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Dynamical Processes on Metric Networks\ast 

Lucas B\"ottcher\dagger and Mason A. Porter\ddagger 

Abstract. The structure of a network has a major effect on dynamical processes on that network. Many studies
of the interplay between network structure and dynamics have focused on models of phenomena ---
such as disease spread, opinion formation and changes, coupled oscillators, and random walks ---
that one can describe using coupled ordinary differential equations, difference equations, stochastic
processes, or agent-based models. In parallel to these developments, there have been many studies of
wave propagation and other spatially extended processes on networks. These latter studies consider
metric networks, in which the edges are associated with real intervals. Metric networks give a
mathematical framework to describe dynamical processes that include both temporal and spatial
evolution of some quantity of interest --- such as the concentration of a diffusing substance or the
amplitude of a wave --- by using edge-specific intervals that quantify distance information between a
network's nodes. Dynamical processes on metric networks often take the form of partial differential
equations (PDEs). In this paper, we present a collection of techniques and paradigmatic linear PDEs
that are insightful for analyzing the interplay between structure and dynamics in metric networks.
We start by considering a time-independent Schr\"odinger equation. We then use both finite-difference
and spectral approaches to study the Poisson, heat, and wave equations as paradigmatic examples
of elliptic, parabolic, and hyperbolic PDEs on metric networks. In our numerical experiments,
we consider metric networks with up to about 104 nodes and 104 edges. Additionally, using our
spectral approach, we are able to resolve degenerate eigenmodes. A key contribution of our paper
is to increase the accessibility of studying PDEs on metric networks. Software that implements our
numerical approaches is available at https://gitlab.com/ComputationalScience/metric-networks.
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networks, spatially extended systems
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1. Introduction. The study of dynamical processes on networks has led to many insights
into the interplay between network structure and dynamics [67, 80, 129, 143, 154]. For ex-
ample, in models of disease spread [39, 149], opinion dynamics [72, 170], and coupled oscil-
lators [113, 156], researchers have derived conditions for bifurcations and phase transitions
between qualitatively different behaviors. These results have often been accompanied by in-
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DYNAMICAL PROCESSES ON METRIC NETWORKS 2849

sights into the effectiveness of specific interventions and how various types of failures affect the
robustness of structures such as communication networks [3, 50, 51, 83, 128], heterogeneous
materials [26, 33, 155], and social networks [54, 55, 161, 177]. In these applications, it is com-
mon for dynamical processes on networks to take the form of ordinary differential equations
(ODEs), with each node of a network associated with one or more ODEs, which describe how
the nodes' states evolve. It is also common for dynamical processes on networks to take the
form of difference equations, stochastic processes, and agent-based models.

In parallel to these studies, there has also been a wealth of research on metric networks
[6, 8, 20, 22, 31, 32, 42, 77, 79, 81, 91, 92, 93, 97, 100, 107, 108, 109, 111, 112, 114, 115, 117, 119,
120, 121, 124, 125, 132, 153, 162, 164]. A metric network1 consists of a combinatorial graph
\scrG = (\scrV ,\scrE ) along with a metric to measure distances along the edges of the graph. Each edge
(u, v)\in \scrE , which connects the nodes u, v \in \scrV , is associated with a real interval [0, \ell uv] of length
\ell uv. If we explicitly know the position \bfx u of each node u \in \scrV , then \ell uv = \| \bfx u  - \bfx v\| for a
suitable norm \| \cdot \| , such as the Euclidean norm or (more generally) a p-norm. Metric networks
encompass a wide variety of networked systems in which distance information between nodes is
necessary to mathematically describe corresponding physical, chemical, or biological processes.
Because of the edge-specific intervals [0, \ell uv], one can equip a metric network with a differential
operator, rather than a discrete operator (such as the combinatorial graph Laplacian), which
one employs in studies of combinatorial networks (i.e., the usual type of network). One can
thereby study partial differential equations (PDEs) on networks. There are also some papers
that study PDEs, such as reaction--diffusion systems, on combinatorial networks (e.g., see
[10, 11]). Another relevant research thrust is the study of PDEs on graphons (see, e.g., [131]),
which one can obtain in appropriate limiting situations from combinatorial networks.

For additional information about metric networks, see the book chapter [20] and the books
[22, 115].

1.1. Prior research on metric networks and related systems. In Table 1, we overview a
variety of models and application areas in the study of metric networks. Given the wide range
of scientific domains in which PDEs on metric networks arise, we mention only a small portion
of the available literature. For another summary of application areas, see Chapter 7 of [22].

As an illustration, consider a mass--spring network. In such a network, each node u is a
mass and each edge (u, v) is a spring. The end points of (u, v) are nodes with positions xu
and xv, which we assume for simplicity are located on a line. This example does not yield a
PDE on a network, but it enables us to (1) motivate the use of edge-specific length intervals
in metric networks and (2) establish connections between metric networks and combinatorial
networks. Mass--spring networks are common in models of engineering and material structures
[9, 19, 38, 85, 87, 90, 94] and in computer graphics [142, 167]. Such networks have also inspired
the development of the Gaussian-network model [15, 53, 86] and anisotropic-network model
[12, 65] of macromolecules.

1We use the term ``metric network"" instead of ``metric graph"" to strengthen the link between our work
and the network-science literature, where the term ``network"" is much more common than the word ``graph""
and also sometimes refers to more general objects than ordinary graphs. Given the rich tradition of studying
Schr\"odinger operators on metric networks, some researchers (see, e.g., [22, 111, 112]) specifically use the term
``quantum graph"".
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2850 LUCAS B\"OTTCHER AND MASON A. PORTER

Table 1
Several models and application areas of metric networks.

\bfM \bfo \bfd \bfe \bfl \bfC \bfo \bfm \bfm \bfe \bfn \bft \bfs \bfR \bfe \bff \bfe \bfr \bfe \bfn \bfc \bfe \bfs 

Quantum graphs Models of quantum dynamics in thin
structures.

[4, 20, 22, 103, 104, 110, 111,
112, 157]

Transmission-line and
electrical networks

Such networks consist of resistance,
inductance, capacitance, and
conductance elements.

[5, 28, 46, 47, 123, 136, 137,
138, 139, 140, 150, 166]

Beam networks Models of beam structures in solid
mechanics (e.g., in civil engineering).

[21, 61, 116, 133]

Traffic flow on networks Flow models of vehicular and
pedestrian traffic, telecommunication
networks, and supply chains.

[56, 88, 151]

Gas networks Distribution networks that consist of
pipes, valves, compressors, and
heating and cooling elements.

[17, 43, 63, 64, 134]

In our example mass--spring network, the length of the edge (u, v) is \ell uv = | xu - xv| . Let wuv

denote the corresponding spring constant. By Hooke's law, the force that is exerted at node
u in the direction of node v is wuv(xv - xu), which is proportional to \ell uv [75]. We fix a subset
\scrW \subseteq \scrV of the nodes at certain points in space and seek to determine the equilibrium positions
of the remaining nodes, which constitute the complementary subset \scrV \setminus \scrW . At equilibrium,
the mass--spring network is at a minimum of its potential energy

\sum 
(u,v)\in \scrE wuv(xu  - xv)

2/2 =\sum 
u,v xuxvLuv, where Luv denotes entry (u, v) of the matrix L and we note that wuv =wvu. The

matrix L, which has entries Luv = - wuv for u \not = v and Luu =
\sum 

v \not =uwuv, is the combinatorial
graph Laplacian [143]. For nodes u\in \scrV \setminus \scrW , one achieves this minimum when\sum 

\{ v : (u,v)\in \scrE \} 

wuv(xu  - xv) =
\sum 

\{ v : (u,v)\in \scrE \} 

xvLuv = 0 .(1.1)

The lengths \ell uv in our spring-system example of a metric network are the equilibrium distances
that allow all spring forces to balance each other.

The early focus of research on metric networks concentrated predominantly on Schr\"odinger
equations on networks. The linear Schr\"odinger equation plays a central role in studies of
quantum graphs, in which one uses metric graphs and considers quantum dynamics in thin
structures [4, 20, 22, 103, 104, 110, 111, 112, 157]. One can also incorporate a cubic nonlinearity
to obtain a cubic nonlinear Schr\"odinger (NLS) equation, which is a paradigmatic system with
diverse applications. It arises via a mean-field description of Bose--Einstein condensates [152],
as an envelope equation in optics [126], and in many other situations. In the context of metric
networks, cubic NLS equations have been considered on a Y-junction and on tree and triangle
networks that are built from Y-junctions [144], on a dumbbell network [127], and on a star
network [97]. Other studies of nonlinear PDEs on metric networks include examinations of a
nonlinear Dirac equation (a relativistic wave equation) on a Y-junction [158], the sine-Gordon
equation on star and tree networks [163], the Korteweg--de Vries equation on a star network
[45], and reaction--diffusion equations [174].
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DYNAMICAL PROCESSES ON METRIC NETWORKS 2851

Metric networks also arise in the mathematical description of transmission-line and electri-
cal networks. Such networks are usually described by lumped-element models with resistance,
inductance, capacitance, and conductance elements arranged in a network, through which
signals can propagate [5, 47, 136, 137, 138, 139, 140, 150, 166]. For example, in Sections 22.6
and 22.7 of [70], Feynman et al. used an infinite ladder network that consists of capacitors
and inductors to illustrate the function of a low-pass filter that prevents the propagation of
high-frequency modes of electromagnetic waves. In linear transmission lines, the propagation
of electromagnetic waves is described by the telegraph equation [150]. Due to the mathemat-
ical similarities between the telegraph equation and Schr\"odinger systems on metric networks,
quantum graphs have been studied experimentally using transmission-line and waveguide net-
works [28, 46, 62, 95, 118, 123, 181].

Metric networks also appear prominently in other applications. For example, in civil
engineering, metric networks arise in the context of beam structures, which are described by
4th-order PDEs [21, 61, 116, 133]. Additionally, networks of resistors have been used to model
composite materials that consist of a combination of conducting and nonconducting materials
[60, 89, 101, 179]. In quantum communication networks [145], information is transmitted
through metric networks (e.g., through optical fibers). It is also common to employ metric
networks in studies of transport processes, including the flow of traffic, supplies, and gas in
infrastructure and distribution networks [17, 43, 56, 63, 64, 88, 134, 135, 151].

There are also related dynamical processes that are spatially extended and often arise
through discretizations of PDEs. Examples of such dynamical processes include nonlinear lat-
tice systems [48, 71, 98, 99, 106] and coupled-oscillator networks that yield classical analogues
of topological insulators [160, 168] and spin--orbit coupling [159]. The Ablowitz--Ladik model
[1, 2, 176] is a network of nonlinear elements that arises by discretizing an NLS equation.
Other nonlinear lattice models, which are also relevant to study on more general network
structures, include Fermi--Pasta--Ulam--Tsingou (FPUT) lattices [57, 69, 73, 74, 84, 122] and
Toda lattices [169, 171, 172, 173].

1.2. Our contributions. Most existing studies of PDEs on metric networks have focused
on very small networks [153]. It is challenging to develop robust numerical methods to solve
different types of PDEs and account for diverse boundary conditions on metric networks. The
discretization of PDEs can yield large systems of equations that are difficult to handle nu-
merically, especially for metric networks with many edges and PDEs that require a very small
step size for numerical integration. Alternatively, one can employ spectral methods, although
it is also challenging to identify characteristic wavenumbers and corresponding eigenmodes2

with high numerical precision.
In the present paper, we study Poisson, heat, and wave equations as paradigmatic ex-

amples of linear elliptic, parabolic, and hyperbolic PDEs on metric networks. Building on
previous work [8, 42, 78, 108], we present different simulation approaches that are useful to
study such linear PDEs on metric networks. Specifically, we generalize the spectral approach
in [42, 78] to account for degenerate eigenmodes. Complementing the numerical results by

2In the present paper, because we often study wave phenomena, we frequently use the term ``eigenmode""
instead of ``eigenfunction"" to emphasize the interpretation of eigenfunctions as normal modes in a metric
network.
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2852 LUCAS B\"OTTCHER AND MASON A. PORTER

Brio et al. [42], who examined the Poisson equation and the telegraph equation on a metric
network with 3 edges, we study the Poisson equation, heat equation, and wave equation on
three different metric networks. Our numerical computations use sparse-matrix representa-
tions, which allow us to study metric networks with up to about 104 nodes and about 104

edges. Elliptic and parabolic PDEs have been studied on networks of similar sizes using a
finite-element method [8]. A key contribution of our paper is to increase the accessibility of
studying PDEs on metric networks.

Other software packages have also been developed recently for simulating PDEs on metric
networks. The GraFiDi library [27] (which is available at https://plmlab.math.cnrs.fr/cbesse/
grafidi) allows one to simulate nonlinear PDEs on metric networks in Python, and QGLAB
[82] (which is available at https://github.com/manroygood/Quantum-Graphs) is a MATLAB
library for both linear and nonlinear PDEs on metric networks. Both software packages, which
were illustrated using the cubic NLS equation as a focal example, employ a finite-difference
approach. QGLAB also provides users with the option to select Chebyshev collocation as an
alternative discretization method.

1.3. Organization of our paper. Our paper proceeds as follows. In Section 2, we define
metric networks and discuss common boundary conditions in the study of PDEs on metric
networks. We also present an illustrative example with a Schr\"odinger operator on a two-node
network. In Section 3, we overview numerical and analytical methods that are useful to study
metric networks. In Section 4, as another elucidatory example, we consider the Schr\"odinger
equation on a star network, where symmetries lead to eigenmode degeneracies. In Section 5,
we study Poisson, heat, and wave equations on metric networks. In Section 6, we summarize
and discuss our results. In Appendix A, we discuss group-theoretic methods that can help
identify degenerate eigenmodes in metric networks.3 In Appendix B, we numerically solve
the Poisson equation on metric networks with up to about 104 nodes and about 104 edges.
On an i7 CPU core with a 1.8 GHz clock speed, the computation for the roughly 10,000-
edge network takes about 1.2 hours. Our code for our numerical simulations is available at
https://gitlab.com/ComputationalScience/metric-networks.

2. Metric networks. In Section 2.1, we present some basic definitions and concepts for
studying metric networks. In Sections 2.2 and 2.3, we overview different operators and bound-
ary conditions in the study of PDEs on metric networks. As an illustrative example, in
Section 2.4, we solve the Schr\"odinger equation on a 2-node network and show that certain so-
lutions (with appropriate boundary conditions) correspond to the quantum states of a particle
in an infinite square well.

2.1. Basic definitions and concepts. Consider a network in the form of a graph \scrG =
(\scrV ,\scrE ), where \scrV is a set of nodes and \scrE is a set of edges. We use N = | \scrV | to denote the
number of nodes and M = | \scrE | to denote the number of edges. In a metric network, each
edge (u, v) \in \scrE that connects two nodes u, v \in \scrV is parameterized by an interval [0, \ell uv]
with 0 < \ell uv < \infty . (Some authors also account for infinite-length edges [111].) This turns
the combinatorial graph \scrG (which, in other contexts, is often called simply a ``graph"" [143])
into a topological and metric structure. We allow loops (i.e., self-edges) and multiple edges
(i.e., multi-edges) between the same nodes. The length of a walk that is associated with edges

3The wavenumbers of such degenerate eigenmodes have algebraic multiplicities that are larger than 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

7/
25

 to
 1

30
.2

37
.5

.4
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://plmlab.math.cnrs.fr/cbesse/grafidi
https://plmlab.math.cnrs.fr/cbesse/grafidi
https://github.com/manroygood/Quantum-Graphs
https://gitlab.com/ComputationalScience/metric-networks


DYNAMICAL PROCESSES ON METRIC NETWORKS 2853

Figure 1. An example of a metric network with N = 8 nodes and M = 10 edges. The length of an edge
that connects two nodes u and v is \ell uv. The arrows indicate the starting and ending points of an interval. For
example, the edge that connects nodes 1 and 2 starts at node 1 and ends at node 2. The depicted metric network
is embedded in \BbbR 2, so each node is associated with a location in the plane. The blue regions indicate polygons
whose vertices correspond to the nodes. The edges of these polygons correspond to the intervals (but without
their directions).

\scrE \prime \subseteq \scrE is
\sum 

(u,v)\in \scrE \prime \ell uv. For example, for the metric network in Figure 1, the length of the
walk 1\rightarrow 2\rightarrow 3\rightarrow 4 is \ell 12+\ell 23+\ell 34. In addition to intervals [0, \ell uv], one can equip edges with
weights wuv, as we did in the example of mass--spring networks (see Section 1.1), where the
weights encode spring stiffnesses. In some applications, it is useful to consider time-dependent
edge lengths \ell uv(t) [25].

Metric networks do not have to be embedded in Euclidean space. However, several of
the applications in Section 1.1 and Table 1 naturally require such an embedding (e.g., gas
networks, transmission lines, and quantum dynamics in thin structures) in real physical im-
plementations of them. One can interpret a metric network as a one-dimensional simplicial
complex that consists of one-dimensional simplices (i.e., edges). A key difference between
simplicial complexes in combinatorial networks [30] and those in metric networks is that the
latter are geometric entities that include length information.

Because of the interval information, a metric network includes all intermediate points
on the edges that connect its nodes. This allows us to associate an L2 space L2(\scrG ) :=\bigoplus 

(u,v)\in \scrE L
2((u, v)) with a metric network \scrG . Each edge (u, v) has an associated continuous

function f(u,v) : [0, \ell uv]\rightarrow \BbbR that maps x\in [0, \ell uv] to the real numbers. We define a function f
on a metric network through a collection \{ f(u,v)\} (u,v)\in \scrE of functions, and we require f to be
square-integrable. That is,

\| f\| 2L2(\scrG ) :=
\sum 

(u,v)\in \scrE 

\| f(u,v)\| 2L2((u,v)) <\infty ,(2.1)

where

\| f(u,v)\| 2L2((u,v)) := \langle f(u,v), f(u,v)\rangle L2((u,v)) =

\int \ell uv

0
f2
(u,v)(x)dx .(2.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2854 LUCAS B\"OTTCHER AND MASON A. PORTER

We calculate inner products between two functions f, g \in L2(\scrG ) by computing

\langle f, g\rangle L2(\scrG ) :=
\sum 

(u,v)\in \scrE 

\langle f(u,v), g(u,v)\rangle L2((u,v)) =
\sum 

(u,v)\in \scrE 

\int \ell uv

0
f(u,v)(x)g(u,v)(x)dx .(2.3)

2.2. Operators. Because of the edge-specific intervals [0, \ell uv], one can equip a metric
network with differential operators rather than discrete operators (such as the combinatorial
Laplacian), which are studied often in combinatorial networks.

Relevant operators \scrH : H2([0, \ell uv])\rightarrow H2([0, \ell uv]) that act on f(u,v) include the negative
second derivative

\scrH (f(u,v))(x) = - 
d2

dx2
f(u,v)(x) ,(2.4)

the Schr\"odinger operator

\scrH (f(u,v))(x) = - 
d2

dx2
f(u,v)(x) +U(x)f(u,v)(x) ,(2.5)

and the magnetic Schr\"odinger operator [13]

\scrH (f(u,v))(x) =
\biggl( 
 - i d

dx
 - A(x)

\biggr) 2

f(u,v)(x) +U(x)f(u,v)(x) ,(2.6)

where U : [0, \ell uv]\rightarrow \BbbR is a scalar potential function and A : [0, \ell uv]\rightarrow \BbbR is a vector potential
function. The space H2([0, \ell uv]) is the Sobolev space of twice-differentiable functions on the
interval [0, \ell uv]. Sobolev spaces arise commonly in the analysis (including numerical analysis)
of PDE problems in their weak formulations [68]. For a metric network with edges (u, v)\in \scrE ,
the function space is

\bigoplus 
(u,v)\in \scrE H

2([0, \ell uv]).

2.3. Boundary conditions. To solve a PDE on a metric network, we need suitable bound-
ary conditions at the end points x\in \{ 0, \ell uv\} of all functions f(u,v)(x). We first require that the
function f , which is defined by the collection \{ f(u,v)\} (u,v)\in \scrE of functions, satisfies a continuity
condition on \scrG . That is, for each node u with degree deg(u), the function f needs to satisfy
deg(u) - 1 equations that ensure the continuity of all deg(u) functions f(u,v)(x). Additionally,
for each node u, it is common to employ the Kirchhoff flux condition\sum 

e\in \scrE u

dfe(x)

dx

\bigm| \bigm| \bigm| \bigm| 
x=x\ast 

e

= 0 ,(2.7)

where \scrE u denotes the set of edges that are attached to node u and the quantity x\ast e, where
e\in \scrE u is an edge, denotes the coordinate of node u at which we evaluate the derivative of fe(\cdot ).
As in [20, 111], we use the convention of taking derivatives away from a node into an edge.
Some researchers refer to the Kirchhoff condition as the ``Kirchhoff--Neumann"" condition or
the ``Neumann"" condition (see, e.g., [20, 111]). The connection to the Neumann condition in
standard PDE problems becomes apparent if we consider a node u with a single incident edge
e. In this case, Eq. (2.7) requires that the derivative of fe(\cdot ) vanishes at the node u.

Let \widetilde \scrH denote the operator that includes both the relevant derivatives and the boundary
conditions on \scrG . In the present paper, we focus on PDE problems that involve negative

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DYNAMICAL PROCESSES ON METRIC NETWORKS 2855

second derivatives of f(u,v)(x) with respect to x [see Eq. (2.4)] and primarily consider the
Kirchhoff flux condition (2.7). It has been shown [22, 102, 111] that the resulting operator\widetilde \scrH = - \~\Delta (the generalized negative Laplacian operator that includes continuity conditions and
boundary conditions at all nodes) is self-adjoint and hence has an orthonormal eigenbasis and
real eigenvalues. This is a key result in the study of metric networks, as it allows one to
expand PDE solutions in the eigenbasis of \widetilde \scrH .

Another boundary condition that preservers the self-adjointness of the Schr\"odinger oper-
ator (2.4) is the Dirichlet condition

fe(x)| x=x\ast 
e
= 0 for all e\in \scrE u .(2.8)

Imposing Dirichlet conditions at each node yields a metric network that consists of noninter-
acting edges.

In the present paper, we use the term ``coupling conditions"" to refer to the combination
of continuity conditions and (either Kirchhoff or Dirichlet) boundary conditions for all nodes.

2.4. Two-node system. As an illuminating example, we examine a PDE on a simple
metric network. Consider the linear, time-independent Schr\"odinger equation on a 2-node
network with a single edge of length \ell .4 We seek to solve the Schr\"odinger (i.e., Helmholtz)
equation

d2f(x)

dx2
= - k2f(x) , x\in [0, \ell ] .(2.9)

When we use the Kirchhoff flux condition (2.7) for the boundary conditions, we have f \prime (0) = 0
and  - f \prime (\ell ) = 0. For completeness (and pedantry), we include the minus sign in the boundary
condition at x = \ell , following the convention of taking derivatives away from a node into an
edge. The solution of Eq. (2.9) is f(x) = Ae\mathrm{i}kx +Be - \mathrm{i}kx. The boundary condition f \prime (0) = 0
implies that A = B. Because  - f \prime (\ell ) = 0, we obtain km = \pi m/\ell with m \in \{ 0,1,2, . . .\} . In
quantum mechanics, m is known as a ``quantum number"". In this example, the quantum
number m labels the vibrational modes of a particle in a box. We discard the trivial solution
f(x)\equiv 0. The eigenfunctions that are associated with the eigenvalues km are

f(x;m) = 2A cos(\pi mx/\ell ) .(2.10)

Adding a node between the two existing nodes in the interval [0, \ell ] does not change the
solution (2.10). A degree-2 node with the Kirchhoff flux condition is thus equivalent to an
uninterrupted edge [20, 111].

One can interpret the function f(x;m) = 2A cos(\pi mx/\ell ) as a quantum wave function [see
Figure 2(a)]. This requires us to normalize it such that\int \ell 

0
| f(x;m)| 2 dx= 1 ,(2.11)

4Henceforth, when we use the term ``Schr\"odinger equation"", we always mean the linear, time-independent
Schr\"odinger equation (i.e., the Helmholtz equation).
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2856 LUCAS B\"OTTCHER AND MASON A. PORTER

Figure 2. The eigenfunctions associated with Eq. (2.4) on a 2-node metric network with a single length-\ell 
edge. The eigenfunctions are (a) f(x;m) =

\sqrt{} 
2/\ell cos(kmx) for Kirchhoff flux boundary conditions and (b)

f(x;m) =
\sqrt{} 

2/\ell sin(kmx) for Dirichlet boundary conditions, where km = \pi m/\ell is the wavenumber for m \in 
\{ 0,1,2, . . .\} . We do not show the trivial solution f(x;m= 0)\equiv 0 in panel (b).

which yields A= 1/
\surd 
2\ell and

f(x;m) =

\sqrt{} 
2

\ell 
cos(\pi mx/\ell ) .(2.12)

As an alternative to the Kirchhoff flux condition (2.7), one can employ the Dirichlet
condition (2.8). A calculation that is similar to the one above yields

f(x;m) =

\sqrt{} 
2

\ell 
sin(\pi mx/\ell ) .(2.13)

Equation (2.13) describes a quantum particle in an infinite square well [see Figure 2(b)]. The
case m= 0 is associated with the trivial solution f(x;m= 0)\equiv 0.

Consistent with the self-adjointness of the negative second-derivative operator with ei-
ther Kirchhoff flux conditions or Dirichlet conditions (see Section 2.3), both Eqs. (2.12) and
(2.13) give orthonormal bases with respect to the inner product \langle f(u,v), g(u,v)\rangle L2((u,v)) (see
Section 2.1). That is, \int \ell 

0
f(x;m)f(x;m\prime )dx= \delta mm\prime ,(2.14)

where the Kronecker delta function \delta mm\prime is 1 for m=m\prime and is 0 otherwise.
Although one can analytically solve the linear, time-independent Schr\"odinger equation

on this 2-node network, it typically is necessary to use numerical methods to solve it on
larger networks with Kirchhoff boundaries. When all of the edges of a metric network satisfy
Dirichlet boundary conditions, one can simply use Eq. (2.13), as the edges all decouple from
each other.
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DYNAMICAL PROCESSES ON METRIC NETWORKS 2857

3. Numerical and analytical methods. There are multiple approaches to solve PDEs on
metric networks. It is sometimes possible to obtain analytical solutions for small networks
and PDEs that are analytically tractable on each edge. For larger networks and/or analyti-
cally intractable PDEs, it is necessary to employ numerical methods to obtain solutions. In
Sections 3.1 and 3.2, we discuss two numerical approaches: a spectral method [42, 78] and
a finite-difference method. Using a spectral method to numerically solve a PDE on a metric
network with a self-adjoint operator (e.g., the 2-node system in Section 2.2) seems especially
suitable, given the availability of a Fourier-like basis. Our spectral approach extends the spec-
tral method in [42, 78] to account for degenerate eigenmodes. In Section 4, we present an
illustrative example that demonstrates how degeneracies can arise in symmetric networks. In
Appendix A, we relate the discussion of degeneracies to symmetry groups and their irreduc-
ible representations. Other numerical methods to study PDEs on metric networks include a
discontinuous Galerkin method [42] and a finite-element method [8]. In Section 3.3, we discuss
Weyl's law [7, 20] as a way to help track wavenumbers and their multiplicities when employing
a spectral approach. Weyl's law for the Laplacian operator allows us to analytically estimate
the number of eigenmodes up to a specified cutoff wavenumber when we employ a spectral
approach to numerically solve PDEs on metric networks.

3.1. A spectral method. One can express the solution of a linear PDE on a metric net-
work in terms of an expansion (a so-called ``spectral expansion"") with respect to an appropriate
orthonormal basis. One can construct such a basis using the eigenmodes of the self-adjoint
operator  - \~\Delta , which includes continuity conditions and boundary conditions at all nodes.

To compute the eigenmodes and their corresponding wavenumbers, we solve an eigenvalue
problem that accompanies the Schr\"odinger equation

\~\Delta f = - k2f .(3.1)

The function

f := (f1(x1), f2(x2), . . . , fM (xM ))\top (3.2)

includes all functions fi(xi) that are defined on associated edges, which have domains [0, \ell i]. To
make our notation more concise, we write fi(xi) (with i\in \{ 1, . . . ,M\} ) instead of f(u,v)(x(u,v))
(with (u, v) \in \scrE ) and write \ell i instead of \ell (u,v). Some researchers (see, e.g., [42, 108]) use the
same argument x for different edges, but we employ the notation xi (with i \in \{ 1, . . . ,M\} ) to
account for the possibility that different edges can have distinct domains.

Solving Eq. (3.1) yields

fi(xi) =Ai sin(kxi) +Bi cos(kxi) ,(3.3)

where one determines the coefficients Ai and Bi using the imposed continuity conditions and
boundary conditions (i.e., the coupling conditions). A node u with degree deg(u) inherits
deg(u) - 1 equations from the continuity condition and 1 equation from the boundary condi-
tion. The total number of equations is thus

\sum 
u\in \scrV deg(u) = 2M . These equations yield the

homogeneous system

T (k)X = 0(3.4)
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2858 LUCAS B\"OTTCHER AND MASON A. PORTER

for the coefficient vector X = (A1,B1, . . . ,AM ,BM )\top \in \BbbR 2M . The nontrivial solutions of
Eq. (3.4) require the coupling-condition matrix T (k) to be singular (i.e., det(T (k)) = 0). We
refer to the corresponding values km (with quantum number m \in \{ 1,2, . . .\} ) as the ``charac-
teristic wavenumbers"" in a metric network.5

For each characteristic wavenumber km, we determine the null space of T (km). If its dimen-
sion dim(kerT (km)) is larger than 1, there exist degenerate eigenmodes. Let Amn

1 , Bmn
1 , . . . ,

Amn
M , Bmn

M (with n \in \{ 1, . . . ,dim(kerT (km))\} ) denote the coefficients of the (potentially de-
generate) eigenmodes. The eigenmodes that are associated with km are

fmn =

\left(     
Amn

1 sin(kmx1) +Bmn
1 cos(kmx1)

Amn
2 sin(kmx2) +Bmn

2 cos(kmx2)
...

Amn
M sin(kmxM ) +Bmn

M cos(kmxM )

\right)     .(3.5)

One can normalize the eigenmodes fmn using the inner product

\langle fmn, fmn\rangle L2(\scrG ) =

M\sum 
i=1

\int \ell i

0
fmn
i (x)fmn

i (x)dx .(3.6)

Given a set \{ fmn\} of orthonormal eigenmodes, we can construct a spectral expansion for
another function that is defined on the same metric network. It has been shown [42] that the
spectral-expansion coefficients decay faster than any polynomial (a property that is known
as ``spectral convergence"") for any function in L2(\scrG ) with compact support on all edges for
which the function is nonzero. For functions in L2(\scrG ) that do not have compact support on
all such edges, the expansion coefficients decay with the quantum number m as m - 4.

In our numerical calculations, we use the described spectral approach to construct the
solutions of PDEs on metric networks by expanding these solutions in the eigenmodes \{ fmn\} .
We give further details in Section 5.1, where we consider the Poisson equation on several
metric networks.

3.2. Finite differences. Another way to numerically solve a PDE on a metric network is
to use a finite-difference approximation. In the systems that we study in the present paper, we
need to discretize both first derivatives (because of Kirchhoff boundary conditions) and second
derivatives (e.g., for Schr\"odinger operators). We denote the step size in a discretized edge do-
main [0, \ell i] by hi := \ell i/Ni (with i\in \{ 1, . . . ,M\} ), whereNi is the number of intervals that we use
to discretize [0, \ell i]. In Figure 3, we show a schematic illustration of our discretization scheme.

One possible discretization of the second derivative of fi(xi) is

f \prime \prime 
i (xi) :=

d2

dx2
fi(xi) =

fi(xi + hi) - 2fi(xi) + fi(xi  - hi)

h2i
+\scrO (h2i ) .(3.7)

One can also employ higher-order discretizations or use implicit methods. We write fi,j as a
shorthand notation for fi(jhi) (with j \in \{ 0, . . . ,Ni\} ).

5We prefer the term ``characteristic wavenumber"" to ``resonant frequency"" [42, 108] because the quantity k
is physically a wavenumber, rather than a frequency.
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DYNAMICAL PROCESSES ON METRIC NETWORKS 2859

0 \ell i
xi,0 xi,1 xi,2 xi,Ni - 1 xi,Ni

. . .

hi :=
\ell i
Ni

Figure 3. A finite-difference discretization of an edge i with length \ell i. We employ a uniform discretization
with step size hi = \ell i/Ni.

Consider a Schr\"odinger equation of the form (2.9) on each of the M edges of a metric
network. We summarize the discretized second derivatives (3.7) in a square matrix. Most
of the matrix entries are 0, so we use a sparse-matrix representation when implementing our
numerical solvers.

For Dirichlet boundary conditions, fi(0) = fi,0 = 0 and fi(\ell i) = fi,Ni
= 0 for all edges

i. Therefore, the second derivatives at xi = hi and xi = \ell i  - hi are f \prime \prime 
i,1 = (fi,2  - 2fi,1)/h

2
i +

\scrO (h2i ) and f \prime \prime 
i,Ni - 1 = (fi,Ni - 2 - 2fi,Ni - 1)/h

2
i +\scrO (h2i ), respectively. For one edge with Dirichlet

boundaries, the discretized version of the generalized Laplacian \~\Delta [see Eq. (3.1)] is thus

\~\Delta hi
=

1

h2i

\left(       
 - 2 1 0 \cdot \cdot \cdot 0 0
1  - 2 1 \cdot \cdot \cdot 0 0
0 1  - 2 \cdot \cdot \cdot 0 0
...

...
...

. . .
...

...
0 0 0 \cdot \cdot \cdot 1  - 2

\right)       \in \BbbR (Ni - 1)\times (Ni - 1) .(3.8)

Solving the discrete Schr\"odinger equation (3.1) using the discrete Laplace--Dirichlet operator
(3.8) yields

fi,j\prime \propto sin

\biggl( 
\pi mj\prime 

Ni

\biggr) 
, j\prime \in \{ 1, . . . ,Ni  - 1\} ,(3.9)

which is a discrete analogue of the sine eigenfunction (2.13). The corresponding eigenvalues
ki,m satisfy

 - k2i,m = - 4

h2i
sin

\biggl( 
\pi m

2Ni

\biggr) 2

= - m2\pi 2

\ell 2i
+\scrO (m4h2i ) , m\in \{ 1, . . . ,Ni  - 1\} .(3.10)

These eigenvalues yield the eigenvalues for the continuous system (2.9) in the limit hi \rightarrow 0
[42, 49].

For a single edge with Kirchhoff (i.e., Neumann) boundaries, f \prime 
i,0 = (fi,1  - fi, - 1)/(2hi) +

\scrO (h2i ) = 0 and f \prime 
i,Ni

= (fi,Ni - 1 - fi,Ni+1)/(2hi)+\scrO (h2i ) = 0. We thus obtain fi,1 = fi, - 1+\scrO (h3i )
and fi,Ni - 1 = fi,Ni+1 +\scrO (h3i ), so the second derivatives at the boundaries are f \prime \prime 

i,0 = 2(fi,1  - 
fi,0)/h

2
i +\scrO (hi) and f \prime \prime 

i,Ni
= 2(fi,Ni - 1 - fi,Ni

)/h2i +\scrO (hi). We have introduced ``ghost"" points
at xi =  - hi and xi = \ell i + hi to write second-order finite-difference approximations of f \prime 

i,0

and f \prime 
i,Ni

.6 The lowest-order approximation determines the overall order of the employed

approximation scheme. The discretized version of the generalized Laplacian \~\Delta for a single
Kirchhoff edge is

6One can use higher-order finite-difference approximations at boundary points to maintain the same ap-
proximation order throughout each edge, including at the boundaries. Additionally, to ensure consistency
throughout a system's domain, one uses the same approximation order for all edges.
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2860 LUCAS B\"OTTCHER AND MASON A. PORTER

\~\Delta hi
=

1

h2i

\left(       
 - 2 2 0 \cdot \cdot \cdot 0 0
1  - 2 1 \cdot \cdot \cdot 0 0
0 1  - 2 \cdot \cdot \cdot 0 0
...

...
...

. . .
...

...
0 0 0 \cdot \cdot \cdot 2  - 2

\right)       \in \BbbR (Ni+1)\times (Ni+1) .(3.11)

Solving the discrete Schr\"odinger equation (3.1) using the discrete Laplace--Kirchhoff operator
(3.11) yields

fi,j\prime \propto cos

\biggl( 
\pi mj\prime 

Ni

\biggr) 
, j\prime \in \{ 0, . . . ,Ni\} ,(3.12)

which is a discrete analogue of the cosine eigenfunction (2.12). The corresponding eigenvalues
ki,m (with m\in \{ 0, . . . ,Ni\} ) satisfy (3.10). In signal processing and data compression, the ma-
trices (3.8) and (3.11) are known as the discrete sine transform and discrete cosine transform,
respectively [165].

It is straightforward to simulate the Schr\"odinger equation (2.9) on a metric network with
Dirichlet boundaries. One just needs to construct a block-diagonal matrix in which each block
represents the Laplace--Dirichlet operator (3.8) that is associated with a specified edge. Recall
that Dirichlet boundaries imply that edges are isolated, resulting in noninteracting ``signals"".
The situation is different for metric networks with Kirchhoff flux boundaries. To construct
the discretized generalized Laplacian for a metric network with Kirchhoff boundaries, one
possible starting point is to use a block-diagonal matrix in which each block represents the
Laplace--Kirchhoff operator (3.11) that is associated with a specified edge. One then needs
to adjust the matrix entries such that edges interact through Kirchhoff flux conditions at the
associated nodes. Consider a node u at which the edges i \in \scrE u terminate or originate. Let
f0 denote the value of f at node u. Regardless of the edge's orientation, let fi,1 denote the
value of the function fi at the discretization point next to node u. As in [42], we use a central
second-order scheme to approximate the first derivative at node u and thereby obtain

2

\sum 
i\in \scrE u

fi,1 - f0
hi\sum 

i\in \scrE u
hi

= - k2f0 .(3.13)

We derive (3.13) by applying the Kirchhoff flux condition at the boundary node u (where
the function takes the value f0) and at a ghost point that is adjacent to that node. We then
eliminate the ghost point using the centered finite-difference approximation (3.7) to obtain
(3.13). For each node with Kirchhoff boundaries, one needs to incorporate the associated
expression from the left-hand side of Eq. (3.13) into the discrete generalized Laplacian (3.11).

Equation (3.13) gives one way to couple the dynamics that are associated with different
edges. In a recent paper [14], Avdonin et al. proposed a variational method as an alterna-
tive approach to establish coupling conditions in a discrete linear wave equation on a metric
network.

Although finite differences provide a relatively straightforward way to numerically solve the
Schr\"odinger equation (3.1) on a metric network, a downside of this approach is the \scrO (m4h2i )
error term in k2i,m [see Eq. (3.10)] for both Dirichlet and Kirchhoff boundary conditions.
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DYNAMICAL PROCESSES ON METRIC NETWORKS 2861

In Figure 4, we show the absolute error in the difference between the numerical values of
k2i,m and their corresponding analytical values as a function of m. We consider two metric
networks: a 2-node network with a single edge and Dirichlet boundaries [see Figure 4(a)] and a
star network with N = 4 nodes, M = 3 edges, and Kirchhoff flux boundaries [see Figure 4(b)].
The observed error scaling is consistent with the aforementioned quartic dependence on m.

We show a schematic illustration of a 3-edge star network in Figure 5. We will revisit
this example in Section 4 and in Appendix A. In the present discussion, our objective is to
emphasize that employing finite differences may not be practical when attempting to capture
signals with large wavenumers (i.e., small wavelengths). However, a finite-difference approach
can be useful in situations with small wavenumbers. It can also provide benchmark results to
use as a baseline when employing other numerical techniques, such as the spectral method in
Section 3.1.

Figure 4. Error scaling of our finite-difference method for the Schr\"odinger equation (3.1) on metric net-
works. We show the absolute error of the difference between the numerical values of k2

m (where km is the mth
eigenvalue) and the corresponding analytical values of k2

m as a function of the quantum number m. Different
types of markers correspond to different step sizes h. (a) The error scaling for a metric network with 2 nodes, a
single length-1 edge, and Dirichlet boundaries. (b) The error scaling for a star network with 4 nodes, 3 length-1
edges, and Kirchhoff flux boundaries. In both examples, the observed error scaling is consistent with a quartic
dependence on m, as indicated by the dashed black line [see Eq. (3.10)].

Figure 5. A metric star network with N = 4 nodes and M = 3 edges. The length of each edge is \ell .
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2862 LUCAS B\"OTTCHER AND MASON A. PORTER

3.3. Weyl's law. It can be challenging to identify all of the characteristic wavenumbers
in an interval due to the rounding errors that occur when numerically determining if T (k)
[see Eq. (3.4)] becomes singular and when working with discrete Laplacian operators (see
Section 3.2). Therefore, it is useful to estimate the number of characteristic wavenumbers up
to a specified cutoff value.

LetN\scrG (k) denote the characteristic-wavenumber counting function, which counts the num-
ber of characteristic wavenumbers k\prime that satisfy k\prime 2 \leq k2. That is,

N\scrG (k) := \{ | k\prime : k\prime 2 \leq k2 and det(T (k\prime )) = 0| \} .(3.14)

According to Weyl's law [20, 22],

N\scrG (k) =
\scrL 
\pi 
k+\scrO (1) ,(3.15)

where \scrL =
\sum M

i=1 \ell i is the total length of the edges. Additionally, the counting function N\scrG (k)
satisfies

\scrL 
\pi 
k - M \leq N\scrG (k)\leq 

\scrL 
\pi 
k+N .(3.16)

There is also an analogue of Weyl's law for resonances on networks [105].7 In that context,
deviations in the counting functionN\scrG (k) fromWeyl's law have been studied both theoretically
[58, 59] and experimentally [118].

4. Illustrative example: A star network. Consider the Schr\"odinger equation (3.1) on
a metric star network \scrG with N = 4 nodes, M = 3 equal-length edges, and Kirchhoff flux
conditions at each node. We seek to compute the characteristic wavenumbers and their cor-
responding eigenmodes. This example is analytically tractable, but we also use a numerical
spectral approach that we will continue to use subsequently.8 Our comparison of analytical
and numerical results for this star network enables us to examine the numerical-resolution
requirements of the spectral approach in Section 3.1.

Let T (k) (with a 3-pointed star as a subscript) denote the coupling-condition matrix
[see Eq. (3.4)] that is associated with the 3-edge star network with Kirchhoff flux conditions.
Specifically,

(4.1) T (k) =

\left(        

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

sin(k\ell ) cos(k\ell )  - sin(k\ell )  - cos(k\ell ) 0 0
sin(k\ell ) cos(k\ell ) 0 0  - sin(k\ell )  - cos(k\ell )

 - cos(k\ell ) sin(k\ell )  - cos(k\ell ) sin(k\ell )  - cos(k\ell ) sin(k\ell )

\right)        .

7For more information about such resonances, see [105, 118] and references therein.
8One can obtain analytical insights even for 3-edge metric star networks with unequal edge lengths. Barra

and Gaspard [18] derived an analytical description of the distribution of level spacings (i.e., the differences
between consecutive energy levels) for the Schr\"odinger operator [see Eq. (3.1)] on such metric networks.
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DYNAMICAL PROCESSES ON METRIC NETWORKS 2863

Alternatively, we can first establish that A1 = A2 = A3 = 0 because nodes 1, 2, and 3 are
degree-1 nodes with the Kirchhoff flux condition (see Section 2.4). Therefore, the eigenmodes
are cosine functions. The remaining Kirchhoff and continuity conditions at node 4 yield

(4.2) \widetilde T (k) =

\left(  cos(k\ell )  - cos(k\ell ) 0
cos(k\ell ) 0  - cos(k\ell )
sin(k\ell ) sin(k\ell ) sin(k\ell )

\right)  .

The nontrivial solution of Eq. (3.4) satisfies det( \widetilde T (k)) = 0. This yields

3 cos(k\ell )2 sin(k\ell ) = 0 .(4.3)

There is a constant mode (1,1,1)\top /
\surd 
3\ell with characteristic wavenumber 0. The other char-

acteristic wavenumbers are km = \pi m/(2\ell ) (with m \in \{ 1,2, . . .\} ).9 The algebraic multiplicity
of km is

\mu T (km) =

\Biggl\{ 
2 , m is odd

1 , m is even .
(4.4)

For odd m, there are two degenerate eigenmodes:

fm1 =
1\surd 
\ell 

\left(  cos(kmx)
0

 - cos(kmx)

\right)  and fm2 =
1\surd 
\ell 

\left(  cos(kmx)
 - cos(kmx)

0

\right)  .(4.5)

This geometric multiplicity (i.e., the dimension of the eigenspace that is spanned by the
two degenerate eigenmodes fm1 and fm2) equals the dimension of one of the irreducible
representations of the underlying symmetry group, which is the permutation group S3 (see
Appendix A). For even m, the eigenmode is

fm1 =

\sqrt{} 
2

3\ell 

\left(  cos(kmx)
cos(kmx)
cos(kmx)

\right)  .(4.6)

Observe that \langle fm1, fm2\rangle L2(\scrG ) = 1/2 if m is odd and that \langle fm1, fm\prime 1\rangle L2(\scrG ) = \delta mm\prime if m is even.
In Figure 6, we show the eigenmodes for the 3-edge metric star network for m\in \{ 1,2,3,4\} .

The solid blue curves show the analytically obtained eigenmodes from Eqs. (4.5) and (4.6).
We also examine the ability of our spectral numerical approach to identify the characteristic
wavenumbers and their corresponding eigenmodes with sufficient numerical precision. For
each characteristic wavenumber km, the coupling-condition matrix T (km) is singular (i.e.,
det(T (km)) = 0). However, the determinant is not an appropriate indicator of singularity in
numerical calculations. Following [42, 78], we use the condition number \kappa (T (k)) to determine
whether or not a certain value of k is a characteristic wavenumber km. For values of k that

9In our finite-difference approach, we initially treat all edges of a metric network separately and use the
two indices in ki,m to label the characteristic wavenumber m that is associated with edge i [see Eq. (3.10)].
After applying the coupling conditions, all edges have the same characteristic wavenumber km. Therefore, in
the present example, we need only the index m for the characteristic wavenumbers.
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2864 LUCAS B\"OTTCHER AND MASON A. PORTER

Figure 6. Eigenmodes of the Schr\"odinger equation (3.1) on a metric star network with N = 4 nodes (black
disks) and M = 3 edges (black lines). All edges have length \ell and Kirchhoff boundaries. For m \in \{ 1,3\} ,
the eigenmodes are degenerate [see Eq. (4.5)]; they are not degenerate for m \in \{ 2,4\} [see Eq. (4.6)]. The
solid blue curves show the analytical solutions fm1 and fm2 for odd m [see Eq. (4.5)] and fm1 for even m
[see Eq. (4.6)]. We also determine the characteristic wavenumbers km numerically by searching for minima
of the inverse condition number \kappa (T (k)) - 1 of the coupling-condition matrix T (k) [see Eq. (4.1)]. We then
use these numerically obtained km to compute the null space (and hence the eigenmodes) of the coupling-
condition matrix using a QR decomposition. We indicate the associated numerical eigenmodes with dashed
red curves. The numerical eigenmode in panels (a,d) is (cos(kmx), - cos(kmx),0)\top /

\surd 
\ell , which equals fm2 in

Eq. (4.5). The numerical eigenmode in panels (b,e) is ( - cos(kmx), - cos(kmx),2cos(kmx))\top /
\surd 
3\ell , which equals

 - (2/
\surd 
3)fm1+(1/

\surd 
3)fm2. Unlike fm1 and fm2, the two numerical eigenmodes are orthonormal [see Eqs. (4.9)

and (4.10)]. See https://metricnets.streamlit.app/ for a web application to listen to Schr\"odinger eigenmodes in
the depicted network.

are close to km, the coupling-condition matrix is almost singular, so the condition number
\kappa (T (k)) increases significantly as k\rightarrow km. We compute \kappa (T (k)) using the formula

\kappa (T (k)) =
\sigma \mathrm{m}\mathrm{a}\mathrm{x}(T (k))

\sigma \mathrm{m}\mathrm{i}\mathrm{n}(T (k))
,(4.7)

where \sigma \mathrm{m}\mathrm{a}\mathrm{x}(T (k)) and \sigma \mathrm{m}\mathrm{i}\mathrm{n}(T (k)) are the maximum and minimum singular values, respec-
tively. There exist sparse singular-value-decomposition (SVD) methods in many numerical
software packages (e.g., SciPy) that allow one to compute the singular values of large, sparse
matrices.

To numerically determine characteristic wavenumbers, we initially compute the inverse
condition numbers \kappa (T (k)) - 1 for a range of values of k [see Figure 7(a)]. For the star network,
we consider k \in [0,102] and choose 2\times 103 evenly spaced values of k. We consider a value of
k to be a candidate for a characteristic wavenumber if \kappa (T (k)) - 1 < 10 - 2. We then minimize
\kappa (T (k)) - 1 using the candidate characteristic wavenumbers as initial values k(0). To minimize
the scalar function \kappa (T (k)) - 1, we employ a constrained Brent method [41]. (It is implemented
in the minimize scalar function in SciPy.) For an initial value k(0), we set the interval bound
of k to [k(0) - 0.1, k(0)+0.1]. We use machine precision as an acceptable absolute error for the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Figure 7. The inverse condition number \kappa (T (k)) - 1 and characteristic-wavenumber counting functionN\scrG (k)
for a 3-edge metric star network. The length of each edge is \ell = 1. (a) We plot the inverse condition num-
ber \kappa (T (k)) - 1 as a function of the characteristic wavenumber k. Observe that \kappa (T (k)) - 1 is small near the
characteristic wavenumbers km = \pi m/2 (with m \in \{ 1,2, . . .\} ). (b) We plot the characteristic-wavenumber
counting function N\scrG (k) (solid black curve) as a function of k and show Weyl's law N\scrG (k) = k\scrL /\pi (dashed
black curve), where \scrL = 3\ell = 3. In this plot, we include the ``zero mode"" (for which km=0 = 0) in N\scrG (k). The
dash-dotted and dash-dot-dotted gray lines, respectively, indicate the lower and upper bounds of Weyl's law [see
Eq. (3.16)]. The algebraic multiplicity of km is 2 for odd m and 1 for even m. We thus have to count km twice
for odd m. In our numerical computations, we do this by counting km using its corresponding null-space di-
mension dim(kerT (km)). The solid gray curve shows the characteristic-wavenumber counting function without
accounting for the degeneracy for odd m.

convergence of k. The best choices for the range and number of values of k, the optimization
bounds, and the convergence criterion depend on the specific system that one is studying.
After performing minimizations for all candidate characteristic wavenumbers, we obtain a
set of values of km for which \kappa (T (km)) - 1 is close to 0. We then round the values of km to
the nearest number with a specified number of digits and obtain a set of distinct numerical
characteristic wavenumbers.

Armed with a set of characteristic wavenumbers km, we seek to compute the vectors that
span the null space of T (km). To do this, one can use a method that is based on an SVD or
a QR decomposition. Because degenerate eigenmodes can occur in PDEs on metric networks
[see Eq. (3.5)], it is possible that the null space of T (km) is spanned by multiple eigenvectors,
rather than by a single eigenvector. When employing an SVD, one has to identify the singular
vectors that are associated with near-0 singular values within some tolerance. To obtain the
null space using a QR decomposition of a matrix, we first perform the QR decomposition
on the transpose of the matrix. We then identify the columns of the orthonormal matrix Q
that are associated with the rows of the upper triangular matrix R whose diagonal entries are
approximately 0 within a specified tolerance.10 In Algorithm 4.1, we summarize our numerical
method to determine wavenumbers and eigenmodes.

10The sparse-matrix SVD in some versions of SciPy can produce erroneous null-space vectors (see,
e.g., https://github.com/scipy/scipy/issues/11406). Therefore, we use a sparse-matrix QR decomposition
method (which is available at https://github.com/yig/PySPQR) that implements a Python wrapper for the
SuiteSparseQR function in the sparse QR implementation of MATLAB.
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\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bfone . Compute the characteristic wavenumbers and their corresponding eigen-
modes.

1: \bfI \bfn \bfp \bfu \bft \bfs :
k arr, \Delta k, cutoff, precision, T (), \mathrm{I}\mathrm{N}\mathrm{V} \mathrm{C}\mathrm{O}\mathrm{N}\mathrm{D} \mathrm{N}\mathrm{U}\mathrm{M}(), \mathrm{M}\mathrm{I}\mathrm{N}\mathrm{I}\mathrm{M}\mathrm{I}\mathrm{Z}\mathrm{E}(), \mathrm{N}\mathrm{U}\mathrm{L}\mathrm{L}\mathrm{S}\mathrm{P}\mathrm{A}\mathrm{C}\mathrm{E}()

2: \bfO \bfu \bft \bfp \bfu \bft \bfs :
k m arr, f m arr

3: \bfI \bfn \bfi \bft \bfi \bfa \bfl \bfi \bfz \bfe :
char wavenum cand, k m arr, f m arr

4: \bff \bfo \bfr k in k arr \bfd \bfo 
5: kappa inv \leftarrow \mathrm{I}\mathrm{N}\mathrm{V} \mathrm{C}\mathrm{O}\mathrm{N}\mathrm{D} \mathrm{N}\mathrm{U}\mathrm{M}(k,T )

6: \bfi \bff kappa inv < cutoff \bft \bfh \bfe \bfn  \triangleleft Check that the inverse condition number is
sufficiently small to be a candidate characteristic wavenumber

7: char wavenum cand.append(k)
8: \bfe \bfn \bfd \bfi \bff 
9: \bfe \bfn \bfd \bff \bfo \bfr 

10: \bff \bfo \bfr k(0) in char wavenum cand \bfd \bfo 

11: km\leftarrow \mathrm{M}\mathrm{I}\mathrm{N}\mathrm{I}\mathrm{M}\mathrm{I}\mathrm{Z}\mathrm{E}(\mathrm{I}\mathrm{N}\mathrm{V} \mathrm{C}\mathrm{O}\mathrm{N}\mathrm{D} \mathrm{N}\mathrm{U}\mathrm{M},args = (T ),bounds = (k(0)  - \Delta k, k(0) +\Delta k))
12: k m arr \leftarrow km
13: \bfe \bfn \bfd \bff \bfo \bfr 
14: rounded elements \leftarrow [\mathrm{R}\mathrm{O}\mathrm{U}\mathrm{N}\mathrm{D}(km, precision) \bff \bfo \bfr km in k m arr]
15: k m arr = \mathrm{L}\mathrm{I}\mathrm{S}\mathrm{T}(\mathrm{S}\mathrm{E}\mathrm{T}(k m arr))  \triangleleft Final set of distinct characteristic wavenumbers
16: \bff \bfo \bfr k in k m arr \bfd \bfo 
17: V \leftarrow \mathrm{N}\mathrm{U}\mathrm{L}\mathrm{L}\mathrm{S}\mathrm{P}\mathrm{A}\mathrm{C}\mathrm{E}(k,T)
18: f m arr.append(V)
19: \bfe \bfn \bfd \bff \bfo \bfr 
20: \bfr \bfe \bft \bfu \bfr \bfn k m arr, f m arr

For our 3-edge star network, we show the numerically obtained eigenmodes as dashed
red curves in Figure 6. These numerical eigenmodes coincide with the analytical eigen-
modes for m \in \{ 2,4\} . However, our numerical eigenmodes do not coincide with our choice
of analytical eigenmodes for m \in \{ 1,3\} . The numerical eigenmodes in Figures 6(a,d) are
(cos(kmx), - cos(kmx),0)\top /

\surd 
\ell , which equals fm2 in Eq. (4.5). In Figures 6(b,e), the numeri-

cal eigenmode is

1\surd 
3\ell 

\left(   - cos(kmx)
 - cos(kmx)
2 cos(kmx)

\right)  ,(4.8)

which equals  - (2/
\surd 
3)fm1 + (1/

\surd 
3)fm2. The numerically obtained degenerate eigenmodes

lie in span\{ fm1, fm2\} . Unlike the analytical eigenmodes fm1 and fm2, the two numerical
eigenmodes are orthonormal. That is,
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 - 2\surd 

3
fm1 +

1\surd 
3
fm2, fm2

\biggr\rangle 
L2(\scrG )

= - 2\surd 
3

\bigl\langle 
fm1, fm2

\bigr\rangle 
L2(\scrG ) +

1\surd 
3

\bigl\langle 
fm2, fm2

\bigr\rangle 
L2(\scrG ) = 0(4.9)

and

\bigm\| \bigm\| \bigm\| \bigm\|  - 2\surd 
3
fm1 +

1\surd 
3
fm2

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(\scrG )

= - 4

3

\bigl\langle 
fm1, fm2

\bigr\rangle 
L2(\scrG ) +

4

3

\bigm\| \bigm\| fm1
\bigm\| \bigm\| 2
L2(\scrG ) +

1

3

\bigm\| \bigm\| fm2
\bigm\| \bigm\| 2
L2(\scrG ) = 1 .

(4.10)

If a set of degenerate eigenmodes is not already orthonormal, one can make them orthonormal
by using the Gram--Schmidt algorithm.

To ensure that our numerical approach identifies all of the characteristic wavenumbers
in an interval, we use Weyl's law (see Section 3.3) to compare the numerically obtained
wavenumber-counting function N\scrG (k) to its estimate k\scrL /\pi . For the 3-edge star network
with equal edge lengths \ell = 1, the total edge length \scrL is 3. In Figure 7(b), we see that
the numerically computed counting function N\scrG (k) (solid black curve) closely resembles the
estimate from Weyl's law (dashed black curve). Recall that km has an algebraic multiplicity
of 2 when m is odd and an algebraic multiplicity of 1 when m is even. Therefore, for odd m,
we have to count km twice. In our numerical computations, we achieve this by using the null-
space dimension dim(kerT (km)) to count km. If we do not consider the degeneracy for odd
m (solid gray curve), the characteristic-wavenumber counting function does not match Weyl's
law. Visible differences between numerically computed counting functions and estimates of
counts from Weyl's law can highlight the need to refine a numerical method.

5. Numerical examples with various PDEs. We now study the Poisson equation, the
heat equation, and the wave equation on metric networks. These PDEs, respectively, are
fundamental types of elliptic, parabolic, and hyperbolic PDEs. They complement our exami-
nations of the Schr\"odinger equation in Section 2.4 [see Eq. (2.9)] and Section 3 [see Eq. (3.1)].
We consider metric networks with up to about 104 nodes and about 104 edges. These net-
works are much larger than those in most studies of metric networks. (Most such studies
typically examine networks with very few nodes and edges.) In our numerical computations,
we find that the implemented spectral approach is valuable for identifying eigenmodes in a
metric network. However, it has difficulty at accurately determining a large number of eigen-
modes, especially when they are degenerate. This may hinder the ability of this approach to
accurately resolve solutions of PDEs on metric networks.

5.1. Poisson equation. The Poisson equation

\~\Delta \phi = \rho (5.1)

describes the potential field \phi that is associated with a function \rho (e.g., a mass or electrical-
charge distribution). The Poisson equation, which is an elliptic PDE, also describes the steady
state of the heat equation with a heat source (see Section 5.2). As before, the operator \~\Delta 
in Eq. (5.1) is the generalized Laplacian that includes continuity conditions and boundary
conditions at all nodes. The Fredholm solvability condition forces \rho to be orthogonal to the
kernel of the generalized Laplacian; this kernel is spanned by the constant function.
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Figure 8. Solution of the Poisson equation (5.1) on a metric star network with N = 4 nodes (black disks)
and M = 3 edges (black lines). All edges i \in \{ 1,2,3\} have length \ell i = 1 and Kirchhoff boundaries. (a) The
source term \rho i(xi) = cos(2\pi xi) (solid blue curve) for each edge i. (b) The solution \phi i(xi) = - cos(2\pi xi)/(4\pi 

2)
(solid blue curve) of the Poisson equation for each edge i. The dashed red and dotted orange curves indicate
numerical solutions using finite-difference and spectral methods, respectively. These curves almost overlap the
solid blue analytical solution and are practically indistinguishable at this scale.

Consider the 3-edge star network from Section 3 (see Figure 5) and set

\rho i(xi) = cos(2\pi xi)(5.2)

for all edges i \in \{ 1,2,3\} [see Figure 8(a)]. This choice of \rho satisfies the Fredholm solvability
condition. Consequently, the solution \phi is not unique. We impose uniqueness by requiring
\phi to be orthogonal to the kernel of the generalized Laplacian. We set the lengths \ell i of all
edges to 1. All boundaries are of Kirchhoff type, so the solution of the corresponding Poisson
equation (5.1) is \phi i(xi) = - cos(2\pi xi)/(4\pi 

2) [see Figure 8(b)].
Recall that the generalized negative Laplacian with Kirchhoff boundaries is self-adjoint

and hence has an orthonormal eigenbasis (see Section 2.3). We employ a spectral approach and
expand the solution of Eq. (5.1) using the eigenbasis of  - \~\Delta . To do this, we use Algorithm 4.1
with the same parameters as in Section 4 to compute characteristic wavenumbers. We then
construct the solution of the Poisson equation (5.1) using orthonormal spectral solutions fmn

(with m \in \{ 1,2, . . .\} and n \in \{ 1, . . . ,dim(kerT (km))\} ) that are associated with Eq. (3.1).
That is,

\phi =
\sum 
m,n

amnf
mn and amn = - bmn/k

2
m ,(5.3)

where bmn = \langle fmn, \rho \rangle L2(\scrG ).
11 Equation (5.3) is an exact spectral expansion. By summing over

all amnf
mn, we obtain the exact solution \phi . However, in practice, one has to truncate the

sum at a certain value of m.
For our finite-difference solution of Eq. (5.1), we set the number of discretization intervals

to Ni = 1000 for all edges i \in \{ 1,2,3\} . To discretize the generalized Laplacian \~\Delta , we use

11Because the constant ``zero mode"" of the Schr\"odinger equation (3.1) with Kirchhoff boundaries has an
associated eigenvalue of 0, the Fredholm alternative guarantees that b01 = 0 [42]. Therefore, the sum over m
in Eq. (5.3) starts at m= 1.
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Figure 9. Solution of the Poisson equation (5.1) on a metric hexagonal lattice with N = 154 nodes (black
disks) and M = 213 edges (black lines). All edges i \in \{ 1, . . . ,M\} have length \ell i = 1 and Kirchhoff boundaries.
The source term on the right-hand side of the Poisson equation is \rho i(xi) = cos(2\pi xi) for each edge i. The
solution (solid blue curve) of the Poisson equation is \phi i(xi) = - cos(2\pi xi)/(4\pi 

2) for each edge i. The dashed red
and dotted orange curves indicate numerical solutions using finite-difference and spectral methods, respectively.
These curves almost overlap the solid blue analytical solution and are practically indistinguishable at this scale.

the underlying Laplace--Kirchhoff matrices (3.11) and employ Eq. (3.13) to implement the
Kirchhoff flux condition at the hub node, which is attached to all three edges.

In Figure 8(b), we show the numerical solutions for the 3-edge star network that we obtain
using finite-difference and spectral methods. Both approaches are able to appropriately resolve
the true solution.

As a second metric network, we consider a hexagonal lattice with N = 154 nodes and
M = 213 edges [see Figure 9]. We set the lengths of all edges to 1, and we use Ni = 1000
discretization intervals for all edges i \in \{ 1, . . . ,213\} in the finite-difference approach. We use
the source term in Eq. (5.2). See our code repository [35] for the software implementation
details for this example and all of our subsequent numerical examples. The numerical sim-
ulations from both the finite-difference and spectral approaches again closely resemble the
analytical solution. Although we consider more than 200 edges and use 1000 finite-difference
discretizations per edge, employing sparse-matrix solvers allows us to efficiently compute nu-
merical solutions. In Appendix B, we consider metric hexagonal-lattice networks with up to
about 104 nodes and about 104 edges.

As a third metric network, we examine a random-line network with N = 8 nodes and
M = 10 edges [see Figure 10]. In a random-line network, one independently places line
segments (i.e., ``needles"") of a specified length in a unit square (or other domain), forming an
overlapping pattern [34]. Random-line networks, which are reminiscent of the Buffon-needle
graphs that were considered in prior works on metric networks [42, 78], are a useful toy model
to study PDEs on metric networks, as their edges are line segments of a specific length.
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Figure 10. Solution of the Poisson equation (5.1) on a metric random-line network with N = 8 nodes (black
disks) and M = 10 edges (black lines). In the depicted realization of a random-line network, we independently
position six ``needles"" (gray line segments) of unit length in the unit square. (See [34] for further details about
how to generate random-line networks.) All edges have Kirchhoff boundaries. The source term on the right-
hand side of the Poisson equation is \rho i(xi) = cos(2\pi xi/\ell i)/\ell 

2
i for each edge i. The solution (solid blue curve) of

the Poisson equation is \phi i(xi) = - cos(2\pi xi/\ell i)/(4\pi 
2) for each edge i. The dashed red and dotted orange curves

indicate numerical solutions using finite-difference and spectral methods, respectively. These curves almost
overlap the solid blue analytical solution and are practically indistinguishable at this scale.

Random-line networks and related spatial networks are relevant to the study of granular and
particulate systems [141, 148, 182].

5.2. Heat equation. We now consider the inhomogeneous heat equation

\partial \phi 

\partial t
= \~\Delta \phi  - \rho (5.4)

with source term \rho . Its steady-state solutions satisfy the Poisson equation (5.1) in the limit
as time t\rightarrow \infty .

In Figure 11(a), we show the solution of the heat equation (5.4) for our 3-edge star network.
We set \rho i(xi) = cos(2\pi xi) and \phi i(xi,0) =  - 3cos(2\pi xi)/(8\pi 2) for edges i \in \{ 1,2,3\} . For this
initial condition and source term, limt\rightarrow \infty \phi i(xi, t) = - cos(2\pi xi)/(4\pi 

2). In the supplementary
material (M162815 01.mp4 [local/web 5.34MB]) [36], we show an animation of the solution
\phi (x, t) of Eq. (5.4) for both our 3-edge star network and the hexagonal lattice from Section 5.1.

5.3. Wave equation. As a final example of a PDE on a metric network, we study the
wave equation
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Figure 11. Solutions of the heat and wave equations on a metric star network with N = 4 nodes (black
disks) and M = 3 edges (black lines). All edges i \in \{ 1,2,3\} have length \ell i = 1 and Kirchhoff boundaries. (a)
We consider the heat equation (5.4) with a source term \rho i(xi) = cos(2\pi xi) and initial condition \phi i(xi,0) =
 - 3cos(2\pi xi)/(8\pi 

2) for each edge i. In the limit as time t \rightarrow \infty , we recover the solution of the corresponding
Poisson equation (i.e., limt\rightarrow \infty \phi i(xi, t) =  - cos(2\pi xi)/(4\pi 

2)). (b) We consider the wave equation (5.5) with
initial conditions \phi i(xi,0) =  - cos(2\pi xi)/(4\pi 

2) and \.\phi i(xi,0) = 0 for each edge i. The solution is \phi i(xi, t) =
 - [cos(2\pi xi)/(4\pi 

2)] cos(2\pi t) for each edge i. The depicted solutions use a finite-difference approach with Ni =
1000 discretizations per edge.

\partial 2\phi 

\partial t2
= \~\Delta \phi .(5.5)

In Figure 11(b), we show the solution of the wave equation (5.5) for our 3-edge star
network. For each edge i \in \{ 1,2,3\} , we set \phi i(xi,0) =  - cos(2\pi xi)/(4\pi 

2) and \.\phi i(xi,0) = 0.
We thus obtain \phi i(xi, t) = - [cos(2\pi xi)/(4\pi 2)] cos(2\pi t) for each edge i. In the supplementary
material (M162815 02.mp4 [local/web 8.45MB]) [37], we show an animation of the solution
\phi (x, t) of Eq. (5.5) for both our 3-edge star network and the hexagonal lattice from Section 5.1.

6. Conclusions and discussion. Metric networks give a mathematical framework to study
spatially extended dynamics, such as partial differential equations, on networked systems [115].
Metric networks have applications in a variety of scientific fields, including in the investigation
of the mechanical properties of materials [9, 19, 38, 85, 87, 90, 94], quantum dynamics in thin
structures [4, 20, 22, 103, 104, 110, 111, 112, 157], information propagation in transmission
lines [5, 47, 136, 137, 138, 139, 140, 150, 166], gas flow in pipelines [17, 43, 63, 64, 134], the
spatiotemporal propagation of infectious diseases [109], and others.

Over the last three decades, the study of metric networks has progressed in parallel to
(and largely independent of) developments in more conventional network science. In network
science, the analysis of the interplay between network structure and dynamics has long been a
key topic. Such research has used combinatorial networks, rather than metric networks, and
accordingly it has focused primarily on ordinary differential equations and (both determinis-
tic and stochastic) agent-based models on networks, rather than on PDEs. Augmenting the
edges of a network by associating them with intervals with a metric structure yields a natural
setting to analyze PDEs on networked systems. Unlike for combinatorial networks, dynam-
ical processes on metric networks require one to specify continuity conditions and boundary
conditions in addition to initial conditions. Both boundary conditions and network structure
affect the eigenmodes of PDEs on metric networks.
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In the present paper, we overviewed several approaches to study fundamental linear PDEs
(the time-independent Schr\"odinger equation, the Poisson equation, the heat equation, and
the wave equation) on metric networks. We expanded on the spectral approach in [42, 78]
to account for degenerate eigenmodes and various algorithm inputs, including the range of
characteristic wavenumbers, the rounding precision of potentially equivalent characteristic
wavenumbers, and the optimization bounds (which determine the range of values over which
one optimizes).

Although a spectral approach is useful to identify eigenmodes in a metric network, it can
be challenging to accurately determine a large number of (potentially degenerate) eigenmodes
to unambiguously determine the solution of a PDE. Visible deviations between Weyl's law
and the characteristic-wavenumber counting function in a network with symmetries can arise
from unresolved degenerate eigenmodes, and identifying symmetries and their corresponding
degeneracies can help appropriately resolve all relevant eigenmodes in a metric network.

Complementing the numerical results of Brio et al. [42], who focused on systems involving
the Poisson equation and the telegraph equation on a metric network with 3 edges,12 we
studied the Poisson equation, the heat equation, and the wave equation on three distinct
metric networks with much larger numbers of nodes and edges. The spectral solver, finite-
difference solver, and visualization routines that we developed in our investigation are available
at https://gitlab.com/ComputationalScience/metric-networks. A web application to listen to
eigenmodes of the Schr\"odinger equation (3.1) on a metric star network with N = 4 nodes,
M = 3 edges of potentially different lengths, and Kirchhoff boundary conditions is available
at https://metricnets.streamlit.app/.

There are numerous worthwhile research directions to pursue in future work. Given the
challenges of obtaining accurate solutions of different types of PDEs on metric networks, it
is important to further develop and improve numerical solvers. For example, an algorithm
that is based on the fast Fourier transform was proposed recently to solve PDEs on metric
networks [44]. In addition to numerical techniques like finite-difference, finite-element, finite-
volume, and spectral methods, potential approaches can also incorporate physics-informed
neural networks (PINNs) [31], including ones that use spectral information [178]. In the
spirit of [80], another promising avenue is extending symmetry arguments [16, 96] to various
families of metric networks. The analysis of symmetries can yield important insights into
how specific structural features influence eigenmodes and their degeneracies. For instance,
for beam networks, Berkolaiko and Ettehad [21] used symmetry arguments and the quotient-
graph method from [16] to perform efficient spectral analysis of a three-dimensional structure.
It may also be worthwhile to explore connections between metric networks and systems such
as the topological Dirac equation on networks and simplicial complexes [29]. Additionally, it
is important to study nonlinear PDEs on large metric networks.

Code availability. Our code is publicly available at https://gitlab.com/Computational
Science/metric-networks.

12Brio et al. [42] obtained solutions of PDEs on metric networks with 3 edges and 2 nodes, and they com-
puted wavenumbers for metric networks with up to 165 edges and 104 nodes.
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Appendix A. Symmetries. It is very important to consider symmetries to understand
dynamical processes on networks [80]. In this appendix, we illustrate how to use symmetry
groups [40, 66, 175, 180] to identify degeneracies in the eigenmodes of PDEs on metric net-
works. To do this, one first determines the irreducible representations of a symmetry group,
and one then determines eigenmode degeneracies by considering the dimensions of the associ-
ated irreducible representations. Such group-theoretic approaches can help one assess whether
or not a numerical method has successfully identified all of the eigenmodes in a metric network.

Degenerate eigenmodes, such as the ones in Eq. (4.5), are usually associated with a sym-
metry of a metric network. For example, in our 3-edge star network (see Figure 5), we obtain
the same characteristic wavenumbers and corresponding eigenmodes of a PDE if we permute
the three identical length-\ell edges, which have the same function space and the same opera-
tor space. In this example, the relevant symmetry group is the symmetric group S3, which
consists of the | S3| = 3! = 6 possible permutations of the elements of the set \{ 1,2,3\} . Using
cycle notation,13 the set of elements of S3 is \{ 1, (1,2), (2,3), (1,3), (1,2,3), (1,3,2)\} , where 1
is the identity element. Permutations that involve two elements are called ``transpositions"",
and permutations that involve three elements are called ``3-cycles"". The three distinct types
of cycle structures in S3 yield C = 3 conjugacy classes, which are relevant for characterizing
degenerate eigenmodes.

Consider the permutation representation P : S3 \rightarrow GL(\BbbR 3) of S3, where GL(V ) denotes
the general linear group of automorphisms of a vector space V . The space V is \BbbR 3, and the
edges e1, e2, and e3 are represented by the vectors

e1 =

\left(  1
0
0

\right)  , e2 =

\left(  0
1
0

\right)  , e3 =

\left(  0
0
1

\right)  .(A.1)

In this representation, the permutation \pi = (1,2,3) is

P (\pi ) =

\left(  0 0 1
1 0 0
0 1 0

\right)  .(A.2)

Observe that P (\pi )e1 = e2, P (\pi )e2 = e3, and P (\pi )e3 = e1. One can similarly determine matrix
representations of the remaining five elements of the group S3.

Given a representation P , the character \chi (P ) : S3\rightarrow \BbbR assigns the trace of the correspond-
ing matrix representation to each group element g \in S3. That is,

\chi (P )(g) = tr(P (g)) .(A.3)

For the three conjugacy classes of S3 and the permutation representation P , the correspond-

ing characters are \chi 
(P )
1 = 3 (the identity permutation, in which no elements are rearranged),

13In cycle notation, one describes a permutation as a product of disjoint cycles [180]. In each cycle (i.e.,
cyclic permutation), one rearranges a set of elements. For example, the cyclic permutation (1,2,3) maps 1 to
2, 2 to 3, and 3 to 1.
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\chi 
(P )
2 = 1 (the transpositions, in which two elements are swapped and one element remains in

its current position), and \chi 
(P )
3 = 0 (the 3-cycles, in which no elements remain in their current

positions).
A representation P is ``semisimple"" (i.e., completely reducible) if one can decompose it

into a direct sum of irreducible representations P (\alpha ). That is,

P =

C\bigoplus 
\alpha =1

c\alpha P
(\alpha ) ,(A.4)

where C is the number of conjugacy classes and the coefficient c\alpha is an integer that encodes the
number of times that P (\alpha ) appears in the decomposition (A.4). Taking the trace of Eq. (A.4)
yields

\chi (P )(g) =

C\sum 
\alpha =1

c\alpha \chi 
(\alpha )(g) .(A.5)

The dimensions d\alpha of the irreducible representations P (\alpha ) of a finite group G satisfy

C\sum 
\alpha =1

d2\alpha = | G| .(A.6)

For the group S3, the only dimensions of the three irreducible representations that satisfy
d21 + d22 + d23 = 6 are d1 = d2 = 1 and d3 = 2. The two one-dimensional irreducible repre-
sentations correspond to the trivial and sign representations. In the trivial representation,
one maps each element of S3 to 1. In the sign representation, one maps each permutation
to its corresponding sign, which is 1 for even permutations and  - 1 for odd permutations.
According to Shur's lemma (see Lemma A.1), the two-dimensional irreducible representation
leads to the eigenmode degeneracy that we observed in Section 4. This representation is the
``standard representation"" of S3. It is a ``faithful"" representation, which means that it gives
a one-to-one mapping of group elements to their corresponding matrices. By contrast, the
other two representations are not faithful.

A representation P of a finite group G is irreducible if and only if

C\sum 
\alpha =1

n\alpha | \chi (P )
\alpha | 2 = | G| ,(A.7)

where n\alpha denotes the number of elements in the \alpha th conjugacy class. For a reducible repre-
sentation,

C\sum 
\alpha =1

n\alpha | \chi (P )
\alpha | 2 > | G| .(A.8)

Inserting the values of n\alpha and \chi 
(P )
\alpha that are associated with the permutation representation

yields

C\sum 
\alpha =1

n\alpha | \chi (P )
\alpha | 2 = 1\times 32 + 3\times 12 + 2\times 02 = 12 .(A.9)
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Table 2
Character table of the symmetric group S3.

1 (1,2) (1,2,3)

trivial representation 1 1 1
sign representation 1  - 1 1
standard representation 2 0  - 1

Because 12 > | S3| = 6, the permutation representation is reducible. The decomposition
coefficients c\alpha [see Eq. (A.4)] are

c\alpha =
1

| G| 

C\sum 
\beta =1

n\beta \chi 
(P )
\beta (\chi 

(\alpha )
\beta )\ast ,(A.10)

where the superscript \ast denotes complex conjugation and \chi 
(\alpha )
\beta denotes the value of the char-

acter \chi (\alpha ) of the irreducible representation P (\alpha ) on the \beta th conjugacy class of the group G.
Using the character table (see Table 2) yields

c1 =
1

6
(1\times 3\times 1 + 3\times 1\times 1 + 2\times 0\times 1) = 1 ,(A.11)

c2 =
1

6
(1\times 3\times 1 + 3\times 1\times ( - 1) + 2\times 0\times 1) = 0 ,(A.12)

c3 =
1

6
(1\times 3\times 2 + 3\times 1\times 0 + 2\times 0\times ( - 1)) = 1 .(A.13)

We can thus decompose the permutation representation P of the symmetric group S3 as

P = P (1) \oplus P (3) .(A.14)

That is, the permutation representation P of the symmetric group S3 is the direct sum of
the trivial irreducible representation P (1) and the two-dimensional irreducible representation
P (3).

For the linear time-independent Schr\"odinger equation on the 3-edge metric star network
(see Section 4), the characteristic wavenumbers and eigenmodes that are associated with the
Hamiltonian \widetilde \scrH =  - \~\Delta (i.e., the generalized negative Laplacian that includes continuity and
boundary conditions) are invariant with respect to permutations of the edges. That is, the
permutation operator P commutes with \widetilde \scrH (i.e., [ \widetilde \scrH , P ] = 0), so

\widetilde \scrH Pf = P \widetilde \scrH f = - Pk2f = - k2Pf .(A.15)

We now choose a basis so that the permutation operator decomposes into a direct sum of the
irreducible representations P (1) and P (3). By Schur's lemma, the Hamiltonian \widetilde \scrH becomes
diagonal in this basis.

Lemma A.1 (Schur's lemma). If P : G \rightarrow GL(V ) is an irreducible representation of a
finite group G and there exists a matrix E that commutes with every element g \in G (i.e.,
EP (g) = P (g)E for all g \in G), then E = \lambda I, where I is the identity matrix and \lambda \in \BbbC .
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According to Schur's lemma, in the basis in which the representation P decomposes into
irreducible representations P (1) and P (3), the basis vectors are eigenstates (i.e., eigenfunctions)
of the Hamiltonian \widetilde \scrH . The dimensions d1 = 1 and d3 = 2 of these irreducible representations
correspond to the degeneracies that we observed in solutions of PDEs on the metric star
network with 3 length-\ell edges [40, 146, 180].

One can also interpret the symmetries of a network by decomposing the network into
simpler substructures (so-called ``quotient graphs"") that reproduce the spectrum of the entire
network [16]. For the metric star network with 3 length-\ell edges, the trivial representation
(whose irreducible representation has dimension d1 = 1) results in one interval [0, \ell ] with
Kirchhoff boundary conditions at both ends. By contrast, the standard representation (whose
irreducible representation has dimension d3 = 2) is associated with two intervals [0, \ell ] that
each have a Kirchhoff boundary condition at one end and a Dirichlet boundary condition at
the other end. The sign representation corresponds to a network with 0 nodes. Je\v zek and
Lipovsk\'y [96] studied this decomposition using the theory of symmetry operations on metric
networks that was developed by Band et al. [16].

We now apply the arguments that we presented for the symmetry group S3 to a met-
ric star network with four length-\ell edges. Without explicitly calculating the characteristic
wavenumbers and eigenmodes of a PDE, we deduce the underlying degeneracies by examin-
ing the irreducible representations that are associated with the permutation representation
of S4. A similar calculation as with S3 shows that the permutation representation of S4 is
the direct sum of the one-dimensional trivial representation and the three-dimensional stan-
dard representation. Therefore, the eigenmode degeneracies are 1 and 3. Indeed, an explicit
calculation of the determinant of the coupling-condition matrix T (km) [see Eq. (3.4)] for
this 4-edge star network yields det(T (km)) = 4 cos(km\ell )3 sin(km\ell ),14 demonstrating that the
group-theoretically determined degeneracies coincide with the degeneracies that one obtains
by calculating the determinant of T (km).15

In summary, when using a group-theoretic approach to determine eigenmode degeneracies
for the Schr\"odinger equation on a metric network (and, more generally, to determine the
eigenstate degeneracies for a Hamiltonian that is associated with a metric network), we follow
the following procedure:

\bullet Given a metric network, determine the characters of a representation of the largest
(i.e., full) symmetry group that acts on the network.

\bullet Calculate the decomposition coefficients c\alpha [see Eq. (A.10)] and the corresponding
decomposition into irreducible representations [see Eq. (A.4)]. The dimensions of the
irreducible representations with nonzero coefficients c\alpha are equal to the degeneracies
of the system's eigenstates.

It is possible for accidental degeneracies to result in equal eigenvalues that correspond to
different irreducible representations [24, 130]. This caveat notwithstanding, degeneracies in

14The determinant of the coupling-condition matrix for an M -edge metric star network with edges i \in 
\{ 1, . . . ,M\} of length \ell i is det(T (km)) =

\sum M
i=1 tan(km\ell i)

\prod M
i=1 cos(km\ell i) [147]. Unlike in the coupling-condition

matrices for the 3-edge and 4-edge star networks, we use the notation T without a subscript for simplicity.
15Analogously to the notation T in Section 4, we use T (with a 4-pointed star as a subscript) to denote

the coupling-condition matrix [see Eq. (3.4)] that is associated with the 4-edge star network with Kirchhoff
flux conditions.
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Figure 12. Computation time for solving the Poisson equation (5.1) on metric hexagonal-lattice networks
with a finite-difference approach for different numbers N of nodes and numbers M of edges: (N,M) \in 
\{ (106,145), (202,281), (394,553), (778,1097), (1546,2185), (3082,4361), (6154,8713)\} . All edges i \in \{ 1, . . . ,M\} 
have length \ell i = 1 and Kirchhoff boundaries. The source term on the right-hand side of the Poisson equation
(5.1) is \rho i(xi) = cos(2\pi xi) for each edge. The solution of the Poisson equation is \phi i(xi) =  - cos(2\pi xi)/(4\pi 

2)
for each edge. The dashed black line corresponds to a power law with exponent 2.

the eigenvalues of a PDE on a metric network are usually associated with the symmetries of
the metric network. One can use small perturbations of the edge lengths of a metric network
to break symmetries [23, 76]. For the Schr\"odinger equation on a metric network with Kirch-
hoff boundary conditions, the eigenvalues are usually simple (i.e., their algebraic multiplicity
is usually 1) [52, 76]. Nevertheless, given the broad relevance of symmetric network struc-
tures, it is important to consider the connections between symmetry groups and eigenmode
degeneracies.

Appendix B. Large networks. We numerically solve the Poisson equation (5.1) on metric
hexagonal-lattice networks with different numbers of nodes and edges. The source term is given
by Eq. (5.2). The length \ell i of each edge i\in \{ 1, . . . ,M\} is 1, and all boundaries are of Kirchhoff
type. The solution of the corresponding Poisson equation is \phi i(xi) = - cos(2\pi xi)/(4\pi 

2).
To solve the Poisson equation on these metric networks, we employ a finite-difference

approach and set the number of discretization intervals toNi = 1000 for all edges. In Figure 12,
we show the computation time as a function of the number of edges in these metric networks.
The largest metric network that we consider has 6154 nodes and 8713 edges. Solving the
Poisson equation on this network takes about 4300 seconds (i.e., about 1.2 hours) on one
i7 CPU core with a 1.8 GHz clock speed. In all of our simulations, the mean-squared error
between the numerical and analytical solutions is less than 10 - 17. For this error calculation,
we use vectors that encode discretized solutions of the Poisson equation at all edges.
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