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We analyze gap solitons in trapped Bose-Einstein condensates �BECs� in optical lattice potentials under
Feshbach resonance management. Starting with an averaged Gross-Pitaevsky equation with a periodic poten-
tial, we employ an envelope-wave approximation to derive coupled-mode equations describing the slow BEC
dynamics in the first spectral gap of the optical lattice. We construct exact analytical formulas describing gap
soliton solutions and examine their spectral stability using the Chebyshev interpolation method. We show that
these gap solitons are unstable far from the threshold of local bifurcation and that the instability results in the
distortion of their shape. We also predict the threshold of the power of gap solitons near the local bifurcation
limit.
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I. INTRODUCTION

At sufficiently low temperatures, particles in a dilute bo-
son gas can condense in the ground state, forming a Bose-
Einstein condensate �BEC� �1�. Under the typical confining
conditions of experimental settings, BECs are inhomoge-
neous and the number of condensed atoms �N� ranges from
several thousand �or less� to several million �or more�. The
magnetic traps that confine them are usually approximated
by harmonic potentials. There are two characteristic length
scales: the harmonic oscillator length aho=�� / �m�ho�
�which is on the order of a few microns�, where �ho
= ��x�y�z�1/3 is the geometric mean of the trapping frequen-
cies; and the mean healing length �=1/�8��a�n̄ �which is on
the order of a micron�, where n̄ is the mean particle density,
and a, the �two-body� s-wave scattering length, is determined
by the atomic species of the condensate. Interactions be-
tween atoms are repulsive when a�0 and attractive when
a�0. For a dilute ideal gas, a�0.

If considering only two-body, mean-field interactions, a
dilute Bose-Einstein gas can be modeled using a cubic non-
linear Schrödinger �NLS� equation with an external poten-
tial; this is also known as the Gross-Pitaevsky �GP� equation.
BECs are modeled in the quasi-one-dimensional �quasi-1D�
regime when the transverse dimensions of the condensate are
on the order of its healing length and its longitudinal dimen-
sion is much larger than its transverse ones �2�. The GP
equation for the condensate wave function ��x , t� takes the
form

i��t = −
�2

2m
�xx + V�x�� + g���2� , �1�

where ���2 is the number density, V�x� is the external trap-
ping potential, g= �4��2a /m��1+O�	2�� is proportional to
the two-body scattering length, and 	=����2�a�3 is the dilute
gas parameter �1,2�.

Experimentally realizable potentials V�x� include har-
monic traps, quartic double-well traps, optical lattices and
superlattices, and superpositions of lattices or superlattices

with harmonic traps. The existence of quasi-1D �“cigar-
shaped”� BECs motivates the study of lower-dimensional
models such as Eq. �1�. We focus here on the case of spa-
tially periodic potentials without a confining trap along the
dimension of the lattice, as that is of particular theoretical
and experimental interest. For example, such potentials have
been used to study Josephson effects �3�, squeezed states �4�,
Landau-Zener tunneling and Bloch oscillations �5�, period-
multiplied wave functions �6,7�, and the transition between
superfluidity and Mott insulation at both the classical �8� and
quantum �9� levels. Moreover, with each lattice site occupied
by one alkali-metal atom in its ground state, a BEC in an
optical lattice shows promise as a register in a quantum com-
puter �10�.

The properties of BECs—including their shape, collective
excitations, statistical fluctuations, and the formation and dy-
namics of their solitons and vortices—are determined by the
strength and sign of their two-body atomic interactions a.
This scattering length, and hence the coefficient of the non-
linearity in the GP equation, can be adjusted in both sign and
magnitude �over a large range� by minutely adjusting a mag-
netic field in the vicinity of a so-called “Feshbach resonance”
�11,12�.

A Feshbach resonance is an enhancement in the scattering
amplitude of a particle incident on a target when the energy
of the former is approximately that needed to create a qua-
sibound state of the two-particle system. If a pair of ultracold
atoms has a molecular bound state near zero energy, then
during collisions they stick together for a little while as they
undergo a Feshbach resonance. While few molecules have
bound states at such energies, one can adjust the relative
energies of atoms and molecules with different magnetic mo-
ments by applying a magnetic field. With such “Zeeman tun-
ing,” one can move the atomic energy from just above the
resonance to just below it, so that the scattering length di-
verges and changes sign from positive to negative across the
resonance.

As a result of the control this procedure gives over con-
densate properties, the manipulation of ultracold atoms using
Feshbach resonances has become among the most active re-
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search areas in experimental atomic physics. Feshbach reso-
nances have provided a key for creating molecular BECs,
generating solitons and atom-molecule coherence, stabilizing
or destabilizing BECs, and creating novel Fermi liquids
�13–16�. For example, it was recently shown that near a
Feshbach resonance, a quantum phase transition occurs be-
tween a regime with both atomic and molecular condensates
and one with only molecular condensates �17�. As pointed
out in Ref. �18�, this transition should be much easier to
observe for condensates loaded into optical lattice potentials.

In Feshbach resonance management, which was moti-
vated by similar techniques in fiber optics �19�, the BEC
scattering length is varied periodically in time. This yields
dynamically interesting soliton solutions, such as breathers
�20�. Very recently, there has been some theoretical work
concerning Feshbach resonances in BECs in optical lattices
�21–23�. This situation is also the subject of current experi-
mental investigations �24�.

In the present paper, we use an averaged GP equation
�25,26� to examine gap solitons in BECs trapped in optical
lattices and under the influence of Feshbach resonance man-
agement. Using an envelope-wave approximation, we derive
coupled-mode equations describing the slow dynamics of
gap solitons. We provide an analytical construction of gap
soliton solutions and examine their spectral stability with
numerical computations of eigenvalues. We then describe the
time evolution of gap solitons with the averaged and original
GP equations. Finally, we summarize our results.

II. AVERAGED GROSS-PITAEVSKY EQUATION

We consider the nondimensional GP equation for trapped
BECs under Feshbach resonance management,

i�t = − �xx + V�x�� + g�t����2� , �2�

where the normalized independent variables are

x̃ =
�2mx

�
, t̃ =

t

�
,

and the tildes have been dropped from Eq. �2�. The nonlinear
coefficient can be written �20�

g�t� = 
0 +
1

�

� t

�
	 , �3�

and the potential for optical lattices is �27�

V�x� = 2�V0 cos��x� . �4�

Here, 
0 is the mean value of the nonlinearity coefficient;

��, with = t /�, is a mean-zero periodic function with unit
period; ��1 is a small parameter describing the strength of
the Feshbach resonance management; � is the wave number
of the optical lattice; and �V0 is a small parameter describing
the strength �amplitude� of the lattice. Because Eq. �3�
changes rapidly in time �i.e., the management is strong�, it is
reasonable use a model without dissipation �24�. We note
that the two small parameters � and � in Eq. �2� are due to
two different physical sources and can be uncorrelated.

One can exert very precise control over optical lattice
strengths and wave numbers experimentally �28�. In particu-
lar, both strong and weak lattices can be implemented; we
will consider a weak optical lattice, so that � in Eq. �4� is
small. In experiments, the scattering length a can also be
adjusted either nonadiabatically �strong nonlinearity manage-
ment�, which is the situation discussed in the present work,
or adiabatically �weak nonlinearity management�. In general,
different dynamics can occur depending on how rapidly a is
adjusted, as discussed, e.g., in �29�. There have already been
some experiments in which Feshbach resonances are applied
to BECs in the presence of optical lattices �24�, and others
are being planned by multiple experimental groups. As men-
tioned above, a conservative model is appropriate for strong
nonlinearity management. For weak nonlinearity manage-
ment, however, the GP equation �2� needs to be augmented
by dissipation terms, as three-body recombination leads to
experimental losses �11,24�. Therefore, we will only consider
strong management, so that � in Eq. �3� is small.

The small parameter � can be used to simplify the time-
periodic GP equation �2� with an averaging method. Using
the time-averaging procedure from �25�, one can look for an
asymptotic solution to the GP equation �2� of the form

��x,t� = ei�
−1���u�2�x,t��u�x,t� + O���� , �5�

where u is the complex-valued amplitude and 
−1�� is the
mean-zero antiderivative of 
��. Within a regular averaging
procedure �see the review in �26��, we obtain the averaged
GP equation

iut = − uxx + 2�V0 cos��x�u + 
0�u�2u

− 
1
2
���u�2�x�2 + 2�u�2��u�2�xx�u , �6�

where 
1 is the standard deviation of the nonlinearity coef-
ficient. The model �6� provides a starting point for our analy-
sis of gap solitons in BECs in optical lattices under Feshbach
resonance management. Without such management �
1=0�,
gap solitons of the GP equation �6� were studied in �27�
using Floquet theory, multiple-scale expansions, beyond-all-
orders theory, and Evans-function computations of eigenval-
ues. We will mainly consider the opposite case when 
1�0
but 
0=0.

III. COUPLED-MODE EQUATIONS

We are interested in modeling gap solitons supported by
subharmonic resonances between the periodic potential and
spatiotemporal solutions of the averaged GP equation �6�. To
simplify the model, we use the second small parameter � and
obtain coupled-mode equations, which average the spatially
periodic nonlinear equation �6� near a spectral gap of its
associated linearization,

iut = − uxx + 2�V0 cos��x�u . �7�

In the limit of small �, the spectral gaps all become narrow
and the first spectral gap occurs at first order in �. Using the
space-averaging technique of Ref. �30�, one can look for an
asymptotic solution of the averaged GP equation �6� in the
two-wave form
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u�x,t� = ���A�X,T�ei�0x−i�0
2t + B�X,T�e−i�0x−i�0

2t + O���� ,

�8�

where A and B are complex-valued amplitudes, X=�x and
T=�t are slow variables, and �=2�0. This wave-number ra-
tio indicates that we are studying 2:1 subharmonic reso-
nances �e.g., the first spectral gap of Eq. �7��. Using the
regular asymptotic procedure from �30�, we obtain a system
of coupled-mode equations

i�AT + �AX� = V0B + 
0��A�2 + 2�B�2�A

+ 2
1
2�2�2�A�2 + �B�2��B�2A ,

i�BT − �BX� = V0A + 
0�2�A�2 + �B�2�B

+ 2
1
2�2��A�2 + 2�B�2��A�2B . �9�

The first equation governs the left-propagating wave A,
whereas the second equation governs the right-propagating
wave B. The two waves interact with a cubic cross-phase
modulation from the mean value of the scattering length and
with a quintic cross-phase modulation from the standard de-
viation of the scattering length. The latter effect represents
the main contribution of Feshbach resonance management in
trapped BECs.

The system of coupled-mode equations �9� is Hamil-
tonian, with symmetric potential energy

W�A,B� = V0�ĀB + AB̄� +

0

2
��A�4 + 4�A�2�B�2 + �B�4�

+ 2
1
2�2�A�2�B�2��A�2 + �B�2� . �10�

Additionally, Eq. �10� satisfies the assumption on symmetric
potential functions used recently for analyzing the existence
and stability of gap solitons �31�. While the previous work
concerned gap solitons in coupled-mode equations with cu-
bic nonlinearity, we will focus on the new effects that arise
from the quintic nonlinear terms. These effects correspond to
mean-zero Feshbach resonance management, which affects
the propagation of gap solitons in optical lattices. We can see
that the last term of W in Eq. �10� is positive definite, similar
to the second term with 
0�0. Therefore, Feshbach reso-
nance management leads to defocusing effects on the propa-
gation of gap solitons in periodic potentials. The defocusing
role of Feshbach resonance management was studied re-
cently in �32� in the context of blowup arrest in multidimen-
sional GP equations.

One determines the linear spectrum of the coupled-mode
equations �9� from the linearized system in Fourier form
�A ,B��eiKX−i�T, where �= ±�V0

2+�2K2. The spectral gap
exists for �� � � �V0� and corresponds to the first spectral gap
associated with the periodic potential in Eq. �7�. The lower
�upper� spectral band of the coupled-mode equations �9� for
��−�V0� �for �� �V0�� corresponds to the first �second�
spectral band of the periodic potential in Eq. �7�.

The coupled-mode system �9� can be reduced to an NLS
equation near the band edges of the linear spectrum. Using
the asymptotic representation

A = ��e±i�V0�TW��,	� ±
i��

2V0
W� + O��2�� , �11�

B = ��e±i�V0�T�W��,	� +
i��

2V0
W� + O��2�� , �12�

where �=�X, 	=�2T, and � is a small parameter for the
distance of � from the band edges ±�V0�, one can reduce the
coupled-mode equations �9� with 
0=0 to the quintic NLS
equation

iW	 = ±
�2

2V0
W�� + 6
1

2�2�W�4W . �13�

The quintic NLS equation �13� is focusing near the lower
spectral band with �=−�V0� and is defocusing near the upper
spectral band with �= �V0�. Therefore, the gap soliton solu-
tions bifurcate from the lower spectral band via a local
�small-amplitude� bifurcation. They terminate at the upper
spectral band via a nonlocal �large-amplitude� bifurcation,
similar to gap solitons in the GP equation with a periodic
potential �27�.

The derivation of the quintic NLS equation �13� confirms
the predictions of a recent paper �33� on the power threshold
for one-dimensional gap solitons in the case 
0=0 and 
1
�0. The existence of the power threshold near the local
bifurcation limit was computed numerically in Ref. �33�. Be-
cause the quintic NLS equation exhibits a similar power
threshold for NLS solitons �see, e.g., �34��, the numerical
fact is now confirmed from the perspective of asymptotic
theory. We note that the coupled-mode equations �9� with

0�0 reduce to the cubic NLS equation, which does not
exhibit the power threshold for NLS solitons.

IV. GAP SOLITONS

We simplify the construction of exact gap soliton solu-
tions to the coupled-mode equations �9� by normalizing V0
=−1, �=1 �a standard scaling transformation can be em-
ployed for this purpose� and defining �2=2
1

2�2. We con-
struct gap soliton solutions by separating variables into time-
periodic and spatially localized solutions of the coupled-
mode equations �9�:

A�X,T� = a�X�e−i�T, B�X,T� = b�X�e−i�T.

Because of the symmetry in the potential function, W�A ,B�
=W�B ,A�, the gap soliton solutions satisfy the constraint b
= ā �31�, so that a�X� solves the following nonlinear ordinary
differential equation:

ia� + �a + ā = 3
0�a�2a + 3�2�a�4a .

Converting the function a�X� to polar coordinates,

a�X� = �Q�X�exp�− i��X�/2� , �14�

we obtain the second-order system

Q� = − 2Q sin � ,

�� = − 2� − 2 cos � + 6
0Q + 6�2Q2. �15�

This system has the first integral
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E = − �Q − Q cos � +
3

2

0Q2 + �2Q3, �16�

where E=0 from the zero-boundary conditions Q�X�→0 as
�X � →�.

In the remainder of this paper, we consider the case 
0
=0 and 
1�0, which shows the effects of Feshbach reso-
nance management on the existence and stability of gap soli-
tons. For the case 
0�0 and 
1=0, exact analytical solutions
for gap solitons are available �35� and the stability problem
has been analyzed numerically �see �31��. When 
0=0, the
second-order system �15� reduces to the first-order differen-
tial equation

�� = 4�� + cos �� . �17�

The function Q�X� is found from ��X� with the relation

Q2 =
� + cos �

�2 � 0. �18�

Using the technique from Appendix A of �31�, we find the
exact analytical solution of Eq. �17� and obtain

cos � =
cosh2�2�x� − 
 sinh2�2�x�
cosh2�2�x� + 
 sinh2�2�x�

, �19�

where


 =
1 + �

1 − �
, � = �1 − �2,

and �� � �1. Substituting Eq. �19� into Eq. �18� then gives

Q2 =
1

�2

1 + �

cosh2�2�x� + 
 sinh2�2�x�
, �20�

so that

a�X� =
�4 
�cosh�4�X� − ��

���cosh�2�X� + i�
sinh�2�X��
�21�

and

�a�2 =
�

��cosh�4�X� − �
. �22�

The limit �→−1 yields the small-amplitude gap soliton
�a�2→ �� /��2�sech�2�X�, which satisfies the focusing quin-
tic NLS equation �13�. At this local bifurcation limit, the
power of the gap soliton has a threshold

P � �
−�

�

��A�2 + �B�2�dX → P0 �
�

��2
,

such that the power P is bounded from below by the limiting
value P0. The opposite limit �→ +1 yields the large-
amplitude �singular� gap soliton �a�2→ �� /��2�csch�2�X�,
which satisfies the corresponding defocusing quintic NLS
equation �13�. Thus, in accordance with the asymptotic re-
duction to the quintic NLS equation �13�, the family of gap
soliton solutions of the coupled-mode system �9� bifurcates
from the lower spectral band ��=−1� and terminates at the
upper spectral band ��= +1�.

Stability

The spectral stability of the gap soliton �21� follows from
the linearization

A�X,T� = e−i�T�a�X� + U1�X�e�T� ,

Ā�X,T� = ei�T�ā�X� + U2�X�e�T� ,

B�X,T� = e−i�T�ā�X� + U3�X�e�T� ,

B̄�X,T� = ei�T�a�X� + U4�X�e�T� . �23�

The vector U= �U1 ,U2 ,U3 ,U4�T solves the linear eigenvalue
problem

H�U = i�sU , �24�

where s=diag�1,−1,1 ,−1� is a diagonal matrix. The linear-
ized energy operator H� has the form

H� = D��X� + V�X� , �25�

where

D =�
− � − i�X 0 − 1 0

0 − � + i�X 0 − 1

− 1 0 − � + i�X 0

0 − 1 0 − � − i�X

�
and

V = �2�
5�a�4 2�a�2a2 4�a�2a2 4�a�4

2�a�2ā2 5�a�4 4�a�4 4�a�2ā2

4�a�2ā2 4�a�4 5�a�4 2�a�2ā2

4�a�4 4�a�2a2 2�a�2a2 5�a�4
� .

Using the block-diagonalization method from �31�, we em-
ploy the orthogonal similarity matrix

S =
1
�2�

1 0 1 0

0 1 0 1

0 1 0 − 1

1 0 − 1 0
� ,

which simultaneously block-diagonalizes the energy operator
H�,

S−1H�S = �H+ 0

0 H−
	 � H , �26�

and the linearized operator sH�,

S−1sH�S = s� 0 H−

H+ 0
	 � iL , �27�

where H± are two-by-two Dirac operators:

H+ = �− � − i�X + 9�2�a�4 6�2�a�2a2 − 1

6�2�a�2ā2 − 1 − � + i�X + 9�2�a�4 	 , �28�
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H− = �− � − i�X + �2�a�4 1 − 2�2�a�2a2

1 − 2�2�a�2ā2 − � + i�X + �2�a�4 	 . �29�

Eigenvalues of the operators L, H+, and H− are detected nu-
merically with the Chebyshev interpolation method �31�. The
main advantage of the Chebyshev grid is that clustering of
the grid points occurs near the end points of the interval. This
prevents the appearance of spurious complex eigenvalues
that may otherwise arise from the discretization of the con-

tinuous spectrum. Moreover, by using the block diagonaliza-
tion in Eqs. �26� and �27�, we are able to reduce the memory
constraints and double the speed of the numerical computa-
tions �see the details in �31��.

The numerical eigenvalues of the operators L, H+, and H−

are displayed in Fig. 1 for six different values of the param-
eter �. When � is close to the local bifurcation threshold
�e.g., for �=−0.9�, the operator L has a four-dimensional
kernel at �=0 and a pair of small purely imaginary eigenval-

FIG. 1. �Color online� Eigenvalues and instability bifurcations for the operators L, H+, and H− in Eqs. �27�–�29�. The parameter values
are �=−0.9 �top left�, �=−0.7 �middle left�, �=−0.3 �bottom left�, �=0.0 �top right�, �=0.3 �middle right�, and �=0.7 �bottom right�.
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ues near �=0. The pair of purely imaginary eigenvalues
originates from the six-dimensional kernel of the linearized
quintic NLS equation �13� �see, e.g., Ref. �34��. In this case,
the operator H+ has no isolated nonzero eigenvalues,
whereas the operator H− has a simple isolated nonzero eigen-
value. The eigenvalue of H− still exists at �=−0.7, but it
disappears before �=−0.3 because it collides with the end
point of the continuous spectrum of H−. The pair of eigen-
values of L survives at �=−0.3, but it disappears at �=0
because it collides with the end points of the continuous
spectrum of L. When ��0, the pair of complex eigenvalues
bifurcates in the spectrum of L from the end points of the
continuous spectrum of L. The complex eigenvalues of L
bifurcate simultaneously with a simple isolated nonzero ei-
genvalue of the operator H−. The pair of complex eigenval-
ues of L and the isolated nonzero eigenvalue of H− persist for
larger values of � �e.g., for �=0.3 and �=0.7�. The eigen-
values just discussed are labeled in the figure as I and II.

In sum, the gap solitons of the coupled-mode system �9�
with 
0=0 are spectrally stable for ��0 and spectrally un-
stable due to complex unstable eigenvalues for ��0. This
behavior is similar to the stability analysis of the coupled-
mode system �9� with 
0�0 and 
1=0 �see �31� and refer-
ences therein�.

V. NUMERICAL SIMULATIONS

To confirm the accuracy of the coupled-mode theory, we
corroborate the instability of gap solitons for ��0 predicted
from the analysis of the system �9� with full numerical simu-
lations of the averaged GP equation �6�. We consider the
trigonometric management function 
��=cos�2�� and fix
the other parameters as follows: 
0=0, 
1=1/�2, V0=−1,
�=1, and �=0.1. We vary the parameter � for the gap soli-
ton solutions, focusing on computations with �=−0.5 and
�=0.5. According to analysis of the coupled-mode equations
�9�, the value �=−0.5 corresponds to the case of stable gap
solitons and the value �=0.5 corresponds to the case of
unstable gap solitons. The initial condition for all simulations
is selected to be a perturbation of the leading-order two-wave
approximation �8� with the gap soliton solutions �21�.

We integrated the averaged GP equation �6� using a finite-
difference approximation �with 480 grid points� in space and
a Runge-Kutta integration scheme �with step size h=0.001�
in time. The perturbations of the initial gap solitons are of the
same functional form as the gap solitons but with larger am-
plitudes.

Figure 2 shows the time evolution of a stable gap soliton
with �=−0.5. The stationary gap soliton persists in the full
dynamics of the averaged GP equation �6�, in agreement with
the stability analysis of the coupled-mode system �9�.

Figure 3 illustrates the dynamics of an unstable gap soli-
ton with �=0.5. We observe an asymmetric beating between
different localized wave forms. The localized wave is not
destroyed in the unstable case, but rather undergoes shape
distortions due to the oscillatory instability. This behavior
agrees with the stability analysis in the coupled-mode system
�9�, as the unstable eigenvalues of gap solitons with ��0
are complex valued �see Fig. 1�. While the perturbation used

in Fig. 3 is large, note that a perturbation with the same
percentage difference in the soliton amplitude does not lead
to an instability in Fig. 2.

We also examined the dynamics of the gap solutions un-
der full numerical simulations of the original GP equation
�2�. In these simulations, which were also performed using a
finite-difference approximation �with 480 grid points� in
space and a Runge-Kutta integration scheme �with step size
h=0.001� in time, the external potential includes contribu-
tions from a small harmonic trap in addition to the optical
lattice in Eq. �4�. Hence, the potential in these simulations is

given by V̂�x�=V�x�+Vhx2. The initial conditions and param-
eters are the same as for the simulations of the averaged GP
equation, with the additional values �=0.25 and Vh=0.01. In
Fig. 4, we show the spatiotemporal evolution of the con-
structed gap solitons under Eq. �2�. As expected, the solitons
that we found to be stable persist longer with respect to the
full GP dynamics than those determined to be unstable.

VI. CONCLUSIONS

In conclusion, we studied Feshbach resonance manage-
ment for gap solitons in Bose-Einstein condensates trapped

FIG. 2. �Color online� Stable time evolution of a gap soliton
with �=−0.5 in the averaged GP equation �6�. �Top� Spatiotem-
poral evolution of �u�x , t��2. �Bottom� Spatial profiles of �u�x , t��2 for
t=0, t=200, t=400, and t=800.
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in optical lattice potentials. We applied an envelope wave
approximation to the averaged Gross-Pitaevsky equation
with a periodic potential to yield coupled-mode equations
describing the slow BEC dynamics in the first spectral gap of
the optical lattice. We derived exact analytical expressions
for gap solitons with mean-zero scattering length. In this
situation, Feshbach resonances are employed to tune a con-
densate between the repulsive and attractive regimes �corre-
sponding to their usual experimental application�. Applying
Chebyshev interpolation to the coupled-mode equations, we
showed that these gap solitons are unstable above the center
of the first spectral gap �far from the local bifurcation thresh-
old�. We then showed with numerical simulations of the av-
eraged Gross-Pitaevsky equation that unstable gap solitons
exhibit beating between different localized shapes, thereby
confirming the stability results predicted from the coupled-
mode theory. We corroborated this further with numerical
simulations of the original GP equation, which show that the
stable gap solitons persist much longer than the unstable
ones.

We note that gap solitons in the GP equation with a peri-
odic potential �6� and the coupled-mode system �9� in the
case of no Feshbach resonance management have been stud-

ied recently in �27� and �31�, respectively. We can see from
comparing the previous and new results that Feshbach reso-
nance management leads to a new effect with respect to the
existence of the power threshold near the local bifurcation
limit �33�. On the other hand, there are not many differences
in the stability results, as Feshbach resonance management
does not stabilize gap solitons far from the threshold of local
bifurcations �which are known to be unstable �31��. We have
also confirmed that Feshbach resonance management leads
to defocusing effects on the propagation of gap solitons,
which is relevant for blowup arrest in multidimensional
problems �32�.

ACKNOWLEDGMENTS

We gratefully acknowledge Jit Kee Chin, Randy Hulet,
Panos Kevrekidis, Boris Malomed, and Steve Rolston for
useful discussions about this project. The code for numerical
simulations of the NLS was modified from the code of Panos
Kevrekidis. M.A.P. acknowledges support from the NSF VI-
GRE program and the Gordon and Betty Moore Foundation.
M.Ch. was supported by the ShacrNet and NSERC. D.P. was
supported by the NSERC Discovery and PREA grants.

FIG. 3. �Color online� Unstable time evolution of a gap soliton
with �=0.5 in the averaged GP equation �6�. �Top� Spatiotemporal
evolution of �u�x , t��2. �Bottom� Spatial profiles of �u�x , t��2 for t
=0, t=200, t=400, and t=800.

FIG. 4. �Color online� Spatiotemporal evolution of ���x , t��2,
with initial conditions given by the constructed gap solitons, under
the dynamics of the full GP equation �2�. �Top� �=−0.5. �Botttom�
�=0.5.
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