, it is crucial to
conduct systematic investigations of incorporating tolerance
into those and other systems.
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APPENDIX A: ALTERNATIVE ASYMMETRIC
STRUCTURES

In the main body of the paper, we observed that incor-
porating tolerances into the nonlinear terms had a much
more significant effect in symmetric FPUT lattices than in
asymmetric ones. We also proposed that this may be due to
the way in which we applied the tolerances to the systems
and the resultant effect that this has on the structure of the
original FPUT chain. Our choices in the main text reflected
practical ways in which we envisage incorporating tolerances
in experimental systems.

To explore this issue further, we now consider different
ways to incorporate tolerances into the arrays. For example,
if we apply different forward and backward tolerances to
the linear components of an FPUT lattice, while keeping the
tolerances on the nonlinear components the same as in Eq. (3),
we obtain the following equation of motion:

ẍi = (fi+1xi+1 − fixi + bi−1xi−1 − bixi )

+ α
[
f nlin

i (xi+1 − xi )
2 − bnlin

i (xi − xi−1)2] , (A1)

where the forward and backward tolerances on element i are
fi and bi , respectively. In Fig. 10, we show our results from
simulating Eq. (A1).
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(a)

(b)

(c)

FIG. 10. The effect of tolerance on different parts of an asym-
metric 1D FPUT-α array with equations of motion (A1), N = 64
oscillators, a coupling coefficient of α = 0.25, and a tolerance of
±5%. Panel (a) shows a simulation with tolerance in both the linear
and nonlinear terms, panel (b) shows a simulation with tolerance in
only the linear terms, and panel (c) shows a simulation with tolerance
in only the nonlinear terms.

(a)

(b)

(c)

FIG. 11. The effect of tolerance on different parts of an asym-
metric 1D FPUT-α array with equations of motion (A2), N = 64
oscillators, a coupling coefficient of α = 0.25, and a tolerance of
±5%. Panel (a) shows a simulation with tolerance in both the linear
and nonlinear terms, panel (b) shows a simulation with tolerance in
only the linear terms, and panel (c) shows a simulation with tolerance
in only the nonlinear terms.
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Taking this discussion a step further, if we now split
the tolerances in the nonlinear components so that the way
we incorporate tolerances in asymmetric FPUT arrays more
closely resembles that in symmetric FPUT arrays, we obtain
the following equation of motion:

ẍi = (fi+1xi+1 − fixi + bi−1xi−1 − bixi )

+ α
[(

f nlin
i+1 xi+1 − f nlin

i xi

)2 − (
bnlin

i xi − bnlin
i+1xi−1

)2]
.

(A2)

We show the results of simulating Eq. (A2) in Fig. 11.
The results in this appendix illustrate that the way in

which one constructs an array of nonlinear oscillators—and
specifically the way in which one incorporates tolerances into
such a system—has a major effect on the qualitative dynamics
of such systems. Further investigation of such phenomena,
though beyond the scope of the present paper, is an important
avenue to pursue.

APPENDIX B: TEST OF NUMERICAL STABILITY

We tested our simulation methodology to see if our results
are time-reversible. Using the same tolerances and values of
N and α from the main text, we used our output as an initial
condition and simulated the equations of motion backward in
time. We then calculate, for each oscillator, the error between
the initial condition (an excitation of the system’s first mode,

FIG. 12. Output from the time-reversed simulation of Fig. 3(a),
showing that we obtain values close to the initial condition (which
consists of an excitation of the system’s first mode).

as discussed in Sec. II) and the output of the present tests
as a percentage. We then report the maximum error among
all oscillators. These errors are below 0.5% for N � 64 and
below 4% for N = 128. In Fig. 12, we show a typical output
after the time-reversed simulation; this illustrates that our
result is close to the initial condition of an excitation of the
first mode.
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