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ABSTRACT

We study the spreading dynamics of content on networks. To do this, we use a model in which content spreads through a bounded-confidence
mechanism. In a bounded-confidence model (BCM) of opinion dynamics, the agents of a network have continuous-valued opinions, which
they adjust when they interact with agents whose opinions are sufficiently close to theirs. Our content-spreading model, which one can also
interpret as an independent-cascade model, introduces a twist into BCMs by using bounded confidence for the content spread itself. We
define an analog of the basic reproduction number from disease dynamics that we call an opinion reproduction number. A critical value of
the opinion reproduction number indicates whether or not there is an “infodemic” (i.e., a large content-spreading cascade) of content that
reflects a particular opinion. By determining this critical value, one can determine whether or not an opinion dies off or propagates widely
as a cascade in a population of agents. Using configuration-model networks, we quantify the size and shape of content dissemination by
calculating a variety of summary statistics, and we illustrate how network structure and spreading-model parameters affect these statistics.
We find that content spreads most widely when agents have a large expected mean degree or a large receptiveness to content. When the
spreading process slightly exceeds the infodemic threshold, there can be longer dissemination trees than for larger expected mean degrees or
receptiveness (which both promote content sharing and hence help push content spread past the infodemic threshold), even though the total
number of content shares is smaller.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0206431

Although most content does not spread far on social media,
occasionally some content “goes viral” and rapidly reaches many
people.1,2 When content with misinformation or disinformation
spreads widely, it has become common to use analogies with
disease spread and state that there is an infodemic,3–5 which is
a portmanteau of the words “information” and “epidemic.” In
the present paper, we examine infodemics in a model of content
spread that uses a bounded-confidence mechanism. We extend
the analogy between the spread of content and the spread of
infectious diseases by defining an opinion reproduction number,
which is inspired by the basic reproduction number of disease

dynamics.6,7 By examining whether or not the spreading pro-
cess is below or above a critical opinion reproduction number
(i.e., an infodemic threshold), one can examine whether content
dies out or goes viral. Our investigation complements branching-
process approaches that examine whether content spread tends
to locally magnify or contract with time.8 In our bounded-
confidence model of content spread, we quantify the size and
shape of content dissemination using a variety of summary statis-
tics, and we illustrate how network structure and spreading-
model parameters affect these statistics in configuration-model
networks.
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I. INTRODUCTION

Given the enormous scale and impact of human interactions
on social media, it is critical to study the collective dynamics
that arise in these systems.9 Content on social media can take
many forms, including scientific facts, other forms of information,
hyperlinks to Web pages, pictures, memes, and misinformation
and disinformation.10–12 Once created, content can then be magni-
fied by human users, bots, and other accounts, creating an online
ecosystem that is filled with misinformation, disinformation, and
“echo chambers,”13–17 even with intentions to share only accurate
information.18 Content sharing by people is ubiquitous and impor-
tant for social connection, and such sharing can help create and
reinforce shared understanding.19 Most content does not spread to
many people, but some online content does spread very far (i.e.,
it “goes viral”) in large content-spreading cascades.1,2 A variety of
other social phenomena, including emotions and behaviors, can also
spread as “social contagions” on networks.20–24

When misinformation or disinformation spreads very widely, it
has become reasonably common to state that there is an infodemic.3–5

The World Health Organization (WHO) gives a much more spe-
cific definition of the term “infodemic” (which is a portmanteau of
the words “information” and “epidemic”) in the context of infec-
tious diseases:25,26 “An infodemic is too much information including
false or misleading information in digital and physical environments
during a disease outbreak.” Using both the rigid WHO definition
and the looser notion of particularly low-quality content going
viral, it is recognized widely that the COVID-19 pandemic has had
accompanying infodemics.27–29 Analogously to the spread of infec-
tious diseases, “superspreader” social-media accounts have played
an important role in COVID-19 infodemics.30

Developing a thorough understanding of misinformation, dis-
information, and their impact requires a broad view of the problem
of “fake news” that also entails proper understanding of misinfor-
mation and its effects.31,32 This view needs to encompass disinfor-
mation (which is intentionally incorrect), misinformation (which
is incorrect, but perhaps unintentionally), biased and misleading
information (which may not be factually incorrect), and the pro-
duction and amplification of such content, including by mainstream
news organizations.16 There has been much empirical research on
misinformation in areas such as computational social science and
allied disciplines.12 Importantly, modeling efforts can also play a sig-
nificant role in mitigating the harmful effects of misinformation
and disinformation.33 In particular, Juul and Ugander2 suggested
that focusing on reducing the “infectiousness” of information and
conducting theoretical analyses of spreading processes may be very
helpful for limiting the spread of misinformation and disinforma-
tion.

One strategy to gain insight into the mechanisms that underlie
observations in social-media systems is by studying mathemati-
cal models of opinion dynamics on networks.34–36 Opinion models
take a variety of forms. The nodes of a network represent agents,
and the edges between agents indicate social and/or communi-
cation ties between agents. The opinions of the agents can take
either discrete values (e.g., +1 or −1) or continuous values (e.g.,
in the interval [−1, 1], with −1 representing the most liberal opin-
ion and +1 representing the most conservative opinion). When two

(or more) adjacent agents interact, one or more of them updates
their opinion according to some rule. One popular type of opinion
model is a bounded-confidence model (BCM),37–39 in which agents
have continuous-valued opinions and interacting agents compro-
mise their opinions by some amount if and only if their opinions are
sufficiently close to each other. There have been numerous studies
of BCMs, which have been generalized in many ways. Recent stud-
ies have incorporated phenomena such as media outlets with fixed
opinions,40 polyadic interactions (i.e., interactions between three or
more agents),41,42 noise,43 asymmetric confidence bounds,44 costs
of opinion changes,45 agents with heterogeneous activity levels,46

smooth interaction kernels (in the form of sigmoidal functions)
to describe how agents influence each other,47 opinion repulsion,48

homophilic adaptivity of network structure,49 dynamics with “no
one left behind,”50 and adaptive confidence bounds.51

Another line of modeling research is the study of spreading
dynamics on networks.22,52 Research on spreading dynamics often
uses ideas from percolation theory.53,54 The study of spreading pro-
cesses on networks includes research on social dynamics,55 disease
dynamics,56 and how they affect each other.57 Much research on so-
called “social contagions” has been inspired by the rich tradition
of scholarship on biological contagions, although researchers argue
about whether and how much social phenomena spread in a manner
that resembles disease spread.58–64 Nevertheless, despite the differ-
ences between disease spread and the spread of information and
other content, it is worthwhile to explore parallels between them.
Whether one is considering a disease or online content, some things
spread very far before dissipating and others die out rapidly.2 Indeed,
people even say that online content that spreads very far has “gone
viral.”

In some models of social phenomena, such as simplistic cas-
cade models and any other models in the form of a branching
process,65 one can study whether the spread of content tends to mag-
nify or contract locally as a function of time by computing branching
numbers,8 which indicate the mean number of offspring (e.g., the
mean number of reposts as a function of time) of a piece of con-
tent. This is a simplification of empirical content spread on social
media, where it is common to trace the spreading paths of posts,
post boosting, and post commenting and quoting using dissemina-
tion trees.1,10,66,67 There are also other ways to calculate local mag-
nification and contraction in spreading processes.68 Analogously
to studies of content spread in social systems, when researchers
study compartmental models of disease spread, it is traditional to
calculate reproduction numbers to examine whether or not a dis-
ease dies out.7 The most standard type of reproduction number is
the basic reproduction number, which measures how many infec-
tions occur, on average, from one infected node in a population in
which all other nodes are susceptible to infection.6,7 Compartmen-
tal models have also been employed in studies of opinion dynamics,
and one can then calculate a basic reproduction number to exam-
ine whether or not content goes viral.69 Additionally, in the study
of disease spread, researchers have used branching-process theory
in concert with maximum-likelihood estimation to estimate basic
reproduction numbers from data.70

In the present paper, we combine ideas from opinion mod-
els and percolation-inspired spreading models to study the mean

Chaos 35, 013160 (2025); doi: 10.1063/5.0206431 35, 013160-2

Published under an exclusive license by AIP Publishing

 30 January 2025 17:40:49

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

“infectiousness” of content in a model that uses a bounded-
confidence mechanism for content spread.71 In our content-
spreading model, which one can also interpret as an independent-
cascade model,72 we use a bounded-confidence mechanism to
determine whether or not an agent is receptive to content. If an
agent is receptive, it spreads content without modifying it, rather
than compromising its opinion as in a standard BCM. Our model
takes the form of a threshold model55 and has an opinion-update
rule that is reminiscent of bond percolation.53,73,74 In standard bond
percolation, an edge of a network is preserved with probability p and
is removed with probability 1 − p. In our content-spreading model,
the probability of “preserving” an edge between agents i and j cor-
responds to the probability of content spread between those two
agents. However, in contrast to classical bond-percolation models,
this probability is not fixed in our model. Instead, it depends on the
opinions of agents i and j and on whether or not those two agents
are adjacent to other agents that previously shared the content.

To analyze the structure of content spread in our model, we
define an opinion-dynamics analog of the basic reproduction num-
ber from disease dynamics, and we use this opinion reproduction
number and its associated critical value (which we call the infodemic
threshold) to examine when an infodemic occurs in a network. We
use generating functions to derive an analytical expression for the
opinion reproduction number on configuration-model networks in
the limit of infinitely many nodes. We then compare this analytical
result with numerical simulations. We quantify the spread of con-
tent by calculating a variety of summary statistics—the total number
of shared pieces of content, the longest adoption paths, the widths
of dissemination trees, and structural virality—that were employed
previously by other researchers.2,75

Our paper proceeds as follows. In Sec. II, we give a brief
introduction to bounded-confidence models of opinion dynam-
ics. In Sec. III, we describe a content-spreading process that draws
inspiration from percolation theory and uses a bounded-confidence
mechanism for spreading. In Sec. IV, we analyze the conditions
that determine when we expect a large content-spreading cascade
(i.e., an “infodemic”). To allow us to forecast whether or not an
infodemic occurs in a network, we define an opinion-dynamics
analog of the basic reproduction number from disease dynamics.
In Sec. V, we quantify the total number of shared pieces of con-
tent on a finite-size network. In Sec. VI, we compute a variety of
summary statistics to describe the spread of content. We illustrate
how network structure and spreading-model parameters affect these
statistics in configuration-model networks. In Sec. VII, we conclude
and discuss our results. In the Appendix, Mason writes a few words
about David Campbell and wishes him a wonderful 80th birthday.

II. BOUNDED-CONFIDENCE MODELS ON NETWORKS

Bounded-confidence models (BCMs)34,35,37,76 of opinion dynam-
ics include both consensus-seeking behavior and preferences for
similar views (through “selective exposure”). BCMs have been used
by many researchers to study social influence and group dynam-
ics (including consensus, polarization, fragmentation, and other
phenomena).39

We model a social network as a graph G(V, E), where V (with
|V| = N, so N is the “size” of the network) is the set of vertices

(i.e., nodes) and E ⊆ V × V is the set of edges. Each node repre-
sents an agent in some population, and each edge encodes a social
and/or communication tie between two agents. We suppose that G
is undirected and unweighted. Node i is adjacent to node j (and vice
versa) if there is an edge between i and j. We assume that G is simple,
so it has no self-edges or multi-edges. The graph G has an associated
N × N adjacency matrix A, where Aij = 1 if i is adjacent to j and
Aij = 0 otherwise. If desired, one can consider directed networks,
weighted networks, and other generalizations of graphs. See Refs.
74, 77–79 for books and reviews about networks.

Suppose that each node i has a time-dependent opinion xi(t),
which takes continuous values on a domain that we call the opinion
space. For example, the opinion space can be the real line R, a closed
and bounded interval [a, b] ⊂ R, or a subset of a higher-dimensional
space R

k. In a BCM, agents are receptive only to other agents that are
within a distance c of their current opinion. More precisely, we say
that agent i is receptive to agent j (and vice versa) if d(xi(t), xj(t)) < c,
where d is a metric on the opinion space. The parameter c is called
the confidence bound. Agents that are receptive to each other influ-
ence each other’s opinions through an update rule. It is also possible
to consider BCMs with asymmetric receptiveness, but we examine
only symmetric situations.

III. A CONTENT-SPREADING PROCESS WITH A

BOUNDED-CONFIDENCE MECHANISM

We study a content-spreading model that has a bounded-
confidence mechanism for adopting an opinion and sharing con-
tent. However, in our model, receptive agents simply adopt the
opinion that is espoused by content, rather than compromising their
opinions as in a standard BCM.

The BCMs that we discussed in Sec. II describe the time-
dependent opinions of the agents of a network. However, in real
life, one usually does not have easy access to numerical values of
people’s opinions. One instead typically observes the content that
is spread on social networks. Naturally, such content often reflects
an underlying opinion or ideological belief. There is much empir-
ical work on quantifying the dissemination and virality of content
on social-media platforms like X (i.e., the platform formerly known
as Twitter),11,12 and branching processes provide a natural model of
content spread on social media. See, for example, Refs. 8, 10, 75, 80,
and 81.

We seek to track the spread of fixed content with a fixed
opinion x0. In other words, the spreading process has no muta-
tion of ideas or editorializing. In the context of social media, one
can interpret the fixed-content assumption as accounts only sharing
or reposting content, without any additions or changes. By con-
trast, real social-media systems have a rich ecosystem of content
evolution.82

As we described in Sec. II, we model a social network as an
undirected, unweighted, and simple graph G(V, E) with |V| = N
nodes. The spread of content with opinion x0 begins at a source
node, which we select uniformly at random from V and label as node
0. We initialize all other nodes i ∈ {1, . . . , N − 1} of a graph G with
a state xi that we draw from a distribution φ(x). In our analytical
calculations, we assume either that there is a single source node or
that the number of source nodes is much smaller than the network
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FIG. 1. A schematic illustration of our content-spreading process (see Algorithm 1). In panel (a), we show several consecutive update steps of Algorithm 1. We initialize a
graph at time t = 0 with one active node (in pink), which we label as node 0. We suppose that the root node 0 has content state x0 = 0.1. We initialize all other nodes j to
have opinions xj ∈ (0, 1). In this example, the receptiveness parameter is c = 0.35. At each time step, any neighbors j of the previously active node that satisfy |xj − x0| < c
become active (i.e., turn pink). We thus add them to the dissemination tree G0. In this example, Algorithm 1 terminates after four steps. In panel (b), we show the resulting
dissemination tree G0 in orange, with the root node outlined in black.

size N. We can then treat spreading processes that start from distinct
nodes as independent of each other. We require φ(x) to be Riemann
integrable.

Given an opinion space �, we refer to the opinion x0 ∈ � of
the content as the content state. We refer to the state xi ∈ � of
node i ∈ {1, . . . , N − 1} as its opinion. In the present paper, we focus
on � = [0, 1], although we show a situation with � = R in Fig. 9.
Let c ∈ [0, 1] denote the receptiveness parameter, which is akin to
the confidence bound of a typical BCM. In practice, we consider
c ∈ (0, 1/2], so agents are not receptive to agents with overly differ-
ent opinions. The spread of content with opinion x0 begins at node
0. The content spreads through a percolation-inspired process53 via
an update rule that is based on a bounded-confidence mechanism
(see Algorithm 1). In Fig. 1, we show a schematic of our algorithm
on a small network.

To study content spread on a network, we construct a dissem-
ination tree G0 with root node 0 to track the spreading process.1,83

Content spreads as follows. Suppose that content state x0 starts
at node 0. We look at the set Ni of neighbors j of node i and
select all nodes j ∈ Ni with an opinion xj that satisfies |xj − x0| < c.
These neighbors of i spread the content (i.e., they “activate” and
change their opinions xj to the content state x0) because the distance
between the opinion xj and the content state x0 is sufficiently small.

ALGORITHM 1. Our algorithm for the spread of content on a network.

Input: Model parameters c, x0, φ(x), N and the degree distribution
Output: Dissemination tree G0

Set active nodes = 0;next nodes = {}
while active nodes 6= {} do

for i in active nodes do
neighbors= {j | Aij = 1}
for j in neighbors do

xj =

{

xi (add i to next nodes) , if |xj − x0| < c

xj , otherwise

end for
for k in next nodes do

Aik = 0 for all i
end for

end for
active nodes= next nodes

Add next nodes to G0

next nodes= {}
end while
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We represent this activation by adding these nodes to the dissemi-
nation tree G0 as child nodes of node i. We then repeat this process
for each child node until there are no available neighbors that are
left to activate. In other words, we continue this process until either
all nodes are activated or until no active nodes have any remaining
receptive neighbors.

In Algorithm 1, it is guaranteed that G0 is a tree. If it is possi-
ble for a node to activate (which can occur only once), it activates
the first time that it encounters the content of one of its neighbors.
When two active nodes share a receptive neighbor, we choose the
active node with the smaller index as the parent node of the newly
activated neighbor. Modifications of this algorithm can result in a
directed acyclic graph instead of a tree. It is worthwhile to examine
such modifications in future work (e.g., if considering the effects of
competing social contagions84).

IV. FORECASTING AN “INFODEMIC” ON A LARGE

NETWORK

We now examine content spread on a network with infinitely
many nodes. This situation approximates content spread on net-
works with many nodes (i.e., large N), particularly in the early stages
of content spread.

We use analysis that was developed for models of infectious-
disease spread on networks.85–87 We use generating functions to
obtain an expression for the expected number of neighbors of a
node that spread its content. We refer to this expected number
of neighbors as the opinion reproduction number R. The opinion
reproduction number, whose critical value R = 1 is its associated
infodemic threshold, is akin to the basic reproduction number R0 in
models of disease spread.6,7

A. Analysis

Suppose that content spreads on a configuration-model
network88 with degree distribution pk. Let qk denote the associated
excess degree distribution. We generate each configuration-model
network by uniformly randomly matching “stubs” (i.e., ends of
edges) to each other. We remove all self-edges and multi-edges
after matching stubs, so different networks can have slightly dif-
ferent degree sequences. The generating function g0 of the degree
distribution pk and the generating function g1 of the excess degree
distribution qk are

g0(z) =
∞
∑

k=0

pkz
k, (1)

g1(z) =
∞
∑

k=0

qkz
k. (2)

Given a node with k neighbors, we want to determine the prob-
ability that l of these neighbors spread a piece of content. To do this,
we need to calculate the probability that content spreads along one
edge. This single-edge transmission probability depends on the con-
tent state x0, the receptiveness parameter c, and the distribution of
the initial opinions xi (with i ∈ {1, . . . , N − 1}).

Suppose that we draw the initial opinions xi from a distribution
with probability density function φ(x). The probability of content

spread (i.e., transmission) along an edge depends on the probability
of drawing a value xi that lies within a distance c of x0. The
single-edge transmission probability is

s(x0, c) =
∫ x0+c

x0−c

φ(x)dx . (3)

One common choice of the probability density function φ(x)
comes from considering the uniform distribution on the interval
(0, 1). The probability of drawing an opinion xi within a distance
c of x0 is then 2c, unless x0 is within c of either end of the boundary
of (0, 1). This yields

s(x0, c) =











c + x0 , x0 ≤ c

2c , x0 ∈ (c, 1 − c]

1 + c − x0 , x0 > 1 − c .

(4)

Another common choice of φ(x) is the probability density function
for a Gaussian distribution with mean µ and standard deviation σ .
(In this case, the opinion space is R.) This yields

s(x0, c) =
1

2

[

erf

(

x0 + c − µ

σ
√

2

)

− erf

(

x0 − c − µ

σ
√

2

)]

, (5)

where erf(x) = 2√
π

∫ x

0
e−t2dt denotes the error function.

Using the single-edge transmission probability [see Eq. (3)], we
see that the probability that l of k neighbors spread the content is

p(l|k) =
(

k

l

)

(s(x0, c))
l (1 − s(x0, c))

k−l . (6)

Therefore, the probability generating function of the distribution of
the number of content shares from a node to its neighbors is

∞
∑

l=0

∞
∑

k=l

pkp(l|k)zl =
∞
∑

l=0

∞
∑

k=l

pk

(

k

l

)

(s(x0, c))
l (1 − s(x0, c))

k−l zl

=
∞
∑

k=0

pk

k
∑

l=0

(

k

l

)

(s(x0, c))
l (1 − s(x0, c))

k−l zl

=
∞
∑

k=0

pk (1 + (z − 1)s(x0, c))
k

= g0(1 + (z − 1)s(x0, c)) . (7)

To obtain the probability generating function of the distri-
bution of the number of second neighbors (i.e., the neighbors of
neighbors) of a node in a dissemination tree, we use a similar argu-
ment, but now we use the excess degree distribution instead of the
degree distribution. This yields the probability generating function

g1(1 + (z − 1)s(x0, c)) . (8)

Recall that content spread yields a directed acyclic graph (i.e.,
a dissemination tree) in our model. Additionally, consider a net-
work G that is infinite (or at least large enough so that we can
neglect finite-size effects). We then have that ga(1 + (z − 1)s(x0, c))
= g1(1 + (z − 1)s(x0, c)) is the probability generating function of
the distribution of the number of nodes that spread content that they
received directly from a single node at level a of a dissemination tree.
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FIG. 2. A comparison of numerical simulations of our content-spreading model with our analytical predictions in (a) an infodemic situation (when the receptiveness parameter
is c = 0.2, which implies that R > 1) and (b) a situation without an infodemic (when the receptiveness parameter is c = 0.05, which implies that R < 1). For each numerical
simulation, we generate a 10 000-node configuration-model network with a degree sequence that we determine using a Poisson distribution with mean λ = 5. We draw the
initial node opinions xi uniformly at random from (0, 1), and we set the content state to x0 = 0.5. In each realization, we choose five source nodes uniformly at random to
seed with content state x0. In our analytical calculations, we assume that the content spread from each source node is independent, as the number of source nodes is much
smaller than the total number of nodes. In each panel, the solid purple curve gives the total number of content shares (averaged over 100 realizations) as a function of time. In
each realization, we draw a new degree sequence and a new set of node opinions. The light purple shaded region indicates the standard deviation for these 100 realizations.
The dashed orange curve gives our analytical approximation.

Importantly, we are relying on the assumption that the number of
times that a piece of content spreads is much smaller than the total
number of nodes of a network.

In the early stages of content dissemination, the expected num-
ber of “grandchildren” (i.e., second neighbors) in a dissemination
tree that starts from a node that spreads the content at level a is the
opinion reproduction number

R =
d

dz
ga(1 + (z − 1)s(x0, c))

∣

∣

∣

∣

z=1

= s(x0, c)g
′
1(1)

= s(x0, c)
g′′

0(1)

g′
0(1)

, (9)

where the prime ′ denotes differentiation with respect to z.
Equation (9) relates the expected number of grandchildren to the
expected number of children. When the number of content shares
increases from one level to the next, the opinion reproduction
number R (which is analogous to the basic reproduction number
R0 in models of infectious-disease spread6) is larger than 1. Sim-
ilarly, a decrease in the number of content shares from one level
to the next corresponds to R < 1. The critical value R = 1 is the
infodemic threshold. This calculation is reminiscent of branching-
process approaches that examine whether content spread tends to
locally magnify or contract with time.8 Given an opinion reproduc-
tion number R, we approximate the expected number of content

FIG. 3. The (x0, c) phase diagram for 10 000-node configuration-model net-
works with degree sequences that we generate using a Poisson distribution with
mean λ = 5. We vary both the content state x0 and the receptiveness parameter
c. The shading of each square indicates the mean, across 100 realizations, of the
proportion of the nodes that share the content, with lighter shades indicating that
more nodes share the content. In each realization, we choose five source nodes
uniformly at random to seed with content state x0. Additionally, in each realization,
we draw a new degree sequence and a new set of node opinions. The orange solid
curve shows the critical receptiveness value c∗ for each x0.
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FIG. 4. Histograms of the total number of content shares in our content-spreading model across 1000 realizations for 200-node, 2400-node, and 4800-node configuration--
model networks. The dashed vertical lines indicate the numbers of content shares (i.e., the dissemination-tree sizes) that we predict from our analysis. In each realization,
we generate an N-node configuration-model network with a degree sequence that we obtain from a Poisson distribution with mean λ = 5. We draw the node opinions xi
uniformly at random from (0, 1), and we set the content state to x0 = 0.5 and the receptiveness parameter to c = 0.2. In each realization, we draw a new degree sequence
and a new set of node opinions.

shares up to and including time step T as n0

∑T
t=0 Rt, where n0 is

the number of source nodes and we treat content that spreads from
different source nodes as independent. Given our assumptions, we
expect our approximation to be reasonable in the first few genera-
tions (i.e., levels) of a dissemination tree. These initial generations
describe the early stages of content spread.

We now calculate R explicitly for an example in which we
draw the initial node opinions uniformly at random from the inter-
val (0, 1). In a configuration-model network with a Poisson degree
distribution with mean λ, the opinion reproduction number is

R = s(x0, c)
λ2

λ
= s(x0, c)λ (10)

because g0(z) = e−λ(1−z). Substituting Eq. (4) into Eq. (10) allows us
to calculate the opinion reproduction number in terms of the con-
tent state x0, the receptiveness parameter c, and λ. At the infodemic
threshold R = 1, the critical value c∗ of the receptiveness param-
eter that determines whether content spread increases locally or
decreases locally is

c∗ =











1
λ

+ x0 , x0 ≤ c∗

1
2λ

, c∗ < x0 ≤ 1 − c∗

1
λ

− 1 + x0 , x0 > 1 − c∗.

When the receptiveness parameter c > c∗, the expected number of
content shares increases from one level to the next in the early stages
of content spread, so we expect the content to take hold in a net-
work. Unsurprisingly, it is easiest to exceed the infodemic threshold
R = 1 for large values of the receptiveness parameter c and for net-
works with large expected mean degree λ. The content state x0 has
less impact than the receptiveness parameter and the expected mean
degree, except when the content state is near 0 or 1.

B. Simulations

We now compare our analytical results from Sec. IV A to numer-
ical simulations of our content-spreading model. We simulate the
model on 10 000-node configuration-model networks with degree
sequences that we determine using a Poisson distribution with mean
λ = 5. We draw the initial opinions uniformly at random from the
interval (0, 1). In Fig. 2(a), we show a scenario in which our analysis
indicates that we are above the infodemic threshold (i.e, R > 1). In
Fig. 2(b), we show a scenario in which our analysis indicates that we
are below the infodemic threshold (i.e., R < 1). In this computation,
the mean total number of content shares is very small. (It is about
10.)

In Fig. 3, we show a phase diagram that summarizes when our
content-spreading model experiences an infodemic for different val-
ues of the content state x0 and receptiveness parameter c. In orange,
we show the critical value c∗ that we obtain analytically using the
infodemic threshold R = 1.

V. QUANTIFYING CONTENT SPREAD

Now that we have analyzed the onset of infodemics in our
content-spreading model on configuration-model networks, we
measure the sizes (i.e., the numbers of nodes) in the resulting dis-
semination trees. The size of a dissemination tree equals the total
number of content shares. Studying dissemination trees allows us to
explore the long-term behavior of our content-spreading model. We
thereby complement our examination of early-stage spreading (see
Sec. IV).

A. Analysis of the total number of content shares

Given the number of nodes and the degree distribution of a
configuration-model graph G, a content state x0, a receptiveness
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FIG. 5. The effect of varying the network size N on the total number of content shares, the width, the longest-path length, and the structural virality of dissemination trees of
our content-spreading model on configuration-model networks. The solid curves give means across 1000 realizations, and the shaded regions give the standard deviations.
In each realization, we generate an N-node configuration-model network with a degree sequence from a Poisson distribution with mean λ = 5. We vary N from 100 to 5000
in increments of 100. Each realization has different initial node opinions, which we draw uniformly at random from (0, 1). The content state is x0 = 0.5 and the receptiveness
parameter is c = 0.2. In each realization, we draw a new degree sequence and a new set of node opinions. Both the total number of content shares (i.e., the dissemination-tree
size) and the width grow linearly with N. The longest-path length grows quickly at first as we increase N, and then it grows much more slowly with N. The structural virality
appears to saturate at a constant value for sufficiently large N.

parameter c, and a distribution φ(x) of opinions, we again use gen-
erating functions (as in Sec. IVA) to estimate the total number
of content shares (i.e., the size) of a dissemination tree G0. This anal-
ysis treats content spread as a percolation process. See Ref. 74 for a
detailed description of this approach.

Let the “spreading set” S of a network denote the set of nodes
that have shared a piece of content. The spreading set S has SN
elements (i.e., there are a total of SN content shares), where S is
the fraction of a network’s nodes that have shared that content.
Node opinions are independent of network connectivity in our
content-spreading model, so the probability that a node is in S

equals the probability that it is receptive to the content multiplied
by the probability that it belongs to the connected component of
a source node. In this calculation, we assume that there is a single
source node. Therefore, SN is the size of the connected compo-
nent of one source node. Let u denote the mean probability of
not being connected to this component via a particular neighbor.

We then have

S =
(∫ x0+c

x0−c

φ(x) dx

)

(

1 −
∞
∑

k=0

pku
k

)

= s(x0, c)
(

1 − g0(u)
)

, (11)

where we recall that pk is the probability that a node has degree k
and g0(u) is the generating function of the degree distribution.

To calculate S, we need to determine u. A particular node i is
not connected to the spreading set S via a particular node j either
because it is not receptive to the content or because it is not in
the same component as the content. In the latter case, for a con-
nected network G, node i is isolated from the content spread because
of non-receptive nodes. For a node j with k edges aside from the
one to node i, the probability that one of these scenarios occurs is
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FIG. 6. The effect of varying the expected mean degree of a network on the total number of content shares, the width, the longest-path length, and the structural virality of
dissemination trees of our content-spreading model on configuration-model networks. The solid curves give means across 1000 realizations, and the shaded regions give the
standard deviations. In each realization, we generate a 2000-node configuration-model network with a degree sequence from a Poisson distribution with mean λ. We vary
λ from 1 to 40 in increments of 1. Each realization has different initial node opinions, which we draw uniformly at random from (0, 1). The content state is x0 = 0.5 and the
receptiveness parameter is c = 0.2. In each realization, we draw a new degree sequence and a new set of node opinions. The total number of content shares grows initially
and then saturates at about 800. The width also tends to increase with λ, with a possible plateau in a small interval near λ = 20. The longest-path length and structural
virality increase at first and then decrease, eventually leveling off at a constant value for sufficiently large expected mean degrees. In our simulations, the longest-path length
has a maximum at about λ = 4 and the structural virality has a maximum at about λ = 3.

1 − s(x0, c) + s(x0, c)u
k. Therefore,

u =
∞
∑

k=0

qk

(

1 − s(x0, c) + s(x0, c)u
k
)

= 1 − s(x0, c) + s(x0, c)g1(u) , (12)

where qk again denotes the probability of having k neighbors other
than the spreading edge (i.e., the excess degree is k) and g1(u) again
denotes the generating function of the excess degree distribution. By
inspection, u = 1 is always a solution of Eq. (12); this solution entails
not having an infodemic. We are interested in whether or not there
are also solutions u ∈ (0, 1).

In some special cases, it is possible to solve for u analytically,
but it is typically difficult (or even impossible) to do so even when
g1(u) has a simple closed-form expression. However, one can find
a root u∗ ∈ (0, 1) of Eq. (12) numerically using either an explicit

expression for g1(u) or an approximation of it.74 One then substi-
tutes u∗ into Eq. (11) to obtain an approximation of S. A solution
u∗ ∈ (0, 1) yields an approximation of S when there is an infodemic.

In Fig. 4, we compare our approximation of the total number
of content shares (SN) to the number of content shares in numer-
ical simulations of our model on configuration-model networks of
three different sizes. For each size (200, 2400, and 4800 nodes), we
generate 1000 configuration-model networks with degree sequences
from a Poisson distribution with mean λ = 5. We plot histograms of
the total numbers of content shares, and we observe good agreement
between our analytical and numerical results.

VI. SUMMARY STATISTICS FOR DISSEMINATION

TREES

In this section, we perform numerical experiments and study
the output of our bounded-confidence content-spreading model on
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FIG. 7. The effect of varying the receptiveness parameter c on the total number of content shares, the width, the longest-path length, and the structural virality of dissemination
trees of our content-spreading model on configuration-model networks. The solid curves give means across 1000 realizations, and the shaded regions give the standard
deviations. In each realization, we generate a 2000-node configuration-model network with a degree sequence from a Poisson distribution with mean λ = 5. Each realization
has different initial node opinions, which we draw uniformly at random from (0, 1). The content state is x0 = 0.5. We vary c from 0.02 to 0.48 in increments of 0.02. In each
realization, we draw a new degree sequence and a new set of node opinions. The total number of content shares and the width are very small until about c = 0.1, and then
they grow with c. Both growth rates seem roughly linear after some earlier slow growth, although the curve for the total number of content shares seems to be concave down.
The longest-path length increases initially with c before reaching a maximum and then decaying. The structural virality also appears to increase initially with c before reaching
a maximum and then decaying to a constant value. The standard deviations of the longest-path length and the structural virality are large.

configuration-model networks. In each realization of these numer-
ical simulations, we activate a single source node. We quantify the
features of our model by computing four summary statistics to
describe the dissemination trees that we obtain in our simulations.

• Total number of content shares. One way to measure the effec-
tiveness of content spread is to count the total number of nodes
that spread (i.e., “adopt”) the content. This quantity, which we
studied in Sec. V, is equal to the number of nodes in the dissemi-
nation tree G0.

• Length of a longest adoption path. An adoption path is a path in
a dissemination tree from a source node to another node in the
tree.83 We measure the “depth” of content spread by calculating
the length of a longest adoption path.

• Width. One can arrange a dissemination tree G0 with the source
node at the top (i.e., at level 0), nodes with adoption-path length 1
at level 1, nodes with adoption-path length 2 at level 2, and so on.

The width of a dissemination tree is the largest number of nodes
that adopt the content in a single level. Mathematically, the width
is

max
b∈{1,...,l∗}

(number of nodes with adoption-path length b) ,

where l∗ is the length of a longest adoption path.
• Structural virality. Structural virality (i.e., the Wiener index) was

used by Goel et al.1 to quantify the viral nature of content spread.
The structural virality v is the mean shortest-path length between
nodes in a dissemination tree G0. Mathematically, the structural
virality is

v =
1

N(N − 1)

N−1
∑

i=0

N−1
∑

j=0

dij ,

where dij is the length of a shortest path between nodes i and j.
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FIG. 8. The effect of varying the content state x0 on the total number of content shares, the width, the longest-path length, and the structural virality of dissemination trees of
our content-spreading model on configuration-model networks with initial node opinions from a uniform distribution. The solid curves show means across 1000 realizations,
and the shaded regions give the standard deviations. In each realization, we generate a 2000-node configuration-model network with a degree sequence from a Poisson
distribution with mean λ = 5. Each realization has different initial node opinions, which we draw uniformly at random from (0, 1). The receptiveness parameter is c = 0.2.
We vary x0 from 0.02 to 0.98 in increments of 0.02. In each realization, we draw a new degree sequence and a new set of node opinions. When x0 ∈ (0.2, 0.8), the total
number of content shares, the width, the longest-path length, and the structural virality are all roughly constant. This is not surprising because we draw initial node opinions
uniformly at random, so the transmission probability for content to spread along an edge depends only on c in this interval [see Eq. (4)]. The symmetry of these summary
statistics with respect to x0 is also clear from Eq. (4). Content states that are closer to the boundary (i.e., closer to either 0 or 1) of opinion space produce dissemination trees
with fewer total content shares, smaller widths, and shorter longest paths. However, the structural viralities of such “extreme” content states are slightly larger.

One natural question to ask is how the number of nodes of a
network affects the spread of content on that network. We study this
question by increasing the network size N for fixed expected mean
degree λ (see Fig. 5), where we again consider a Poisson degree dis-
tribution with mean λ. With this construction, the expected number
of edges remains constant as we increase N. As implied by our anal-
ysis in Sec. V, the total number of content shares grows linearly with
N [with a slope indicated by Eq. (11)]. The dissemination-tree width
also appears to grow linearly with N. The longest-path length and
structural virality change more dramatically for small N than for
large N. The former appears to grow very slowly for large N, and
the latter appears to eventually saturate at a constant value.

In Fig. 6, we examine the impact of increasing the expected
mean degree λ on the dissemination-tree statistics. The total num-
ber of content shares increases with λ before saturating at a constant
value. The width also tends to increase with λ, with a possible plateau

in a small interval near λ = 20. The longest-path length and struc-
tural virality have maxima for small values of λ. When λ is large,
it is seemingly possible for the content to be adopted by all recep-
tive nodes that are in the connected component of a source node
in just a few time steps, yielding a dissemination tree with a large
width, short adoption paths, and a small structural virality. The
maxima in the longest-path length and structural virality indicate
that a spreading process persists longer (and hence travels farther
from a source node) when nodes have fewer neighbors on aver-
age, provided the mean degree is large enough for an infodemic to
occur.

Varying the receptiveness parameter c (see Fig. 7) yields similar
dissemination-tree statistics as varying the expected mean degree.
We again observe maxima in the longest-path length and structural
virality. These maxima likely arise because larger receptiveness val-
ues favoring faster content spread, although the longest-path length
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FIG. 9. The effect of varying the content state x0 on the total number of content shares, the width, the longest-path length, and the structural virality of dissemination trees of
our content-spreading model on configuration-model networks with initial node opinions that we draw from a Gaussian distribution with mean 0.5 and standard deviation 0.1.
In this figure, the opinion space isR. This opinion space and the initial opinion distribution differ from the ones in Fig. 8. The solid curves give means across 1000 realizations,
and the shaded regions give the standard deviations. In each realization, we generate a 2000-node configuration-model network with a degree sequence from a Poisson
distribution with mean λ = 5. The receptiveness parameter is c = 0.2. We vary the content state x0 from 0.02 to 0.98 in increments of 0.02. In each realization, we draw a
new degree sequence and a new set of node opinions.

and structural virality both have large standard deviations in this
experiment. We observe evidence of a phase transition in the total
number of content shares at the value of the receptiveness parameter
c that we predicted in our analysis in Sec. IV A. There also appears
to be an accompanying phase transition in the dissemination-tree
width. In these simulations, the content state is x0 = 0.5. We observe
qualitatively similar behavior with content states (e.g., x0 = 0.15)
that are closer to the boundary (i.e., either 0 or 1) of opinion space
but still in the infodemic regime. In our repository (see the folder
“supplementary-figures” of Ref. 89), we include analogous figures to
Fig. 6 and Fig. 7 for such content states.

We also examine the impact of the content state on our
dissemination-tree statistics for two different initial opinion distri-
butions [see Eq. (3)]. In Fig. 8, we show results of simulations in
which we draw the initial node opinions from a uniform distribution
on the interval (0, 1). In Fig. 9, we show results of simulations in

which we draw the initial node opinions from R using a Gaussian
distribution with mean 0.5 and standard deviation 0.1. As expected,
we obtain smaller values of all four summary statistics when the con-
tent state lies in the tails of the Gaussian distribution (and when
it lies near either end of the boundary of the interval (0, 1) for
the uniform distribution). We observe maxima in the total number
of content shares and dissemination-tree width at the distribution
mean (and also for a very large interval around it for the uniform
distribution). For the Gaussian distribution, the content states that
yield the largest longest-path lengths and structural viralities occur
away from the mean (and are symmetric), indicating that content
can spread farther from a source node in these situations than when
the content state equals the mean initial opinion. These dissemina-
tion trees are longer and narrower than those that we obtain when
the content state equals the mean initial opinion. However, if the
content state is too extreme, then it does not spread very much.
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VII. CONCLUSIONS AND DISCUSSION

We examined “infodemics,” in the form of large content-
spreading cascades, in a bounded-confidence content-spreading
model on configuration-model networks. To do this, we defined
an “opinion reproduction number” that is analogous to the basic
reproduction number of disease dynamics. By examining whether
the opinion of the content and the receptiveness of individuals yield
an opinion reproduction number that is larger than 1, we investi-
gated when content propagates widely in a network of agents and
when it does not.

We quantified the size and structure of content spread by
measuring several properties—tree size, tree width, the length of
the longest adoption path(s), and structural virality—of dissemina-
tion trees, and we thereby illustrated how network structure and
spreading-model parameters affect the spread of content. We found
that larger networks, larger expected mean degrees, larger receptive-
ness, and content states near the mean of an opinion distribution all
promote larger total numbers of content shares, including the possi-
bility of sharing the content to many new nodes in a single time step.
Additionally, when the expected mean degree and receptiveness are
small but in the regime where the spreading process is above the
infodemic threshold, there can be longer dissemination trees than
when the expected mean degree or receptiveness are larger, even
though the total number of content shares is smaller. This indicates
that content is spreading farther but less widely from a source agent
(i.e., an agent that originally posts a piece of content).

There are many interesting ways to extend our work. A par-
ticularly relevant extension is to examine the effects of purpose-
ful choices of source nodes, such as to try to promote influence
maximization.72,90 (An important point for such efforts is that our
model takes a perspective that suggests novel generalizations of
independent-cascade models.) One can also examine the effects of
competing social contagions,81 which perhaps are spread by agents
with different political perspectives or agendas. Another worth-
while future direction is to adapt the recently developed “distributed
reproduction numbers”91 from disease spread to content spread. It
is also desirable to extend our study of content-spreading dynamics
to other network structures. One key direction is to consider more
complicated network models (such as generalizations of configura-
tion models that incorporate various types of heterogeneities92) and
real-world networks. It is also natural to extend our investigation to
more complicated types of networks, such as multilayer networks
(which allow multiple types of social connections and communi-
cation channels),93 hypergraphs (which allow simultaneous inter-
actions between three or more agents),94 and adaptive networks
(e.g., to incorporate relationship changes, such as “unfollowing” or
“unfriending” on social-media platforms).95

Other viable extensions of our model directly exploit the link
that it establishes between opinion dynamics and percolation pro-
cesses. It seems particularly exciting to study scenarios with rich
interplays between the opinion of content and the opinions of
agents. For example, one can incorporate mutations of content
opinions13,82 through averaging the opinion of content with the
opinions of the agents that spread it. A related extension entails
allowing agent opinions to evolve with time through their interac-
tions with each other (as in classical bounded-confidence models,

such as the Deffuant–Weisbuch model96) while content with a fixed
opinion spreads on a network. It will be fascinating to explore how
these extensions affect the properties of infodemic thresholds and
spreading patterns.

ACKNOWLEDGMENTS

We thank Abhinav Chand, Jonas Juul, Blair Sullivan, and two
anonymous referees for helpful comments. H.Z.B. was funded by
the National Science Foundation (NSF, Grant No. DMS-2109239)
through their program on Applied Mathematics. M.A.P. acknowl-
edges financial support from the National Science Foundation (NSF,
Grant No. 1922952) through their program on Algorithms for
Threat Detection (ATD). M.A.P. thanks David Campbell for his
friendship and many discussions over the years.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Heather Z. Brooks: Conceptualization (lead); Formal analysis
(lead); Investigation (lead); Methodology (lead); Funding acquisi-
tion (equal); Project administration (equal); Software (lead); Visu-
alization (lead); Writing – original draft (lead); Writing – review
& editing (equal). Mason A. Porter: Conceptualization (support-
ing); Funding acquisition (equal); Project administration (equal);
Supervision (lead); Writing – review & editing (equal).

DATA AVAILABILITY

All data in this paper are the output of numerical computa-
tions. We performed computations and constructed visualizations
using MATLAB. We have created a public repository that provides
the code to reproduce our numerical simulations. It is available at
Ref. 89.

APPENDIX: A FEW WORDS ABOUT DAVID CAMPBELL

(BY MASON A. PORTER)

It is a great honor to contribute to Chaos’s special issue in cel-
ebration of David Campbell’s 80th birthday. David is one of my
favorite people in science, and I deeply appreciate being asked to
contribute an article to this Festschrift. David Campbell’s research
contributions and, especially, his foundational role in Chaos are well
known. I could write about that, but I will leave that to others. What
is especially important is that David is a great human being. He has
always been fair to me and he has been very good to me, as he has
been to so many others.

I first interacted with David when I was a postdoc at Geor-
gia Tech. I was naïvely trying to publish a modified version of my
doctoral thesis97 as a review article, and I submitted it to the jour-
nal Physics Reports. David, who I had not yet met in person, was
the handling editor for my submission. My paper was rejected, but
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what stood out in that experience were the care and decency with
which David handled things. All that I want with a manuscript sub-
mission—and all that anyone should ever want with a manuscript
submission, as both a necessary and sufficient condition—is to be
treated fairly and with dignity. David saw a teaching opportunity,
and he could see that I had things to learn. He went beyond the call
of duty and even asked the referee to disclose his identity to help
with that teaching. By contrast, as we all see repeatedly, many jour-
nal editors seem to be bean counters, rather than actual editors. The
rejection of my paper was not my ideal outcome, but it was the cor-
rect outcome, and I learned a lot from the experience. In my own
editing roles, I have tried to draw on the approach and lessons that
David exemplified in this story.

David continued looking out for me, as he has looked out for
many others. Having—I think?—still not yet met in person, David
invited me to give a talk as part of a special session at the 2005 Amer-
ican Physical Society (APS) March Meeting about the celebrated
Fermi–Pasta–Ulam–Tsingou (FPUT) problem and to contribute
an article about the dynamics of Bose–Einstein condensates98 to a
special issue of Chaos about the FPUT problem. David’s talk had
a pop-music reference (which was about the Eagles, if memory
serves), and he mentioned that he figured that I would appreciate the
musical reference. (He was right.) Four of us who spoke in the spe-
cial session coauthored a popular article about the FPUT problem.99

I eventually wrote a variety of papers on the FPUT problem (and
on related problems), including one100 that turned out to be ref-
ereed by David and one of his students. It was a particularly fair
and thorough referee report—it was the type of report that scien-
tists dream of getting and was a welcome reminder that sometimes
the reviewing process actually works how it is supposed to—that
my coauthors and I were working hard to address. I remember e-
mailing David during our revision process to tell him about our
paper, which concerns heterogeneities in FPUT lattices, because I
figured that he would be interested it. My e-mail to David either
was about something else entirely or was because I had just seen
a paper of his on a related topic. Without any notion that David
was our referee, I told him in my e-mail about our paper and that
we were currently dealing with a tough-but-fair referee report. I
found out from David’s response that he and his student had writ-
ten that report. Once again, David was doing things in a way that
helps authors while upholding rigorous standards. In other words,
David once again did things in the way that they are supposed to be
done.

A recurring theme in my stories is David looking out for people
(especially junior scientists), treating people fairly while simultane-
ously ensuring rigorous standards, and doing things the right way
in scientific editing and reviewing. We all have peer-review horror
stories, and publishing can cause many frustrations. However, some
scientists consistently do things the right way, and David is one of
them.

The best compliment that somebody like me who comes from
Jewish heritage can pay to another person is to call them a “men-
sch” (which, essentially, is saying that that person is a decent human
being, as they are a person of integrity and honor). David Campbell
is a mensch.

Happy birthday, David!
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