
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{A}\mathrm{P}\mathrm{P}\mathrm{L}. \mathrm{M}\mathrm{A}\mathrm{T}\mathrm{H}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 83, \mathrm{N}\mathrm{o}. 6, \mathrm{p}\mathrm{p}. 2310--2328

A DENSITY DESCRIPTION OF A BOUNDED-CONFIDENCE
MODEL OF OPINION DYNAMICS ON HYPERGRAPHS\ast 
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Abstract. Social interactions often occur between three or more agents simultaneously. Exam-
ining opinion dynamics on hypergraphs allows one to study the effect of such polyadic interactions on
the opinions of agents. In this paper, we consider a bounded-confidence model (BCM), in which opin-
ions take continuous values and interacting agents comprise their opinions if they are close enough
to each other. We study a density description of a Deffuant--Weisbuch BCM on hypergraphs. We
derive a rate equation for the mean-field opinion density as the number of agents becomes infinite,
and we prove that this rate equation yields a probability density that converges to noninteracting
opinion clusters. Using numerical simulations, we examine bifurcations of the density-based BCM's
steady-state opinion clusters and demonstrate that the agent-based BCM converges to the density
description of the BCM as the number of agents becomes infinite.

Key words. opinion dynamics, bounded-confidence models, hypergraphs, mean-field theory,
probability-density dynamics, Deffuant--Weisbuch model

MSC codes. 91D30, 05C65, 45J05

DOI. 10.1137/22M148608X

1. Introduction. People spread and change their opinions through their daily
social interactions [29]. Mathematical models of opinion dynamics give quantitative
approaches to study how the opinions of people and other agents evolve as dynamical
processes on networks [40, 44]. Such models have given insight into a variety of topics,
including decision-making [50], opinion formation [16, 30], and rumor spreading [19].

Models of opinion dynamics can have discrete-valued opinions or continuous-
valued opinions [40]. Examples of the former include voter models [45]; examples
of the latter include the DeGroot model [13], the Friedkin--Johnsen model [20], and
bounded-confidence models (BCMs) [38]. In a BCM, the agents that interact with
each other compromise their opinions by some amount if and only if the difference
between their opinions is less than some threshold, which is known as the ``confidence
bound"". The opinions of the agents in a BCM can take continuous real values from
a finite interval, the entire real line, or a higher-dimensional space. The compromise
mechanism in a BCM is motivated by the idea of ``selective exposure"" from psychol-
ogy; people tend to favor views that are close to their beliefs and to avoid cognitive
dissonance [18, 48]. Indeed, personalized recommendations on online platforms rein-
force selective exposure by suggesting content (e.g., YouTube videos) that is based on
prior consumed content [27, 32, 33].

In the last two decades, there have been many studies of BCMs. These inves-
tigations have built on pioneering research on the Deffuant--Weisbuch (DW) [12, 51]
and Hegselmann--Krause (HK) [25] models. In the DW and HK models, interacting
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A DENSITY-BASED BCM ON HYPERGRAPHS 2311

agents adjust their opinions at discrete time steps when their opinions are sufficiently
similar to each other. The DW model has asynchronous opinion updates in which one
pair of adjacent nodes interacts; these nodes update their opinions if they are suffi-
ciently close to each other. By contrast, in the HK model, all of the opinion updates
of the nodes occur simultaneously (i.e., opinion updates are synchronous). BCMs
have been generalized in a variety of ways, such as by incorporating heterogeneous
confidence bounds or heterogeneous compromise tendencies [43, 51], randomness in
opinion updates in the form of endogenous opinion evolution [2], and special nodes
(such as media nodes) whose update rules are different than those of other nodes [7].

All of the above BCMs encode interactions between agents in the form of dyadic
(i.e., pairwise) relationships. However, many social interactions are polyadic (i.e., they
involve three or more agents) [14]. For example, people can discuss their opinions
in group text messages, live conversations in video conference calls, and small in-
person meetings. Polyadic interactions occur both in humans [1] and in other animals
[35, 49]. In a recent study [34], Lambiotte, Rosvall, and Scholtes illustrated that
pairwise interactions cannot explain the complex non-Markovian dynamics (such as
directional passenger flows) in the London Underground transportation system (i.e.,
``The Tube""). One way to incorporate polyadic interactions is by studying dynamical
processes on hypergraphs [3, 5, 11]. The edges of a graph connect only two nodes (or
connect a single node to itself, in the case of a self-edge), whereas the hyperedges of
a hypergraph can connect any number of nodes to each other [10, 41]; they thereby
allow one to study collective interactions between arbitrarily many agents. Two recent
papers generalized BCMs to hypergraphs [26, 47]. In one of them [26], Hickok et al.
showed that polyadic interactions in a BCM can enhance the convergence to opinion
consensus and that BCMs on hypergraphs can possess qualitative dynamics, such as
opinion jumps, that do not occur in BCMs on ordinary graphs.

In the study of BCMs, one compelling question is whether the opinions of the
nodes of a network eventually reach a consensus state (with one major cluster of
opinions), a polarized state (with two major clusters), or a fragmented state (with
three or more major clusters) [36, 39]. It is also important to consider how long it
takes to reach a steady state. Given a random initial configuration of opinions, one
can examine a BCM as a multiparticle system and perform Monte Carlo simulations
to determine a steady-state opinion distribution [15, 42]. However, direct simulations
are computationally expensive when the number of agents is large. For example,
numerical observations have suggested that the convergence time of the DW model on
cycle graphs grows approximately exponentially with respect to the number of nodes
[39]. Additionally, when considering random networks or networks with random initial
opinions, one needs to (1) perform simulations using many realizations to mitigate
sampling errors and (2) estimate the expectations of quantities by computing sample
means [21, 28].

To study BCM dynamics in a system that involves randomness, an alternative
approach to agent-based simulations is to examine the evolution of the probability
density of opinion states using an integro-differential equation [4, 8, 17]. Ben-Naim,
Krapivsky, and Redner [4] modeled the probability density of opinions with the equa-
tion

\partial 

\partial t
P (x, t) =

\int \int 
| x1 - x2| <1

P (x1, t)P (x2, t)

\biggl[ 
\delta 

\biggl( 
x - x1 + x2

2

\biggr) 
 - \delta (x - x1)

\biggr] 
dx1 dx2 .(1.1)

In this density-based BCM, the opinions of the nodes lie in a one-dimensional space,
and P (x, t)dx denotes the fraction of agents with opinions in the interval (x,x+dx) at
time t. If the opinion difference between two agents is less than 1, they compromise
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2312 WEIQI CHU AND MASON A. PORTER

their opinions to precisely the middle of their current opinions. This middle-point
interaction rule leads to a gain term of the opinion density at the compromise opinion
(x1 + x2)/2 and loss terms at the original opinions x1 and x2.

In the present paper, we study a density-based BCM on hypergraphs. We consider
a DW model on a hypergraph in a discrete-time setting and obtain a continuous-time
rate equation in a mean-field limit as the network size (i.e., the number of agents
in the network) becomes infinite. The rate equation (1.1) of Ben-Naim, Krapivsky,
and Redner [4] is a special case of our model. We prove that the solution of our
rate equation is a probability density and that it converges to noninteracting, isolated
opinion clusters at an exponential rate. These results are consistent with both the
steady-state behavior and the convergence properties of agent-based BCMs [37]. As
a case study, we use a special type of hypergraph in which each hyperedge has three
nodes---such hypergraphs occur, for example, in the study of folksonomies [22]---and
numerically examine the steady-state distributions of opinions for different discor-
dance functions, which allow us to generalize the confidence bounds of dyadic BCMs
to polyadic BCMs. We observe numerically for both bounded and unbounded opinion
distributions that opinion clusters undergo a periodic sequence of bifurcations as we
increase the variance of the initial opinion distribution. We also illustrate through
Monte Carlo simulations that the agent-based DW model converges to our density-
based DW model as we increase the number of agents.

Our paper proceeds as follows. In section 2, we review the agent-based DW model
on hypergraphs and derive the rate equation for a single-agent density in the mean-
field limit. We also prove several properties of the solution of our density-based DW
model. In section 3, we numerically study steady-state opinion distributions with
different confidence bounds and different initial distributions, and we compare them
with the results of agent-based simulations. We conclude in section 4. In Appendix
A, we give proofs of several results and outline a proof strategy for a conjecture.

2. Density evolution of a DW model on a hypergraph. Consider an un-
weighted and undirected hypergraph H = (V,E), where V = \{ 1, . . . ,N\} is the set of
nodes and E is the set of hyperedges. Each hyperedge e is a subset of V and represents
a relationship that is shared by all nodes in e.

For a given hyperedge e, we decompose the opinion state into two parts: \bfitx =
(\bfitx e,\bfitx \~e), where \bfitx e = \{ xi\} i\in e denotes the opinion values of the nodes in e and \bfitx \~e =
\{ xi\} i/\in e denotes the opinion values of the other nodes (i.e., the nodes in the comple-
ment set) of a network.

As an extension of the pairwise opinion differences in dyadic opinion models,
we use a discordance function dp : \BbbR | e| \rightarrow \BbbR \geq 0 to measure the heterogeneity of the
opinions that are associated with a hyperedge e. We define the discordance function
as an averaged deviation from a group mean in terms of the Lp norm:

dp(\bfitx e) = \alpha p

\Biggl[ 
1

| e| 
\sum 
i\in e

| xi  - \bfitx e| p
\Biggr] 1/p

,(2.1)

where \bfitx e =
1
| e| 
\sum 

i\in e xi is the group mean. The factor 1/| e| alleviates the disadvantage
of hyperedges with more nodes (i.e., ``larger"" hyperedges). We introduce a scaling
constant \alpha p to reduce the discrepancy between different choices of the parameter p.
In section 3, we discuss the selection of \alpha p. Other choices of discordance functions
include the L\infty norm [47] and the sample variance [26].
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A DENSITY-BASED BCM ON HYPERGRAPHS 2313

2.1. Rate equation for the discrete-time dynamics and its continuous-
time extension. In the DW model on a hypergraph, at each time step, we choose
one hyperedge e randomly with probability pe and update the opinions of its nodes
to the mean opinion in e if and only if the discordance is less than a threshold. That
is,

xi(n+ 1) =

\Biggl\{ 
\bfitx e(n) if i\in e and dp(\bfitx e(n))< c

xi(n) otherwise ,
(2.2)

where c > 0 is the confidence bound. The sequence \{ \bfitx (n)\} forms a discrete-time
Markov process. We state the precise dynamics of the probability density of \{ \bfitx (n)\} 
in Theorem 2.1, which we prove in Appendix A.1.

Theorem 2.1. The DW model (2.2) induces a discrete-time Markov chain \bfitx (n),
with n= 0,1, . . ., in the continuous state space \BbbR . Let P (\bfitx , n) be the probability density
of \bfitx (n). The density P (\bfitx , n) satisfies the equation

P (\bfitx , n+ 1) - P (\bfitx , n) =
\sum 
e\in E

pe

\int 
dp(\bfity e)<c

P (\bfity e,\bfitx \~e, n) [\delta (\bfitx e  - \bfity e) - \delta (\bfitx e  - \bfity e)] d\bfity e .(2.3)

Theorem 2.1 gives an exact density description of the agent-based DW model
(2.2) on a hypergraph and provides an approach to simulate agent-based dynamics in
terms of associated evolutions of probabilities. Solving (2.3) with the initial condition
P (\bfitx ,0) yields the probability density of \bfitx (n). If the agent-based DW model has a
random initial state \bfitx (0), then P (\bfitx ,0) is the probability density of the initial state;
if the model has a deterministic initial state \bfitx (0), then P (\bfitx ,0) is an empirical Dirac
measure that is associated with the initial state.

Solving (2.3) numerically involves integration over a high-dimensional space. One
can decrease the dimension of the integration space in (2.3) by 1 by explicitly integrat-
ing the Dirac delta functions, but it remains computationally expensive to simulate
the dynamics of the probability density of \bfitx (n), which lives in a space whose di-
mension is the network size N (i.e., the number of nodes). Therefore, we reduce the
computational expense by employing a mean-field approximation of the rate equa-
tion (see section 2.2). The reduced rate equation involves only a single-agent density
function, which is one-dimensional.

It is also convenient to treat time as a continuous variable. Some models assume
that opinions change continuously with time [46] and do not allow sudden opinion
changes at any instant of time. Instead, we consider a probability density f(\bfitx , t) as
a continuous extension that is induced by the discrete-time density P (\bfitx , n). To do
this, we write

f(\bfitx , t) = P (\bfitx , \lfloor \gamma t\rfloor ) , t\geq 0 ,(2.4)

where \lfloor \cdot \rfloor is the floor function and the constant \gamma indicates the speed of opinion
updates. The induced model, which describes the continuous-time probability density
f(\bfitx , t), has \gamma opinion updates in the time interval [t, t+ 1).

With the definition (2.4), the probability density f(\bfitx , t) is not continuous with
respect to t. Specifically, with \tau = 1/\gamma , a direct computation yields

f(\bfitx , t+ \tau ) - f(\bfitx , t)

\tau 
= \gamma 

\sum 
e\in E

pe

\int 
dp(\bfity e)<c

f(\bfity e,\bfitx \~e, t) [\delta (\bfitx e  - \bfity e) - \delta (\bfitx e  - \bfity e)] d\bfity e .(2.5)
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2314 WEIQI CHU AND MASON A. PORTER

If we take the limit \tau \rightarrow 0 in (2.5), the left-hand side yields the time derivative of
the opinion density f(\bfitx , t), but the right-hand side becomes infinite because \gamma \rightarrow \infty .
When \tau \rightarrow 0 (i.e., \gamma \rightarrow \infty ), agents interact with each other at an infinitely fast rate.
If a network has a finite number of agents, it instantaneously reaches a steady state.
However, the right-hand side of (2.5) becomes well-defined in the limit \tau \rightarrow 0 when the
number of agents in a network tends to infinity at an appropriate rate (which depends
on \tau ). We thus consider a mean-field limit in which the network size becomes infinite.

2.2. Rate equation in a mean-field limit. We introduce a one-point density
g(a, t) to examine the opinion distribution of a population of equivalent agents. For
a\in \BbbR , we define the one-point density

g(a, t) =
1

N

N\sum 
i=1

\int 
f(\bfitx , t)\delta (a - xi)d\bfitx .(2.6)

We derive a governing equation for g(a, t) in Theorem 2.2.
For notational simplicity, we use finite-difference notation and define

[\tau ]h(\cdot , t) := h(\cdot , t+ \tau ) - h(\cdot , t)
\tau 

.(2.7)

We use f(\cdot , t) with appropriate arguments to denote the marginal densities of f(\bfitx , t).
For example, f(\bfitx e, t) is the marginal density after integrating out the variables \bfitx \~e

that are associated with the complement set. That is, f(\bfitx e, t) =
\int 
f(\bfitx , t)d\bfitx \~e.

Theorem 2.2. Assume for all hyperedges e\in E and all times t\geq 0 that

f(\bfitx e, t) =
\prod 
i\in e

f(xi, t) .(2.8)

It then follows that the one-point density g(a, t) in (2.6) satisfies

[\tau ]g(a, t) =
\gamma 

N

\sum 
e\in E

pe

\int 
dp(\bfity e)<c

\prod 
i\in e

g(yi, t)

\Biggl[ 
| e| \delta (a - \bfity e) - 

\sum 
i\in e

\delta (a - yi)

\Biggr] 
d\bfity e ,(2.9)

where \gamma is the update rate in (2.4) and \tau = 1/\gamma .
We prove Theorem 2.2 in Appendix A.2. Our proof uses the independence as-

sumption (2.8) that the opinions of the nodes in a hyperedge e are independent for
t \geq 0. In general, this independence assumption does not hold for a network with
finitely many agents, but the joint distribution f(\bfitx e, t) converges to the product of
one-agent marginal densities as the number of agents becomes infinite. For a DW
model on a dyadic graph, G\'omez-Serreno, Graham, and Le Boudec [23] proved rig-
orously (see their Theorem 4.3) that (1) the law (which is the probability measure
that is associated with a random variable or a stochastic process) of opinion processes
\bfitx (t) converges to the law of independent and identically distributed (i.i.d.) processes
as the number of agents becomes infinite and that (2) the law of an individual limit
process is the unique solution of an integro-differential equation of Kac type. We
extend their results to networks with polyadic interactions in Conjecture 2.3.

Conjecture 2.3. Suppose that f(\bfitx , t) in (2.5) is permutation-invariant with respect
to \bfitx . (In other words, f(\bfitx , t) remains the same when we switch any pair of entries of
\bfitx .) If all hyperedges e\in E satisfy | e| \leq M , then it follows for t\leq T that\bigm| \bigm| \bigm| \bigm| \bigm| f(\bfitx e, t) - 

\prod 
i\in e

f(xi, t)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C(M,T )

N
,(2.10)
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A DENSITY-BASED BCM ON HYPERGRAPHS 2315

where C(M,T ) is a constant that depends only on M and T . The difference in the
absolute value | \cdot | is in the weak sense of using test functions.

The inequality (2.10) indicates the weak convergence (i.e., the convergence of inner
products with test functions) of two probability measures [6]. Conjecture 2.3 states
that if the maximum hyperedge size M := max\{ | e| , e \in E\} is constant (independent
on the network size N), then the probability density of any m opinions (with m\leq M)
converges to an m-fold product of identical one-agent probability densities in the weak
sense as the number of agents (i.e., N) becomes infinite. Specifically, the difference
between these two densities decays as O(1/N).

We believe that it is possible to rigorously prove Conjecture 2.3 by adopting
methods from the proofs of Theorem 4.3 in [23] and Theorem 3.1 in [24]. Both [23]
and [24] considered stochastic processes that include a dyadic DW model as a special
case. These papers formulated f(\bfitx , t) as an empirical measure that is induced by
such a stochastic process and estimated an error bound for the weak convergence in
a probability space. In Appendix A.3, we present a strategy to prove Conjecture 2.3.

We take \gamma = N in (2.9). With this choice, in one unit of time, the number of
selected hyperedges is proportional to the number of agents in a network. We then
take the limit N \rightarrow \infty and obtain the mean-field rate equation

\partial 

\partial t
g(a, t) =

\sum 
e\in E

pe

\int 
dp(\bfity e)<c

\prod 
i\in e

g(yi, t)

\Biggl[ 
| e| \delta (a - \bfity e) - 

\sum 
i\in e

\delta (a - yi)

\Biggr] 
d\bfity e .(2.11)

As N \rightarrow \infty , the set E has an infinite number of hyperedges and the probability pe of
selecting hyperedge e goes to 0. However, the sum in (2.11) remains finite. We can
further simplify (2.11) if we know the hyperedge set E and the selection probability
pe. For example, if all interactions are dyadic (i.e., | e| = 2 for all hyperedges e) and
pe is the same for all hyperedges e, then (2.11) is the same as the mean-field model
(1.1) after multiplying the latter by a factor of 2 on the right-hand side. In section 3,
we simplify (2.11) when E is a collection of all unordered triples and we uniformly
randomly choose each hyperedge (i.e., pe is the same for all e).

2.3. Properties of opinion densities in the mean-field limit. In this sub-
section, we study the Cauchy problem for the density-based DW model (2.11), which
is a nonlinear integro-differential equation of Kac type. We prove that the solution
of this Cauchy problem preserves the basic properties of a probability density when
the initial condition of the rate equation is a probability density function (PDF) and
that it converges to noninteracting, isolated clusters as time t\rightarrow \infty . We use g(a, t) to
denote the solution of (2.11) with the initial condition g0(a).

2.3.1. Nonnegativity. A PDF must be nonnegative. In Theorem 2.4, we prove
nonnegativity when the initial condition g0(a) is a function in the traditional sense.
For the more general case in which g0(a) is a measure, one can employ a similar proof
by using nonnegative test functions.

Theorem 2.4. If the initial condition g0(a) is nonnegative, then g(a, t) is also
nonnegative for all times t > 0. Furthermore, if g0(a) is strictly positive at some point
a\prime (i.e., if g0(a

\prime )> 0), then g(a\prime , t)> 0 for any finite time t.

Proof. We proceed by contradiction. Suppose that t= t\ast is the earliest time that
g(a, t) takes a negative value. That is,

t\ast := inf
t
\{ there exists some a\ast such that g(a\ast , t)< 0\} .(2.12)
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2316 WEIQI CHU AND MASON A. PORTER

Because of the continuity in t, we know that g(a\ast , t\ast ) = 0, \partial 
\partial tg(a

\ast , t\ast ) < 0, and
g(a, t)\geq 0 for all t\leq t\ast . Therefore, by (2.11), it follows for all t\leq t\ast that

\partial 

\partial t
g(a, t)\geq  - 

\sum 
e\in E

pe

\int 
dp(\bfity e)<c

\prod 
i\in e

g(yi, t)

\left(  \sum 
j\in e

\delta (a - yj)

\right)  d\bfity e

= - 
\sum 
e\in E

| e| pe
\int 
dp(\bfity e)<c

\prod 
i\in e

g(yi, t)\delta (a - yj)dyj d(\bfity e\setminus yj)

= - g(a, t)
\sum 
e\in E

| e| pe
\int 
dp((a,\bfity e\setminus yj))<c

\prod 
i\in e,i\not =j

g(yi, t)d(\bfity e\setminus yj) ,

(2.13)

where j is a node in the hyperedge e and (\bfity e\setminus yj) denotes the opinions of the nodes in e
other than j. By symmetry, any node j yields the same integral. Because g(a\ast , t\ast ) = 0,
we have that \partial 

\partial tg(a
\ast , t\ast ) = 0, which contradicts \partial 

\partial tg(a
\ast , t\ast )< 0.

Define \beta (a, t) :=
\sum 

e\in E | e| pe
\int 
dp((a,\bfity e\setminus yj))<c

\prod 
i\in e,i \not =j g(yi, t)d(\bfity e\setminus yj). For any a

and t > 0, we have

\partial 

\partial t
g(a, t)\geq  - g(a, t)\beta (a, t) .(2.14)

Because \beta (a, t) is nonnegative, we apply Gr\"onwall's inequality for each fixed a and
obtain

g(a, t)\geq g0(a)e
 - 

\int t
0
\beta (a,s) ds.(2.15)

For any g0(a
\prime )> 0, it thus follows that g(a\prime , t)> 0 for any finite t.

2.3.2. Mass and opinion conservation. Equation (2.11) describes the mean-
field dynamics of a time-dependent density with the opinion update rule (2.2). We see
from (2.2) that the mean opinion in the agent-based dynamics is constant for all times
t. In Theorem 2.6, we prove that g(a, t) has a conserved mass (i.e., g(a, t) integrates
to 1) and conserved mean opinion for all times t. We also show in this theorem that
g(a, t) has nonincreasing even-order moments. We start with a short lemma.

Lemma 2.5. Let \varphi (a) be a convex function. The expectation of \varphi (a) with respect
to g(a, t) is nonincreasing with time.

Proof. We take the time derivative of the expectation
\int 
\varphi (a)g(a, t)da. A direct

computation from (2.11) yields

\partial 

\partial t

\int 
\varphi (a)g(a, t)da=

\sum 
e\in E

| e| pe
\int 
dp(\bfity e)<c

\prod 
i\in e

g(yi, t)

\Biggl[ 
\varphi (\bfity e) - 

\sum 
i\in e

\varphi (yi)

| e| 

\Biggr] 
d\bfity e .(2.16)

Because \varphi (a) is convex, it is always the case that \varphi (\bfity e) - 
\sum 

i\in e\varphi (yi)/| e| \leq 0, which
implies that the integral in (2.16) is nonincreasing with time. When \varphi is strictly
convex, the expectation is strictly decreasing.

From Lemma 2.5, we know that the moments of g(a, t) are nonincreasing. We
state and prove our results for uncentered moments.

Theorem 2.6. Let \scrM k(t) be the kth uncentered moment of g(a, t). That is,

\scrM k(t) :=

\int 
g(a, t)ak da .(2.17)

When k = 0 (which gives the mass) or k = 1 (which gives the mean opinion), the
moment is constant. Additionally, when k is even and at least 2, the moment \scrM k(t)
is nonincreasing with time.
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A DENSITY-BASED BCM ON HYPERGRAPHS 2317

Proof. Let \varphi (a) = ak in Lemma 2.5. The term inside the brackets on the right-
hand side of (2.16) becomes \biggl( \sum 

i\in e yi

| e| 

\biggr) k

 - 
\sum 
i\in e

yki
| e| 

= 0 ,(2.18)

which implies that \partial 
\partial t\scrM k(t) = 0 when k = 0 or k = 1. When k is even and is at least

2, the function ak is convex, so the moments are nonincreasing by Lemma 2.5.

2.3.3. Convergence to a limit state. It is important to examine the limit
state of the density-based model (2.11). There exist rigorous proofs that some BCMs
on graphs [37] and hypergraphs [26] always converge to some limit state. For some
BCMs with heterogeneities, such as the model in [52] (which, e.g., includes hetero-
geneous confidence bounds), researchers have observed convergence numerically but
have not proven it rigorously. In Theorem 2.7, we present a similar convergence result
from the viewpoint of density evolution.

To formulate our convergence statement, we first consider the special opinion
vector \bfity \bigtriangleup 

| e| = (\bigtriangleup ,0, . . . ,0)\in \BbbR | e| . Given a BCM on a network, we define the minimum
isolation distance

\bigtriangleup \ast 
dp
(c) := min

e\in E s.t.
dp(\bfity 

\bigtriangleup 
| e| )=c

\bigtriangleup (2.19)

that is associated with its discordance function and confidence bound.
The construction of \bfity \bigtriangleup 

| e| corresponds to the optimal solution, up to a permutation,
of a minimization problem in Lemma A.1, which states that the smallest nontrivial
discordance is achieved by a vector of the form \bfity \bigtriangleup 

| e| when the opinions take a set of

discrete values. Given a discordance function, one can explicitly compute \bigtriangleup \ast 
dp
(c) for

a BCM on a network. For example, for a BCM on an ordinary graph (i.e., with only
dyadic interactions), \bigtriangleup \ast 

dp
(c) is equal to the confidence bound c. In section 3, we give

the formula for \bigtriangleup \ast 
dp
(c) for 3-uniform hypergrahs (i.e., when | e| = 3 for all hyperedges

e).

Theorem 2.7. Let g\infty (a) be the limit (i.e., steady-state) density of g(a, t) as time
t\rightarrow \infty . Such a limit density g\infty (a) always exists, and g\infty (a) is a sum of Dirac delta
functions:

g\infty (a) =

K\sum 
k=1

mk\delta (a - ak) ,(2.20)

where K is the number of opinion clusters, mk denotes the population mass of the
kth steady-state opinion cluster, ak denotes the position (i.e., opinion value) of this
opinion cluster,

\sum K
k=1mk = 1, and | ai  - aj | \geq \bigtriangleup \ast 

dp
(c) for i \not = j. The constant \bigtriangleup \ast 

dp
(c)

is the minimum isolation distance (2.19), and K is finite if the initial density g0(a)
has finite support.

We prove Theorem 2.7 in Appendix A.4. This theorem states that the mean-
field density converges to a sum of noninteracting Dirac delta functions and that the
distance between any two delta functions is at least a constant that is determined
completely by the discordance function and the confidence bound.

3. Numerical results for density-based BCMs on hypergraphs. We con-
sider undirected 3-uniform hypergraphs, so a hyperedge set E is a collection of un-
ordered triples (i.e., E = \{ e : | e| = 3\} ). At each time step, we select a hyperedge
uniformly at random. The mean-field density satisfies
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2318 WEIQI CHU AND MASON A. PORTER

\partial 

\partial t
g(a, t) =

\int 
dp(\bfitx )<c

3\prod 
i=1

g(xi, t)

\Biggl[ 
3\delta 

\Biggl( 
a - 1

3

3\sum 
i=1

xi

\Biggr) 
 - 

3\sum 
i=1

\delta (a - xi)

\Biggr] 
d\bfitx ,(3.1)

where dp is the discordance function (2.1). As indicated by Theorem 2.7, the limit
(i.e., steady-state) opinion clusters are separated from each other by a distance of
at least \bigtriangleup \ast 

dp
(c), which depends exclusively on the discordance function dp and the

confidence bound c. To diminish the discrepancy between different choices of dp in
our numerical simulations, we introduce constants \alpha p to ensure that all dp yield the
same minimum isolation distance. Specifically, we use

\alpha p =

\biggl( 
3p+1

2 + 2p

\biggr) 1/p

(3.2)

in (2.1). In this case, the minimum isolation distance \bigtriangleup \ast 
dp
(c) is equal to the confidence

bound c.
To reduce the number of dimensions of the rate equation (3.1), we integrate the

Dirac delta functions and obtain

\partial 

\partial t
g(a, t) = 9

\int 
\widetilde dp((a,x1,x2))<c

g(3a - x1  - x2, t)g(x1, t)g(x2, t)dx1 dx2

 - 3g(a, t)

\int 
dp((a,x1,x2))<c

g(x1, t)g(x2, t)dx1 dx2 ,

(3.3)

where \widetilde dp((a,x1, x2)) = \alpha p(
| 2a - x1 - x2| p+| a - x1| p+| a - x2| p

3 )
1
p . We integrate the rate equa-

tion (3.3) using a fourth-order Adams--Bashforth method [53] and renormalize the
density numerically at each time step to conserve mass. Once the probability density
has noninteracting sets (i.e., ``patches"") of opinions up to some ``separation accuracy"",
which we take to be 10 - 7 in our simulations, we apply numerical integration to the
opinion patches independently with adaptive time steps to expedite convergence. We
integrate the dynamical system (3.3) for a sufficiently long time so that the probability
densities behave as a sum of Dirac delta functions up to a predetermined precision,
which we call a ``density accuracy"" and take to be 10 - 6 in our simulations. In Figure 1,
we illustrate both our stopping criterion and how to determine the isolated opinion
clusters.

In the following subsections, we conduct three sets of numerical experiments. In
section 3.1, we fix the confidence bound to c= 1 and observe the steady-state solutions
of the mean-field model (3.1) with different choices of the discordance function dp for
a uniform initial distribution g0(a). In section 3.2, we consider two types of initial
distributions (uniform and normal) with the same variance, and we numerically obtain
the positions of the steady-state opinion clusters. As we increase the variance, the
positions of the clusters undergo a periodic sequence of bifurcations.1 The number
of steady-state opinion clusters also grows as a periodic sequence. In section 3.3,
we numerically compare the density-based mean-field model (2.11) with agent-based
dynamics using Monte Carlo simulations.

1We use the term ``bifurcation"" to refer to a change in qualitative behavior as a parameter crosses
some value, rather than demanding the stricter sense of the word ``bifurcation"" from dynamical-
systems theory.
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A DENSITY-BASED BCM ON HYPERGRAPHS 2319

Fig. 1. Schematic illustrations of (top) the determination of isolated opinion clusters and
(center, bottom) our stopping criterion. (Top) We divide the depicted probability density into two
opinion patches, such that the values of the probability density at x =  - 0.5 and x = 0.5 are less
than or equal to the separation accuracy 0.05. The two patches are separated from each other by
at least the minimum isolation distance (2.19), which is equal to 1 in the figure. Our computations
then reduce to independent simulations on two disjoint intervals. We also show (center) a stopping
point of the simulations and (bottom) a magnification of the region near the horizontal axis. We
integrate (3.3) until the density profile is a sum of Dirac delta functions up to a density accuracy.
Specifically, we stop our simulations when any two grid points with probability density values that
exceed the density accuracy 10 - 6 are either contiguous or are separated by at least the minimum
isolation distance. In the center and bottom figures, the mesh size is 0.008 and the grid points with
probabilities that exceed 10 - 6 are x =  - 1.968, x =  - 1.960, x =  - 0.864, x = 0.864, x = 1.960, and
x = 1.968. These points are either consecutive grid points or they differ by at least 1, which is the
minimum isolation distance.

3.1. Bifurcation patterns with different initial ranges of opinion values.
We fix the confidence bound to c= 1 and draw the initial opinions from the uniform
distribution on [ - D,D]. We consider values of D between 0.5 and 6 with an increment
of 0.1. We use discordance functions with p = 0.5, p = 1, and p = 2 in (2.1). In
Figure 2, we show the positions (i.e., ak) and the population masses (i.e., mk) of the
steady-state opinion clusters for different values of D and p. Ben-Naim, Krapivsky,
and Redner [4] numerically computed a bifurcation pattern of steady-state cluster
positions for a BCM on graphs, and we obtain a similar pattern for our BCM on
hypergraphs.

In regions that are not near bifurcation points, we observe in our numerical com-
putations that the positions of the steady-state opinion clusters have a linear rela-
tionship with D and that they form parallel lines far from the locations at which
they nucleate and disappear. As we proved in Theorem 2.7, the opinion clusters are
separated by a minimum isolation distance \bigtriangleup \ast 

dp
(c), which we set to 1 (by introducing

an appropriate coefficient in (3.2)) in our example.
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Fig. 2. The positions of steady-state opinion clusters with different initial opinion ranges
[ - D,D] and discordance function dp [see (2.1)] for (left) p = 0.5, (center) p = 1, and (right)
p= 2. The sizes of the circles are proportional to the population masses of the steady-state clusters.
There are 500 grid points on the interval [ - D,D].

For a BCM on an ordinary graph, the distance between steady-state opinion
clusters is always at least as large as the confidence bound c [4, 38], which is the
minimum isolation distance (2.19) with a dyadic discordance (i.e., the distance be-
tween two opinions). For a BCM on a hypergraph, we observe analogous results for
all examined discordance functions.

The nucleation and disappearance of opinion clusters has a periodic pattern.
Major opinion clusters (whose population mass is more than some proportion, which
we take to be 0.1) and minor opinion clusters (whose population mass is less than
or equal to 0.1) appear in an interlacing fashion. The mass of the center opinion
cluster grows as we increase the parameter D until it splits into two symmetric major
clusters. A center cluster appears again as a minor cluster after the two innermost
major clusters are sufficiently far apart; this center cluster grows gradually into a
major cluster and repeats the above nucleation and disappearance process.

3.2. Steady-state densities with different initial opinion distributions.
Thus far, we have considered initial opinions that follow a uniform distribution. We
now examine the positions of steady-state opinion clusters when opinions initially
follow a centered normal distribution \scrN (0, \sigma 2). That is,

g0(a) =
1\surd 
2\pi \sigma 

e - a2/\sigma 2

.(3.4)

We examine the steady-state cluster positions for different values of the distribution
variance. We use a symmetric computational domain [ - D\prime ,D\prime ] that is sufficiently
large so that g0(D

\prime ) < 10 - 9. In Figure 3, we show the steady-state cluster positions
for different initial variances \sigma 2. We fix the confidence bound to c = 1 and use the
discordance function dp in (2.1) with p = 2. As a comparison, we also include our
results with uniform initial distributions.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/2

8/
23

 to
 1

31
.1

79
.2

20
.2

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A DENSITY-BASED BCM ON HYPERGRAPHS 2321

Fig. 3. The positions of the steady-state opinion clusters for (left) a normal initial opinion
distribution and (right) a uniform initial opinion distribution for different values of the standard
deviation \sigma . The sizes of the circles are proportional to the population masses of the steady-state
opinion clusters. We set the confidence bound to c= 1 and use the discordance function d2. We use
500 grid points for all simulations and use an adaptive scheme for numerical simulations indepen-
dently for separate opinion patches (see Figure 1).

We also observe an interesting pattern in the positions of the steady-state opinion
clusters as we increase the initial variance \sigma 2. The left panel of Figure 3 has three
``episodes"": \sigma \in [0.3,1.55], \sigma \in [1.6,2.65], and \sigma \in [2.7,3.5]. (We consider values of
\sigma in increments of 0.05.) Each episode has a major opinion cluster in the center
(i.e., at a = 0). In each episode, the center-cluster mass decreases and the minor-
cluster masses increase as we increase \sigma . Additionally, in each episode, minor clusters
nucleate on both sides of the center and then move farther away from it. Because the
normal distribution is positive on the entire real line, it is possible that the steady
state has infinitely many minor clusters and that we simply do not see them with our
current computational accuracy.

3.3. Steady-state densities of the agent-based dynamics. We now exam-
ine steady states of the agent-based dynamics with the opinion update rule (2.2) on a
complete network with initial opinions that we draw from a uniform distribution. We
sample the steady-state ensemble using 10000 Monte Carlo simulations. We observe
convergence to a sum of Dirac delta functions as we increase the network size. We
show the results of these computations in Figure 4.

For any finite hypergraph size N , the density that we obtain from Monte Carlo
simulations is not a sum of Dirac delta functions (or a single Dirac delta function) at
steady states. As we increaseN , we observe a slow progression of the densities towards
a sum of Dirac delta functions. As we increase D from 1.7 to 2.2, the major cluster
in the center splits into two symmetric clusters. In the density-based simulation in
Figure 2, this split occurs between 1.8 and 1.9; this value does not agree quantitatively
with the results of Monte Carlo simulations of the agent-based dynamics.

Inconsistencies between density-based models and Monte Carlo simulations of
agent-based dynamics have been observed previously in BCMs. For example, Pineda,
Toral, and Hern\'andez-Garc\'{\i}a [42] studied a density-based DW model with dyadic
interactions and used agent-based Monte Carlo simulations to approximate the
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Fig. 4. The steady-state PDFs for simulations with finite numbers of agents with the opinion
update rule (2.2) on a complete network. We obtain the PDF profiles from Monte Carlo simulations
of (2.2) and normalize each PDF so that it integrates to 1. In all simulations, we draw the initial
opinions from the uniform distribution on [ - D,D], use the discordance function d1, and take the
confidence bound to be c = 1. In each panel, we fix D (and hence the initial opinion range) and
compare the steady-state densities for N = 500, N = 1000, and N = 1500 agents; the horizontal
axis is the opinion x, and the vertical axis is the steady-state PDF P (x). We show results for (a)
D= 1.7, (b) D= 1.8, (c) D= 1.9, (d) D= 2, (e) D= 2.1, and (f) D= 2.2.

dynamics on a network in the mean-field limit. They observed (see Figure 3 of their
paper) that the density evolution can result in qualitatively different behavior (e.g.,
different numbers of steady-state opinion clusters) as one increases the number of
agents in Monte Carlo simulations and that Monte Carlo simulations yield different
results than their density-based model. Because of finite-size effects, the densities
that they obtained with Monte Carlo simulations of their agent-based BCM did not
agree with the solutions of their density-based BCM.

4. Conclusions and discussion. We formulated a model of the opinion density
of a discrete-time bounded-confidence model (BCM) on hypergraphs and derived the
associated rate equation in a mean-field limit with infinitely many agents. By employ-
ing a time-rescaling parameter, we extended this rate equation to a continuous-time
setting. We thereby obtained a density-based, continuous-time mean-field BCM in
the form of an integro-differential equation.

We investigated the properties of our density-based BCM by exploring the Cauchy
problem of the rate equation in the mean-field limit. We proved that its solution
satisfies the properties of a probability density (specifically, nonnegativity and mass
conservation). We then examined the asymptotic dynamics of this solution as time
goes to infinity. When the initial condition of the rate equation is a probability
density, we proved that the solution converges in time in a weak sense to a sum of
Dirac delta functions. These Dirac delta functions are separated from each other by
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A DENSITY-BASED BCM ON HYPERGRAPHS 2323

at least a constant, which is independent of the initial density and is determined by
the discordance function and the confidence bound.

We also studied the steady states of our density-based BCM by numerically solv-
ing our integro-differential rate equation for different choices of initial distributions
and discordance functions. Our numerical results agree with our mathematical analy-
sis that steady-state solutions take the form of a sum of isolated Dirac delta functions,
which yield opinion clusters in the BCM. For both bounded and unbounded initial
opinion distributions, we observed that the positions of the steady-state opinion clus-
ters undergo a periodic sequence of bifurcations as we increase the variance of the
initial opinion distribution. We also numerically compared our density-based results
with agent-based Monte Carlo simulations. As we increased the network size, we
observed that the steady-state opinion density converges to a sum of Dirac delta
functions.

In our study, we generalized the Deffuant--Weisbuch BCM, but it is also pos-
sible to examine other types of BCMs (such as the Hegselmann--Krause model) on
hypergraphs using a density description. In our numerical simulations, we employed
3-uniform hypergraphs (in which all hyperedges have exactly 3 nodes), but it is desir-
able to consider density-based BCMs on more general types of hypergraphs, such as
hypergraphs that have both 2-node and 3-node hyperedges. We expect that it will be
interesting to examine their qualitative dynamics and bifurcation patterns for such
hypergraphs.

Appendix A. Proofs of several results and a proof strategy for Conjec-
ture 2.3.

A.1. Proof of Theorem 2.1.

Proof. At each time step n, we define a discrete random variable \scrE (n) to de-
scribe the selection of a hyperedge e with probability \BbbP (\scrE (n) = e) = pe. We expand
P (\bfitx , n+ 1) using conditional expectations:

P (\bfitx , n+ 1) =
\sum 
e\in E

peP (\bfitx , n+ 1| \scrE (n) = e) ,(A.1)

where P (\bfitx , n+1| \scrE (n) = e) is the conditional probability density of selecting hyperedge
e at time n.

Using the opinion update rule (2.2), we obtain

P (\bfitx , n+ 1| \scrE (n) = e) =

\int 
dp(\bfity e)<c

P (\bfity , n)\delta (\bfitx e  - \bfity e)\delta (\bfitx \~e  - \bfity \~e)d\bfity 

+

\int 
dp(\bfity e)\geq c

P (\bfity , n)\delta (\bfitx  - \bfity )d\bfity .

(A.2)

A direct computation yields

P (\bfitx , n+ 1) - P (\bfitx , n) =
\sum 
e\in E

pe

\Biggl\{ \int 
dp(\bfity e)<c

P (\bfity , n)\delta (\bfitx e  - \bfity e)\delta (\bfitx \~e  - \bfity \~e)d\bfity 

+

\int 
dp(\bfity e)\geq c

P (\bfity , n)\delta (\bfitx  - \bfity )d\bfity  - 
\int 

P (\bfity , n)\delta (\bfitx  - \bfity )d\bfity 

\Biggr\} 
=
\sum 
e\in E

pe

\int 
dp(\bfity e)<c

P (\bfity e,\bfitx \~e, n) [\delta (\bfitx e  - \bfity e) - \delta (\bfitx e  - \bfity e)] d\bfity e ,

(A.3)

which completes the proof.
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A.2. Proof of Theorem 2.2.

Proof. A direct computation yields

[\tau ]g(a, t) =
\gamma 

N

\sum 
e\in E

pe

\int 
dp(\bfity e)<c

f(\bfity e,\bfitx \~e, t)

\Biggl[ 
N\sum 
i=1

\delta (a - xi)

\Biggr] 
[\delta (\bfitx e  - \bfity e) - \delta (\bfitx e  - \bfity e)] d\bfitx d\bfity e

=
\gamma 

N

\sum 
e\in E

pe

\int 
dp(\bfity e)<c

f(\bfity e,\bfitx \~e, t)

\Biggl[ \sum 
i\in e

\delta (a - xi)

\Biggr] 
[\delta (\bfitx e  - \bfity e) - \delta (\bfitx e  - \bfity e)] d\bfitx d\bfity e

=
\gamma 

N

\sum 
e\in E

pe

\int 
dp(\bfity e)<c

f(\bfity e, t)

\Biggl[ \sum 
i\in e

\delta (a - xi)

\Biggr] 
[\delta (\bfitx e  - \bfity e) - \delta (\bfitx e  - \bfity e)] d\bfitx e d\bfity e

=
\gamma 

N

\sum 
e\in E

pe

\int 
dp(\bfity e)<c

f(\bfity e, t)
\sum 
i\in e

[\delta (a - \bfity e) - \delta (a - yi)] d\bfity e

=
\gamma 

N

\sum 
e\in E

pe

\int 
dp(\bfity e)<c

f(\bfity e, t)

\Biggl[ 
| e| \delta (a - \bfity e) - 

\sum 
i\in e

\delta (a - yi)

\Biggr] 
d\bfity e

=
\gamma 

N

\sum 
e\in E

pe

\int 
dp(\bfity e)<c

\prod 
i\in e

g(yi, t)

\Biggl[ 
| e| \delta (a - \bfity e) - 

\sum 
i\in e

\delta (a - yi)

\Biggr] 
d\bfity e .

(A.4)

A.3. A strategy to prove Conjecture 2.3. We believe that it is possible to
rigorously prove Conjecture 2.3 using approaches that are similar to those in [23, 24].
In this subsection, we connect our work to [23, 24] by presenting a proof strategy for
Conjecture 2.3 using our paper's language.

Instead of using a one-agent density function g(a, t) to describe a population of
agents, references [23, 24] characterized the collective behavior of agents using an
empirical measure

\Lambda N =
1

N

N\sum 
i=1

\delta XN
i

(A.5)

that is induced by a Markov process. References [23, 24] formulated the indepen-
dence assumption that we use in Theorem 2.3 as the problem of propagation of chaos,
which originates from the study of equivalent interacting particles in statistical physics
[9, 31]. For the propagation of chaos, each particle in any finite set of particles yields
an i.i.d. nonlinear Markov process in the mean-field limit [31].

A similar convergence analysis to (2.10) was discussed in Theorem 4.3 of [23] and
in Theorem 3.1 of [24]. One of the main assumptions in those papers is that the size
of any set of agents that one considers (e.g., by examining their joint distribution)
must be finite and does not grow as one increases the system size N . This assumption
corresponds to the constraint in Conjecture 2.3 that the maximum hyperedge size M
is finite.

A.4. Proof of Theorem 2.7. To prove Theorem 2.7, we start with a lemma.

Lemma A.1. Let A= \{ ak\} Kk=1 be a set of discrete values, where K can either be
finite or infinite. Let

XA := \{ \bfitx e \in A| e| : dp(\bfitx e)> 0\} (A.6)

be a set of vectors. It then follows that

min
\bfitx e\in XA

dp(\bfitx e) = dp((Amin,0, . . . ,0)) ,(A.7)
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where Amin :=mini \not =j | ai  - aj | . Up to a permutation, the minimizer of (A.7) is of the
form

(ai, aj , . . . , aj) = argmin
\bfitx e\in XA

dp(\bfitx e) ,(A.8)

where | ai  - aj | =Amin.

We now prove Theorem 2.7.

Proof. The proof of Theorem 2.7 has three steps: (1) verification of the existence
of the limit (i.e., steady-state) density; (2) verification that the limit density takes
the form of a sum of Dirac delta functions; and (3) verification that any two Dirac
delta functions must be separated by at least the minimum isolation distance \bigtriangleup \ast 

dp
(c)

in (2.19).
Step 1. We define a sequence of moment-generating functions (MGFs) Mt(s) that

are associated with the time-dependent probability density g(a, t) by

Mt(s) :=

\int 
esag(a, t) da .(A.9)

Because esa is convex, we know by Lemma 2.5 thatMt(s) is nonincreasing with respect
to time. By Theorem 2.4, we know that g(a, t)\geq 0, which implies thatMt(s)\geq 0 for all
times t. The Monotone Convergence Theorem then guarantees that the infinite-time
limit of Mt(s) always exists. We define

M\infty (s) := lim
t\rightarrow \infty 

Mt(s) .(A.10)

Because of the unique correspondence between an MGF and a PDF, we know that
the infinite-time limit g\infty (a) of g(a, t) also exists.

Step 2. As we know from Theorem 2.6, the mean opinion value \mu is constant with
respect to time. We define the time-dependent variance of the probability density
g(a, t) by

V (t) :=

\int 
(a - \mu )2g(a, t)da .(A.11)

For clarity, we define the shorthand notation G(\bfity e, t) :=
\prod 

i\in e g(yi, t). A direct com-
putation yields

\partial 

\partial t
V (t) =

\sum 
e\in E

pe

\int 
dp(\bfity e)<c

G(\bfity e, t)(a - \mu )2

\Biggl[ 
| e| \delta (a - \bfity e) - 

\sum 
i\in e

\delta (a - yi)

\Biggr] 
dad\bfity e

=
\sum 
e\in E

pe

\int 
dp(\bfity e)<c

G(\bfity e, t)

\Biggl[ 
| e| (\bfity e  - \mu )2  - 

\sum 
i\in e

(yi  - \mu )2

\Biggr] 
d\bfity e

= - 
\sum 
e\in E

pe
2| e| 

\int 
dp(\bfity e)<c

G(\bfity e, t)
\sum 
i,j\in e

(yi  - yj)
2 d\bfity e .

(A.12)

Because V (t) converges to the variance of g\infty (a), we know that limt\rightarrow \infty 
\partial 
\partial tV (t) = 0,

which yields \int 
dp(\bfity e)<c

\prod 
i\in e

g\infty (yi)
\sum 
i,j\in e

(yi  - yj)
2 d\bfity e = 0(A.13)

for all hyperedges e.
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Let U denote the ``positive set"" of g\infty (i.e., U = \{ a : g\infty (a)> 0\} ). If the Lebesgue
measure of U is positive, then we can find an interval \Omega c = (y\ast , y\ast + c) such that the
overlap region O of U and \Omega c also has a positive Lebesgue measure. Furthermore, for
any \bfity e \in O| e| \setminus \{ \bfity e : yi = yj for all i, j \in e\} , we have

1dp(\bfity e)<c

\prod 
i\in e

g\infty (yi)
\sum 
i,j\in e

(yi  - yj)
2 > 0 ,(A.14)

where 1dp(\bfity e)<c is an indicator function. The inequality (A.14) implies that the
integral in (A.13) is strictly positive. This contradicts (A.13) and proves that g\infty 
has a measure-0 positive set U . Additionally, g\infty \geq 0 and integrates to 1, so g\infty is
a Dirac measure and we can write g\infty (a) =

\sum K
k=1mk\delta (a  - ak), with

\sum K
k=1mk = 1

because of conservation of mass (see Theorem 2.6).
Step 3. Let A be the discrete set \{ ak\} Kk=1. We insert g\infty into (A.13) and obtain

\sum 
\bfity a\in XA

1dp(\bfity a)<c

| e| \prod 
i=1

mki

| e| \sum 
i,j=1

(aki
 - akj

)2 = 0 ,(A.15)

where \bfity a = (ak1
, . . . , ak| e| ) and XA are defined in (A.6). Because mki

\sum | e| 
i,j=1(aki

 - 
akj

)2 > 0 holds for all \bfity a \in XA, it follows that 1dp(\bfity a)<c = 0 for all \bfity a \in XA.
This is equivalent to the statement that min\bfity a\in XA

dp(\bfity a) \geq c. By Lemma A.1, we
know that min\bfity a\in XA

dp(\bfity a) = dp((Amin,0, . . . ,0)), where Amin = mini \not =j | ai  - aj | .
By the definition of the minimum isolation distance \bigtriangleup \ast 

dp
(c) in (2.19), we know that

dp((\bigtriangleup \ast 
dp
(c),0, . . . ,0)) = c, which implies that

dp((Amin,0, . . . ,0))\geq dp((\bigtriangleup \ast 
dp
(c),0, . . . ,0)) .(A.16)

Consequently, Amin \geq \bigtriangleup \ast 
dp
(c).

When g0(a) has a finite support B, we know that ai \in B. Because | ai  - aj | >
\bigtriangleup \ast 

dp
(c), it follows that K is finite and K \leq \lfloor | B| /\bigtriangleup \ast 

dp
(c)\rfloor . This completes the

proof.
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