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We investigate a nonlinear version of coevolving voter models, in which node states and network structure
update as a coupled stochastic process. Most prior work on coevolving voter models has focused on linear
update rules with fixed and homogeneous rewiring and adopting probabilities. By contrast, in our nonlinear
version, the probability that a node rewires or adopts is a function of how well it “fits in” with the nodes in
its neighborhood. To explore this idea, we incorporate a local-survey parameter σi that encodes the fraction
of neighbors of an updating node i that share its opinion state. In an update, with probability σ

q
i (for some

nonlinearity parameter q), the updating node rewires; with complementary probability 1 − σ
q
i , the updating

node adopts a new opinion state. We study this mechanism using three rewiring schemes: after an updating
node deletes one of its discordant edges, it then either (1) “rewires-to-random” by choosing a new neighbor in a
random process; (2) “rewires-to-same” by choosing a new neighbor in a random process from nodes that share
its state; or (3) “rewires-to-none” by not rewiring at all (akin to “unfriending” on social media). We compare
our nonlinear coevolving voter model to several existing linear coevolving voter models on various network
architectures. Relative to those models, we find in our model that initial network topology plays a larger role in
the dynamics and that the choice of rewiring mechanism plays a smaller role. A particularly interesting feature
of our model is that, under certain conditions, the opinion state that is held initially by a minority of the nodes
can effectively spread to almost every node in a network if the minority nodes view themselves as the majority.
In light of this observation, we relate our results to recent work on the majority illusion in social networks.
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I. INTRODUCTION

The spread of opinions and the competition between dif-
ferent opinions is a vital aspect of societal discourse, and
analysis of such phenomena has become increasingly promi-
nent amidst the ubiquity of social media and intensifying
political polarization [1]. Such topics have been studied using
a variety of lenses from numerous disciplines [2–5], including
longstanding efforts to develop mathematical frameworks for
modeling opinion dynamics by employing ideas from subjects
such as statistical physics and nonlinear dynamics [6]. There
has also been much cross-fertilization with research in the
modeling of disease spread [7]. For example, one can examine
the “virality” of memes or seemingly contagious behaviors
[8].

In developing mathematical frameworks for studying
opinion dynamics, incorporating social network structure can
significantly improve both the accuracy of mathematical mod-
els and the understanding of spreading processes [8–10]. For
example, research on the severe acute respiratory syndrome
(SARS) outbreaks by Meyers et al. illustrated the utility of
accounting for social networks when assessing public-health
strategies [11]. This stems from a network’s influence on
the properties of dynamical processes that take place on
them [12]. Additionally, networks themselves are typically
not time-independent, as they often evolve in response
to a dynamical process and in turn influence that process
[13,14]. For instance, in the spread of diseases, networks
of interactions can change as a result of quarantines or
different daily habits when somebody is ill. Similarly,
in social media, individuals can choose to “follow” or

“unfollow” other individuals (or other types of accounts)
in response to posted content. The interplay of dynamics
on networks and dynamics of networks [15] is a rapidly
growing area of study in many disciplines [8,12]. Although
much of the prior work on such “adaptive” (also known
as “coevolving”) network models has focused on studying
the complex behavior of simple models in abstract settings,
there have also been efforts at incorporating further realism
into such models [16] and at applying such models to
study empirical data in situations—including vote shares
in United States elections [17] and the swarming dynamics
of locusts [18]—that can involve notions of “opinions” and
consensus.

A popular family of adaptive network models is coevolving
voter models (CVMs), in which node opinions (the node
states) coevolve with network structure [12]. (These models
are also sometimes called “adaptive voter models.”) Coevolv-
ing voter models combine the classical framework of voter
models [19–21], in which individuals update their opinions
based on their neighbors’ opinions, with an evolving network
structure (in which individuals change their relationships with
other individuals in response to their opinions [22–25]). A
coevolving voter model consists of a network of individuals,
two or more opinion states, and a rule (e.g., in the form of
a stochastic process) for updating both the network and the
states of its nodes or edges. We restrict our attention to a
binary set of opinions, but one can also study models with
more than two opinions [26,27]. There is also an interesting
coevolving opinion model that includes states both on the
nodes and on the edges [28].
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One of the motivations for studying coevolving voter mod-
els is their fascinating dynamics, and scholars have analyzed
them using approaches from subjects like dynamical systems,
statistical physics, partial differential equations, and proba-
bility theory [14,26,29–31]. A particularly interesting aspect
of the dynamics of CVMs is the apparent phase transition
that can occur in “linear” CVMs. In this context, “linear”
refers to the linearity of the rewiring probability function
fr(x) and adoption probability function fa(x). A node with a
fraction x of disagreeing neighbors has a probability fr(x) =
αx (for some parameter α) to rewire and a probability fr(x) =
(1 − α)x to adopt. The parameter α is sometimes called the
“rewiring rate,” and (1 − α) is sometimes called the “adoption
rate.” In some variants of linear CVMs (such as those in
Refs. [26,29]), there appears to be a phase transition as one in-
creases the adoption rate (and thus decreases the rewiring rate)
from a regime of “rapid disintegration” to a regime of “pro-
longed persistence of the dynamics.” In the former regime, a
network separates into components so quickly that the den-
sities of the opinion states are unable to change significantly.
In the latter regime, the system progresses slowly toward a
steady state in which almost every node has the same opinion
state. Basu and Sly recently presented a mathematically rigor-
ous proof of the existence of phase transitions for two variants
of linear CVMs on dense Erdős–Rényi (ER) networks [using
the G(N, p) model with p = 1/2] [32]. However, it has not yet
been proven that a phase transition occurs for sparse networks
or for other classes of dense networks. In Appendix C, we
review some of the existing computational results for these
CVMs on sparse ER networks and present computational
results for these CVMs on sparse networks that we construct
from a stochastic block model (SBM). We demonstrate that,
although these linear CVMs modify the structure of their
associated network, their steady-state behavior appears to be
insensitive to the examined initial network structures in a
sense that we make precise in Appendix C. For over a decade,
linear CVMs have been a challenging, popular, and fruitful
topic to study. From a practical perspective, however, nonlin-
earity appears to be a critical ingredient for coevolving voter
models. For example, Couzin et al. [33] successfully predicted
the existence of novel collective behaviors of schooling fish
using nonlinear adaptive-network models.

A key contribution of the present paper is the introduc-
tion of a nonlinear coevolving voter model. In our setting,
individuals seek to achieve social harmony (in the form of
having the same opinion state as all of their neighbors) by
rewiring and adopting at rates that depend on the states of
their neighbors in a nonlinear way. Each node is in one of
two states, and neighboring nodes “agree” if they are in the
same state and “disagree” if they are in different states. We
refer to edges between agreeing neighbors as concordant and
edges between disagreeing neighbors as discordant. When
updating, a node that is not in a local consensus (i.e., it
disagrees with at least one neighbor) performs one of two
actions with respect to a disagreeing neighbor: (1) it adopts the
opinion of the disagreeing neighbor, causing other neighbors
who had been in agreement with it to now disagree; or (2) it
abandons the edge that connects it to the disagreeing neighbor
and possibly forms a new connection. Similar to the CVM in
Ref. [26], a node makes a random choice between options (1)

and (2). However, unlike in that model, the probability that
a node chooses a given option is not homogeneous; instead,
it depends nonlinearly on the states of the node’s neighbors.
In our model, nodes conduct a local survey of all of their
neighbors. Those who agree with a large fraction of their
neighbors (i.e., those who “fit in”) are more likely to choose
to remove a discordant edge and possibly rewire, rather than
adopting a disagreeing neighbor’s opinion (which can place
a node in a local minority). Conversely, nodes that are in
a local minority among their neighbors are more likely to
adopt a neighbor’s opinion (which can place a node in a local
majority), instead of removing a discordant edge and possibly
rewiring.

A node’s local survey provides it with a sample view of a
population. The sample is susceptible to bias, as nodes survey
only their neighbors in a network. Under certain conditions,
the local surveys can accurately estimate global statistics,
such as an opinion’s popularity, which is equal to the fraction
of nodes that hold that opinion. However, it is possible to
configure systems such that the sampling bias leads nodes
to construe globally popular opinions as locally unpopular,
and vice versa. In some situations, we find in our nonlinear
CVM that when the local surveys of certain nodes are so
distorted that they perceive the minority opinion to instead
be the majority opinion, almost every node eventually adopts
the opinion that was initially unpopular. Consequently, such
distorted sampling in local surveys, which we relate to recent
work by Lerman et al. [34] on what they called the “majority
illusion,” has important implications for the dynamics of our
nonlinear CVM.

In our paper, we examine three different rewiring schemes,
which we illustrate in Fig. 1. In Sec. II, we present a gen-
eral framework for coevolving voter models. In Sec. III,
we explore a “rewire-to-random” (RTR) scheme, in which
nodes sever connections (specifically, discordant edges) with
disagreeing neighbors and replace them with new connections
to nodes in a way that is agnostic to opinion states. In
Sec. IV, we explore a “rewire-to-same” (RTS) scheme, in
which nodes sever connections with disagreeing neighbors
and replace them with new connections to nodes that share
their opinion state. Finally, in Sec. V, we explore a “rewire-to-
none” (RTN) scheme, in which nodes sever connections with
disagreeing neighbors without forming any new connections
to other nodes. This third type of rewiring models behavior on
social media in which individuals “unfriend” (or “unfollow”)
someone after a disagreement [35–37]. A fascinating feature
of linear CVMs is that the choice of rewiring scheme has a
dramatic impact on their steady-state properties [29]. How-
ever, for our nonlinear CVM, the choice between the above
rewiring schemes does not seem to have major qualitative
effects on their steady-state behavior.

In Sec. VI, we summarize our results and discuss pos-
sibilities for future work. We find that our nonlinear CVM
has several features, such as a strong dependency on network
structure, that distinguish it from previously studied linear
CVMs. We give additional details, computations, and analysis
in appendices. We provide details of our mean-field calcula-
tions in Appendix A. In Appendix B, we give complete algo-
rithms for our nonlinear CVM with RTS and RTN schemes. In
Appendix C, we examine a linear CVM with the RTR, RTS,
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FIG. 1. Illustration of the three rewiring schemes that we examine in our nonlinear CVM. The highlighted edges in the top part of the figure
(i.e., above the thick black arrows) are the discordant edges that we will rewire, and the highlighted nodes are the focal nodes. The bottom part
of the figure shows all possible rewiring outcomes for each scheme. (Left) Rewire-to-random (RTR) scheme, in which the focal node either
rewires to some node to which it is not adjacent or restores the original edge; see Sec. III for details. (Center) Rewire-to-same (RTS) scheme,
in which the focal node rewires only to nodes that share its opinion state; see Sec. IV for details. (Right) Rewire-to-none (RTN) scheme, in
which we delete the discordant edge; see Sec. V for details.

and RTN rewiring schemes to facilitate comparisons with our
nonlinear CVM. For one of our case studies, we simulate our
nonlinear CVM with the RTR scheme for a wider range of
parameter values in Appendix D.

II. COEVOLVING VOTER MODELS

We now formally introduce nonlinear coevolving voter
models (CVMs). In all variants of our nonlinear CVM, we
consider binary opinion states O = {A, B} and networks with
finitely many nodes (i.e., vertices) and edges. A state of the
system, which we call a “system state” to distinguish it from
an opinion state, is specified by a triple (V, E , S), where V
is the set of nodes (which represent individuals), N := |V |
denotes the number of nodes, E is the set of edges (which rep-
resent undirected and unweighted ties between individuals),
and S : V → O is a function that records the opinion state (or
simply the “state”) of each node. For simplicity, we disallow
multiedges (i.e., more than one edge between two individuals)
and self-edges (i.e., an edge between an individual and itself).
In Sec. IV, we discuss some situations in which we can relax
these stipulations.

The systems that we study evolve between system states
in a stochastic, memoryless fashion, so we can construe each
such system as a first-order Markov chain. The set V of nodes
remains fixed as a system evolves, but the set E of edges and
the state function S can update. When we refer to the edge set
or the state function at a certain time, we use the notation E (t )
and St to explicitly indicate dependence on time, but otherwise
we suppress explicit notation for time. When evaluating the
function S for a specific node, we use square brackets, so S[i]
indicates the state of node i and St [i] indicates the state of
node i at time t . We use ED [and ED(t ) when specifying the
time t explicitly] to denote the set

ED = {(u, v) ∈ E : S[u] �= S[v]} (1)

of discordant edges, which are edges between disagreeing
nodes, in E [and E (t )]. The closed neighborhood of node i
is

�(i, E ) = { j ∈ V : (i, j) ∈ E} ∪ {i} . (2)

It consists of the set of nodes that are adjacent to i, as well as
node i itself.

An important choice to make when defining update rules
for a voter model is the use of synchronous versus asyn-
chronous updating. Synchronous updating entails updating
all of the nodes in unison at each time step. By contrast, in
asynchronous updating, one chooses a node (at random using
a specified random process) at each step to interact with one
of its neighbors, while the state of the rest of the system
is fixed. If the random process for choosing which node to
update has a uniform distribution over the nodes, then after N
steps in an asynchronous voter model, one updates each node
once on average in an N-node network. This corresponds to
one time step in a synchronous voter model [38]. Therefore,
when comparing an asynchronous voter model that uses a
uniform random distribution to a synchronous voter model,
the former evolves at a rate that is scaled by 1/N relative to
the latter. The choice between synchronous and asynchronous
updating is an important one, as it can have significant effects
on the dynamics of voter models (in addition to the time
scaling), including differences in the number of absorbing
states [39]. See Refs. [40–42] for discussions of the effects
of synchronous versus asynchronous updating in voter models
and in evolutionary games. In our analysis of coevolving voter
models, we find that it is simpler to define update rules in an
asynchronous manner [43].

After choosing to do asynchronous updating, one then
chooses between “node-based” and “edge-based” updating.
In node-based voter models, in each step, one first selects a
node i (at random following some distribution over the set of
nodes) and then chooses a neighbor j (at random following
some distribution over the set of neighbors of node i). If

062303-3



YACOUB H. KUREH AND MASON A. PORTER PHYSICAL REVIEW E 101, 062303 (2020)

node i is isolated, the system does not change in that step.
Another modeling choice that one needs to make is whether
to update node i or node j. Under “direct node-based” rules,
one updates the state of node i by copying the state of node
j; under “reverse node-based” (which is also called “invasion
process”) rules, the roles are switched, so one updates the
state of node j by copying the state of node i [38]. The two
node-based rules place focus on the entities of a network. By
contrast, under edge-based (i.e., “link-based”) rules, in each
step, one first selects an edge (i, j) at random following some
distribution over the set of edges and then uniformly randomly
selects one of the edge’s incident nodes to update.1 That is,
with equal probability, one updates node i by copying the
state of node j or one updates node j by copying the state
of node i. The seemingly minor choice between direct node-
based, reverse node-based, and edge-based rules can have very
substantial effects on the dynamics of a voter model, including
on convergence time and steady-state behavior [12,14,44,45].
One can observe an immediate difference between the three
rules based on how they bias the relationship between
the degrees of nodes i and j. In the above node-based rules,
the expected degree of node j can be (and, in common spec-
ifications, often is) larger than the expected degree of node
i. By contrast, in the above edge-based rules, it follows from
symmetry that nodes i and j have identical expected degrees.

In our CVMs, we use asynchronous edge-based updates,
and we perform one update for each elementary time step t =
{1, 2, . . .}. In an elementary time step, we select a discordant
edge (i, j) uniformly at random from ED. Alternatively, one
can think of choosing the edges from E according to the
probability mass function

fE ((i, j)) =
{

1
|ED| , (i, j) ∈ ED

0 , (i, j) /∈ ED .

The only effect on the dynamics of choosing directly from
ED, rather than from E , is that we can skip steps in which
nodes i and j already share the same state, as such steps do
not affect the state of the system. This leads to a logarithmic
speedup in the time to reach a steady state (compare this to the
coupon-collector problem [46]) and was called an “efficient
version” of CVMs in Ref. [47]. We then select one of the two
nodes (which we can take to be the one with the label i without
loss of generality) at random with equal probabilities to be the
primary node; we take the other node ( j) to be the secondary
node. After selecting the primary node i, it takes a local survey
of it neighbors. We measure the result of the local survey
by calculating σi := si/ki, where si = |{ j : (i, j) ∈ E , S[i] =
S[ j]}| and ki is the degree of node i. We also define s̄i :=
ki − si, which counts the number of discordant edges that are
incident to node i. Therefore, σi is the fraction of neighbors of
node i that agree with i. For node i to be selected for updating,
it needs to have at least one disagreeing neighbor (i.e., at least
one discordant incident edge), so σi ∈ [0, 1). Note that σi is
not defined for isolated nodes; however, because our CVM is

1One can also use some other probability distribution to select an
incident node to update, but we are not aware of research that has
done so.

edge-based, it is not possible to select an isolated node for
updating.

III. REWIRE-TO-RANDOM

A. Model and associated discussion

Our nonlinear CVM has a parameter q that is akin to a
parameter in nonlinear q-voter models [48]. With probability
σ

q
i , node i in a network performs a rewiring action, in which

it deletes its edge to the chosen secondary node and then ran-
domly forms a new edge to a node that is not currently one of
its neighbors. One needs to choose a probability distribution
for this random process. In the first variant of our CVM, we
suppose that node i selects a node uniformly at random from
the network. (The original node j from which i just deleted an
edge is available for selection.) This type of rewiring scheme,
which yields an edge between node i and any node (irrespec-
tive of its opinion state), is known as a “rewire-to-random”
(RTR) strategy [29]. With complementary probability 1 − σ

q
i ,

node i takes an adoption action, in which it adopts the opinion
state of the chosen secondary node. We then repeat this
process until there are no discordant edges in the network.
If the system reaches a system state with no discordant edges
at time t∗, then the dynamics reach a steady state, and we say
that the system “terminates” at that system state, such that the
system remains in that system state for all t � t∗. Both the
rewiring and adoption actions conserve the number of edges,
so |E (t )| is constant in time. Recently, Min and San Miguel
[49] introduced a nonlinear CVM that also incorporates such
a parameter q. Under their direct node-based rules, once one
selects a node i, it is with probability (1 − σi )q that node i
performs any update at all, and then a separate parameter p
determines the relative probabilities of rewiring and adoption
actions. This differs from our edge-based rules; under our
rules, when we select a node i to update, σ

q
i determines the

relative probabilities of rewiring and adoption actions.
When q is a positive integer, one can interpret our updating

process above as the primary node selecting a panel of q of its
neighbors uniformly at random (with repetition allowed). This
panel need not include the secondary node. If any member of
the panel is in a different opinion state from the primary node,
the latter undertakes an adoption action. Only when the panel
and the primary node are all in the same opinion state does
the primary node perform a rewiring action. We summarize
the rewiring process in Algorithm 1 and give a schematic of
the process in one elementary time step in Fig. 2.

Because σi ∈ [0, 1) for nodes that can update, it follows
that in the q → ∞ limit, we recover a voter model with only
adoption (and no rewiring). However, as q → 0+, we do not
recover a model with only rewiring, because for some nodes
i, it can be the case that σi = 0 if all of node i’s incident
edges are discordant; in that case, node i performs an adoption
action for all q > 0. In the present paper, we also perform
simulations with q = 0; for these simulations, we take 00 to
be 1 to recover a pure rewiring model.

The nonlinear CVM that we just described is an absorbing
Markov chain. The absorbing system states are those in which
a network has no discordant edges. Such a situation occurs
when each connected component of the network is in a
consensus, but it does not necessarily require all components
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ALGORITHM 1. Nonlinear Rewire-to-Random (RTR) Coevolving Voter Model.

1: Procedure FITTINGINVM(V, E , S, q) � Input: Initial network and opinion states
2: ED ← Discordant (V, E , S); t ← 0; Record (V, E , S, t )
3: While ED �= ∅ do � While there are disagreeing neighbors
4: (i, j) ← RandomChoice(ED )
5: PrimaryNode, SecondaryNode ← RandomPermutat ion(i, j)
6: σ ← LocalVote(PrimaryNode,V, E , S)
7: u ← Uni f orm(0, 1)
8: if u � σ q then � Rewire
9: E .remove(PrimaryNode, SecondaryNode)

10: NewNeighbor ← RandomChoice(V \ �(PrimaryNode, E )) � See Eq. (2)
11: E .add (PrimaryNode, NewNeighbor)
12: else � Adopt
13: S[PrimaryNode] ← S[SecondaryNode]
14: ED ← Discordant (V, E , S); t ← t + 1; Record (V, E , S, t )

to achieve a consensus with the same opinion state. There has
been significant prior work on noisy voter models [50,51],
and some recent work has studied noisy CVMs with random
opinion-state mutations [52]. In these systems, in addition to
the rewiring and adoption updates, there is also a mechanism
that alters the opinion states of nodes according to some
random process. Incorporating such noise yields a Markov
chain that no longer is absorbing, because the system can
exit a system state with component-wise consensus through
random creation of discordant edges. The resulting models are
ergodic, so one can approximate the non-Markovian second-
order (and higher-order) moment terms [see Eq. (3)] using
Markovian terms [31].

FIG. 2. Schematic of an elementary time step in our nonlinear
CVM. We highlight the selected discordant edge and the primary
node. With probability 1 − σ q, the primary node adopts the opinion
state of its neighbor that is incident to this discordant edge. With
complementary probability σ q, the primary node performs a rewiring
action. Under a rewire-to-random (RTR) scheme, there are three
possible outcomes of rewiring (see Fig. 1). Each of the possible
rewiring outcomes is equally probable. (For the rewire-to-same
scheme, the depicted outcome is the only possible one, so it occurs
with probability 1 if there is a rewiring action.) The value of σ in this
example is 1/2.

A complete description of the system state is given
by (V, E , S). Even for small networks, this amount of
information is difficult to study, so we seek a coarse-grained
description of our CVM’s dynamics [53]. One type of sum-
mary is a count of “state-specified motifs,” which are sub-
graphs H in which the nodes of H are in specified states.
Relevant counts of state-specified motifs include

(1) NX (t ) = |{i ∈ V : St [i] = X }|, the number of nodes i
at time t that are in opinion state X ∈ O = {A, B};

(2) NXY (t ) = |{(i, j) ∈ V × V : (i, j) ∈ E (t ), St [i] =
X, St [ j] = Y }|, the number of node pairs (i, j) at time t in
which i and j are adjacent, node i is in state X ∈ O = {A, B},
and node j is in state Y ∈ O; and

(3) NXY Z (t ) = |{(i, j, k) ∈ V × V × V : (i, j), ( j, k) ∈
E (t ), St [i] = X, St [ j] = Y, St [k] = Z}|, the number of node
triples (i, j, k) at time t in which i and j are adjacent, j and k
are adjacent, node i is in state X ∈ O = {A, B}, node j is in
state Y ∈ O, and node k is in state Z ∈ O.

Note that

NA(t ) + NB(t ) = N ,

NAA(t ) + NAB(t ) + NBA(t ) + NBB(t ) = 2|E | ,
NAB(t ) = NBA(t ) = |ED(t )| .

We refer to a triple in the NXY Z count as an XY Z-triple. One
can also compute counts for state-specified motifs with more
than three nodes, but we will not need them. Because the
node set V is fixed, it is convenient to examine state densities
NX (t )/N , which give the fraction of nodes in a state X . We
are also interested in the expected values (i.e., “moments”) of
these quantities [7]. Three examples of moments are

[X ] = [X ](t ) = 〈NX (t )〉 = E[NX (t )] ,

[XY ] = [XY ](t ) = 〈NXY (t )〉 = E[NXY (t )] ,

[XY Z] = [XY Z](t ) = 〈NXY Z (t )〉 = E[NXY Z (t )] . (3)

We compare our rewire-to-random model (see
Algorithm 1) to the rewire-to-random (RTR) CVM that
was described in Ref. [29]. Although there are many possible
variants, we henceforth write “the linear RTR-CVM” when
referring to this specific model. In the linear RTR-CVM,
the system updates in a way that is similar to our nonlinear
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RTR-CVM, except that the probability for which action to
take is given by a parameter α ∈ [0, 1]. With probability α,
a node performs a rewiring action; with probability 1 − α,
it adopts a neighbor’s opinion. Therefore, in the linear
RTR-CVM, until ED = ∅, the count NA(t ) increases by 1
with probability 1−α

2 , decreases by 1 with probability 1−α
2 ,

and does not change with probability α in each elementary
time step. If we take α = 0 (entailing that the network
topology never changes) and begin with a finite, connected
network (V, E ), then NA(t ) behaves equivalently to a simple,
symmetric, one-dimensional (1D) random walk [54] (i.e., the
two possibilities each have a probability of 1/2) [55] on the
integers with boundary {0, N}. This implies that for any finite,
connected network, the probability at time t that opinion state
A eventually becomes the consensus opinion state is NA(t )

N .
For α > 0, the quantity NA(t ) behaves like a symmetric, 1D
random walk with step sizes +1 and −1 that each occur with
equal probability 1−α

2 and a no-move (“null”) step that occurs
with probability α.

In the linear RTR-CVM, it is equivalent to take the view
that one is choosing the type of action (rewire or adoption)
before choosing which node of the selected edge is the pri-
mary one. This makes it clearer that even when the number
of nodes in state A is not equal to the number of nodes in
state B [i.e., when NA(t ) �= NB(t )], a rewiring action causes
the number NAB(t ) of discordant edges to decrease by 1/2
in expectation, regardless of the system state. By contrast,
the effect of an adoption on the number NAB(t ) of discordant
edges does depend on the system state, and it is possible for
an adoption to increase NAB(t ) in expectation. As an extreme
case, consider a star network with a hub node in state A and
k leaf nodes, and suppose that one node is in state B but all
others are in state A. An update step is guaranteed to select
the network’s single discordant edge; if an adoption occurs,
NAB(t ) increases by k−3

2 in expectation. However, for a system
on a degree-regular network (i.e., a network in which each
node has the same degree) that satisfies the conditions

σi ≈ NA(t )/N for all nodes i in state A ,

σ j ≈ NB(t )/N for all nodes j in state B , (4)

an adoption causes NAB(t ) to decreases by 1 in expectation.
We use the term locally well mixed for a system on any
network that satisfies the conditions in Eq. (4), which entails
that there are no correlations between the opinion states of
nodes and the network topology. In a recent paper, Lee et al.
[56] defined a related quantity called social perception bias
that measures the ratio of a node’s perception of the fraction
of nodes whose opinion state is in the minority to the true
fraction of nodes in the minority, where a value of 1 implies
perfect perception of the frequency of the minority state in a
network. Using this terminology, one can alternatively char-
acterize a system as locally well mixed using the condition
that all nodes have a social perception bias that is close
to 1. One can give a mathematically precise definition of
“locally well mixed” in the limit that the number N of nodes
becomes infinite. Specifically, a system is locally well mixed
if almost all nodes have a social perception bias of 1 − o(1) as
N → ∞.

In our nonlinear CVM, there is no longer a symmetry
between the two nodes that are incident to the same discordant
edge (i, j). The local survey σi of node i can differ from the
local survey σ j of node j, so the probabilities for which action
(rewiring or adoption) occurs depend on which node is the
primary one. That is, in an update that involves node i in state
A and node j in state B [i.e., after one selects the discordant
edge (i, j), but before selecting which node is the primary

one], NA(t ) either (1) increases by 1 with probability
(1−σ

q
j )

2 ,
corresponding to node j adopting node i’s state; (2) decreases

by 1 with probability (1−σ
q
i )

2 , corresponding to node i adopting

node j’s state; or (3) remains the same with probability
σ

q
i +σ

q
j

2 ,
corresponding to either node i rewiring or node j rewiring.
Therefore, although we can still view NA(t ) as a 1D random
walk, it is no longer symmetric, because the step probabilities
can differ from each other.

The effect of this asymmetry on NAB(t ) is more subtle.
Consider a locally-well-mixed system on a connected net-
work. We also assume that one of the states, which we take
to be B without loss of generality, is the majority [so NB(t ) >

NA(t )]. In an elementary time step, suppose that we select the
discordant edge (i, j) with node i in state A and node j in
state B. The local surveys then satisfy σi < 1/2 < σ j . When
q = 1, this implies that if i is the primary node, it is more
likely to adopt than to rewire. If node i adopts state B, then
NAB(t ) decreases by more than 1 in expectation, because more
of i’s neighbors are in state B than in state A. If node j is the
primary node, it is more likely to rewire than to adopt. If node
j rewires to a node that we choose uniformly at random, then
NAB(t ) decreases by NB(t )/N > 1/2 in expectation. Overall,
we observe that the number NAB(t ) of discordant edges de-
creases more rapidly in our nonlinear CVM than it does in
the linear RTR-CVM under locally-well-mixed conditions.
Additionally, our nonlinear CVM has rather different dynam-
ics when it is locally well mixed than when it is not locally
well mixed. In Sec. III D, we explore how to construct systems
with correlations between nodes’ opinion states and network
topology, and we investigate how their dynamics differ from
situations in which a system is locally well mixed.

B. Simulations on Erdős–Rényi networks

We begin exploring nonlinear RTR-CVM by simulating
it on Erdős–Rényi (ER) G(N, p) networks. We seed each
realization with an ER network with N = 50 000 nodes, half
of which begin in state A and the other half of which begin
in state B. The edge probability p is 4

N−1 , so the mean
degree is 〈k〉 ≈ 4. Here and throughout our paper, when we
simulate a voter model, we let the system evolve until it
terminates in an absorbing steady state (i.e., until there are
no discordant edges). This yields a “terminal” state. We focus
on studying properties of terminal states, so we are interested
in what happens as t → ∞. For example, we examine the
terminal state densities NA(t )/N and NB(t )/N and the terminal
minority-state density min{NA(t )/N, NB(t )/N}.

In Fig. 3(a), we plot the terminal minority-state density
from simulations for a range of values of q with discretization
�q = 0.02. When q < 1, we observe that the minority-state
density is approximately 0.5. This implies that the network
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(a) (b)

FIG. 3. Terminal density for (a) the minority state and (b) state A in rewire-to-random (RTR) simulations (see Algorithm 1) of our nonlinear
CVM for q ∈ [0, 6] with discretization �q = 0.02. For each value of q, we simulate 20 realizations. We seed each realization with a different
ER network with N = 50 000 nodes and edge probability p = 4

N−1 . We initialize half of the nodes in state A and the other half in state B. In
(a), each green point is the mean over the 20 realizations of min{NA(t )/N, NB(t )/N} at the termination of a simulation. In (b), each small blue
dot is NA(t )/N at the termination of a simulation. Each cross (×) in (b) is the mean over the 20 realizations of NA(t )/N at the termination of a
simulation.

is fragmented, in the sense that it is separated into multiple
components that are disconnected from one another, such that
all nodes of a component are in the same opinion state. This
behavior is similar to the fragmentation that was observed
in Ref. [29] for the linear RTR-CVM with sufficiently large
rewiring rates. We interpret such fragmentation as individuals
segregating into isolated communities, in which no pair of
disagreeing individuals are neighbors of each other. This
typically occurs when rewiring actions dominate the sys-
tem, such that the state densities NX (t )/N do not change
significantly. As we consider progressively larger values of
q between 1 and 3.5, we observe a smooth transition (with
an inverted “S” shape) in the terminal minority-state density
from approximately 0.5 to approximately 0.03. The small
terminal minority-state densities for larger values of q suggest
that adoption actions dominate the system, leading to large
changes in the state densities. For expository convenience, we
say that “almost every” node ends up in state X if 90% or
more of the nodes are in state X when a system terminates
by reaching an absorbing state. (In these scenarios, the per-
centage of nodes in state X is often much larger than 90%, but
we use this cautious phrasing because of particular examples.)
Initially, NA(0)/N = NB(0)/N = 1/2. However, by the end of
a simulation, one of the opinion states dominates, in the sense
that max{NA(t )/N, NB(t )/N} ≈ 1. The other nearly vanishes,
so min{NA(t )/N, NB(t )/N} ≈ 0, as one can see in Fig. 3(a).

In Fig. 3(b), we plot the terminal density of state A from
simulations for a range of values of q. In this plot, each of
the small blue dots is the terminal value of NA(t )/N for one
of the 20 realizations that we simulate for each value of q.
The crosses (×) indicate the means over these realizations
of the terminal quantity of NA(t )/N for each value of q. In
the “branching” of the data points in this figure, we observe
what appears to be a transition between a fragmentation
regime (with no significant changes to state densities)
and a regime with competition between the adoption and
rewiring mechanisms. Because our initial state densities are

NA(0)/N = NB(0)/N = 1/2 in these simulations, it is equally
likely for almost every node to terminate in state A as it is
for almost every node to terminate in state B. We confirm this
result in the means of the terminal state-A densities that we
plot in Fig. 3(b).

With respect to coarse qualitative behavior, both our non-
linear RTR-CVM and the linear RTR-CVM of Ref. [29]
have a regime—when q � 1 for our model, and when 1 −
α � 0.2 for the linear RTR-CVM—in which rewiring dom-
inates the system, a possibility that is suggested by terminal
minority-state densities that are close to the starting densities
of 0.5. However, outside this regime, the two models differ
significantly, as one can see by comparing Fig. 3(b) with
Fig. 14(a) (see Appendix B). The linear RTR-CVM appears
to have a continuous (but nonsmooth) phase transition from
the rewiring-dominated regime to a regime in which rewiring
and adoption are competitive [29–31]. In our nonlinear RTR-
CVM, there seems to be a smooth transition between a regime
in which rewiring dominates and a regime in which adoption
dominates.

C. Approximations

Although mean-field approximations have been unable
thus far to produce precise quantitative results in previous
work on CVMs, they have been useful for exploring some
of their qualitative behavior [44,57–60]. Writing a mean-field
approximation of our model will require developing a mean-
field analog of σi. We consider a state-heterogeneous mean,
so we average the local surveys of nodes in state A and
separately average the local surveys of nodes in state B. First,
we consider the unweighted mean

σA =
∑

{i:S[i]=A, ki �=0} σi∑
{i:S[i]=A, ki �=0} 1

. (5)

The unweighted mean σA is useful because it has a simple
interpretation and is well-approximated [61] by NAA(t )

NAA(t )+NAB (t ) .
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We will use the unweighted mean σA in Sec. III D 3, but it is
not suitable as a mean-field approximation of our nonlinear
RTR-CVM. In edge-based models such as ours and the linear
RTR-CVM of Ref. [29], nodes are not equally likely to be
selected for an update. Instead, the probability to select a
node increases with its number of neighbors in the other
opinion state, as nodes with more such neighbors contribute
more edges to the set ED of discordant edges (from which we
sample uniformly). Therefore, a suitable mean-field analog of
σi should weight each node i based on its probability of being
selected. The probability that we select a particular node i to
be the primary node in an update is

1

2

ki − si

NAB(t )
= 1

2

s̄i

NAB(t )
, (6)

where s̄i is the number of discordant edges that are incident
to node i and the 1/2 accounts for the random choice between
the primary and secondary nodes. Therefore, our mean-field
analogs of σi, which we denote by σX for X ∈ {A, B}, are

σA =
∑

{i:S[i]=A, ki �=0}
σi

1

2

ki − si

NAB(t )

= 1

2NAB(t )

⎡
⎣NAA(t ) −

∑
{i:S[i]=A, ki �=0}

s2
i

ki

⎤
⎦, (7)

σB = 1

2NAB(t )

⎡
⎣NBB(t ) −

∑
{i:S[i]=B, ki �=0}

s2
i

ki

⎤
⎦. (8)

The equation for the first moment, which we express in
terms of state A, is

d[A]

dt
= ([AB] + [BA])

(
σ

q
A − σ

q
B

)
. (9)

Equation (9) arises from taking the difference of the “incom-
ing rate” (i.e., nodes that change their state to A) minus the
“outgoing rate” (i.e., nodes that change their state from A) to
determine the net rate of opinion changes into state A. Nodes
in state B that are adjacent to a node in state A adopt state A
at rate 1 − σ

q
B . Nodes in state A that are adjacent to a node in

state B adopt state B at rate 1 − σ
q
A . Summing these rates over

all nodes gives ([AB] + [BA])(1 − σ
q
A ). Similarly, the rate at

which nodes in state B adopt state A is ([AB] + [BA])(1 − σ
q
B ).

Equation (9) indicates that the local surveys, which we
capture in our mean-field approximation by σA and σB, have
a global effect on the drift of opinion states, as they control
the sign of d[A]

dt . (By contrast, d[A]
dt = 0 in the linear RTR-

CVM of Ref. [29].) This suggests that network structure
plays a more prominent role in how [A] and [B] evolve in
our nonlinear RTR-CVM than in the linear RTR-CVM. For
example, consider a network with two communities, where
one community is densely connected and consists of CA nodes
in state A and the other community is sparsely connected and
consists of CB nodes in state B. We suppose that the second
community is larger than the first (i.e., CB > CA). We also
suppose that the two communities are linked to each other
(in a way that we will make more precise in Sec. III D).
When we select a discordant edge (i, j) with node i in state
A and node j in state B, the local surveys satisfy σi > σ j . On

average, at least initially, we expect that more nodes in state B
convert to state A than the reverse. However, the values of σA

and σB can change rapidly in nonobvious ways as the system
evolves, potentially reversing the sign of d[A]

dt . Therefore, it
is not guaranteed that such a two-community network will
terminate in a state with a large fraction of nodes in state A. In
fact, as we will see in Sec. III D, whether this occurs depends
on the nonlinearity parameter q.

D. Simulations on stochastic block models

To explore how mesoscale network structures impact the
dynamics of our nonlinear RTR-CVM, we simulate it on
networks that we seed with such structures using a stochastic
block model (SBM) [62,63]. We assign each of the N nodes of
a network to one of two blocks, which we call “community” a
and “community” b. Community a consists of cN nodes and
community b consists of (1 − c)N nodes, with c < 1/2. That
is, community b has more nodes than community a. In our
discussion, we seed all nodes in community a with opinion
state A and all nodes in community b with opinion state B. We
examine two types of mesoscale structures: “two-community
structures” and “core–periphery structure.”

1. Two-community SBM

To create a two-community network in which the smaller
community (i.e., community a) is denser than the larger
community (i.e., community b), the edge-probability matrix

P =
(

Paa Pab

Pba Pbb

)
(10)

has probabilities that satisfy Paa > Pbb > Pab = Pba. We ini-
tialize our simulations with networks with c = 1/4, and we
set the SBM parameters to be Paa = 12

cN−1 , Pbb = 4
(1−c)N−1 [so

that NAA(0) ≈ NBB(0)], and Pab = 1/N . In our simulations,
we check that the expectations of σA and σB satisfy the
inequality E[σA(0)] > E[σB(0)]. See Appendix A for details.
Accordingly, we expect that, at least initially, the density
NA(t )/N of state A increases as the system evolves. In Fig. 4,
we plot NA(t )/N for the first 10 000 elementary time steps
of simulations for nine different values of q. In this plot, we
show the initial (and transient) dynamics, rather than the full
temporal evolution of our simulations to termination. The plot
confirms the initial increase of NA(t )/N . However, in Fig. 5(a),
we observe that—despite this initial increase—the terminal
value of NA(t )/N depends on the nonlinearity parameter q.

In Fig. 5(a), we plot the terminal state-A density from 20
simulations for each q. For q ∈ [0, 3.8), between approxi-
mately 25% and 60% of the nodes terminate in state A, imply-
ing that the network fragments into multiple components. We
observe what may be a hybrid phase transition [64,65] at qcr ≈
3.8, where there appears to be a higher-order transition (i.e.,
at least second order) just to the left of qcr and a first-order
transition just to the right of qcr. For q ∈ (qcr, 6.2), almost
every node terminates in state A in all of our realizations,
suggesting that rewiring dynamics are not fragmenting the
system into multiple components. For q ∈ (6.2, 7), either
almost every node terminates in state A or almost every node
terminates in state B, and the latter occurs in progressively
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FIG. 4. Density NA(t )/N of state A for the first 10 000 elementary
time steps for nine values of q in rewire-to-random (RTR) simula-
tions (see Algorithm 1) of our nonlinear CVM. We seed each of the
nine realizations with two-community SBM networks (as described
in Sec. III D 1). We show only initial and transient dynamics. For the
terminal behavior of the simulations, see Fig. 5(a).

more realizations as we increase q. Although we do not show
this in Fig. 5(a), the system has an additional regime for suffi-
ciently large q. In this regime, the adoption action dominates
and the system behaves like a voter model that does not coe-
volve with network structure (see Appendix D). In this situa-
tion, state A becomes the consensus opinion with probability
NA(0)/N = c = 1/4.

In Fig. 15(a) (see Appendix C), we conduct simulations
using the linear RTR-CVM seeded with a two-community
SBM network with the same parameter values. We observe
that Fig. 15(a) resembles the outcome of initializing the linear
RTR-CVM with an ER network. [See Fig. 14(b) in Appendix
C.] This suggests that, with respect to terminal state densities,
the linear RTR-CVM may be less sensitive than our nonlinear
RTR-CVM to initial community structure in a network.

As we show in Appendix A, we are able to numeri-
cally approximate the quantity E[σA(0)q − σB(0)q] for two-
community SBM networks. We find that it depends on the
parameters q, c, Paa, Pab, and Pba. As the system evolves,
however, it becomes challenging to track E[σA(t )q − σB(t )q]
over time t . Nevertheless, from Fig. 5(a), we know that the
temporal evolution is affected by the value of the nonlinearity
parameter q.

2. Core–periphery structure

We now investigate the dynamics of our nonlinear RTR-
CVM with σA(0)  σB(0) and NA(0) � NB(0) using a core–
periphery configuration of the SBM [66,67]. Our initial net-
work now has a small, densely connected core of nodes in
state A and a large periphery of sparsely connected nodes in
state B. We label the core as block a and the periphery as block
b. In this core–periphery network, the SBM probabilities in
Eq. (10) satisfy Paa > Pab > Pbb. In this scenario, a node i’s
local survey σi differs from the true global densities. For
core nodes, σi > 1/2, so such nodes believe that their state
(namely, state A) is the majority state, even though it is
not. Conversely, for the peripheral nodes, σ j < 1/2, so such
nodes believe that their state (i.e., state B) is the minority
state, even though it is not. When q = 1, if we select a core
node as the primary node in an update, it is more likely
to rewire than to adopt, at least initially. However, as most
nodes are in state B initially, the core node is likely to
rewire to another node in state B. If we select a peripheral
node as the primary node for an update, it is more likely to
adopt than to rewire. At least initially, such adoptions convert
peripheral nodes from the majority state B to the minority
state A.

In our simulations of our nonlinear RTR-CVM on SBM
networks with core–periphery structure, we take 3NA(0) =
NB(0), and we set the probabilities to be Paa = 20

NA(0)−1 , Pbb =
1

NB (0)−1 , and Pab = 5
N . In Fig. 5(b), we plot the terminal

density of state A for various values of q from simulations

(a) (b)

FIG. 5. Terminal density of state A from rewire-to-random (RTR) simulations (see Algorithm 1) for our nonlinear CVM with q ∈ [0, 12]
and discretization �q = 0.04. For each value of q, we simulate 20 realizations. In (a), we seed each realization with two-community SBM
networks (as described in Sec. III D 1). In (b), we seed each realization with an SBM network with core–periphery structure (as described in
Sec. III D 2). We plot individual realizations with blue dots and means over the 20 realizations with × symbols.
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FIG. 6. Unweighted means [σA (solid blue curves) and σB (solid
red curves)] of local surveys for nodes in states A and B [see Eq. (5)
for details] and global state densities [NA/N (dashed blue curves) and
NB/N (dashed red curves)] of states A and B versus elementary time
steps in four rewire-to-random (RTR) simulations (see Algorithm 1)
of our nonlinear CVM. We seed each realization using the SBM two-
community structure that we described in Sec. III D 1.

on networks with N = 50 000 nodes. We observe a transition
in the qualitative dynamics when q is in the interval (4, 4.5).
As we increase q from 0 to 4, there are progressively more
nodes that terminate in state A before the network fragments,
with approximately 90% of the nodes terminating in state A
when q = 4. When q ∈ (4, 4.5), the system appears to exhibit
a phase transition that is similar to that of the ostensible
hybrid phase transition of Fig. 5(a). In this case, however, the
hybrid transition is discontinuous. In Appendix D, we explore
q ∈ [0, 100]. For q ∈ (4.5, 39), we find that almost every node
terminates in state B (see Fig. 19 in Appendix D).

3. Majority and minority illusions

Recent work by Lerman et al. [34] on the “majority illu-
sion” in social networks examined the phenomenon of dis-
torted local observations when an opinion state that is globally
rare in a network may be dramatically overrepresented in
the local neighborhoods of many individuals. Using a model
of threshold opinion dynamics, Lerman et al. illustrated that
majority illusions can accelerate the spread of states that are
initially rare. For our work with binary opinion states, we
find it useful to distinguish between two different types of
“illusions.” By a majority illusion, we mean the phenomenon
of nodes in a minority state perceiving their state to be in the
majority. Analogously, by a minority illusion, we mean the
phenomenon of nodes in the majority state perceiving their
state to be in a minority. In a model with binary opinion
states, the minority illusion implies that nodes in the majority
state incorrectly perceive that the minority state is held by the
majority of nodes.

In our nonlinear CVM, a node i’s local survey σi is based
on a sample of the global population. In a locally-well-mixed
system [see Eq. (4)], the sample leads to good estimates of
the global densities NA(t )/N and NB(t )/N . However, when
seeding the system as in Sec. III D 1 and Sec. III D 2, the

FIG. 7. Unweighted means [σA (solid blue curves) and σB (solid
red curves)] of local surveys for nodes in states A and B [see Eq. (5)
for details] and global state densities [NA/N (dashed blue curves) and
NB/N (dashed red curves)] for states A and B versus elementary time
steps in four rewire-to-random (RTR) simulations (see Algorithm
1) of our nonlinear CVM. We seed each realization using the SBM
core–periphery structure that we described in Sec. III D 2.

samples are biased initially. In Fig. 6 and Fig. 7, we plot the
means of the local surveys σA (solid blue curves) and σB (solid
red curves) versus elementary time steps and compare them
to the true global densities, NA(t )/N (dashed blue curves) and
NB(t )/N (dashed red curves), for simulations on systems that
we seed with two-community structure (see Fig. 6) and core–
periphery structure (see Fig. 7). We calculate the unweighted
means σA and σB from Eq. (5), so we are treating all local
surveys equally. In mathematical language, assuming that
state A is in the minority [i.e., NA(t )/N < 1/2], the majority
illusion occurs when σA > 1/2. Analogously, assuming that
state B is in the majority [i.e., NB(t )/N > 1/2], the minority
illusion occurs when σB < 1/2. In Table I, we summarize how
we seed networks with different types of “illusions” using an
SBM network with NA(0) = cN and c < 1/2.

In Fig. 6, we seed the system using the SBM two-
community structure that we described in Sec. III D 1. Ini-
tially, the larger community (which has 3/4 of the nodes) con-
sists of nodes in state B, and the smaller community (which
has the remaining 1/4 of the nodes) consists of nodes in state
A. However, the local surveys of the nodes in the smaller
community lead them to perceive state A as the majority state
and thus state B as the minority. Similarly, the local surveys

TABLE I. Summary of SBM parameters that we use to seed a
network with a majority illusion, a minority illusion, both types of
illusions, or neither illusion using an SBM network with NA(0) = cN
nodes in state A and c < 1/2.

Illusion Edge probabilities

No illusion Paa = Pab = Pbb

Majority illusion for A c
1−c Paa  Pab

Minority illusion for B 1−c
c Pbb � Pab

Both illusions 1−c
c Pbb � Pab � c

1−c Paa
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of the nodes in the larger community lead them to perceive
state B as the majority state and thus state A as the minority.
In other words, the larger community of nodes (which are in
the majority state) correctly believe that their state is in the
majority. However, the smaller community of nodes (which
are in the minority state) experience a majority illusion, as
they incorrectly believe that their state is in the majority.

As we observed in Fig. 5(a), the effect on the terminal
densities of initializing the system with a majority illusion
depends on the value of the nonlinearity parameter q. For
q = 0, in which only rewiring occurs, the state densities do not
change, but the system fragments, such that each node only
has neighbors that share its opinion state. Therefore, σA and
σB increase to 1, and the majority illusion of state A increases
in severity. For q = 4, the illusion becomes a reality, in the
sense that NA/N increases to match σA. The system ultimately
reaches an absorbing state with most nodes in state A, but there
are still small clusters of nodes in state B, so σB increases to 1
near the end of a simulation (because we take the mean over
only these nodes). For q = 8 and q = 12, the nodes “wise up,”
in the sense that σA decreases to match NA/N . The system
ultimately reaches an absorbing state with most nodes in state
B, but there are still small clusters of nodes in state A that
cause σA to increase to 1 near the end of our simulations.

In Fig. 7, we seed the system using the SBM core–
periphery structure that we described in Sec. III D 2. Initially,
all peripheral nodes (which constitute 3/4 of the nodes) are in
state B, and the core nodes (which constitute the remaining
1/4 of the nodes) are in state A. The local surveys of the
peripheral nodes lead them to perceive state B as the minority
state and thus state A as the majority. Similarly, the local
surveys of the core nodes lead them to perceive state A as
the majority state and thus state B as the minority. The core
nodes (which are in the minority state) experience a majority
illusion, incorrectly believing that their state is in the majority.
Conversely, the peripheral nodes (which are in the majority
state) experience a minority illusion, incorrectly believing that
their state is in the minority.

As we saw for two-community structure (see Fig. 6), the
effect of the majority and minority illusions depends on the
value of the nonlinearity parameter q in our networks with
core–periphery structure (see Fig. 7). For q = 0, in which
only rewiring occurs, state densities do not change, but the
network fragments, such that each node only has neighbors
that share its opinion state. Therefore, σA and σB increase to
1, and the majority illusion for state A increases in severity,
but the minority illusion for state B dissipates. For q = 4, the
majority illusion for state A becomes a reality, in the sense that
NA/N increases to match σA. The minority illusion for state B
also becomes a reality, in the sense that NB/N decreases to
match σB initially. However, σB increases to 1 near the end of
a simulation, because there are still small clusters of nodes in
state B and σB is a mean over only these nodes. For q = 8 and
q = 12, the nodes wise up to both illusions, as σA decreases
to match NA/N and σB increases to match NB/N . The system
ultimately reaches an absorbing state with most nodes in state
B, but there are still small clusters of nodes in state A that
cause σA to increase to 1 near the end of our simulations.

The examples in this subsection demonstrate that, under
certain conditions, seeding our nonlinear RTR-CVM with

illusions can lead to the spreading of initially rare opin-
ion states. For instance, when we seed the system with an
SBM two-community network such that there is a majority
illusion but not a minority illusion and take the value of
the nonlinearity parameter to be q = 4, almost every node
adopts the initially rare opinion state in all realizations of
our simulations. However, under other conditions, seeding the
system with illusions can also stifle the spread of initially
rare opinion states. For example, when we seed the system
with core–periphery structure with both types of illusions and
take the value of the nonlinearity parameter to be q = 8, the
rare opinion state vanishes almost entirely in all realizations
of our simulations. This behavior contrasts sharply with what
we observe in the linear RTR-CVM, in which the probability
that an initially rare opinion state spreads, conditioned on the
event that an opinion state does indeed spread, is equal to
the initial fraction of nodes in the rare state. In other words,
the rewiring rate α in the linear RTR-CVM affects whether
some opinion state spreads to almost every node, but the
initial state densities determine the probability of which state
it will be. By contrast, the nonlinearity parameter q in our
nonlinear RTR-CVM affects not only whether some opinion
state spreads to almost every node but also the probabilities of
which state it will be. See Appendix C for details.

IV. REWIRE-TO-SAME

A. Model

In this section, we explore our nonlinear CVM with a
“rewire-to-same” (RTS) scheme. We give a formal description
of it in Algorithm 2 in Appendix B 1. The key difference
from the RTR scheme is that when rewiring occurs in the
RTS scheme, the primary node deletes its discordant edge to
the secondary node and then forms an edge with a node that
we choose uniformly at random from the set of nodes in the
same opinion state as the primary node. In Appendix C 2, we
compare our nonlinear RTS-CVM of Algorithm 2 to the linear
RTS-CVM of Ref. [29]. Based on previous work [30,32], it
seems that RTS schemes have been more difficult to analyze
quantitatively than RTR schemes in linear CVMs.

To fully specify the RTS scheme, we start by examining a
peculiarity of the RTS scheme. What happens when a rewiring
action cannot take place, because the primary node is already
adjacent to all nodes in its opinion state (including the trivial
case in which there are no other nodes in its state)? This
situation is likely to arise if a system approaches consensus
or if a network is densely connected (specifically, if the mean
degree satisfies 〈k〉 � N/2) [32,47]. There are several possible
rules to employ, and the choice of rule may affect both the
outcome and the analysis. Possible specifications include the
following:

(1) stipulate that there is no replacement edge;
(2) stipulate that we instead perform an RTR action;
(3) stipulate that the recently deleted discordant edge re-

forms;
(4) stipulate that the recently deleted discordant edge re-

forms and that the primary node instead performs an adoption
action; and

(5) stipulate that we allow multiedges, self-edges, or both.
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FIG. 8. Terminal density of state A in rewire-to-same (RTS)
simulations (see Algorithm 2) for our nonlinear CVM for q ∈ [0, 6]
with an increment of �q = 0.02. For each value of q, we simulate
20 realizations. We seed each realization with a different ER network
with N = 50 000 nodes and an edge probability of p = 4

N−1 , and we
initialize half of the nodes in state A and the other half in state B.
We plot individual realizations with blue dots and means over the 20
realizations with × symbols.

Each of these choices either introduces a new mechanism,
such as edge deletion, or changes the class of allowed net-
works. (Previously, we demanded that networks have neither
self-edges nor multiedges.) We choose to use option (1) of
letting no replacement edge form, such that |E (t )| is no longer
a conserved quantity. By contrast, recent work on CVMs on
dense random graphs allowed the formation of multiedges
[32].

B. Simulations

We first simulate our nonlinear RTS-CVM on ER net-
works. In Fig. 8, we observe similar qualitative behavior as we
did in our nonlinear RTR-CVM [see Fig. 3(b)]. Specifically,
there seems to be a continuous transition between fragmen-
tation and consensus regimes. One difference between these
two models is that the transition occurs at about q ≈ 4.5 in
the RTS variant of the model. The similarity of these two
models contrasts starkly with results for the linear CVM of
Ref. [29]; the behavior of that linear CVM differs significantly
under the two rewiring schemes. [See Fig. 14(a) and Fig. 16 in
Appendix C.] Prior research on linear CVMs suggests that the
rewiring scheme affects linear CVMs significantly because
of strong correlations between network structure and node
states that arise from RTS actions, but not from RTR actions
[14]. By contrast, the similarity of results between the RTR
and RTS variants for our nonlinear CVM suggests that such
correlations play a less prominent role in our model than they
do in the previously studied linear CVMs.

The sketch in Fig. 9 illustrates what Demirel et al. [14]
reported as a “typical” configuration that is near fragmentation
for a linear RTS-CVM. As the system evolves, nodes group
into communities, which are connected to each other by only
a few edges. Occasionally there is an adoption that creates
many discordant edges that are concentrated at one node.

FIG. 9. “Typical” configuration near fragmentation for a linear
RTS-CVM. In this example, the highlighted node has changed from
opinion state A to opinion state B, and all of its previously concordant
edges have become discordant. Several discordant edges are now as-
sociated with a single node, thereby inducing ABA-triple correlations.
(This illustration is our version of Fig. 5 of Ref. [14].)

This leads to a disproportionately large number of ABA-triples
that are concentrated on one node and constitutes a strong
three-node correlation. However, in our nonlinear RTS-CVM,
such situations occur much less frequently than they do in
the linear RTS-CVM of Ref. [29]. In fact, in our nonlinear
CVM, the more ABA-triples that a node in state A would create
by adopting state B, the less likely it is to adopt state B. To
illustrate this observation, suppose that node i is in state A and
has at least two neighbors in state A. If we select node i for an
update, it adopts state B with probability 1 − σ

q
i , where σi is

the fraction of nodes that are adjacent to node i and are also
in state A. Consequently, the probability of node i creating
ABA-triples by adopting state B decreases as the number of
concordant edges that are incident to node i (i.e., the edges
that would form the ABA-triples) increases.

In Fig. 10, we plot the temporal evolution of the un-
weighted means, σA and σB, of local surveys and compare

FIG. 10. Unweighted means [σA (solid blue curves) and σB (solid
red curves)] of local surveys for nodes in states A and B [see Eq. (5)
for details] and global state densities [NA/N (dashed blue curves) and
NB/N (dashed red curves) for states A and B, respectively] versus
elementary time steps in four RTS simulations (see Algorithm 2) of
our nonlinear CVM. We seed each realization with an ER network
with N = 50 000 nodes and edge probability p = 4

N−1 , and we
initialize half of the nodes in state A and the other half in state B.
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(a) (b)

FIG. 11. Terminal density of state A for RTS simulations (see Algorithm 2) of our nonlinear CVM for nonlinearity parameters q ∈ [0, 12]
with an increment of �q = 0.04. For each value of q, we simulate 20 realizations. In (a), we seed our simulations with the two-community
SBM networks that we described in Sec. III D 1. In (b), we seed our simulations with the SBM core–periphery structure that we described in
Sec. III D 2. We plot individual realizations with blue dots and means over the 20 realizations with × symbols.

them to global state densities (as in Sec. III D 3). We observe
fragmentation in our simulations with q = 0, q = 2, and
q = 4. Fragmentation causes the local surveys of nodes to
become distorted, because nodes are in clusters and have no
neighbors in a different state. This leads to a weak form of a
majority illusion for nodes in each opinion state. Although
roughly half of the nodes are in state A and roughly half
are in state B, almost every node perceives its own state to
be in the majority. In our simulations with q = 6, we again
initially observe a weak majority illusion for nodes in both
states. As the system evolves, the density of state A decreases
and σA decreases commensurately, but nodes in state A still
experience a majority illusion. The system ultimately reaches
an absorbing state with most nodes in state B, but there are
still small clusters of nodes in state A that cause σA to increase
to 1 near the end of our simulations.

We conclude this section on our nonlinear RTS-CVM by
conducting simulations that we seed with (1) two-community
structure and (2) core–periphery structure using SBM net-
works (see Sec. III D). In Fig. 11(a), we observe that our
nonlinear RTS-CVM seeded with two-community structure
exhibits qualitatively similar long-time behavior as our non-
linear RTR-CVM seeded with the same two-community struc-
ture [see Fig. 5(a)]. Nevertheless, simulations using these two
rewiring schemes do exhibit quantitative differences, such
as in the locations of the transitions between regimes with
qualitatively different terminal statistics. In Fig. 11(b), we see
that the results of simulations of our nonlinear RTS-CVM that
we seed with core–periphery structure are similar to those of
our nonlinear RTR-CVM seeded with the same structure [see
Fig. 5(b)].

V. REWIRE-TO-NONE

A. Model

We now examine our nonlinear CVM with edge dele-
tion, which we call “rewire-to-none” (RTN) to parallel the
rewire-to-random and rewire-to-same terminology. In this

RTN-CVM, adoption occurs with probability 1 − σ
q
i , and

edge deletion occurs with probability σ
q
i ; there are no

replacement edges. We give a precise description of this
model in Appendix B 2.

There have been a few studies of RTN schemes in opinion
models. For example, [68,69] examined an RTN scheme in
a linear CVM. Additionally, a bounded-confidence opinion
model with edge deletion (to model unfollowing on social
media) was studied very recently in Ref. [70]. In Appendix
C 3, we investigate a linear CVM with our RTN scheme both
analytically and computationally. There are many reasons
to study an RTN mechanism in opinion models. In some
sense, the edge-deletion mechanism is simpler than mech-
anisms that require additional parameters and specification
of a rewiring rule [71]. Moreover, edge deletion may also
be more relevant than rewiring for internet social dynamics,
because individuals perform actions such as “unfriending” or
“unfollowing” without necessarily “friending” or “following”
another account [3–5]. Edge deletion is also an important net-
work mechanism in the structural evolution of social networks
[72,73].

B. Simulations

We seed our nonlinear RTN-CVM with ER G(N, p) net-
works with N = 25 000 nodes and an edge probability of
p = 4

N−1 , and we initialize half of the nodes in each network
in state A and the other half of the nodes in state B. We plot
the terminal state density of A in Fig. 12. When q = 0, nodes
do not adopt new opinions, so state densities do not change.
With edge deletion (i.e., the RTN mechanism), fragmentation
of a network into disconnected components can occur for a
wide range of q values (up to at least q = 20). This is a larger
range than what we observed for the RTR and RTS schemes
for our nonlinear CVM. For the RTR scheme, we did not
observe fragmentation for q � 3; for the RTS scheme, we did
not observe fragmentation for q � 5.5.

We conduct simulations using two-community SBM net-
works (see Sec. III D 1) to seed the system. We plot the
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FIG. 12. Terminal density of state A in rewire-to-none (RTN)
simulations (see Algorithm 3) of our nonlinear CVM for q ∈ [0, 40]
with an increment of �q = 0.2. For each value of q, we simulate 20
realizations. We seed each realization with a different ER network
with N = 25 000 nodes and an edge probability of p = 4

N−1 , and we
initialize half of the nodes in state A and the other half in state B.
We plot individual realizations with blue dots and means over the 20
realizations with × symbols.

terminal density of state A in Fig. 13(a). For q ∈ (0, 8.5),
we observe that the two communities separate from each
other and that there are no signficant changes to the densities
of opinion states. In contrast to the RTR scheme that we
illustrated in Fig. 5(a) and the RTS scheme in Fig. 11(a), for
the nonlinear RTN-CVM, we do not observe any values of q
in which almost every node terminates in state A for every
realization of a simulation. Near q ≈ 9.52, state A spreads to
most nodes in most realizations, with a mean terminal density
of approximately 0.75 over the 20 realizations. However, for
some realizations near q ≈ 9.52, almost every node termi-
nates in state B.

Finally, we simulate our nonlinear RTN-CVM model using
SBM core–periphery networks (see Sec. III D 2) to seed the

system. In Fig. 13(b), we observe that the RTN scheme
produces terminal behavior that is qualitatively very similar
to what we observed with the RTR [see Fig. 5(b)] and RTS
[see Fig. 11(b)] schemes.

VI. CONCLUSIONS AND DISCUSSION

We explored a nonlinear coevolving voter model in which
nodes take local information into consideration for their
update actions, and we examined variants of our model
with three different rewiring schemes: rewire-to-same, rewire-
to-random, and rewire-to-none (i.e., “unfriending”). In our
nonlinear CVM, each node can be in one of two opinion
states. Additionally, updates are edge-based and occur asyn-
chronously. An updating node i surveys its neighbors and
records the fraction σi that share its opinion state. With prob-
ability σ

q
i , for a nonlinearity parameter q, the node rewires a

selected discordant connection; otherwise, with complemen-
tary probability 1 − σ

q
i , it adopts a new opinion state.

By conducting extensive numerical simulations, we ob-
served that our nonlinear CVM exhibits qualitatively similar
characteristics as the linear CVM of Ref. [29] with respect
to terminal state densities when both models are initial-
ized on ER networks with equal state densities NA(0)/N =
NB(0)/N = 1/2. For example, both types of models possess a
regime with rapid fragmentation into communities of different
opinion states and a regime in which the system reaches
a consensus. However, when we seed our nonlinear CVM
with more complicated network structures, such as ones with
community structure or core–periphery structure, we observed
striking differences between our nonlinear CVM and the
aforementioned linear CVM. In these scenarios, when the
nodes have distorted views of local densities—such that they
believe that they are in the majority or minority when the
opposite is true—the value of the nonlinearity parameter q
has a major effect on terminal state densities. For certain
values of q and certain initial network topologies, the ini-
tially minority state consistently became the consensus in our
simulations; for other values of q, the initially majority state

(a) (b)

FIG. 13. Terminal density of state A in simulations of our nonlinear RTN-CVM for q ∈ [0, 12] with an increment of �q = 0.04. For each
value of q, we simulate 20 realizations. In (a), we seed the system with the two-community SBM networks that we described in Sec. III D 1.
In (b), we seed the system with the SBM core–periphery networks that we described in Sec. III D 2. We plot individual realizations with blue
dots and means over the 20 realizations with × symbols.
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consistently became the consensus. Although further analysis
(especially of finite-size effects) is necessary, our work sug-
gests that, on certain networks, our nonlinear CVM exhibits
a rich assortment of phase transitions. The impact of initial
network topology on terminal state densities distinguishes our
nonlinear CVM from the linear CVM of Ref. [29]. We also
demonstrated that unlike the linear CVM of Ref. [29], which
is very sensitive to the choice of rewiring mechanism, our
nonlinear CVM yields qualitatively similar behavior with both
the RTR and RTS mechanisms.

Our nonlinear CVM also exhibits fascinating manifesta-
tions of both majority and minority illusions. For example,
we observed that majority illusions can arise as a system
evolves, and we also found that such illusions can resolve in
different ways (e.g., by becoming true or by nodes wising up)
for different values of the nonlinearity parameter q.

Our investigation of our nonlinear CVM raises several
interesting questions. For example, we noted in Sec. IV and
Sec. V that the differences in model behavior from rewiring
schemes in our nonlinear CVM are far less pronounced than
they are in the linear CVM of Ref. [29] (see Appendix C),
and it is desirable to develop a mechanistic understanding of
this qualitative difference between these families of models.
It will also be interesting to develop precise conditions that
determine when majority and minority illusions arise in our
nonlinear CVM. Such illusions can either accelerate or stifle
the spread of rare opinion states, so it is worthwhile to develop
an understanding of the mechanisms that lead to these effects.
To examine these ideas further, it will be interesting to explore
the dynamics of our models on a larger variety of networks,
such as those that were developed recently by Stewart et al.
[74]. It is also desirable to extend tools for approximating the
dynamics of linear CVMs (such as approximate master equa-
tions [75] and pair approximations [76]) to nonlinear CVMs.

There are also many fascinating ways to extend our nonlin-
ear CVM. We anticipate that it will be particularly interesting
to incorporate ideas from recent efforts that have examined the
effects of noise (e.g., random state mutations) [52], hipsters
(in the form of nodes that try to be in a minority) [77], and
zealots (in the form of nodes that do not change states) [78].
Another worthwhile direction is to study adaptive opinion

models with continuous opinions (e.g., using a bounded-
confidence mechanism) [70,79,80].

Opinions and social networks are coupled to each other
intimately in a complex way. Developing and refining models
for coevolving opinions and social networks can help improve
understanding of both their relationships with each other
and their impact on political and social polarization, echo
chambers, and other social phenomena.
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APPENDIX A: MEAN-FIELD APPROXIMATION
FOR LOCAL SURVEYS

In Sec. III C, we explored a mean-field approximation of
our nonlinear CVM with an RTR scheme. This necessitated
finding a suitable mean-field analog of the local surveys σi.
We considered a state-heterogeneous approximation, in which
we separately average over nodes in state A and state B.
Denoting these approximations as σA and σB, we saw in
Eqs. (7) and (8) that

σA = 1

2NAB

⎛
⎝NAA −

∑
{i:S[i]=A, ki �=0}

s2
i

ki

⎞
⎠ (A1)

and

σB = 1

2NAB

⎛
⎝NBB −

∑
{i:S[i]=B, ki �=0}

s2
i

ki

⎞
⎠. (A2)

Equivalently, we can write

σA =
∑

{i:S[i]=A, s̄i �=0}

sis̄i

(si + s̄i )
∑

{ j:S[ j]=A} s̄ j
(A3)

and

σB =
∑

{i:S[i]=B, s̄i �=0}

sis̄i

(si + s̄i )
∑

{ j:S[ j]=B} s̄ j
. (A4)

We seek to compute E[σA(0)] for systems that we seed with two-community SBM networks. (If we take all edge probabilities
in the SBM to be equal, we obtain ER networks.) We calculate

E[σA(0)] = E

⎡
⎣ ∑

{i:S[i]=A, s̄i �=0}

sis̄i

(si + s̄i )
∑

{ j:S[ j]=A} s̄ j

⎤
⎦ =

∑
{i:S[i]=A, s̄i �=0}

E

[
sis̄i

(si + s̄i )
∑

{ j:S[ j]=A} s̄ j

]

≈ NA(0){1 − exp[PabNB(0)]} × E

[
sis̄i

(si + s̄i )
∑

{ j:S[ j]=A} s̄ j

∣∣∣∣∣s̄i > 0

]
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= NA(0){1 − exp[PabNB(0)]} × E

⎡
⎣ sis̄i

(si + s̄i )
(

s̄i + ∑
{ j:S[ j]=A, j �=i} s̄ j

)
∣∣∣∣∣∣s̄i > 0

⎤
⎦. (A5)

The quantity si is the number of neighbors of node i that have the same opinion as i; it is distributed binomially with parameters
n = NA(0) − 1 and p = Paa. The quantity s̄i is the number of neighbors of node i that have a different opinion from i; it is
distributed binomially with parameters n = NB(0) and p = Pab. There are NA(0) nodes in state A; with probability [1 − (1 −
Pab)NB (0)], each such node has at least one discordant edge. In the N → ∞ limit, there are NA(0)[1 − exp(PabNB(0)] nodes in state
A with at least one discordant neighbor. We use this expression as a large-N approximation in Eq. (A5). In this approximation,
we replace summing over nodes that are in state A and are incident to at least one discordant edge by multiplying by the expected
number of such nodes.

Edges in our SBM networks are independent of each other, so si, s̄i, and s̄ j are all independent random variables. For
convenience, we define the notation z := ∑

{ j:S[ j]=A, j �=i} s̄ j . The sum of independent and identically distributed binomial random
variables is another binomial random variable, so z is distributed binomially with parameter values n = (NA(0) − 1)NB(0) and
p = Pab. Using the law of the unconscious statistician, we obtain

E

[
sis̄i

(si + s̄i)(s̄i + z)

∣∣∣∣s̄i > 0

]
=

∑
ti�0, t̄i�1, t�0

[ ti t̄i
(ti+t̄i )(t̄i+z) P(si = ti )P(s̄i = t̄i )P(z = t )

]
1 − P(s̄i = 0)

. (A6)

With Eq. (A6), we can numerically approximate E[σA(0)] for both ER and two-community SBM networks.

APPENDIX B: ALGORITHMS FOR NONLINEAR
COEVOLVING VOTER MODELS

1. Rewire-to-same (RTS) model

In Algorithm 2, we present the precise rules for our non-
linear CVM with a rewire-to-same scheme (i.e., for our non-

linear RTS-CVM). Specifically, we use an RTS scheme that
stipulates that there is no replacement edge when a primary
node attempts to rewire, but is unable to do so (see Sec. IV).
We use the notation VX to denote the set of nodes that are in
state X .

ALGORITHM 2. Nonlinear Rewire-to-Same (RTS) Coevolving Voter Model

1: Procedure FITTINGINVM(V, E , S, q) � Input: Initial network and opinion states

2: ED ← Discordant (V, E , S); t ← 0; Record (V, E , S, t )

3: VA ← GetNodesByState(V, S, A); VB ← GetNodesByState(V, S, B)

4: while ED �= ∅ do � While there are discordant neighbors

5: (i, j) ← RandomChoice(ED )

6: PrimaryNode, SecondaryNode ← RandomPermutat ion(i, j)

7: σ ← LocalVote(PrimaryNode,V, E , S)

8: u ← Uni f orm(0, 1)

9: Potent ialNewNeighbors ← VS[PrimaryNode]\�(PrimaryNode, E )

10: if u � σ q then � Rewire

11: E .remove(PrimaryNode, SecondaryNode)

12: if Potent ialNewNeighbors �= ∅ then

13: NewNeighbor ← RandomChoice(Potent ialNewNeighbors)

14: E .add (PrimaryNode, NewNeighbor)

15: else � Adopt

16: S[PrimaryNode] ← S[SecondaryNode]

17: VA ← GetNodesByState(V, S, A); VB ← GetNodesByState(V, S, B)

18: ED ← Discordant (V, E , S); t ← t + 1; Record (V, E , S, t )
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ALGORITHM 3. Nonlinear Rewire-to-None (RTN) Coevolving Voter Model

1: procedure FITTINGINVM(V, E , S, q) � Input: Initial network and opinion states
2: ED ← Discordant (V, E , S); t ← 0; Record (V, E , S, t )
3: while ED �= ∅ do � While there are discordant neighbors
4: (i, j) ← RandomChoice(ED )
5: PrimaryNode, SecondaryNode ← RandomPermutat ion(i, j)
6: σ ← LocalVote(PrimaryNode,V, E , S)
7: u ← Uni f orm(0, 1)
8: if u � σ q then � “Rewire”
9: E .remove(PrimaryNode, SecondaryNode)

10: else � Adopt
11: S[PrimaryNode] ← S[SecondaryNode]
12: ED ← Discordant (V, E , S); t ← t + 1; Record (V, E , S, t )

2. Rewire-to-none (RTN) model

In Algorithm 3, we present the precise rules for our nonlin-
ear CVM with a rewire-to-none (i.e., edge deletion) scheme.
We use the acronym RTN-CVM for this model.

APPENDIX C: LINEAR COEVOLVING VOTER MODELS

1. Linear rewire-to-random (RTR) CVM

We compare the simulation results for our nonlin-
ear CVM with a rewire-to-random scheme to the linear
rewire-to-random CVM that was studied in Ref. [29]. We
seed the system using ER G(N, p) networks with N = 20 000
nodes and an edge probability of p = 4

N−1 . In Fig. 14(a), we
initialize half of the nodes in state A and the other half in state
B. In Fig. 14(b), we initialize 1/4 of the nodes in state A and
the other 3/4 of the nodes in state B. In each of the two panels,
we plot the terminal density of state A for 20 realizations of
the simulations for each value of q. For each value of q, we

also show the means over the 20 realizations of the terminal
densities.

In Fig. 14(a), when 1 − α � 0.25, rewiring actions domi-
nate. The fraction of nodes that terminate in state A is approx-
imately constant, with a value of 0.5. For progressively larger
values of 1 − α (i.e., as we consider a progressively smaller
rewiring rate α and hence a progressively larger adoption
rate), rewiring and adoption actions begin competing and the
plot appears to branch, with one branch decreasing to 0 and
the other increasing to 1 as 1 − α → 1. This illustrates that,
by the time the system terminates, there are larger changes
to the state densities of the system for progressively larger
values of 1 − α. Because the system begins with NA(0)/N =
NB(0)/N = 1/2, terminating along either branch [i.e., whether
there is a positive or negative change for NA(t )/N] is equally
probable, as indicated by the values of the means of the
terminal state-A densities.

When 1 − α = 1, no rewiring occurs, so isolated nodes do
not change their opinion state. In our simulations in Fig. 14(a),
the seed ER networks have an expected mean degree of 4. In

(a) (b)

FIG. 14. Terminal density of state A in simulations for the linear RTR-CVM from Ref. [29] for α ∈ [0, 1] with a step size of �α = 0.01.
For each value of α, we simulate 20 realizations. We seed each realization with a different ER network with N = 20 000 nodes and an edge
probability of p = 4

N−1 . In (a), we initialize half of the nodes in state A and half of the nodes in state B. In (b), we initialize 1/4 of the nodes
in state A and 3/4 of the nodes in state B. We plot individual realizations with blue dots and means over the 20 realizations with × symbols.
Note that the horizontal axis is (1 − α).
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(a) (b)

FIG. 15. Terminal density of state A in simulations of the linear RTR-CVM from Ref. [29] for α ∈ [0, 1] with a step size of �α = 0.01.
For each value of α, we simulate 20 realizations. In (a), we seed each realization with a different two-community SBM network (as described
in Sec. III D 1). In (b), we seed each realization with a different core–periphery structure using SBM networks (as described in Sec. III D 2).
We plot individual realizations with blue dots and means over the 20 realizations with × symbols.

our realizations, the seed networks have a largest connected
component (LCC) that consists of approximately 98.2% of the
nodes on average, and most of the other nodes have degree 0.
When the system terminates and the nodes in the LCC settle
in either state A or state B, approximately 0.9% of nodes are in
the other opinion state, because we initialize half of the nodes
in each state and those nodes never update their states.

In Fig. 14(b), we observe behavior that is qualitatively
similar to that in Fig. 14(a). For 1 − α � 0.35, rewiring
actions dominate. The fraction of nodes that terminate in
state A is approximately constant, with a value of 0.25. For
progressively larger values of 1 − α, rewiring and adoption
actions begin competing and the plot appears to branch, with
one branch decreasing to 0 [indicating a negative change to
NA(t )/N] and the other increasing to 1 [indicating a positive
change to NA(t )/N] as 1 − α → 1. Unlike in Fig. 14(a),
we begin with NA(0)/N = 1/4, so we expect only 1/4 of
the realizations to terminate along the upper branch [i.e.,
with a positive change to NA(t )/N], which is what we
observe by examining the means of the terminal state-A
densities.

We also consider a linear RTR-CVM in which we seed the
system with two-community structure using SBMs. We use
the same parameter values as in Sec. III D 1, so NA(0)/N =
1/4 of the nodes are in state A. In Fig. 15(a), we plot the
terminal density of state A from our simulations. The plot has
roughly the same shape as when we seeded the linear CVM
with an ER network [see Fig. 14(b)]. When 1 − α � 0.2,
rewiring actions dominate. The terminal minority-state den-
sities are constant, with a value of 0.25. Adoption actions
compete with rewiring actions when 1 − α � 0.2, and the
plot appears to branch, with one branch decreasing to 0 and
the other increasing to 1 as 1 − α → 1. This illustrates that,
by the time the system terminates, there are progressively
larger changes to the state densities of the system for pro-
gressively larger values of 1 − α. Because the system begins
with NA(0)/N = 1/4, terminating along the upper branch [i.e.,
there is a positive change for NA(t )/N] occurs in approxi-

mately 1/4 of the realizations, as indicated by the values of
the means of the terminal state-A densities.

In Fig. 15(b), we plot simulations of the linear RTR-CVM
in which we seed the system with core–periphery structure.
We use the same parameter values as in Sec. III D 2. The plot’s
similarity to Fig. 15(a) illustrates an insensitivity of this linear
RTR-CVM to some types of initial network structure. With
the parameter values of our seed core–periphery networks,
approximately 10% of the nodes begin in state B and are
isolated. When 1 − α = 1, there is no rewiring, so these nodes
remain isolated and thus do not change their opinion states.
Therefore, in the realizations with 1 − α = 1 in which opinion
state A ultimately dominates the network, only approximately
90% of the nodes adopt state A.

There are values of α in Fig. 14(b) and Fig. 15 for which
none of our realizations terminate with almost all nodes in
state A. The probability that a realization terminates along the
top branch (signifying a net positive change in the density of
state A) is NA(0)/N = 1/4, so we expect on rare occasions
[specifically, with probability (3/4)20 ≈ 0.0032] that all 20
realizations for a particular value of α terminate along the
bottom branch (i.e., with a net negative change in the density
of state A).

2. Linear rewire-to-same (RTS) CVM

We compare the results of simulations of our nonlin-
ear RTS-CVM to simulations of the linear RTS-CVM from
Ref. [29]. In Fig. 16, we observe what appears to be a
discontinuous phase transition for a critical value of α. For
1 − α � 0.57, rewiring dominates and state densities do not
change significantly. However, when 1 − α � 0.57, almost
every node terminates in the same state. The system begins
with NA(0)/N = NB(0)/N = 1/2, so it is equally probable for
almost every node to terminate in state A or almost every node
to terminate in state B. As we noted in Appendix C 1, when
1 − α = 1, there are no rewiring actions, so isolated nodes do
not change their opinion state.
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FIG. 16. Terminal density of state A in simulations of the linear
RTS-CVM from Ref. [29] for α ∈ [0, 1] with a step size of �α =
0.01. For each value of α, we simulate 20 realizations. We seed each
realization with a different ER network with N = 20 000 nodes, an
edge probability of p = 4

N−1 , half of the nodes in state A, and half of
the nodes in state B. We plot individual realizations with blue dots
and means over the 20 realizations with × symbols.

In Fig. 17, we plot the terminal state-A densities from sim-
ulations of the linear RTS-CVM from Ref. [29] on networks
that we seed with two-community structure (see Sec. III D 1)
and on networks that we seed with core–periphery structure
(see Sec. III D 2). In both cases, we observe qualitatively
similar results as in Fig. 16, which again suggests that this
linear CVM is less sensitive than our nonlinear CVM to some
initial network structures. It also suggests that this linear CVM
is more sensitive than our nonlinear CVM to the choice of
rewiring mechanism.

3. Linear rewire-to-none (RTN) CVM

We briefly discuss some results from our simulations of lin-
ear CVMs with edge deletion (i.e., a rewire-to-none scheme).
As in the linear RTR-CVM (see Appendix C 1), this rule
involves picking a discordant edge uniformly at random from
the set of discordant edges, choosing one of the nodes to be the
primary node uniformly at random, and then either deleting
the discordant edge with probability α or the primary node
changing states with probability 1 − α. As in the RTS scheme
(see Sec. IV), |E (t )| is not conserved. However, in the linear
RTN-CVM, edge deletions occur at a fixed rate α, so the
expected number of edges is E[|E (t )|] = |E (0)| − αt , which
is valid until the system terminates, after which the number of
edges is constant.

In Fig. 18, we plot the terminal minority-state density of
our simulations. We seed the system with an ER G(N, p)
network with N = 20 000 nodes and an edge probability of
p = 4

N−1 . Initially, there are approximately 20 000 discordant
edges. We compute an estimate for the terminal minority-state
density in terms of α by assuming that the adoption mecha-
nism does not significantly increase or decrease the number
NAB(t ) of discordant edges. Because we delete discordant
edges at a constant rate α, we expect the system to terminate
in approximately ED (0)

α
elementary time steps. During this

time, the expected number of adoption actions is (1−α)ED (0)
α

.
Each adoption action increases the number NA(t ) of nodes
in state A by 1 with probability 1/2 and decreases it by 1
with probability 1/2. We can thus think of NA(t ) as a simple,
symmetric 1D random walk for the steps in which adoption
occurs. For a simple, symmetric 1D random walk that starts at
the origin, the expected distance of the walker to the origin

after n steps is
√

2n
π

[46]. Therefore, after (1−α)ED (0)
α

steps,
we expect that NA(t ) has either increased or decreased by
1
N

√
2(1−α)ED (0)

πα
.

(a) (b)

FIG. 17. Terminal density of state A in simulations of the linear RTS-CVM from Ref. [29] for α ∈ [0, 1] with a step size of �α = 0.01.
For each value of α, we simulate 20 realizations. In (a), we seed each realization with a different two-community SBM network (as described
in Sec. III D 1). In (b), we seed each realization with a different core–periphery structure using SBM networks (as described in Sec. III D 2).
We plot individual realizations with blue dots and means over the 20 realizations with × symbols.
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FIG. 18. Terminal minority-state density in simulations of a lin-
ear CVM with edge deletion (i.e., using a rewire-to-none scheme)
for α ∈ [0, 1] with a step size of �α = 0.01. For each value of α, we
simulate 20 realizations. We seed each realization with a different ER
network with N = 20 000 nodes and an edge probability of p = 4

N−1 .
Half of the nodes start in state A, and the other half start in state B.
Each green point is the mean over 20 realizations for a given value of
α. The magenta curve is the estimated terminal minority-state density
from Eq. (C1).

In Fig. 18, we include a plot of our estimate

1

2
− 1

N

√
2(1 − α)ED(0)

πα
(C1)

for the terminal minority-state density, where the 1/2 term
comes from the initial densities of 1/2 and we subtract
from this value because we are calculating the minority-state
density. The plot illustrates that our estimate captures the
behavior of the linear RTN-CVM accurately, with a coefficient
of determination of R2 ≈ 0.959.

APPENDIX D: SIMULATIONS OF OUR NONLINEAR
COEVOLVING VOTER MODEL FOR LARGE VALUES OF q

In our simulations of nonlinear CVMs on SBM networks
with two-community structure and core–periphery structure,
we observed regimes of q values in which almost every node
terminates in state B, which initially has density 3/4, for all
20 realizations. See Fig. 5 for two examples. This regime
extends past q = 12, but we know that as q → ∞, we must
recover a voter model that does not coevolve with network
structure. In this appendix, we repeat one of our case studies

FIG. 19. Terminal density of state A in simulations of our non-
linear RTR-CVM (see Algorithm 1) for q ∈ [0, 100] with a step size
of �q = 2. For each value of q, we simulate 20 realizations. We seed
each realization with a different SBM network with core–periphery
structure (see Sec. III D 2), but now there are N = 20 000 nodes. We
plot individual realizations with blue dots and means over the 20
realizations with × symbols.

for large values of q to improve our understanding of this
limiting behavior.

We extend our case study from Sec. III D 2, in which
we examined our nonlinear RTR-CVM seeded with core–
periphery structure, by now considering q ∈ [0, 100] for net-
works with N = 20 000 nodes. In Fig. 19, we plot the terminal
density of state A. In this case, we see that when q � 38, the
adoption mechanism begins to dominate and state A becomes
competitive with state B. In some trials, state A spreads to
almost every node. For sufficiently large values of q, adoption
actions should completely dominate and the system should
behave like a voter model that does not coevolve with network
structure; in such a scenario, almost every node terminates in
the same state. Specifically, we expect that almost every node
terminates in state A in NA(0)/N = 1/4 of the realizations. In
our computations, we observe this scenario for q � 80.

As we noted for Fig. 15(b), with our initial networks,
approximately 10% of the nodes start in state B and are
isolated. Therefore, when q � 80, the system terminates with
these nodes still in state B (see Fig. 19), even when state A has
spread to every node in the LCC.
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