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The unreasonable effectiveness of tree-based theory for networks with clustering
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We demonstrate that a tree-based theory for various dynamical processes operating on static, undirected
networks yields extremely accurate results for several networks with high levels of clustering. We find that such
a theory works well as long as the mean intervertex distance ¢ is sufficiently small—that is, as long as it is close
to the value of £ in a random network with negligible clustering and the same degree-degree correlations. We
support this hypothesis numerically using both real-world networks from various domains and several classes
of synthetic clustered networks. We present analytical calculations that further support our claim that tree-based
theories can be accurate for clustered networks, provided that the networks are “sufficiently small” worlds.
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I. INTRODUCTION

One of the most important areas of network science is the
study of dynamical processes on networks [1-4]. On one hand,
research on this topic has provided interesting theoretical chal-
lenges for physicists, mathematicians, and computer scientists.
On the other hand, there is an increasing recognition of the
need to improve the understanding of dynamical systems on
networks to achieve advances in epidemic dynamics [5-7],
traffic flow in both online and offline systems [8], oscillator
synchronization [9], and more [3].

Analytical results for complex networks are rather rare,
especially if one wants to study a dynamical system on a
network topology that attempts to incorporate even minimal
features of real-world networks. Most analyses assume that
the network under study has a locally treelike structure, so that
it possesses very few small cycles (or loops), whereas most
real networks have significant clustering (and, in particular,
possess numerous small cycles) [10]. Furthermore, if one
considers a dynamical system on a real-world network rather
than on a grossly simplified caricature of it, then theoretical
results become almost barren. This has motivated a wealth of
recent research concerning analytical results on networks with
clustering [7,11-23].

Most existing theoretical results for (unweighted) networks
are derived for an ensemble of networks using (i) only their
degree distribution p;, which gives the probability that a
random node has degree k (that is, it has exactly k neighbors)
or using (ii) their degree distribution and their degree-degree
correlations, which are defined by the joint degree-degree
distribution P(k,k’), describing the probability that a random
edge joins nodes of degrees k and k’. In the rest of this paper,
we refer to case (i) as py-theory (the associated random graph
ensemble is known as the configuration model [24]) and to
case (ii) as P(k,k’)-theory. The clustering in sample networks
is low in both situations; it typically decreases as N~! as the
number of nodes N — o0 [25], so these so-called tree-based
theories generally cannot guarantee meaningful predictions
for real-world networks with significant clustering.
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We concentrate in this paper on static, undirected,
unweighted real-world networks, each of which is completely
described by an adjacency matrix. The adjacency matrix can
be used directly to model various processes on the network
that it represents. We refer to such calculations and results
as numerical, because they do not involve any theory or
assumptions about the network structure. Because there are
no assumptions, such numerical results are the most accurate
results; they are, however, computationally expensive when
the network is large. From an analytical perspective, one can
obtain the empirical distributions p; and P(k,k’) from the
network adjacency matrix and use them as respective inputs to
tree-based analytical py- and P(k,k’)-theories for dynamical
processes. Such calculations are much less computationally
expensive and can provide a deeper insight into dynamics
of interest, but the results given by such theories might
be inaccurate in the sense that they have the potential to
differ significantly from the numerical results. One reason
for this inaccuracy is that, unlike the adjacency matrix, the
distributions p; and P(k,k’) contain only partial information
about the original network structure. For example, they cannot
describe the loops that are present in the network. Therefore,
such tree-based theories can guarantee accurate results only
for random networks defined by these distributions (and in the
limit of large network size).

In this paper, we consider real-world clustered networks
and run several dynamical processes on these networks with
a view to measuring the discrepancy between the analytical
tree-based theories and the (true) numerical results for each of
these dynamical processes. We investigate how the agreement
between the tree-based theory and the corresponding (true)
numerical result depends on the network structure. In other
words, we assume that the dynamics on a given clustered
network is similar to that on a random graph with the same
distribution [ p; or P(k,k")] and determine the condition under
which this assumption is adequate.

We demonstrate that analytical results derived using tree-
based P(k,k’)-theory can be applied with high accuracy
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to certain networks, despite their high levels of clustering.
Examples of such networks include university social networks
constructed using Facebook data [26] and the autonomous
systems Internet graph [27]. Specifically, the analytical results
for bond percolation, k-core sizes, and other processes accu-
rately match numerical results for a given (clustered) network,
provided that the mean intervertex distance in the network
is sufficiently small. That is, it must be close to its value
in a randomly rewired version of the graph. Recalling that
a clustered network with a low mean intervertex distance
is said to have the small-world property, we find that tree-
based analytical results are accurate for networks that are
“sufficiently small” small worlds. In discussing this result,
we focus considerable attention on quantifying what it means
to be “sufficiently small.” In other words, how small must
small-world networks be in order for P(k,k’)-theory to give
accurate results?

The remainder of this paper is organized as follows. In
Sec. II, we consider several dynamical processes on highly
clustered networks and show that tree-based theory adequately
describes them on certain networks but not on others. In order
to explain our observations, we introduce in Sec. III a measure
of prediction quality £ and develop a hypothesis, inspired
by the well-known Watts-Strogatz example of small-world
networks, regarding its dependence on the mean intervertex
distance ¢. We provide support for our hypothesis with
analytical calculations in Appendix A and with numerical
examination of a large range of networks in Appendix B. We
discuss our conclusions in Sec. IV.

II. DYNAMICAL PROCESSES ON NETWORKS

A. Bond percolation

We begin by considering bond percolation, which has been
studied extensively on networks. In bond percolation, network
edges are deleted (or labeled as unoccupied) with probability
1 — p, where p is called the bond occupation probability. One
can measure the effect of such deletions on the aggregate graph
connectivity in the limit of infinitely many nodes using S(p),
the fractional size of the giant connected component (GCC) ata
given value of p. (In this paper we use the terminology GCC for
finite graphs as well; one can alternatively use the term “largest
connected component” for finite graphs.) Bond percolation has
been employed in simple models for epidemic dynamics. In
such a context, p is related to the mean transmissibility of a
disease, so the GCC is used to represent the size of an epidemic
outbreak (and to give the steady-state infected fraction in a
susceptible-infected-recovered model) [24].

Given the network adjacency matrix, we calculate the
distributions py and P(k,k’) and then use them in the analytical
expressions that predict the GCC size for a particular value
of p. Analytical expressions for predicting GCC sizes using
pi-theory [28] can be found in Eq. (8.11) of Ref. [24], and
analytical results for P(k,k’)-theory are available in Eq. (12)
of Ref. [29]. We plot these theoretical predictions in Fig. 1 as
dashed red and solid blue curves, respectively. In this figure, we
use the following data sets as examples: (a) the September 2005
Facebook network for University of Oklahoma [26], where
nodes are people and links are friendships; (b) the Internet
at the autonomous systems (AS) level [27], where nodes
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represent ASs and links indicate the presence of a relationship;
(c) the network of users of the Pretty Good Privacy (PGP)
algorithm for secure information interchange [30-32]; and (d)
the network representing the topology of the power grid of
the western United States [33,34]. We treat all data sets as
undirected, unweighted networks.

We perform numerical calculations of the GCC size by
applying the algorithm of Ref. [35] to the adjacency matrices
of our networks and plot the average results as black disks
in Fig. 1. It is apparent from Figs. 1(a)-1(b) that P(k,k’)-
theory matches numerical results very accurately for the AS
Internet and Oklahoma Facebook networks, and we obtain
similar accuracy for all 100 single-university Facebook data
sets available to us [36]. However, as shown in Figs. 1(c)-1(d),
the match between theory and numerics is much poorer on the
PGP and power grid networks. The usual explanation for this
lack of accuracy is that it is caused by clustering in the real-
world network that is not captured by P(k,k’)-theory. Note,
however, that the Oklahoma Facebook network has one of the
highest clustering coefficients of the four example networks in
Fig. 1, even though itis accurately described by P(k,k")-theory.

The global clustering coefficients (defined as the mean
of the local clustering coefficients over all nodes [33]) for
the Oklahoma Facebook, AS Internet, PGP, and power grid
networks are 0.23, 0.21, 0.27, and 0.08, respectively. (See
Table I for basic summary statistics for these networks.)
The clustering coefficients for all 100 Facebook networks
range from 0.19 to 0.41, and the mean value of these
coefficients is 0.24. These observations suggest that one ought
to consider other explanatory mechanisms for the discrepancy
between theory and numerical calculations in Figs. 1(c)
and 1(d).

In considering other explanations, note that the discrepancy
between theory and numerics in Figs. 1(c) and 1(d) does
not arise from finite-size effects. To demonstrate this, we
rewire the networks using an algorithm that preserves the
P(k,k’) distribution but otherwise randomizes connections
between the nodes [37]. Because this scheme preserves the
degree correlation matrix P(k,k’), we call this the P-rewiring
algorithm. Note that the P(k,k’)-theory should be accurate
for fully P-rewired networks, because the ensemble of fully
P-rewired networks is in fact the ensemble of random
networks defined by the P(k,k") matrix of the original (not
rewired) network.

We use the numerical algorithm of Ref. [35] again to
calculate the GCC sizes for these rewired networks. We
show the results averaged over 100 complete and independent
rewirings with blue squares in Figs. 1(c)-1(d) and observe
that they agree very well with the curves produced from
P (k,k")-theory. We conclude that the structural characteristics
of the original networks—rather than simply their sizes—
must underlie the observed differences between numerical
calculations and analytics.

Also note that the agreement between P (k,k’)- and py-the-
ories in Fig. 1 is better in panels (a) and (d) than in panels
(b) and (c). This is because the networks in (a) and (d) have
smaller absolute values for the Pearson correlation coefficient
r of the end-vertex degree of a random edge [24]. The value
of r for the network in (a) is 0.074, and the mean over all 100
Facebook networks is 0.063; the value of r for the network in

036112-2



UNREASONABLE EFFECTIVENESS OF TREE-BASED . ..

PHYSICAL REVIEW E 83, 036112 (2011)

\ - -
0.8t ) - ] it |
0.6f ] el ]

11 - .7
), , e
0.4r R L’ E
0.2r E .7 |
(a) Facebook Oklahoma £ (b) AS Internet

O L L L L L L L L

S 0 0.02 0.04 0.06 0.08 0.1 0.2 0.4 0.6 0.8 1
1 | - _pk—theox"y o
° —— P(k,k")—theory <
0.8F . ° g ® Numerical result for original network z7e B
= - ° = Numerical result for rewired network °
- o ¢
0.6+ P - o ® 4 . B
’,’ ° o
/, ° °
0.4’ ,/ ° o — ¥ . 4
v ° ¥
’ °
L ° °
0.2r S e ° 1 . J
,l Y ° [ ]
7 (c) PGP Network o® ° (d) Power Grid
[ ]

0 I I I I onnunnl o o L L

0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
p

FIG. 1. (Color online) Bond percolation. Plots of giant connected component (GCC) size S versus bond occupation probability p for
various real-world networks. These networks, which we also use as examples in other figures, are (a) the Facebook network for University of
Oklahoma [26], (b) the Internet at the autonomous systems (AS) level [27], (c) the Pretty Good Privacy (PGP) network [30-32], and (d) the
power grid for the western United States [33,34].

TABLE 1. Basic summary statistics for the networks that we use in this paper. We have treated all real-world data sets as undirected,
unweighted networks and have computed the following properties: total number of nodes N; mean degree z; mean intervertex distance £ in
original network; mean intervertex distance ¢; in the corresponding fully P-rewired version of the network (that is, in a random network with
the original joint degree-degree distribution); the mean intervertex distance £ predicted by Eq. (A2) using the branching matrix corresponding
to a random network with the original joint degree-degree distribution; clustering coefficients C and C (whose respective definitions are given
by Egs. (3.6) and (3.4) of [24]); and the Pearson degree correlation coefficient ». The last column in the table gives the relevant citation
number(s) in the bibliography.

Network N z ¢ A 8 c c r Ref{(s).
Real world Power grid 4941 2.67 18.99 8.61 7.85 0.08 0.10 0.0035 [33,34]
PGP network 10680 4.55 7.49 5.40 2.66 0.27 0.38 0.23 [30-32]
AS Internet 28311 4.00 3.88 3.67 2.56 0.21 0.0071 —0.20 [27]
RL Internet 190914 6.34 6.98 5.25 3.17 0.16 0.061 0.025 [38]
Coauthorships 39577 8.88 5.50 4.45 2.93 0.65 0.25 0.19 [39,40]
Airports 500 500 11.92 2.99 2.76 1.62 0.62 0.35 —0.278 [41,42]
Interacting proteins 4713 6.30 4.22 4.05 296  0.09 0.062 —0.136 [43-45]
C. Elegans metabolic 453 8.94 2.66 2.55 1.93 0.65 0.12 —0.226 [46,47]
C. Elegans neural 297 14.46 2.46 2.33 1.84 0.29 0.18 —0.163 [33,48]
Facebook Caltech 762 43.70 2.34 2.26 1.55 0.41 0.29 —0.066 [26]
Facebook Georgetown 9388 90.67 2.76 2.55 1.79 0.22 0.15 0.075 [26]
Facebook Oklahoma 17420 102.47 2.77 2.66 1.79 0.23 0.16 0.074 [26]
Facebook UNC 18158 84.46 2.80 2.68 1.87 0.20 0.12 7x1073 [26]
Synthetic y-Theory [y (3,3) = 1] 1002 3 13.15 8.06 9.97 1/3 1/3 N/A [14]
y-Theory [y(3,3) = 1] 10002 3 19.81 11.37 13.29 1/3 1/3 N/A [14]
Watts-Strogatz (WS) 1000 10 50.45 3.29 3.14 2/3 2/3 N/A [33]
Watts-Strogatz (WS) 10000 10 500.45 4.34 4.19 2/3 2/3 N/A [33]
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FIG. 2. (Color online) Plots of k-core sizes versus k for the real-world networks from Fig. 1. The highest values of k for which the k-core
size is nonzero are (a) K, =91, Kpgry = 98, Kyum = 107; (b) K, = 132, Kppy = 19, Knum = 23;(¢) K, =7, Kpgxy = 16, Kyum = 31;

and (d) ka =6, Kp(k,kf) =17, Kpm = 19.

(d) is 0.0035; the value for that in (b) is —0.20; and the value
for that in (c) is 0.24.

B. k-Cores

Figures 2—4 show similar comparisons between analytical
and numerical results for other well-studied processes on
networks.

In Fig. 2, we plot the k-core sizes of the networks. The
k-core is the largest subgraph whose nodes all have degree
at least k within the subgraph. The py-theory for k-core
sizes is given in Ref. [49], and the P(k,k’)-theory is given
by Eq. (32) of Ref. [50]. We compare these theoretical
predictions with direct calculations of k-core sizes from the
adjacency matrices. Although the direct calculation of k-cores
is a measurement of the real network, we continue to use
the term “numerical” in this subsection in order to contrast
such calculations with theoretical predictions. As shown in
Figs. 2(a) and 2(b), we again find very good agreement of
P(k,k")-theory with numerical calculations on the AS Internet
and Facebook networks and less accurate results for the other
sample networks. This can be quantified by comparing the
numerical (true) result for the highest value of k& for which
the k-core size is nonzero to the value that is predicted by
P(k,k")-theory. (We use K to denote this maximal value of
k.) For Figs. 2(a) and 2(b), we obtain K p( 1)/ Knum ~ 0.916
and Kpg ry/ Knum = 0.826, respectively. The corresponding

values for Figs. 2(c) and 2(d) are K p( x'y/ Knum 2 0.516 and
KP(k,k’)/Knum ~ (0.368.

C. Watts threshold model

Watts introduced a simple model for the spread of cultural
fads [51]. It allows one to examine how a small initial fraction
of early adopters can lead to a global cascade of adoption
via a social network, distinguishing between “simple” and
“complex” contagions [52,53]. The py-theory and P(k,k')-
theory for the mean cascade size are given, respectively, in
Refs. [54] and [50]. In Fig. 3, we compare these theories with
numerical simulations on populations with Gaussian threshold
distributions of mean y and variance o> = 0.04. The cascade
size shows a sharp transition as p is increased. As with the other
processes discussed previously, the position of this transition
is accurately captured by the theory for the Facebook and AS
Internet networks but not for the other examples.

D. Susceptible-infected-susceptible model

In Fig. 4, we show a comparison between theory and
numerical results for the time evolution of a susceptible-
infected-susceptible (SIS) epidemic model on various net-
works. Unlike the other processes that we have discussed,
the theory for this case—as given, for example, by Eq. (17) of
Ref. [6]—is expected to apply accurately only to the early-time
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FIG. 3. (Color online) Watts threshold model, with threshold mean p and variance o> = 0.04, for the networks from Fig. 1. We use the
seed fraction py = 0 because the nodes with negative thresholds immediately turn on and act as seeds. In other words, the effective seed fraction
is given by the value of the cumulative distribution function of the thresholds evaluated at zero. This fraction is [1 + erf{—u /(o +/2)}1/2.

development of the infection [55]. In view of this restriction,
the results of Fig. 4 are consistent with those of Figs. 1-3.
That is, the P(k,k’)-theory once again provides accurate
results for certain networks but is rather inaccurate for other
networks.

III. MEASURE OF PREDICTION QUALITY

We now aim to characterize the types of networks for
which P(k,k")-theory can be expected to give good results.
Because Figs. 1-4 demonstrate that this characterization holds
for several processes, hereafter we concentrate primarily on
the example of bond percolation.

A. Watts-Strogatz networks

Using the small-world networks introduced by Watts
and Strogatz [33], one can conduct a systematic study
of the effects of the clustering coefficient C and the
mean intervertex distance ¢. We start with a ring of
N = 10000 nodes and connect each node to z = 10 near-
est neighbors. We then randomly rewire a fraction f
of the links in the network [56]. When f = 0, the values
of C and ¢ are both high. When f = 1, the rewired network
is randomized (that is, the node degrees are preserved, but
everything else is random), which yields low C and ¢ values.
For each value of f between 0 and 1, we numerically calculate

the clustering coefficient C s, the mean intervertex distance £z,
and the GCC size S (p) for all values of the bond occupation
probability p between 0 and 1. The difference between S (p)
and the P (k,k’)-theory curve, which we denote by Sy, (p), gives
a quantitative measure for the inaccuracy of the theory for this
particular value of the rewiring parameter f. We define the
error measure

1 M
E =52 1Su(p) = Sp(po), )
i=1

where p;, =i/M for i =1,2,...,M are uniformly spaced
values in the interval [0, 1]. Taking the spacing 1/M to be
sufficiently fine (we use 1/M = 10~3) implies that the error
measure E, approaches the mean vertical distance between
the Sw(p) and Sy (p) curves for p € [0,1].

In Fig. 5, we plot the values of £; — £y, C; (scaled by
a factor of 10 for ease of visualization), and E, (scaled by
a factor of 100) as functions of the rewiring parameter f.
For values of f greater than 1072, the quantities £ rand Ef
exhibit similar behavior, whereas C; remains near its f =0
value of 2/3 until f is much larger [57]. We highlight the
similar scaling of £ ; and E ; in the inset of Fig. 5, in which we
plot £; — ¢, directly as a function of E; for f > 1072 The
approximately linear dependence that we observe contrasts to
the clearly nonlinear relation between E; and the clustering
coefficient Cs that we show in the same inset. This strongly
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suggests that differences between theory and numerics are
related more directly to the mean intervertex distance than to
the clustering coefficient.
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FIG. 5. (Color online) Watts-Strogatz small-world network: We
plot £; — £; (red circles), 10 C; (open squares), and 100 E; (blue
triangles) as functions of rewiring fraction f. (See the main text
for the definitions of these quantities.) The inset shows £, — £, and
C; as functions of E; for f > 1072, Observe the linear relation
between E; and £, — £, which suggests that £ ; — £, might be a good
indicator of how well the bond-percolation process on a network can
be approximated by tree-based theory.

B. Real-world networks and additional examples

Our results for Watts-Strogatz small-world networks mo-
tivate the examination of a range of real-world networks in
order to seek a clear relationship between an error measure
similar to (1) and some other characteristic of the network,
such as clustering coefficient or mean intervertex distance. For
each network, we calculate the inaccuracy of P(k,k’)-theory
in terms of the error £, which measures the distance between
the actual (numerically calculated) GCC size curve Spum(p)
and the theoretical prediction Sy (p):

1 M
E= =23 1S0(p) = Snn(p)l %)

i=l1

Essentially, E gives the mean distance between the numerics
(black disks) and theory (solid blue curve) in Fig. 1. In
Fig. 6(a), we show a scatter plot of log,, E versus log;, C,
where C is the clustering coefficient of each network. We use
logarithmic coordinates in Fig. 6 in order to fully resolve the
range of values for both variables.

We also include synthetic examples, such as Watts-Strogatz
small-world networks and clustered random networks gener-
ated using the models described in Refs. [13,14], which we
now briefly recall [58]. The fundamental quantity defining
the y-theory networks of Ref. [14] is the joint probability
distribution y (k,c), which gives the probability that a randomly
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FIG. 6. (Color online) Scatter plots of log,, E versus (a) log,, C (with R? = 0.087) and (b) log,, [(£ — £1)/z] (with R? ~ 0.94).

chosen node has degree k and is a member of a c-clique (an
all-to-all connected subgraph of ¢ nodes). With y(3,3) =1
(and y (k,c) = O for other values of k and c), each node in such
anetwork has degree 3 and is part of exactly one triangle. This
isequivalent to the p; ; = 1 case in the clustered random graph
model of Ref. [13], where p; ; is the probability that arandomly
chosen node is part of ¢ different triangles and in addition has
s single edges (which do not belong to the triangles). In each
synthetic network, we P-rewire a fraction f of the links and
show our results for f € {1073,4 x 1073,0.04,0.1,0.4}.

In order to assess the strength of a relation between the
theory error E and some characteristic of the network, we cal-
culate the coefficient of determination R? using a linear regres-
sion. For the data in Fig. 6(a), we calculate R?> ~ 0.087 (using
only the points and ignoring the connecting curves that help
identify families of points). This relatively small value indi-
cates that C is not a good predictor of the theory error for the set
of networks that we tested (see Table I). After examining a wide
range of possibilities (see the scatter plots in Appendix B),
we found that the network measure that best correlates with
the error E (on logarithmic scales) is (¢ — £;)/z (which gives
R~ 0.94), where z is the mean degree and ¢; is the mean
intervertex distance in the version of the network that has been
fully rewired while preserving the joint degree distribution
P(k,k") [see Fig. 6(b)]. Recall that one can think of such fully
P-rewired versions of a network as random networks with the
same joint degree-degree distribution P(k,k") and size (that is,
number of nodes) as the original network.

We can summarize our observations as follows. Given
a network, we compare its mean intervertex distance ¢
with the value ¢; in a random network of equal size and
degree correlation matrix P(k,k’). If the difference ¢ — £, is
sufficiently small [for example, if it is less than z/10, as is
the case in Figs. 1(a)-1(b)], then the P(k,k’)-theory can be
expected to accurately give the GCC size, k-core sizes, and
results for several dynamical processes (see Figs. 1-4). For
example, the AS Internet graph has (£ — £;)/z ~ 3.3 x 1072,
and all 100 Facebook networks have values much smaller than
this. However, the theory is not accurate for larger values of
¢ — £,. For example, the PGP and power grid networks have
(€ — £1)/z values of approximately 0.45 and 3.9, respectively.

Because the tree-based theory systematically gives accurate
results for dynamical processes on networks that are not locally
treelike when the intervertex distance is small, it seems that
there must be a deeper argument than is currently known for
the validity of such theories. We show in Appendix A that the
error measure E depends linearly on £ — £; in a certain class of
networks with zero clustering. Although this theoretical result
is restricted in its applicability, it lends weight to our claim that
E depends primarily on £ — £; rather than on the clustering
coefficient C.

One possible explanation for the dependence of E on the
mean intervertex distance £ is the following. The P(k,k’)-
theory assumes that the probability of connection between
any two nodes depends only on their degrees and on nothing
else. One can refer to this property and the networks that
satisfy it as “mixed” to contrast them with real-world networks
with community structure (where nodes belonging to different
communities are much less likely to be connected than if they
were within one community) or networks with a geographic
component (with either explicit effects of geography, as in
planar graphs, or implicit ones, as in the power grid network
or the “sausage-like” networks of Ref. [59], where nodes that
are situated far from each other are less likely to be linked
together). The mean distance £ can be interpreted as a measure
of how much the original network is mixed. If the network
is well mixed, then £ is low (that is, it is similar to the value
in a fully P-rewired version of the network) and the P(k,k’)-
theory will work well on such networks. If the network is
poorly mixed, then the value of £ is higher. When poorly mixed
networks are rewired, the decrease in £ is suggestive of what
is happening: the network community structure or geographic
dependence is gradually destroyed as the network becomes
better mixed.

The fact that clustering apparently does not play a role [see
Fig. 6(a)] might be related to the specific error measure that
we define in Eq. (2) and use in this paper. For example, it
is possible that clustering is crucial only near the percolation
transition point (that is, the value of p at which the GCC
emerges) and therefore does not significantly affect the mean
vertical distance (2) between the curves for bond percolation.
However, geographical or community structure potentially can

036112-7



MELNIK, HACKETT, PORTER, MUCHA, AND GLEESON

PHYSICAL REVIEW E 83, 036112 (2011)

|gocccsoope 1gecooe *o9ey
L P e e R T T ] -
: ¢ (a) Facebook Oklahoma : (b) AS Internet
o
0.8f N 1 08f ! ]
1 1
1 1 [ ]
1 1
0.61 ' 4 0.6f \ |
1 1
1 1
1 1
1 [ ]
0.4r . 4 04r . . 1
1 1
l . y
0.2r ' 4 021 1 1
1 : o
0 S e, o T TIUSNSIP .
P lpsesssenneser— [samnnsmasmmmssasng gy
.". 1 eoeee|” ~ 7|
° : (c) PGP Network 1 (d) Power Grid
1
0.8 °%e 4 0.8F : 1
! 1
! 1
0.6 ' 1 06} ! .
! 1
! 1
! 1
0.4F | % 1041 oo 1
1
: ¢ - _pk—theory .'...o
L - L 1 4
0.2 : N 0.2 = P(k,k")—theory !
1 ° Numerical result for \
ST T heeessess original network
() L L L T 0 L L L
0 0.1 0.2 0.3 0.4 05 0 0.1 0.2 0.3 0.4 0.5
u

FIG. 7. (Color online) Watts threshold model, with threshold mean j and variance o> = 0 (that is, with uniform thresholds) for the

networks from Fig. 1. We use a seed fraction of py = 1072,

play arole throughout the entire range of p from O to 1, leading
to a strong correlation between E and £.

IV. CONCLUSIONS

At the beginning of this paper we posed the following
question: How small must small-world networks be in order for
P(k,k")-theory to give accurate results? Our heuristic answer
is that they must have a value for the mean intervertex distance
£ that differs from the mean intervertex distance in a random
network with the same joint degree distribution P(k,k’) and
number of nodes by no more than about 10% of the mean
degree z. Surprisingly, the level of clustering seems to be much
less important for the accuracy of P(k,k’)-theory, which is why
we found excellent matches between theory and numerical
results, even in highly clustered graphs such as Facebook social
networks and the AS Internet network.

Although we used bond percolation as our primary ex-
ample, Figs. 1-4 suggest that if P(k,k’)-theory is accurate
for percolation, then it also works well for other processes.
However, any measure of accuracy must, of course, depend
on the process under scrutiny. For example, Fig. 7 shows a
comparison between theory and numerical results for the Watts
threshold model in which o = 0, implying that all nodes have
identical thresholds equal to w (in contrast to Fig. 3). This
example exhibits different results for theory and numerics even
in the Facebook networks. This suggests that the o = 0 case
of the Watts model is particularly sensitive to deviations of the

network from randomness and suggests that this case might
provide a suitable testing ground for new analytically tractable
models of networks that include clustering [13,14,22].

In summary, we have shown that for a variety of processes,
including bond percolation and k-core size calculations, tree-
based analytical theory yields highly accurate results for
networks in which £ ~ £; (i.e., when the value of the mean
intervertex distance is close to that for an appropriate random
network), even in the presence of significant clustering. Such
graphs, which include the AS Internet network and Facebook
social networks, are definitively not locally treelike, so the
theory is working very well even in situations where the the-
ory’s fundamental hypothesis is known to fail utterly. The fact
that analytical results for several dynamical processes can be
expected to apply on “sufficiently small” small-world networks
increases the value of existing theoretical work and highlights
the types of processes for which improved analytical modeling
of clustering effects should most profitably be targeted. We
hope that the results of this paper will motivate further research
on the underlying causes of this “unreasonable” effectiveness
of tree-based theory for clustered networks.

ACKNOWLEDGMENTS

S.M., A.H., and J.P.G. acknowledge funding provided by
Science Foundation Ireland under programs 06/IN.1/1366 and
MACSI 06/M1/005. M.A.P. acknowledges a research award
(no. 220020177) from the James S. McDonnell Foundation.

036112-8



UNREASONABLE EFFECTIVENESS OF TREE-BASED . ..

P.J.M. was funded by the National Science Foundation (NSF)
(DMS-0645369). We thank Adam D’Angelo and Facebook
for providing the Facebook data used in this study. We also
thank Alex Arenas, Mark Newman, CAIDA, and Cx-Nets
collaboratory for making publicly available other data sets
used in this paper. We thank Alessandro Vespignani for useful
comments.

APPENDIX A: THE RELATIONSHIP BETWEEN
PREDICTION ERROR AND MEAN INTERVERTEX
DISTANCE

We consider the class of networks for which one can define
a branching matrix [60]. A branching matrix describes the
connection probabilities in treelike networks with nontrivial
structure—for example, in modular networks [61]. In this
Appendix, we derive how the error measure E defined in
Eq. (2) depends on ¢ — ¢; for a network with a branching
matrix when the network is close to fully P-rewired (that
is, when it is close to a random network with the same
joint degree-degree distribution). We give the final formula
in Eq. (A6). Because clustering is negligible in these infinite
networks, E cannot depend on the clustering coefficient C.
In Fig. 6, we illustrate the relationship between E and C and
between E and (£ — €;)/z for real-world networks.

The branching matrix characterizes the mean intervertex
distance £ in a network, and it also determines the bond-
percolation behavior. The largest eigenvalue of the branching
matrix, which we denote by A, determines the percolation
threshold:

1
Pt = %
Additionally, an estimate of the mean intervertex distance can
be written in terms of A as [60]

InN
L~ —,
InA

where N denotes the number of nodes in the network.

We now suppose that the network is almost fully P-rewired,
and we consider how values of A that differ from the fully
P-rewired value (which we denote by 1) affect the values of
£ and pg,. Note that it is easy to calculate A, as the branching
matrix of a fully P-rewired network is given in terms of the
degree correlation matrix P(k,k’) by [60]

P(k,k") ,
—— =(k —1
> pap Y

and A; is the largest eigenvalue of B;. Moreover, for uncorre-
lated networks produced using the configuration model, A; =
>« k(k — 1)pi/z. This implies that 1; = z — 1 for graphs in
which all nodes have the same degree (such as P-rewired
Watts-Strogatz networks and the special cases of y-theory
networks used in Sec. III).

Considering only small deviations from fully P-rewired
values, we write A = A; + AX and £ = £; + A{. Expanding
to linear terms, we find from (A2) that the excess length is

AL InN
b=——"——. (A4)
A(nxp)?

(AL)

(A2)

P(k,k")
kpi/z

Bik,k)= (K —1) (A3)
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FIG. 8. (Color online) Log-log scatter plot of actual (numerical)
values of E for real-world networks versus the values predicted by
Eq. (A6), for which we numerically calculate ¢ and £;. We find that
R? ~ 0.87; the slope of the fitted line is 1.09.

Similarly, we find from (A1) that the change in percolation
threshold is

AA
Apn = —— - (A5)
M
If we now make the further assumption that Apy, is approxi-
mately equal to the error E for the bond-percolation process
[this approximation is exact if the effect of the perturbation is to
shift the entire bond-percolation curve S(p) to S(p + Apwm)],

we obtain the relation
InA;)?
£~ (InAy)
)L] In N

Although the scope of our analysis is obviously limited
by our assumptions, Eq. (A6) nevertheless supports our main
claim that E depends primarily on the excess length £ — £;.
Note that C = 0 for branching-matrix networks, so E is
(trivially) independent of C. Compare this to the results for
real-world networks that we show in Fig. 6(a). Moreover, the
scatter plot of log,, E versus log,,[(In A)2(C — £1)/(A; InN)]
in Fig. 8 indicates that Eq. (A6) gives a good fit (R? ~ 0.87)
even for real-world networks.

(€ —4ty). (A6)

APPENDIX B: SCATTER PLOTS

In this Appendix, we show scatter plots of log,, E versus
a variety of possible predictors (see Fig. 9). Recall that E,
which we defined in Eq. (2), gives an error measure for bond
percolation. We test the possible dependence of E on various
combinations of the mean degree z, mean intervertex distance
£, and clustering coefficients [62]. Recall again that £; denotes
the value taken by ¢ in a fully P-rewired version of a network
(that is, in a random network with the same size and joint
degree-degree distribution).

The scatter plots show data points for real-world networks,
Watts-Strogatz small-world networks, and y -theory networks
(which are described in Sec. III B). The dependence of E on
£ — ¢, is clearly strong (see the top row of scatter plots, which
all have R? > 0.9), whereas the dependence on clustering is
weak (see the bottom row of scatter plots, which all have
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FIG. 9. (Color online) Scatter plots of error E versus various error predictors.

R? < 0.3). Given the relatively small number of available data
sets, we cannot definitively select the best scaling function
F(z,¢,...) for the relation E ~ F(z,¢,...)(£ — £;), but the

satisfactory fits.
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