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Abstract. We demonstrate that a tree-based theory for bond perco-
lation yields extremely accurate results for several networks with high
levels of clustering. We find that such a theory works well as long as the
mean intervertex distance ℓ is sufficiently small—i.e., as long as it is close
to the value of ℓ in a random network with negligible clustering and the
same degree-degree correlations. We confirm this hypothesis numerically
using real-world networks from various domains and on several classes
of synthetic clustered networks.

Key words: Random networks, clustering, shortest path, small-world
networks

1 Introduction

One of the most important areas of network science is the study of dynamical
processes on networks [1–4]. On one hand, research on this topic has provided
interesting theoretical challenges for physicists, mathematicians, and computer
scientists. On the other hand, there is an increasing recognition of the need to im-
prove the understanding of dynamical systems on networks to achieve advances
in epidemic dynamics [5–7], traffic flow in both online and offline systems [8],
oscillator synchronization [9], and more [3].

Analytical results for complex networks are rather rare, especially if one
wants to study a dynamical system on a network topology that attempts to
incorporate even minimal features of real-world networks. If one considers a dy-
namical system on a real-world network rather than on a grossly simplified car-
icature of it, then theoretical results become almost barren. Furthermore, most
analyses assume that the network under study has a locally tree-like structure,
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so that they can only possess very few small cycles, whereas most real networks
have significant clustering (and, in particular, possess numerous small cycles).
This has motivated a wealth of recent research concerning analytical results on
networks with clustering [10–21,7, 22].

Most existing theoretical results for (unweighted) networks are derived for
an ensemble of networks using (i) only their degree distribution pk, which gives
the probability that a random node has degree k (i.e., has exactly k neighbors)
or using (ii) their degree distribution and their degree-degree correlations, which
are defined by the joint degree distribution P (k, k′) describing the probability
that a random edge joins nodes of degree k and k′. In the rest of this paper, we
will refer to case (i) as “pk-theory” (the associated random graph ensemble is
known as the “configuration model” [23]) and to case (ii) as “P (k, k′)-theory”.
The clustering in sample networks is low in both situations; it typically decreases
as N−1 as the number of nodes N → ∞6.

We concentrate in this paper on undirected, unweighted real-world networks,
which can be described completely using adjacency matrices. It is straightforward
to calculate the empirical distributions pk and P (k, k′), which can then be used
as inputs to analytical theory for various well-studied processes. The results
can subsequently be compared with large-scale numerical simulations using the
original networks.

In the present paper, we demonstrate that analytical results derived using
tree-based theory can be applied with high accuracy to certain networks despite
their high levels of clustering. Examples of such networks include university so-
cial networks constructed using Facebook data [24] and the Autonomous Systems
(AS) Internet graph [25]. The analytical results for bond percolation accurately
match simulations on a given (clustered) network provided that the mean in-
tervertex distance in the network is sufficiently small—i.e., that it is close to
its value in a randomly rewired version of the graph. Recalling that a clustered
network with a low mean intervertex distance is said to have the small-world

property, we find that tree-based analytical results are accurate for networks
that are “sufficiently small” small worlds. In discussing this result, we focus
considerable attention on quantifying what it means to be “sufficiently small”.

The remainder of this paper is organized as follows. In Sect. 2, we consider the
bond percolation process on highly clustered networks and show that tree-based
theory adequately describes it on certain networks but not on others. In order to
explain our observations, we introduce in Sect. 3 a measure of prediction quality
E and develop a hypothesis, inspired by the well-known Watts-Strogatz example
of small-world networks, regarding the dependence of E on the mean intervertex
distance ℓ. We provide support for our hypothesis by numerical examination of
a large range of networks in Appendix, and discuss our conclusions in Sect. 4.

6 We assume that the degree distribution has finite variance, as real-world networks
necessarily have a finite cutoff in their degree sequence.
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2 Bond Percolation on Networks

In bond percolation, network edges are deleted (or labeled as unoccupied) with
probability 1 − p, where p is called the bond occupation probability. One can
measure the effect of such deletions on the aggregate graph connectivity in the
limit of infinitely many nodes using S(p), the fractional size of the giant con-
nected component (GCC) at a given value of p. (In this paper, we will use the
terminology GCC for finite graphs as well.) Bond percolation has been used
in simple models for epidemiology. In such a context, p is related to the aver-
age transmissibility of a disease, so that the GCC is used to represent the size
of an epidemic outbreak (and to give the steady-state infected fraction in an
susceptible-infected-recovered model) [23].
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Fig. 1. Bond percolation. Plots of GCC size S versus bond occupation probability p for
various real-world networks. These networks are (a) the Facebook network for Univer-
sity of Oklahoma [24], (b) the Internet at the AS level [25], (c) the PGP network [26,
27], and (d) the power grid for the western United States [28];

Analytical results for GCC sizes for pk-theory [29] can be found in (8.11)
of [23] and analytical results for P (k, k′)-theory are available in (12) of [30]. We
plot these theoretical predictions in Fig. 1 as dashed red and solid blue curves,
respectively. In this figure, we use the following data sets as examples: (a) the
September 2005 Facebook network for University of Oklahoma [24], where nodes
are people and links are friendships; (b) the Internet at the Autonomous Sys-
tems (AS) level [25], where nodes represent ASs and links indicate the presence
of a relationship; (c) the network of users of the Pretty-Good-Privacy (PGP)
algorithm for secure information interchange [26, 27]; and (d) the network rep-
resenting the topology of the power grid of the western United States [28]. We
treat all data sets as undirected, unweighted networks.
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We performed numerical calculations of the GCC size using the algorithm
in [31] and plotted the results as black disks in Fig. 1. It is apparent from
Fig. 1(a,b) that P (k, k′)-theory matches numerical simulations very accurately
for the AS Internet and Oklahoma Facebook networks, and we found similar
accuracy for all 100 single-university Facebook data sets available to us. However,
as shown in Fig. 1(c,d), the match between theory and numerics is much poorer
on the PGP and Power Grid networks. The usual explanation for this lack of
accuracy is that it is caused by clustering in the real-world network that is
not captured by P (k, k′)-theory. Note, however, that the Oklahoma Facebook
network has one of the highest clustering coefficients of the four cases in Fig. 1
even though it is accurately described by its P (k, k′)-theory.

Indeed, the global clustering coefficients (defined as the mean of the local
clustering coefficient over all nodes [28]) for the Oklahoma Facebook, AS Inter-
net, PGP, and Power Grid networks are 0.23, 0.21, 0.27, and 0.08, respectively.
(See Table 1 for basic summary statistics for these networks.) The clustering
coefficients for all 100 Facebook networks range from 0.19 to 0.41, and the mean
value of these coefficients is 0.24. These observations suggest that one ought to
consider other explanatory mechanisms for the discrepancy between theory and
simulations in Fig. 1(c,d).

In considering other explanations, note that the discrepancy between theory
and numerics in Fig. 1(c,d) does not arise from finite-size effects. To demonstrate
this, we rewired the networks using an algorithm that preserves the P (k, k′) dis-
tribution but otherwise randomizes connections between the N nodes7. Because
this scheme preserves the degree correlation matrix P (k, k′), we call this the P -

rewiring algorithm. Note that the ensemble of fully P -rewired networks is in fact
the ensemble of random networks defined by the P (k, k′) matrix of the original
(unrewired) network.

We show numerical calculations of the GCC sizes for these rewired networks
with blue squares in Fig. 1(c,d) and observe that they agree very well with the
curves produced from P (k, k′)-theory. We conclude that the structural charac-
teristics of the original networks—rather than simply their sizes—must underlie
the observed differences between simulations and analytics.

Also note that the agreement between P (k, k′)- and pk-theories in Fig. 1 is
better in panels (a) and (d) than in panels (b) and (c). This is because the
Pearson correlation coefficient r of the end-vertex degrees of a random edge [23]
has smaller absolute values for the networks shown in panels (a) and (d) (0.074,

7 We employ the following network rewiring algorithm: Choose an edge of the network
at random. Denote its associated vertices by A and B and their corresponding degrees
by kA and kB. From the set of edges that are connected to one vertex of degree kA,
choose another edge at random. This edge connects the vertices C and D, whose
respective degrees are kA and kD. Now rewire the two chosen edges to obtain the
edges AD and CB instead of AB and CD. This rewiring scheme does not affect the
degrees of the rewired vertices, but applying it repeatedly significantly reduces the
local clustering (i.e., the density of triangles). In applying this algorithm, we also
take care to avoid multiple and self-links.
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Network N z ℓ ℓ1 C eC Ref(s).

R
ea

l
w

o
rl
d

Power Grid 4941 2.67 18.99 8.61 0.08 0.10 [28]
PGP Network 10680 4.55 7.49 5.40 0.27 0.38 [26, 27]
AS Internet 28311 4.00 3.88 3.67 0.21 0.0071 [25]
RL Internet 190914 6.34 6.98 5.25 0.16 0.061 [32]
Coauthorships 39577 8.88 5.50 4.45 0.65 0.25 [33, 34]
Airports500 500 11.92 2.99 2.76 0.62 0.35 [35, 36]
Interacting Proteins 4713 6.30 4.22 4.05 0.09 0.062 [37, 38]
C. Elegans Metabolic 453 8.94 2.66 2.55 0.65 0.12 [39, 40]
C. Elegans Neural 297 14.46 2.46 2.33 0.29 0.18 [28, 41]
Facebook Caltech 762 43.70 2.34 2.26 0.41 0.29 [24]
Facebook Georgetown 9388 90.67 2.76 2.55 0.22 0.15 [24]
Facebook Oklahoma 17420 102.47 2.77 2.66 0.23 0.16 [24]
Facebook UNC 18158 84.46 2.80 2.68 0.20 0.12 [24]

S
y
n
th

et
ic γ-theory [γ(3, 3) = 1] 1002 3 13.15 8.06 1/3 1/3 [13]

γ-theory [γ(3, 3) = 1] 10002 3 19.81 11.37 1/3 1/3 [13]
Watts-Strogatz (WS) 1000 10 50.45 3.29 2/3 2/3 [28]
Watts-Strogatz (WS) 10000 10 500.45 4.34 2/3 2/3 [28]

Table 1. Basic summary statistics for the networks that we used in this paper. We have
treated all real-world data sets as undirected, unweighted networks and have computed
the following properties: total number of nodes N ; mean degree z; mean intervertex
distance ℓ in original network; mean intervertex distance ℓ1 in the corresponding fully
P -rewired version of the network (i.e., in a random network with the original degree

correlation); and clustering coefficients C and eC (whose respective definitions are given
by (3.6) and (3.4) of [23]). The last column in the table gives the citation number(s)
for the data in the bibliography.

with the mean 0.063 over 100 Facebook networks, and 0.0035, respectively) than
it does for the networks in (b) and (c) (−0.2 and 0.24, respectively).

3 Measure of Prediction Quality

We now aim to characterize the types of networks for which P (k, k′)-theory can
be expected to give good results.

Using the small-world networks introduced by Watts and Strogatz [28], one
can conduct a systematic study of the effects of clustering C and the mean
intervertex distance ℓ. We start with a ring of N = 10000 nodes and connect
each node to z = 10 nearest neighbors. We then randomly rewire a fraction f
of the links in the network8. When f = 0, the values of C and ℓ are both high.
When f = 1, the rewired network is connected completely at random, which
gives it low C and ℓ values. For each value of f between 0 and 1, we numerically

8 We employ our P -rewiring algorithm that preserves the degree of each node, which
is slightly different from the one used in [28], but this difference is not important for
the phenomenon under study.
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Fig. 2. Watts-Strogatz small-world network: ℓf−ℓ1 (red circles), 10×Cf (open squares),
and 100×Ef (blue triangles) as functions of rewiring fraction f . The inset shows ℓf −ℓ1
and Cf as functions of Ef for f ≥ 10−2. Observe the linear relation between Ef and
ℓf − ℓ1, which suggests that ℓf − ℓ1 might be a good indicator of how well the bond-
percolation process on a network can be approximated by tree-based theory.

calculate the clustering coefficient Cf , the mean intervertex distance ℓf , and the
GCC size Sf (p) for all values of the bond occupation probability p between 0 and
1. The difference between Sf (p) and the P (k, k′)-theory curve, which we denote
by Sth(p), gives a quantitative measure for the inaccuracy of the theory for this
particular value of the rewiring parameter f . We define the error measure

Ef =
1

M

M∑

i=1

|Sth(pi) − Sf (pi)| , (1)

where pi = i/M for i = 1, 2, . . . , M are uniformly-spaced values in the interval
[0, 1]. Taking the spacing 1/M to be sufficiently fine (we use 1/M = 10−3) implies
that the error measure Ef approaches the average vertical distance between the
Sth(p) and Sf (p) curves for p ∈ [0, 1].

In Fig. 2, we plot the values of ℓf − ℓ1, Cf (scaled by a factor of 10 for
ease of visualization), and Ef (scaled by a factor of 100) as functions of the
rewiring parameter f . For values of f greater than 10−2, the quantities ℓf and
Ef exhibit similar behavior, whereas Cf remains near its f = 0 value of 2/3
until f is much larger9. We highlight the similar scaling of ℓf and Ef in the
inset of Fig. 2, in which we plot ℓf − ℓ1 directly as a function of Ef for f ≥ 10−2.
The approximately linear dependence that we observe contrasts to the clearly
nonlinear relation between Ef and the clustering Cf that we show in the same

9 When f ≪ 10−2, the quantity ℓf changes much more rapidly with f than Ef does.
We focus on the range f ≥ 10−2 in Fig. 2 because for lower f , the values of the error
Ef are much larger than those seen in any of the networks we study (e.g., the Power
Grid network has E ≈ 0.11 and the PGP network has E ≈ 0.065, which should be
compared to the maximum error of 0.07 seen in Fig. 2).
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inset. This strongly suggests that differences between theory and numerics are
related more directly to the mean intervertex distance than to the clustering
coefficient.

The above results for Watts-Strogatz small-world networks motivate the ex-
amination of a range of real-world networks in order to seek a clear relationship
between an error measure similar to (1) and some other characteristic of the
network, such as clustering or mean intervertex distance. For each network, we
calculate the inaccuracy of P (k, k′)-theory in terms of the error E, which mea-
sures the distance between the actual (numerically calculated) GCC size curve
Snum(p) and the theoretical prediction Sth(p):

E =
1

M

M∑

i=1

|Sth(pi) − Snum(pi)| . (2)

Essentially, E gives the average distance between the numerics (black disks) and
theory (solid blue curve) in Fig. 1. In Fig. 3(a), we show a scatter plot of log

10
E

versus log10 C, where C is the clustering coefficient of each network. We use
logarithmic coordinates in Fig. 3 in order to fully resolve the range of values for
both variables, as they vary by one or more orders of magnitude.
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≈ 0.94).

We also include synthetic examples, such as Watts-Strogatz small-world net-
works and clustered random networks generated using the recent models de-
scribed in [13, 12], which we now briefly recall. The fundamental quantity defining
the γ-theory networks of [13] is the joint probability distribution γ(k, c), which
gives the probability that a randomly chosen node has degree k and is a member
of a c-clique (an all-to-all connected subgraph of c nodes). With γ(3, 3) = 1 (and
zero for other values of k and c), each node in such a network has degree 3 and
is part of exactly one triangle. This is equivalent to the p1,1 = 1 case in the clus-
tered random graph model of [12], where ps,t is the probability that a randomly
chosen node is part of t different triangles and in addition has s single edges
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(which don’t belong to the triangles). In each synthetic network, we P -rewire a
fraction f of links and show our results for f = {10−3, 4 × 10−3, 0.04, 0.1, 0.4}.

In order to assess the strength of a relation between the theory error E and
some characteristic of the network, we calculate the coefficient of determination
R2 using a linear regression. For the data in Fig. 3(a), we calculate R2 ≈ 0.087
(using the points only and ignoring the connecting curves which help identify
families of points). This relatively small value indicates that C is not a good
predictor of the theory error across the set of networks that we tested (see
Table 1). After examining a wide range of possibilities (see the scatter plots in
Appendix), we found that the network measure that best correlates with the
error E (on logarithmic scales) is (ℓ − ℓ1)/z (which gives R2 ≈ 0.94), where z
is the mean degree and ℓ1 is the mean intervertex distance in the version of the
network that has been fully rewired while preserving the joint degree distribution
P (k, k′) [see Fig. 3(b)]. Recall that one can think of such fully P -rewired versions
of a network as random networks with the same degree correlation P (k, k′) and
size as the original network.

We can summarize our observations as follows. Given a network, we compare
its mean intervertex distance ℓ with the value ℓ1 in a random network of equal
size and degree correlation P (k, k′). If the difference ℓ− ℓ1 is sufficiently small—
e.g., if it is less than z/10, as was the case in Fig. 1(a,b)—then the P (k, k′)-theory
can be expected to accurately give the GCC size. For example, the AS Internet
graph has (ℓ − ℓ1)/z ≈ 3.3 × 10−2 and all 100 Facebook networks have values
much smaller than this. However, the theory is not accurate for larger values of
ℓ − ℓ1. (For example, the PGP and Power Grid networks have (ℓ − ℓ1)/z values
of approximately 0.45 and 3.9, respectively.)

Because the tree-based theory systematically gives accurate results for bond
percolation on networks that are not locally tree-like when the intervertex dis-
tance is small, it seems that there must be a deeper argument than is currently
known for the validity of such theories.

4 Conclusions

At the beginning of this paper, we posed the following question: “How small must
small-world networks be in order for P (k, k′)-theory to give accurate results?”
Our heuristic answer is that they must have a value for the mean intervertex
distance ℓ that differs from the mean intervertex distance in a random network
with the same P (k, k′) and number of nodes by no more than about 10% of the
mean degree z. Surprisingly, the level of clustering has much less of an impact
on the accuracy of P (k, k′)-theory, which is why we found excellent matches
between theory and numerical simulations even in highly clustered graphs such
as Facebook social networks and the AS Internet network.

Although our presentation used bond percolation as our primary example, we
have shown in unpublished work [42] that on networks for which P (k, k′)-theory
is accurate for bond percolation, it also works well for some other processes,
such as k-core sizes [43, 44] and susceptible-infected-susceptible (SIS) dynam-
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ics [6]. However, an absolute measure of accuracy must, of course, depend on
the process under scrutiny. Some processes (e.g. Watts’ threshold model for the
spread of cultural fads [45]) are particularly sensitive to deviations of the network
from randomness and can provide a suitable testing ground for new analytically
solvable models of networks that include clustering [12, 13].

In summary, we have shown that the tree-based analytical theory for bond
percolation yields highly accurate results for networks in which ℓ ≈ ℓ1 even
in the presence of significant clustering. Such graphs, which include the AS
Internet network and Facebook social networks, are definitively not locally tree-
like, so that the theory is working very well even in situations where the theory’s
fundamental hypothesis is known to fail utterly. We hope that the results of the
present paper will motivate further research on the underlying causes of this
“unreasonable” effectiveness of tree-based theory for clustered networks.

Acknowledgements

SM, AH, and JPG acknowledge funding provided by Science Foundation Ireland
under programmes 06/IN.1/I366 and MACSI 06/MI/005. MAP acknowledges a
research award (#220020177) from the James S. McDonnell Foundation. PJM
was funded by the NSF (DMS-0645369). We thank Adam D’Angelo and Face-
book for providing the Facebook data used in this study. We also thank Alex
Arenas, Mark Newman, CAIDA, and Cx-Nets collaboratory for making publicly
available other data sets used in this paper.

References

1. Strogatz, S.H.: Exploring complex networks. Nature (London) 410 (2001) 268–276

2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex net-
works: Structure and dynamics. Phys. Rep. 424 (2006) 175–308

3. Barrat, A., Vespignani, A., Barthelemy, M.: Dynamical processes on complex
networks. Cambridge University Press, Cambridge, UK (2008)

4. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Critical phenomena in complex
networks. Rev. Mod. Phys. 80 (2008) 1275

5. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks.
Phys. Rev. Lett. 86 (2001) 3200–3203
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17. Serrano, M.Á., Boguñá, M.: Clustering in complex networks. II. Percolation prop-
erties. Phys. Rev. E 74 (2006) 056115
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Appendix: Scatter Plots

In this appendix, we show scatter plots of log10 E versus a variety of possible
predictors. Recall that E, which we defined in (2), gives an error measure for
bond percolation. We test for the dependence of E on various combinations of
the mean degree z, mean intervertex distance ℓ, and clustering coefficients10.
Recall again that ℓ1 denotes the value taken by ℓ in a fully P -rewired version of
a network (i.e., in a random network with the same degree correlation and size).

The scatter plots show data points for real-world networks, and for syn-
thetic Watts-Strogatz small-world networks and γ-theory networks, which are
described in Sect. 3. The dependence of E on ℓ − ℓ1 is clearly strong (see the
top row of scatter plots, which all have R2 > 0.9), whereas the dependence on
clustering is weak (see the bottom row of scatter plots, which all have R2 < 0.3).
Given the relatively small number of available data sets, we cannot definitively
select the best scaling function F (z, ℓ, . . .) for the relation E ≈ F (z, ℓ, . . .)(ℓ−ℓ1),
but the simple choice F = 1/z used in Fig. 3(b) gives satisfactory fits.

10 We consider both common definitions of clustering coefficient. We use C to denote
the coefficient defined by (3.6) of [23] and eC to denote that from (3.4) of [23].
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