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Abstract

We study—experimentally, theoretically, and numerically—nonlinear excitations in lattices of magnets
with long-range interactions. We examine breather solutions, which are spatially localized and periodic
in time, in a chain with algebraically-decaying interactions. It was established two decades ago (Flach
1998 Phys. Rev. E 58 R4116) that lattices with long-range interactions can have breather solutions in
which the spatial decay of the tails has a crossover from exponential to algebraic decay. In this article, we
revisit this problem in the setting of a chain of repelling magnets with a mass defect and verify, both
numerically and experimentally, the existence of breathers with such a crossover.

Introduction

There has been considerable progress in understanding localization in nonlinear lattices over the past three
decades [1]. A prototypical example are spatially localized and temporally periodic discrete breathers (or just
‘breathers’) [2]. The span of systems in which breathers have been studied is broad and diverse. They include
optical waveguide arrays and photorefractive crystals [3], micromechanical cantilever arrays [4], Josephson-
junction ladders [5, 6], layered antiferromagnetic crystals [7, 8], halide-bridged transition-metal complexes [9],
dynamical models of the DNA double strand [10], Bose—Einstein condensates (BECs) in optical lattices [11], and
many others. Many of these studies concern models with coupling between elements only in the form of nearest-
neighbor interactions. However, there has been a great deal of theoretical and computational work in lattices
with interactions beyond nearest neighbors. For example, some models of polymers [12], quantum systems [13];
and optical waveguide arrays [14, 15] have included interactions beyond nearest neighbors; see also [16, 17].
Dynamical lattices with long-range interactions (e.g. with all-to-all coupling) have been used as models for
energy and charge transport in biological molecules [18]; and studies of such long-range models have explored
phenomena such as equilibrium relaxation [19], thermostatistics [20], chaos [21, 22], and energy thresholds

[23, 24]. Oscillators of numerous varieties have also been coupled via long-range interactions on lattices (and
more general network structures) [25, 26]. In fact, until recently, they were often assumed to be a fundamental
ingredient for the formation of so-called ‘chimera states’ [27-29].

Long-range interactions can have a significant effect on nonlinear excitations and yield phenomena that are
rather different from those that result from only nearest-neighbor coupling. For example, stationary solitary
waves with a nontrivial phase can arise both in discrete nonlinear Schrédinger (DNLS) equations with next-
nearest-neighbor (NNN) interactions [16, 30] and in NNN discrete Klein—-Gordon (KG) [31] equations, and
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bistability of solitary waves is possible in DNLS equations with long-range interactions [32, 33]. Finally, and
most relevant for the present paper, breathers in KG and Fermi—Pasta—Ulam—Tsingou (FPUT) lattices with
long-range interactions can exhibit a crossover from exponential decay (at short distances from the breather
center) to algebraic decay (atlong distances) if the interactions decay significantly slowly (specifically,
algebraically slowly) [24]. A variety of new studies continue to elucidate fascinating consequences of long-range
interactions. For example, recent studies have revealed the emergence of traveling discrete breathers without
tails in nonlinear lattices with suitable long-range interactions [34] and the emergence of a linear spectral gap,
which enables the emergence of alow-frequency breather [35], in nonlinear lattices with other long-range
interactions. Although there are many theoretical and computational studies of lattice systems with long-range
interactions, we are not aware of any experimental realizations of breathers in such systems.

In this paper, we use experiments, theory, and numerical computations to study a strongly nonlinear lattice
with long-range interactions that decay algebraically. Specifically, we consider a one-dimensional chain of
repelling magnets with a single mass defect. This system allows us to realize fundamental structures, such as
solitary waves, in a tabletop setup with real-time spatio-temporal resolution [36, 37]. Moreover, the use of
magnetic interactions allows exciting applications. They have already been used as a passive mechanism to
couple nodes of a lattice for unidirectional wave-guiding [38]; and it has been suggested that magnetic
interactions can be used to design novel devices for frequency conversion [39] and shock absorption [36]. In our
study, we focus on breathers in a magnetic chain and demonstrate that there is a crossover from exponential
decay to algebraic decay in the spatial profile of these breathers.

Experimental setup

In figure 1(a), we show a picture of our experimental setup. We situate an array of disc magnets over a

150 mm x 300 mm rectangular air-bearing table from IBS Precision Engineering (to reduce surface friction)
and between two Teflon rectangular rods (to restrict the particle motion to one dimension). As shown in the
inset of figure 1(a), we insert each magnet into a 3D-printed support. We glue a glass slide below the 3D-printed
support to obtain a desired amount of levitation. The magnets are axially magnetized, and they have the same
orientation, so each magnet repels its neighbors. The mean mass of the non-defect particles in the 25-particle
chainis M = 0.45 g (with a standard deviation of s = 0.0028), and the mass of the defect particleism = 0.20 g.
The distance between the boundary particlesis L &~ 33.7 cm. To excite the chain harmonically, we glue the left
boundary to an aluminum bar attached to an electrodynamic transducer (Beyma 5MP60/N). The measured
total harmonic distortion of this transducer is below 10% in the amplitude range (between 0 and 4 cm) under
consideration.

We measure the motion using digital-image-correlation (DIC) software from Correlated Solutions
(VIC2D). We use a camera (of model GS3-U3-41C6C-C from Point Gray) to record the particles’ motion ata
frame rate of 200 fps. To help track the particles, we glue speckle patterns to the top of the 3D-printed support
(see figure 1(a)). We postprocess the video files with the VIC software to extract particle displacements and
velocities. As in [36, 38], we assume that the relationship between the repelling force and distance has the form
F = Ad?, where Fis the force and d is the center-to-center separation distance between two particles. We
estimate the magnetic coefficient A and exponent p by measuring the repelling force at 22 separation distances
(represented by plus signs in figure 1(b)). We measure the repelling force by fixing one magnet to aload cell
(of type OMEGA LCL-113G) and approaching another magnet using a high-precision translation stage. Using a
least-squares fitting routine for log(F) versus log(d) with our experimental data (see the inset in figure 1(b))
yields A ~ 1.5683 x 10~ '>N/mPand p ~ —4.473. We use these parameter values throughout the text.

Theoretical setup

Our experimental setup motivates the following model (which assumes that each node, representing a magnet, is
coupled to every other node in a chain):

Myii, = Z[A(](SO + U, — un—j)p - A(j5o + Un+j — un)f] — Nty @))]
j=1

where u, = u,(t) € Risthedisplacement of the nth magnet from its equilibrium position, the mass of the nth
magnet is M,,, the magnetic coefficient is A, and the nonlinearity exponent is p. In figure 1(b), we show the spatial
decay in the force with respect to the center-to-center distance between particles. This model assumes that each
magnet, including its magnetic properties, is identical. The equilibrium separation distance between two
adjacent magnets in an infinite lattice is dy. In a finite lattice, the equilibrium separation distance depends on the
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Figure 1. (a) Picture of our experimental setup. The lattice consists of 25 magnetic particles deposited on an air-bearing table. The
right boundary (n = 12)is fixed, and the left boundary (n = —12) is driven harmonically with an electrodynamic transducer. The
magnetic particles are composed of a disc magnet (type Supermagnete S-03-01-N, with magnetization grade N48, a diameter of 3 mm,
and a height of 1 mm). The inset shows a magnified view of the magnetic particles embedded in a 3D-printed support: (left) normal
particle and (right) defect particle. (b) Relationship between the force F and center-to-center separation distance d between two
particles. The plus signs represent experimental data, and the solid curve represents a functional form F = Ad”. In the inset, we show a
plot of log(F) versus log(d) that we use for fitting the exponent p and the magnetic coefficient A.

lattice location; see Appendix A for details. We model damping effects with a dashpot term 711,,, where we
empirically estimate the damping factor 7 (see our discussion below). We apply a harmonic boundary drive
uiee (t) = a sin(27f, t), where a denotes the drive amplitude and f;, denotes its frequency. Our initial theoretical
considerations involve a Hamiltonian lattice, so we take a = 1) = 0. Later, when we compare our numerical
results to experiments, we also consider nonzero values of the drive amplitude and damping factor.

In ahomogeneous chain (where all masses are identical, so M,, = M) the linearization of (1) has plane-wave
solutions u,, = exp(ikn + iwt), where

oo
G20 = K3 (1 — cos(jR] = KlC(s) — Refelg(ek, s, D)1, @
J

j=1

wheres = 1 — p, thelinear stiffnessis K; = —2Ap&f ~1 /M, the Riemann zeta function is ((s),and ¢ (z, s, a) is
the Hurwitz—Lerch transcendent function [40]. This dispersion curve is nonanalytic in the wavenumber k,
because its rth derivative (where & is the integer satisfying s — 1 < x < s) with respect to k is discontinuous at
k = 0. Below we discuss the consequences of this nonanalyticity. The dispersion curve is analytic at the upper
band edge (i.e. atk = 7).

Because we are interested in solutions that decay spatially to 0 at infinity, it is natural to seek breather
frequencies that lie above the spectrum edge w () (to avoid resonances with linear modes). Equation (1) with
M,, = M isnotan appropriate model for seeking small-amplitude (bright) breather solutions, because one
needs the plane waves to have a modulational instability, which is not possible in a homogeneous magnetic chain
[2]. Hence, to obtain breathers, we break the uniformity of the chain by introducing a light-mass defect,
motivated by the analysis of [41] for nonlinear lattices with nearest-neighbor interactions. This creates a defect
mode that lies above the edge of the linear spectrum, from which breathers can bifurcate. Breathers in nearest-
neighbor FPUT-like lattices with defects have been studied extensively both theoretically [41] and
experimentally [42]. To find breathers in a magnetic chain, one can alternatively use a lattice with spatial
heterogeneity (e.g. a dimer) [43—45] or one with an on-site potential [46, 47] or local resonators [48, 49].
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Figure 2. (a) Semi-log plot of a breather solution (black curve with markers), with a frequency of fi, ~ 5.54 Hz, of equation (1) with

1 = a = 0for amagnetic chain with a defect particle in the center (n; = 0). The vertical axis gives the absolute value of the velocity,
and the horizontal axis gives the node index. For comparison, we show a breather solution of the same frequency for a lattice with only
nearest-neighbor interactions (dashed—dotted red curve). The vertical dashed line is the predicted value of the crossover value 1, from
equation (4). (b) Numerically computed crossover point (black markers) and prediction based on equation (4) (curve).

A chain with a single mass defect is the starting point for our model with long-range interactions. We reduce
the mass of the n,;th node (but without modifying its magnetic properties) by adjusting the support in which the
magnet is embedded (see figure 1(b)). Consequently, M,,, = m, where m is the mass of the defect;and M,, = M
for n = ny, where M is the mass of the non-defect particles.

Numerical results

We start by numerically computing time-periodic solutions of the Hamiltonian variant of equation (1) (i.e. with
a =n = 0)and N = 65 particles. The values that we use for the magnetic potential parameters are

A =2 1.5683 x 107'2N/mP andp ~ —4.473. Bach particle, except for the defect in the center, has a mass of
M = 0.45 g; the mass of the defect particle is 1 = 0.20 g. The numerical value of the equilibrium distance that
weuseis O &~ 1.4042 cm. We numerically compute the linear spectrum and obtain a defect mode with
frequency f; ~ 5.66 Hz. We use this linear mode as an initial guess in a Newton method and identify a time-
periodic solution with a frequency slightly below the defect frequency. See Appendix B for details on numerical
computations. In figure 2(a), we show a semi-log plot of the absolute value of the velocity profile of the breather
that we obtain using Newton iterations. One of the defining features of a breather in lattices with nearest-
neighbor interactions is exponential decay of the tails. (See the dashed red curve in figure 2(a).) The linear slope
of the breather in the semi-log plot suggests that there is exponential decay of the tail close to the center. In
fundamental contrast to its nearest-neighbor counterpart, the breather in the lattice with long-range
interactions exhibits a transition at a critical lattice site #,, and the decay becomes algebraic rather than
exponential. This feature was first observed about two decades ago in a KG lattice with a cubic potential (i.e. in
the ¢* model) [24], which has long-range interactions with coefficients with algebraic decay. In particular, they
have a power-law decay O(1/x°) with respect to particle #. The linearization of equation (1) also has interaction
coefficients with power-law decay O(1/#°). The algebraic decay of the breather far away from its center arises as
follows; see [24] for details. Its amplitude is small away from its center, so we can linearize the equations of
motion. Additionally, because the breather is temporally periodic, we can express the time dependence of the
solution as a Fourier series: u,(t) = > 1 j)elrt, where wy, = 27f; is the breather’s angular frequency. One
computes the Fourier coefficients using Green’s functions [24] to obtain

S 2w cos(kj)
(i) = O g, 3
1) fo (jwp)?* — w?(k) )

where w? (k) is given by the dispersion relation in equation (2). Now it is clear why it is important to highlight the
nonanalytic nature of w?(k): the Fourier coefficients in equation (3) with discontinuities in the sth derivative
yield Fourier series that converge algebraically. This implies that u,, ~ 1/#x° for large n[24]. One can make
similar arguments to explain the exponential decay near the center; see [24] for details.

Assuming that the proportionality constants of the exponential decay and the algebraic decay are roughly the
same, there is a crossover point between the two types of decay that satisfies e ™" = %, where vis the

exponential decay rate of the breather near the center. This yields the following prediction for the crossover site
n.[24]:
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Figure 3. Experimental power spectral density (PSD) for a homogeneous chain of 25 magnets (dashed red curve) and for a magnetic
chain with a mass defect located at site n; = —8 (solid blue curve). The experimental cutoff frequency (blue disc) and defect mode (red
diamond) are in reasonable agreement with the numerical prediction (vertical solid and dashed lines). In the inset, we show
numerically computed eigenfrequencies versus the eigenfrequency index for a chain with 23 particles (25 including the two fixed
boundaries) and a single defect at site 1; = —8 and no damping or driving () = a = 0). In the inset, we order the modes based on the
values of their frequencies. The blue disc in the inset represents the numerical cutoff frequency, and the red diamond shows the
numerical defect mode.

logn. v @
e 1—-p .

For the solution in figure 2(a), the predicted crossover is . = 10, which is roughly where the decay properties
change in the numerical solution (see figure 2(a)). To validate equation (4), we compute the crossover point
from the numerically-obtained breather solutions. We calculate this point numerically by determining the first
particle at which the deviation of the solution from the best-fit line in the semi-log scale exceeds 1% of the
solution amplitude. In the example in figure 2(a), this yields a crossover point of n, = 12. Equation (4) predicts
that the crossover location depends on the solution’s exponential decay rate v, which in turn depends on the
breather frequency f,,. In figure 2(b), we show a comparison of observed numerical crossovers and equation (4)
for various breather frequencies.

Experimental results

For our experiments, we consider a chain of N = 25 magnets (including the boundaries) with a defect magnet at
site n; = —8. We experimentally probe the linear spectrum by performing a frequency sweep. To do this, we
excite the chain at 33 frequencies between 2 and 6 Hz and extract the resulting steady-state displacement
amplitudes at the excitation frequency in different locations. The dashed red curve in figure 3 represents the
power spectral density (PSD) of particles —4 to 0, and the solid blue curve represents the PSD of the defect
particle. The model prediction based on the Hamiltonian limit (i.e. with = a = 0) of equation (1) (which we
computed numerically, as shown in the inset of figure 3) agrees with the experimentally-observed passband
cutoff frequency f &~ 4.50 Hz and defect-mode frequency f; ~ 5.66 Hz.

To further evaluate our model, we initialize the experimental chain using the displacements that correspond
to the theoretically-predicted Hamiltonian breather with frequency f;, ~ 5.46 Hz. The nodes oscillate initially
with the predicted frequency (see figure 4(a)). In this particular experiment, we do not add energy to the system.
Thus, as the oscillation amplitude decreases due to damping, the dynamics gradually becomes more linear and
the oscillation frequency approaches the sole linear defect-mode frequency f; & 5.66 Hz. We use this
experiment to empirically determine the damping parameter &~ 0.10gs ™' to match the temporal amplitude
decay of the defect particle. (See the inset in figure 4(a).) We conduct an analogous numerical experiment using
equation (1) with damping but no driving (specifically, 7 = 0.10gs™ ' anda = 0), which matches the observed
experimental data; see the solid red discs in figure 4(a).

Our final experiment probes the decay properties of the breather. To allow the experimental system to reach a
steady state (which allows us to more closely examine the decay properties), we again continuously harmonically
excite the leftboundary magnet, so the displacement of the boundary magnet is ujey = a sin(27f; ). We thereby
treat the boundary as a ‘core’ of the breather, so we do not use a defect particle in these experiments. We seek
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Figure 4. (a) Experiment initialized with a Hamiltonian breather solution of equation (1) with frequency f;, ~ 5.46 Hz. We show the
mean oscillation frequency of the defect particle for every 1.28 s for the experiment (blue markers with error bars) and model with
damping (withn = 0.10 g s~") but no driving (red discs). The error bars indicate the standard deviation over 5 experimental
realizations. Note that the defect particle oscillates initially at the predicted frequency. The frequency approaches the sole defect
frequency of the linear system, as the damping causes displacements to approach 0. In the inset, we show an example of defect-particle
decay from an experiment. (b) Semi-log plot of the experimental data for drive frequencies of f, = 6 Hz (open red circles with error
bars)and fi, = 11 Hz (open blue squares with error bars). The chain is homogeneous (there is no defect particle), because the
boundary drive is acting like a defect particle (which we label as n = 0). We show our predictions from the damped, driven model
(filled markers) as well as the best fit to exponential (yellow curve) and power-law (blue curve) decay. The experimental data for

fo = 6 Hzfollows a roughly linear trend in the semi-log plot, suggesting that its decay is exponential. (c) Same as panel (b) but asa
log-log plot. The experimental data for f,, = 11 Hz follows a roughly linear trend in the log—log plot, suggesting that its decay is algebraic.
Panels (b) and (c) share the legend that we show in (b). The inset in panel (c) shows a similar result for a chain oflength N = 29 (which
has a smaller equilibrium distance). In this case, more particles have an amplitude that is comparable to the amount of noise.

time-periodic solutions of equation (1) that account for both the boundary excitation and damping effects. We use
the parameter values ) = 0.10gs™ ' anda = 3.8 mm. The transition that we observe in figure 2(a) occurs at
amplitudes, which we estimate to be 0.05 mm s~ 1, that lie below the amount of noise in the experiments. This
value corresponds to the mean velocity amplitudes of particles 9-24, whose motion can be attributed primarily to
ambient vibrations. Thus, for the drive (breather) frequency f, = 6 Hz, we observe only exponential decay.

However, for a drive frequency of f, = 11 Hz, the transition to algebraic decay occurs close to the core of the
breather, so there appears to be a glimpse of the associated decay prior to reaching the level at which ambient noise
vibrations overwhelm the algebraic tail. Note that the crossover approaches the core of the breather as the breather
frequency increases (see figure 2(b)). In figures 4(b), (c), we show the tails of the breather in semi-log and log—log
plots. For fi, = 6 Hz, the experimental data (open red circles with error bars) has a roughly linear trend in the semi-
log plot, suggesting that its decay is exponential. The experimental data follows the model prediction (solid yellow
circles) up to the point at which it reaches the noise level (the horizontal dashed gray line). We fit (using a least-
squares procedure) the model solution with an exponential curve of the form ae?" (solid yellow curve), and we
obtain « & 0.6287 and 3 &z 1.529.For f;, = 11 Hz, the experimental data (open blue squares with error bars) has
aroughlylinear trend in alog—log plot, suggesting its algebraic decay. The experimental data follows our model’s
prediction (solid light blue squares) until reaching the noise level (horizontal dashed gray line). We fit the model
solution with a power-law curve of the form a:n~? (solid blue curve), and we obtain o ~ 0.579 and 3 ~ 7.131.
Our results for other parameter values are similar. For example, in the inset of figure 4(c), we show alog—log plot of
periodic solutions with f, = 9 Hz (red) and f;, = 13 Hz (blue) for a chain with N = 29 particles. Because the lattice
is confined to alength of L & 33.7 cm, the equilibrium distance is about 6/7 of the one in the N = 25 chain. This
increases the linear stiffness and hence increases the passband cutoff. Consequently, we need higher frequencies to
avoid resonance with the linear modes.

Discussion and conclusions

We studied a lattice of magnets with long-range interactions, and we obtained quantitative agreement between
theory, numerics, and experiment. Specifically, using a combination of experiments, computation, and analysis,
we explored the prediction of [24], made about twenty years ago, that the tail of a breather solution of this
nonlinear lattice exhibits a transition from exponential to algebraic decay. As far as we are aware, our work
represents the first experimental realization of breathers in a nonlinear lattice with long-range interactions.

The study of long-range interaction systems is an increasingly important topic in numerous and wide-
ranging areas of physics. These include dipolar BECs [50], where the recent formation of quantum droplets and
their bound states [51] suggests that interesting types of long-range interactions can also arise in the study of
BECs in optical lattices. Long-range interactions also play important roles in the study of coupled phase
oscillators in diverse physical settings [26], heat transport in oscillator chains coupled to thermal reservoirs
[52, 53], and more.




10P Publishing

NewJ. Phys. 21 (2019) 063032 M Molerén et al

Our experimental system provides a new platform for the manifestation of breathers. It differs in a
fundamental way from standard setups, in which only nearest-neighbor interaction are possible, and it allows
one to experimentally observe novel dynamical behavior. In addition to our observations in the present paper,
our work paves the way towards further studies to explore the nuances of long-range interactions in nonlinear
lattice systems. Examples include bistability of solitary waves [32, 33], solitary waves with nontrivial phases [31],
and low-frequency breathers [35]. These avenues go beyond the confines of mechanical or magnetic systems and
are of broad appeal for a variety of long-range phenomena. It would be especially interesting to examine what
happens when breathers interact and how the decay properties (and interactions between breathers) depend on
lattice dimensionality.
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Appendix A. Equations of motion in a finite chain

In a chain of N (where Nis odd) magnets that we arrange as a lattice confined within a distance L € R with fixed
N+1 N+1

2 2

n — land ndepends on n. The N + 1equilibrium distances ¢, , (with n € {—%, e % }) satisfy

boundary conditions (i.e. u, = 0 for particles n = ) the equilibrium distance between magnets

Nt1
L= Y bon
n=—~3t
and the following N equations:

n—1 n p # j p
0= ‘_Z [Z ‘50,1‘] - > ( 50,1] ) (5)

j=—NE\i=j+1 j=n+1\i=n+1

wheren € {—u

s o % }. We model damping effects with a dashpot term 7i1,,, where we empirically
estimate the damping factor 7. We apply a harmonic boundary drive ues () = a sin(27f, t), where a denotes
the drive amplitude and f;, denotes its frequency. Thus, for a finite chain, we obtain the following N equations of

motion:

N+1

n—1 n P 2 j p
Mnan = Z A Z [60,1'] + uy — Uj - E A( Z [50,1'] + Uj — Uy - num (6)
j:—% i=j+1 j=n+1 \i=n+1
. N-1 N-1 .
withn € {_T’ . T} and the boundary conditions

u_na(t) = asinQaf,t), wuxa(t) =0.

For an infinite lattice (i.e. in the limit N — 00) the equilibrium distances are constant with respect to lattice site.
This is easily verified by substituting 6y , = 6, into equation (5):

n—1 o0 oo 00
Yo (=) — D (G —mb)P = Y (G+m)P — > ((—m)?

j=—o0 j=n+1 j=1-n j=n+1
00 00

Y0 - 2@ = o,
k=1 =1

where we defined new indices k = j + nand ¢ = j — n. Substituting 6y , = 0y into equation (6) and redefining
indices once again leads to equation (1), which is valid for an infinite lattice.

7
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Appendix B. Numerical methods

We find time-periodic solutions of equation (6) with period T by numerically computing roots x° of the map
f(x% = x0 — %0(T), where x” is the initial value of equation (6) and £°(T) is the solution at time T of
equation (6) with initial value x°. See [2] for details. We numerically integrate equation (6) with an
adaptive-size Runge—Kutta method. We use the linearization of (6) to determine our initial guess for the
Newton iterations.
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