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a b s t r a c t 

Animals use a wide variety of strategies to reduce or avoid aggression in conflicts over resources. These 

strategies range from sharing resources without outward signs of conflict to the development of domi- 

nance hierarchies, in which initial fighting is followed by the submission of subordinates. Although mod- 

els have been developed to analyse specific strategies for resolving conflicts over resources, little work 

has focused on trying to understand why particular strategies are more likely to arise in certain situ- 

ations. In this paper, we use a model based on an iterated Hawk–Dove game to analyse how resource 

holding potentials (RHPs) and other factors affect whether sharing, dominance relationships, or other be- 

haviours are evolutionarily stable. We find through extensive numerical simulations that sharing is stable 

only when the cost of fighting is low and the animals in a contest have similar RHPs, whereas dominance 

relationships are stable in most other situations. We also explore what happens when animals are un- 

able to assess each other’s RHPs without fighting, and we compare a range of strategies for contestants 

using simulations. We find (1) that the most successful strategies involve a limited period of assessment 

followed by a stable relationship in which fights are avoided and (2) that the duration of assessment 

depends both on the costliness of fighting and on the difference between the animals’ RHPs. Along with 

our direct work on modelling and simulations, we develop extensive software to facilitate further testing. 

It is available at https://bitbucket.org/CameronLHall/dominancesharingassessmentmatlab/ . 

© 2019 Elsevier Ltd. All rights reserved. 

1

 

b  

T  

A  

B  

O  

o  

c  

o  

s  

1  

g  

a  

r  

e  

t  

e  

G

 

o  

t  

e  

b  

2  

a  

e  

w  

e  

p  

v  

1  

I  

h

0

. Introduction 

When animals are in conflict over resources, the result can

e anything from overt fighting ( Archer, 1988; Huntingford and

urner, 1987 ) to settling disputes by signalling ( Clutton-Brock and

lbon, 1979 ), formation of dominance hierarchies ( Bonabeau, 1999;

eacham and Newman, 1987; Drummond, 2006; Guhl, 1968;

’Donnell, 1998 ), or even resource sharing without any sign of

vert conflict ( Wilkinson, 1984 ). To deal with this diversity of out-

omes, a wide variety of game-theoretic models have been devel-

ped, including models that involve conditional strategies with as-

essment ( Parker, 1974; Parker and Rubenstein, 1981; Enquist et al.,

990; Enquist and Leimar, 1983; Payne and Pagel, 1996 ); iterated

ames, in which animals repeatedly encounter the same individu-

ls ( Axelrod and Hamilton, 1981 ); models based on simple learning

ules ( Fawcett and Johnstone, 2010; Grewal et al., 2013 ); and mod-

ls that include winner and loser effects (where winners are likely
∗ Corresponding author. 
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o keep winning and losers are likely to keep losing) ( Goessmann

t al., 20 0 0; Hsu et al., 20 05; Kura et al., 2015; 2016; Mesterton-

ibbons and Sherratt, 2016 ). 

This large variety of models often makes it difficult for bi-

logists without detailed mathematical knowledge to understand

he differences and similarities between these models. In gen-

ral, models in which resources are ultimately divided unequally

etween ‘winners’ and ‘losers’ ( Eshel and Sansone, 2001; Eshel,

005; Fawcett and Johnstone, 2010; Hammerstein, 1981; Houston

nd McNamara, 1991; Kura et al., 2015; 2016; Mesterton-Gibbons

t al., 2014; 2016 ) are often based on the Hawk–Dove frame-

ork that was described in Maynard Smith (1979) , whereas mod-

ls that concentrate on the evolution of sharing and other ap-

arently paradoxical acts of cooperation ( Baek et al., 2017; Car-

alho et al., 2016; Doebeli and Hauert, 2005; Nowak and Sigmund,

993a; 1993b; Nowak, 2012; Trivers, 2006 ) are often based on the

terated Prisoner’s Dilemma (IPD) framework that was described

n Axelrod (1984) . This distinction seems to suggest that different

odels are needed for different outcomes. Our aim in this paper is

o show that, by contrast, a single model — a modified version of

https://doi.org/10.1016/j.jtbi.2019.110101
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2019.110101&domain=pdf
https://bitbucket.org/CameronLHall/dominancesharingassessmentmatlab/
mailto:mason@math.ucla.edu
https://doi.org/10.1016/j.jtbi.2019.110101
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Fig. 1. Payoffs to animals A and B in a classical Hawk–Dove game. The value of the 

resource is 1, and the cost of fighting is c . 
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1 Although the term ‘Chicken’ is used more widely than ‘Snowdrift’ ( Robinson 

and Goforth, 2005; Bruns, 2015 ), we use the latter to avoid any confusion between 

game-classification terminology and actual chickens. 
the Hawk–Dove model that was developed by Maynard Smith and

Price (1973) and Maynard Smith (1979) — can predict the observed

diversity of possible outcomes of animal conflict, including overt

fighting, resource-sharing, dominance relationships, and other so-

cial structures. By making a small number of biologically realistic

modifications to the original Hawk–Dove model, we show that it is

possible to derive many of the currently employed game-theoretic

models of animal conflict and cooperation (including Conditional

Hawk–Dove, Prisoner’s Dilemma, and Snowdrift) and to explain the

widespread occurrence of dominance hierarchies in animal soci-

eties. 

Our model, and the accompanying software, makes it easy to

simulate many different games and to explore the effects of dif-

ferent assumptions and parameter values. With the present work,

we hope to facilitate communication between mathematical mod-

ellers and field biologists, leading to a better understanding of why

different animals resolve their conflicts in such different ways. 

Our paper proceeds as follows. We present our model in

Section 2 . We demonstrate that it shares several features with

existing animal interaction models ( Eshel and Sansone, 2001; Es-

hel, 2005; Mesterton-Gibbons et al., 2014 ) and that, in certain

limits, it reduces to a form of the IPD that was described in

Axelrod (1984) . Our model addresses how differences in resource

holding potential (RHP) can affect animals’ optimal strategies while

also providing a framework for modelling progressive assessment

of RHPs by enabling animals’ behaviours to change as they learn

information about RHPs through experience ( Maynard Smith and

Parker, 1976; Parker and Rubenstein, 1981; Enquist and Leimar,

1983 ). In Section 3 , we investigate evolutionarily stable strategies

(ESSs) for cases in which animals begin with complete knowl-

edge of their RHP relative to those of their opponents. This

forms the basis for Section 4 , where we describe and anal-

yse various strategies by which animals can use fights to learn

about their RHP relative to those of their opponents. We con-

clude and discuss the implications of our results in Section 5 .

Our software is available at https://bitbucket.org/CameronLHall/

dominancesharingassessmentmatlab/ , and we encourage readers to

pursue our ideas further and extend them. 

2. Model development 

2.1. An iterated Hawk–Dove game with winners and losers 

Consider two animals, A and B , who interact with each other

repeatedly in a contest for resources. We construct a model that

is based on the classical Hawk–Dove (HD) game (see Fig. 1 ),

which was developed to describe a single conflict between ani-

mals over a shareable resource ( Maynard Smith and Price, 1973;

Maynard Smith, 1979; Maynard Smith, 1982 ), which we normalize

to have a value of 1. In the HD game, each animal has a choice

between a Hawk strategy (in which it escalates a conflict) and a
ove strategy (in which it retreats from a conflict). If two Doves

ncounter each other, they share a resource equally. If a Hawk and

 Dove encounter each other, the Hawk takes the entire resource.

f two Hawks encounter each other, a fight ensues. Assuming that

ach animal has an equal chance of winning, each animal receives

 payoff of (1 − c) / 2 , where c represents the cost of fighting. 

There are various systems for classifying 2 × 2 games accord-

ng to the orders of the payoffs to the players ( Robinson and Go-

orth, 2005; Bruns, 2015 ). For the classical HD game, the classi-

cation depends on the value of c . When c > 1, fights cost more

han the value of the resource, so the classical HD game is an ex-

mple of the ‘Snowdrift’ game (which is also called the ‘Chicken’

ame 1 ). When c ∈ (0, 1), the HD game is an example of a ‘Pris-

ner’s Dilemma’ (PD). When c = 1 , the classical HD game is not

 strictly ordinal game, as there are multiple ways for a player to

btain a payoff of 0. Such ‘games with ties’ ( Bruns, 2015 ) are more

omplicated to analyse than strictly ordinal games. They require

odel parameters to take specific values, so they are ‘non-generic’

 Broom and Rychtář, 2013 ) and are thus unlikely to occur in prac-

ice. Throughout this paper, we concentrate on ordinal games. 

The classical HD game and the IPD game are both inadequate

or describing social interactions between animals. One key issue

s that both of these games assume that there are no differences

n the payoff matrices for the two animals in a game. Without

odification, neither game takes into account that one animal may

ave a larger RHP than the other or that one animal may place a

igher value on a disputed resource. Another issue is that neither

ame includes any element of assessment, where an animal uses

nformation about its opponent from signals, resource ownership,

r past experience to guide its behaviour. This is an important is-

ue, as it is well-established that conditional strategies with assess-

ent are far better models of animal conflict than strategies that

o not involve assessment ( Parker, 1974 ). 

In our model, we make three important modifications to the

lassical HD game: 

1. We study an iterated game in which each stage is an HD

game. 

2. We assume that there is always an explicit winner and loser

in any Hawk–Hawk interaction, rather than supposing that

each animal obtains an identical payoff. 

3. We assume that Hawk–Hawk conflicts have a biased out-

come, in that one animal is more likely than its opponent

to win a fight. 

n Fig. 2 , we show our modified HD game in normal form. 

Our first modification is to consider an iterated game of HD

tage games to model repeated interactions of two animals from

he same social group. We assume that each HD interaction is

dentical, such that animals do not get stronger or weaker over

ime, and that the available resource has the same value in each

tage game. 

In our second modification, we assume that each Hawk–Hawk

nteraction has a winner and a loser, instead of each animal ob-

aining an identical payoff. Specifically, we assume that there is a

ost c W 

> 0 of winning a fight and a cost c L > 0 of losing a fight,

uch that the winner obtains a payoff of 1 − c W 

and the loser ob-

ains a payoff of −c L . Additionally, 1 − c W 

> −c L , as the payoff from

inning a fight is larger than the payoff from losing it. 

In our third modification, we suppose that one animal is more

ikely than its opponent to win a Hawk–Hawk fight. Specifically,

e assume that there is a fixed probability p A that animal A beats

nimal B . Consequently, the expected payoff to animal A from a

https://bitbucket.org/CameronLHall/dominancesharingassessmentmatlab/
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Table 1 

A summary of the three different strategy types in our tournaments. Because animals that pursue simple 

strategies do not use p A (the probabilty that animal A wins a fight against animal B) to inform their 

behaviour, simple strategies are always available to animals. 

Strategy type Uses information Available to animals Available to animals 

about p A to with perfect knowledge with no knowledge 

inform behaviour of p A at the start of a contest of p A at the start of a contest 

Simple No Yes Yes 

Informed Yes Yes No 

Learning Yes No Yes 

Fig. 2. Payoffs to animals A and B in one stage game of our modified HD model. 

The value of the resource is 1. When both animals play Hawk, there is a fight that 

is resolved probabilistically, such that the chance of animal A winning the fight is 

p A . The winner obtains a payoff of 1 − c W (the value of the resource minus its cost 

of fighting), and the loser obtains a payoff of −c L (a fixed penalty for losing). 

H

t

 

c  

s  

c  

m

 

B  

y  

y  

t  

n  

n  

o  

c

ϕ  

w  

d  

i  

d  

(

f  

h  

s

2

 

i

 

g  

a  

m  

a  

Fig. 3. Expected values of the payoffs to animals A and B in one round of our 

modified HD game. We give the expected payoffs, μA and μB , from fighting in 

Eqs. (3) and (4) . The character of the game and the corresponding best strategies 

depend on the values of μA and μB . 
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awk–Hawk fight is p A (1 − c W 

+ c L ) − c L , and the expected payoff

o animal B is 1 − c W 

− p A (1 − c W 

+ c L ) . 

Our modified HD model has three dimensionless parameters:

 W 

, c L , and p A . We assume that c W 

and c L are fixed for a given

pecies and that both animals A and B know the values of c W 

and

 L . By contrast, p A depends on the different fighting abilities (as

easured by RHP) of animals A and B . 

Let R A and R B , respectively, denote the RHPs of animals A and

 . The probability that A wins a fight is p A = ϕ(R A , R B ) , where ϕ( x ,

 ) is some function that satisifies 0 ≤ϕ ≤ 1. We require that ϕx ( x ,

 ) > 0 (where ϕ x denotes the partial derivative of ϕ with respect

o x ), such that a larger RHP implies a higher probability of win-

ing a fight, and that ϕ(x, y ) = 1 − ϕ(y, x ) , so the chance of win-

ing a fight is independent of whether we label an animal as A

r B . When RHPs are given by positive real numbers, one suitable

hoice is 

(R A , R B ) = 

R A 

R A + R B 

, (1)

hich enables further simplifications in certain scenarios. If we

raw the RHPs from an exponential distribution, the correspond-

ng p A comes from a uniform distribution. More generally, if we

raw the RHPs from a gamma distribution with shape parameter k

and any rate parameter), p A ∼ Beta( k , k ). In this paper, we draw p A 
rom such a beta distribution, and we assume that animals A and B

ave prior knowledge of this distribution, even if they do not have

pecific knowledge of p A . 

.2. Terminology and classification of strategies 

We are concerned with comparing different strategies for play-

ng the iterated HD game that we defined in Section 2.1 . 

Each interaction of animals A and B (where they play the ‘stage

ame’ in Fig. 2 ) is a ‘round’. In a round, each animal chooses

 ‘move’ of either Hawk or Dove. As in Houston and McNa-

ara (1991) but unlike in Mesterton-Gibbons et al. (2014) , Hawk

nd Dove are the only possible moves in a round. Our model does
ot include any concept of resource ownership, and we do not con-

ider Bourgeois or anti-Bourgeois strategies. If both animals choose

awk as their move in a round, we say that a ‘fight’ occurs. 

The overall game, which consists of a large number of rounds, is

 ‘contest’ between animals A and B . We evaluate the ‘total payoff’

o each animal by summing the discounted payoffs to animals A

nd B over all rounds ( Fujiwara-Greve, 2015 ). Taking γ ∈ (0, 1) to be

he discount rate and ρ(A ) 
k 

to be the payoff to animal A in round j ,

he total payoff to A at the end of a contest is 

 A = 

∞ ∑ 

j=1 

γ j−1 ρ(A ) 
j 

. (2) 

An animal’s ‘strategy’ is a set of rules that enable it to deter-

ine the move that it plays in each round. A strategy specifies

 move for the first round and a rule, based on the outcomes of

he previous rounds, for determining which move to select in each

ubsequent round. Strategies can be probabilistic, with a probabil-

ty between 0 and 1 of playing Dove in a particular round. Animals

 and B may use different strategies; for simplicity, we describe

trategies from the perspective of animal A . 

We distinguish between three types of strategies: ‘simple’, ‘in-

ormed’, and ‘learning’. When animal A pursues a simple strategy,

t does not use knowledge of p A to inform its behaviour. When an-

mal A pursues an informed strategy, it begins a contest with per-

ect knowledge of p A and uses this information to guide its be-

aviour. Such a strategy is relevant only when animal A is able

oth to assess its opponent perfectly without any fighting and to

xploit that assessment in its choices. When animal A pursues a

earning strategy, it begins with limited information about p A , but

t uses information from fights to update its beliefs about p A and

ses its beliefs about p A to guide its choices. In Table 1 , we sum-

arize these three strategy types. 

In our analysis of simple strategies, we consider only ‘memory-

 strategies’ ( Press and Dyson, 2012; Nowak and Sigmund, 1993b ),

n which the probability of playing Dove in a round depends

nly on the moves of the two animals in the previous round.

s we discuss in more detail in Section 3.2 , one can repre-

ent simple memory-1 strategies using a vector of probabilities,
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Table 2 

Classification of the stage game according to the values of μA and μB , with 

μA > μB . We base the nomenclature on the ordering of payoffs to the ani- 

mals. For example, a ‘PD–Snowdrift’ game is one in which the ordering of 

payoffs to animal A is identical to that in the classical Prisoner’s Dilemma 

game, whereas the ordering of payoffs to animal B is identical to that in the 

classical Snowdrift game. In the right column, ‘D’ designates the Dove strat- 

egy and ‘H’ designates the Hawk strategy. 

Ordering Name Nash Equilibria 

μB < μA < 0 < 

1 
2 

< 1 Snowdrift ( A beats B ) (D,H), (H,D), or mixed 

μB < 0 < μA < 

1 
2 

< 1 PD–Snowdrift (H,D) 

μB < 0 < 

1 
2 

< μA < 1 Deadlock–Snowdrift (H,D) 

0 < μB < μA < 

1 
2 

< 1 PD ( A beats B ) (H,H) 

0 < μB < 

1 
2 

< μA < 1 Deadlock–PD (H,H) 

Fig. 4. The classification of the stage game depends on μA and μB , which are 

the expected payoffs of fighting for animals A and B , respectively. We mark the 

case with p A = 0 . 5 (in which animals A and B are evenly matched) with a dashed 

line, and we separate the different stage-game classifications with solid lines. We 

crosshatch the region that is inaccessible when c L and c W are positive. In addi- 

tion to the stage-game classifications that we label in the diagram, (a) designates 

a PD–Deadlock game, (b) designates a Deadlock–PD game, (c) designates a PD–

Snowdrift game, and (d) designates a Deadlock–Snowdrift game. The blue lines in- 

dicate the possible values of μA and μB from varying p A for three different choices 

of c W and c L . From left to right, the blue lines correspond to the parameter pairs 

(c W , c L ) = (0 . 1 , 1 . 2) , (c W , c L ) = (0 . 1 , 0 . 6) , and (c W , c L ) = (0 . 1 , 0 . 2) . In Section 3.4 , 

we discuss the behaviour of two informed animals that both pursue the optimal 

strategy from Section 3.3 . This behaviour depends on the stage-game classification; 

we illustrate this dependence by colouring regions of the figure. We use pink when 

informed animals who pursue an optimal strategy play Hawk against each other 

in all but the first round, white when they play Dove against each other in ev- 

ery round, and light blue when the animal with a larger RHP plays Hawk in every 

round and the animal with a smaller RHP plays Dove in every round. (To interpret 

the references to colour in this figure legend, see the electronic version of this arti- 

cle.) 
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which we denote by s ( Nowak and Sigmund, 1993b; Press and

Dyson, 2012 ). Our focus on memory-1 strategies places some

restrictions on the selection of simple strategies that we can

consider, but many important strategies — including Tit for Tat

( Axelrod, 1984 ), Grim Trigger ( Friedman, 1971 ) (which we call

‘Grim’), Pavlov ( Nowak and Sigmund, 1993b ), and extortionate

strategies ( Press and Dyson, 2012 ) — are examples of memory-1

strategies. 

Our analysis of informed and learning strategies also focuses on

memory-1 strategies. In an informed memory-1 strategy, the prob-

ability of playing Dove in a round depends both on p A and on the

moves from the previous round. That is, an informed memory-1
trategy is one in which an animal uses knowledge of p A to choose

n element from a set of memory-1 ‘substrategies’, each of which

an be represented in the standard vector format of a simple strat-

gy (see Section 3.2 ). For a learning memory-1 strategy, the proba-

ility of playing Dove in a round depends both on an animal’s cur-

ent beliefs about p A and on the moves from the previous round.

hat is, the results of all previous fights inform an animal’s beliefs

bout p A , and it uses these beliefs to determine the substrategy

hat it employs in a round. 

An animal needs a learning strategy only if it does not begin

ith perfect information about p A . An animal with knowledge of

 A is able to use a simple strategy or an informed strategy, whereas

n animal without this knowledge can use either a simple strategy

r a learning strategy. Determining optimal strategies for animals

ith knowledge of p A is the focus of Section 3 , and determining

ptimal strategies for animals without knowledge of p A is the focus

f Section 4 . 

Even with our consideration of only memory-1 strategies, the

et of possible strategies for this game is infinite. Additionally,

here are well-established difficulties with assessing the quality of

trategies for iterated games. For discount rates that are sufficiently

lose to 1, there are ‘folk theorems’ that imply that there is a very

arge class of strategies that are subgame-perfect Nash equilibria

 Friedman, 1971; Fujiwara-Greve, 2015 ). 

Our approach for assessing the success of a strategy is analo-

ous to the methods that were proposed in Maynard Smith and

rice (1973) to compare strategies for a single multi-stage conflict

etween two animals. We consider a limited set of plausible strate-

ies and use simulations to evaluate the outcomes of contests for

very possible pair of strategies. Following Axelrod (1984) , we re-

er to the set of all contests between strategies as a ‘tournament’.

s in Maynard Smith and Price (1973) , our contests involve proba-

ilistic elements; to account for this, we run multiple simulations

or each pair of strategies and report the mean payoff to each an-

mal. We then present these results in a matrix, from which we

valuate which strategies are evolutionarily stable. 

An ‘evolutionarily stable strategy’ (ESS) is based on the fol-

owing idea: if all members of a population adopt an ESS,

 mutant strategy cannot successfully invade the population

 Maynard Smith, 1982 ). In mathematical terms, let E ( T , S ) repre-

ent the expected payoff to animal A when it pursues strategy T

nd animal B pursues strategy S . A strategy S is an ESS if E ( T ,

 ) ≤ E ( S , S ) for all strategies T � = S , with the additional condition

hat E ( S , T ) > E ( T , T ) whenever E(T , S) = E(S, S) . Not all games have

SSs, some games have multiple ESSs, and sometimes probabilistic

ombinations of strategies can be ESSs ( Maynard Smith and Price,

973 ; Fujiwara-Greve, 2015 ). These probabilistic combinations are

alled ‘mixed ESSs’. In many cases, it is possible to use the matrix

f payoffs from a tournament to compute the set of all possible

SSs ( Haigh, 1975; Broom and Rychtář, 2013 ). 

.3. A Bayesian approach to learning 

An animal that pursues a learning strategy begins a contest

ith complete knowledge of c W 

and c L , but with no information

bout p A beyond the fact that p A ∼ Beta( k , k ) for a specified k . The

nimal uses information from its interactions with its opponent

o improve its estimate of p A . Various methods have been devel-

ped for implementing learning in repeated games with incom-

lete information ( Aumann and Maschler, 1995; Sastry et al., 1994;

atkins and Dayan, 1992; Jordan, 1995 ). Many of these approaches

re very general and sophisticated, but they depend on the as-

umption that each player is rational and can therefore exploit the

ssumed rationality of their opponent to obtain information. 

In the present work (in contrast to prior research), we use a

ayesian approach to incorporate the information that an animal
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Fig. 5. As p A changes, the classification of the stage game changes. We show the 

different regimes in ( c W , c L )-space that lead to different sequences of stage-game 

classifications. We crosshatch the region that is inaccessible due to the requirement 

that 1 − c W > −c L . We outline the stage games in Table 3 , and one can also see 

them in Fig. 4 . 
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Table 3 

Changes to the classification of the stage game as p A increases from 0 to 
1 
2 

in each of the parameter regimes from Fig. 5 . For convenience, we define 

the notation q = 1 − c W + c L . We obtain the classifications of the stage game 

for p A > 

1 
2 

by symmetry. For p A = 

1 
2 
, animals A and B are evenly matched, 

and the game is a classical PD (in regimes I, II, and IV) or Snowdrift game 

(in regimes III, V, and VI), where both animals have the same expected pay- 

off from a fight. In our numerical experiments, we concentrate on examples 

with c W < 

1 
2 
, so we are in one of regimes I–III. 

Regime Range of p A values Classification 

I 0 < p A < c L / q Snowdrift–Deadlock 

c L /q < p A < ( 1 
2 

− c W ) /q PD–Deadlock 

( 1 
2 

− c W ) /q < p A < 

1 
2 

PD ( B beats A ) 

II 0 < p A < ( 1 
2 

− c W ) /q Snowdrift–Deadlock 

( 1 
2 

− c W ) /q < p A < c L /q Snowdrift–PD 

c L /q < p A < 

1 
2 

PD ( B beats A ) 

III 0 < p A < ( 1 
2 

− c W ) /q Snowdrift–Deadlock 

( 1 
2 

− c W ) /q < p A < (1 − c W ) /q Snowdrift–PD 

(1 − c W ) /q < p A < 

1 
2 

Snowdrift ( B beats A ) 

IV 0 < p A < c L / q Snowdrift–PD 

c L /q < p A < 

1 
2 

PD ( B beats A ) 

V 0 < p A < (1 − c W ) /q Snowdrift–PD 

(1 − c W ) /q < p A < 

1 
2 

Snowdrift ( B beats A ) 

VI 0 < p A < 

1 
2 

Snowdrift ( B beats A ) 
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btains from its fights into its beliefs about p A , and we assume

hat its beliefs about p A do not change if there is no fight. We as-

ume that p A is constant in time, so we can treat fights as inde-

endent Bernoulli trials with a fixed probability of success. Using

ayes’ rule, we update estimates of p A as an animal acquires infor-

ation from its fights ( Gelman et al., 2004 ). The beta distribution

s a conjugate prior of the Bernoulli distribution, so if one can rep-

esent an animal’s initial beliefs about its probability of winning

 fight using a beta distribution, then these beliefs remain a beta

istribution (but with altered parameter values) as it obtains infor-

ation from its fights ( Gelman et al., 2004; Trimmer et al., 2011 ). 

There has been some discussion in the biology literature about

hether animals (including humans) are capable of Bayesian up-

ating ( Trimmer et al., 2011; Valone, 2006; McNamara et al., 2006 ).

he consensus of such work is that observations of vertebrate be-

aviour (especially with foraging) are consistent with Bayesian up-

ating. The main challenges of taking a Bayesian approach are de-

ermining the parameters for the prior distribution and deciding

ow an animal should use its current estimate of the distribution

f p A to inform its behaviour. In Section 4 , we propose and com-

are a variety of learning strategies that uninformed animals can

se to assess their probability of winning a fight, and we discuss

ow this information influences which strategy they adopt. 

. Analysis of strategies for animals with knowledge of p A 

When cost-free or low-cost observations are reliable indicators

f RHPs, it is reasonable to assume that all animals begin contests

ith knowledge of p A . In this section, we seek ESSs among the

trategies that are available to an animal with knowledge of p A .

inding optimal informed strategies will also guide the develop-

ent of plausible learning strategies in Section 4 . 

.1. Stage-game classification and its implications 

Suppose that two animals are playing against each other in the

odified HD game of Fig. 2 and that they both know p A . Replac-

ng the random outcome of a fight with the expected value of the

nteraction, we obtain the game in Fig. 3 , where the expected pay-
ffs, μA and μB , to animals A and B when they both play Hawk are

A = −c L + p A (1 − c W 

+ c L ) , (3)

B = 1 − c W 

− p A (1 − c W 

+ c L ) . (4)

The optimal strategies for informed animals A and B in an iter-

ted game depend on the ordering of the payoffs of the different

nteractions in the stage game; these, in turn, depend on the values

f μA and μB . The stage-game payoffs of Dove–Dove and Hawk–

ove plays by the animals are ( 1 2 , 
1 
2 ) and (1 , 0) , respectively. We

an thus classify the different stage games according to the values

f μA and μB relative to each other and to 0, 1 
2 , and 1. Because

A < 1, μB < 1, and μA + μB < 1 , there are 10 possible orderings of

he payoffs. Assuming without loss of generality that μA > μB , we

numerate the 5 remaining orderings in Table 2 . We obtain the

ther 5 orderings by swapping μA and μB . 

As one can see in Table 2 , we name the classifications of the

tage game based on the ordering of payoffs to animals A and

 . For example, if animal A is faced with a ‘Snowdrift’ situa-

ion and animal B is faced with a ‘Deadlock’ situation, we have a

Snowdrift–Deadlock’ game. 

All possible stage games other than the Snowdrift game have a

nique Nash equilibrium when they are treated as a single-stage

ame. In the Snowdrift game, for which μB and μA are both neg-

tive, there are three Nash equilibria: (Hawk, Dove), (Dove, Hawk),

nd a mixed Nash equilibrium in which animal A plays Dove with

robability 2 | μA | / (1 + 2 | μA | ) and animal B plays Dove with prob-

bility 2 | μB | / (1 + 2 | μB | ) . 
The different classifications of the stage game correspond to dif-

erent regions in ( μA , μB )-space (see Fig. 4 ). For fixed c W 

and c L ,

hanging p A leads to changes in μA and μB , which can in turn

esult in changes in the classification of the stage game. A fixed

hoice of c W 

and c L defines a unique line segment in Fig. 4 that

onnects (−c L , 1 − c W 

) to (1 − c W 

, −c L ) . The center of each line

egment occurs when μA = μB = 

1 
2 (1 − c W 

− c L ) , for which p A =
1 
2 . The blue lines in Fig. 4 illustrate three examples for different

alues of the parameters c W 

and c L . As one increases p A , one moves

long such a line in Fig. 4 from the top left to the bottom right. 

As we can see from the example line segments in Fig. 4 , the

equence of stage games as p A increases from 0 to 1 depends on

he values of c W 

and c L . Considering all allowable possibilities in

 c W 

, c L )-space (see Section 2.1 ), there are six different parameter

egimes, which are associated with different sequences of stage-

ame classifications. We show the parameter regimes in Fig. 5 , and
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Table 4 

Summary of substrategies when animal A plays each of our informed strate- 

gies: Bully (‘Bul’), Nash (‘N’), Mixed Nash (‘MN’), Selfish (‘Slf’), Snowdrift TfT 

(‘SDT’), PD TfT (‘PDT’), and Informed TfT (‘InT’). The entries in the table in- 

dicate the substrategy that is pursued by animal A when the stage-game 

classification is the one in the left column. The substrategies in the table are 

Hawk (‘H’), Dove (‘D’), Tit for Tat (‘TfT’), and mixed substrategies (‘Mix’). See 

the text for details. 

Stage game Bul N MN Slf SDT PDT InT 

Deadlock–Snowdrift H H H H H H H 

Deadlock–PD H H H H H H H 

PD–Snowdrift H H H TfT H H TfT 

PD ( A beats B ) H H H TfT H TfT TfT 

PD ( B beats A ) D H H TfT H TfT TfT 

PD–Deadlock D H H TfT H TfT TfT 

Snowdrift ( A beats B ) H H Mix D TfT H TfT 

Snowdrift ( B beats A ) D D Mix D TfT D TfT 

Snowdrift–PD D D D D TfT D TfT 

Snowdrift–Deadlock D D D D D D D 
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we detail the associated sequences of stage-game classifications in

Table 3 . 

Parameter regimes IV, V, and VI encompass a narrower range

of stage games than parameter regimes I, II, and III. For example,

we see from Table 3 that the stage-game classifications that oc-

cur in parameter regime IV as we change p A from 0 to 1 
2 are a

subset of those that occur in parameter regime II for the same val-

ues of p A . The transition from Snowdrift–Deadlock to Snowdrift–

PD at p A = ( 1 2 − c W 

) /q does not occur in parameter regime IV, as

( 1 2 − c W 

) /q < 0 in this case. Similarly, the stage-game classifica-

tions that occur for p A ∈ [0, 1/2] in parameter regime V are a sub-

set of those that occur for p A ∈ [0, 1/2] in parameter regime III, and

the stage-game classifications for p A ∈ [0, 1/2] in parameter regime

VI are a subset of those for p A ∈ [0, 1/2] in parameter regime V

(and therefore also a subset of those for p A ∈ [0, 1/2] in parameter

regime III). 

To focus on cases in which an animal’s optimal strategy can dif-

fer substantially for different values of p A , we concentrate our anal-

ysis on parameter regimes I, II, and III. 

3.2. Defining informed strategies 

We consider seven informed strategies: ‘Bully’, ‘Nash’, ‘Mixed

Nash’, ‘Selfish’, ‘Snowdrift TfT’, ‘PD TfT’, and ‘Informed TfT’. In

Table 4 , we describe the substrategies that are pursued by these

informed strategies for different stage games. Supposing that ani-

mal A is the one that is playing the strategy and that animal B is

its opponent, we summarize the seven informed strategies as fol-

lows: 

• ‘Bully’ always plays Hawk if p A > 

1 
2 (i.e., when it is more likely

than not to beat its opponent) and always plays Dove if p A < 

1 
2 .

• ‘Nash’ pursues a Nash-equilibrium substrategy for each move.

In a Snowdrift game, ‘Nash’ uses the difference in RHP to decide

which pure Nash equilibrium to pursue; it always plays Hawk

if p A > 

1 
2 and always plays Dove if p A < 

1 
2 . 

• ‘Mixed Nash’ pursues a Nash-equilibrium substrategy for each

move. In a Snowdrift game, ‘Mixed Nash’ pursues a mixed sub-

strategy in which its probability of playing Dove is 2 | μA | / (1 +
2 | μA | ) . 

• ‘Selfish’ chooses a substrategy based on its expected payoff

from a fight. It always plays Hawk if μA > 

1 
2 , pursues a Tit for

Tat substrategy if 0 < μA < 

1 
2 , and always plays Dove if μA < 0. 

• ‘Snowdrift TfT’ pursues a Tit for Tat substrategy when the stage

game is Snowdrift or Snowdrift–PD, but it otherwise pursues a

Nash-equilibrium substrategy. 
• ‘PD TfT’ pursues a Tit for Tat substrategy when the stage

game is PD or PD–Deadlock, but it otherwise pursues a Nash-

equilibrium substrategy. 
• ‘Informed TfT’ pursues a Tit for Tat substrategy, except when

this is clearly unsuitable. Specifically, it always plays Hawk in

a Deadlock–Snowdrift or Deadlock–PD stage game and always

plays Dove in a Snowdrift–Deadlock stage game, but it other-

wise pursues Tit for Tat. 

We do not specify substrategies for the non-generic games that

ccur when p A is at a ‘critical’ value at a boundary between stage-

ame classifications (see Table 3 ), because the probability that this

ccurs in a simulation is vanishingly small. If such a critical sit-

ation occurs, we assume that each animal chooses the most ag-

ressive of its available strategies. That is, each animal chooses the

trategy that it would pursue if its RHP were larger by an arbi-

rarily small amount for a fixed value of its opponent’s RHP. Our

oftware also returns a warning in such a critical case; no such

arning occurred in any of our tournaments. 

We now discuss our motivation behind the above strate-

ies. One approach that animals can take is to pursue a Nash-

quilibrium strategy of the stage game in each round. This in-

olves a small complication for the Snowdrift game (where there

re three Nash equilibria), but otherwise each animal has a unique

trategy in each round. Pursuing the stage-game Nash equilibrium

n each round of an iterated game is not necessarily optimal. See

xelrod and Hamilton (1981) for the most famous example, which

rises in the IPD. Nevertheless, cooperative strategies, such as Tit

or Tat and Grim (in which each animal plays Dove until the op-

osing animal has played Hawk), can still be very successful and

re evolutionarily stable (except to invasion from other cooperative

trategies) for sufficiently large values of the discount parameter γ
 Axelrod and Hamilton, 1981; Fujiwara-Greve, 2015 ). 

We examine informed strategies in which animals frequently

ursue a Nash-equilibrium substrategy, but they may deviate

rom this for certain stage-game classifications (for example,

y pursuing a Tit for Tat strategy when faced with a PD stage

ame). Not all deviations from a Nash-equilibrium strategy are

ppropriate, as a Nash-equilibrium strategy is clearly optimal in

ertain stage-game classifications. For example, if animal A is

laying a Deadlock–PD or Deadlock–Snowdrift stage game, its best

trategy is to play Hawk, regardless of whether animal B plays

awk or Dove. Consequently, all of our informed strategies pursue

n Always Hawk substrategy when faced with a Deadlock–PD or

eadlock–Snowdrift stage game. Similarly, all of our informed

trategies pursue an Always Dove substrategy when faced with a

nowdrift–Deadlock stage game. 

For other stage-game classifications, the choice of optimal strat-

gy is less obvious. For simplicity, we assume for each type of stage

ame that an informed animal pursues one of four different sub-

trategies: (1) always play Hawk, (2) always play Dove, (3) use a

it for Tat strategy, or (4) use a mixed Hawk–Dove strategy. For a

iven type of stage game, only a strict subset of these strategies is

 reasonable choice for a rational animal. For example, the mixed

awk–Dove strategy can be a Nash equilibrium only for a Snow-

rift game, and Always Dove is not a rational option (compared

o Always Hawk or Tit for Tat) for an animal in a PD–Snowdrift

ame, because the lack of punishment (in the sense described by

breu, 1988 ) implies that ‘Always Dove’ cannot be a subgame-

erfect Nash equilibrium. 

.3. Tournaments for comparing informed strategies 

We use tournaments, which consist of many contests between

ifferent pairs of strategies, to compare the performance of our

even informed strategies against each other and against nine sim-
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Table 5 

Our 9 simple memory-1 strategies. Each row gives the components of s of the specified memory-1 strategy. We show 

the probabilities that an animal plays Dove (otherwise, it plays Hawk) after different move pairs from it and its oppo- 

nent (listed in that order) in the previous round. We abbreviate Dove as ‘D’ and Hawk as ‘H’, so the numbers in the 

‘After DH’ column give the probability of playing Dove when the animal played Dove and its opponent played Hawk 

in the previous round. The final column gives the probability that an animal plays Dove in the first round. 

Probability of playing Dove (otherwise plays Hawk) 

Strategy name After DD After DH After HD After HH (loss) After HH (win) On the first move 

Always Hawk 0 0 0 0 0 0 

25% Dove 0.25 0.25 0.25 0.25 0.25 0.25 

50% Dove 0.5 0.5 0.5 0.5 0.5 0.5 

75% Dove 0.75 0.75 0.75 0.75 0.75 0.75 

Always Dove 1 1 1 1 1 1 

Tit for Tat 1 0 1 0 0 1 

Grim 1 0 0 0 0 1 

Pavlov 0.99 0.01 0.01 0.99 0.99 0.5 

Modified Pavlov 0.99 0.01 0.01 0.99 0.01 0.5 
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le memory-1 strategies. Animals that pursue simple strategies

o not take advantage of the information that is available from

 A . (See Section 2.2 for our definition of ‘simple’.) We represent

ach simple memory-1 strategy using a vector s of six probabil-

ties. The first five elements give the probabilities of an animal

laying Dove when the previous moves by it and its opponent

re Dove–Dove, Dove–Hawk, Hawk–Dove, Hawk–Hawk (and the

nimal loses), and Hawk–Hawk (and the animal wins). The sixth

lement gives the probability that the animal plays Dove on its

rst move. The vector s is analogous to the strategy vectors in

owak and Sigmund (1993b) and Press and Dyson (2012) . 

We consider the following simple memory-1 strategies: Al-

ays Dove, 25% Dove, 50% Dove, 75% Dove, Always Hawk, Tit for

at ( Axelrod and Hamilton, 1981 ), Grim ( Friedman, 1971 ), Pavlov

 Nowak and Sigmund, 1993b ), and Modified Pavlov. In Table 5 , we

ummarize the probabilities of playing Dove (the components of s )

hat are associated with these strategies. 

An animal that uses the Pavlov strategy plays Dove with very

igh probability (which we take to be 0.99 in our tournaments)

n response to a previous (Dove, Dove) or (Hawk, Hawk) round;

therwise, it plays Hawk. It plays Hawk with very high probabil-

ty (which we again take to be 0.99 in our tournaments) in re-

ponse to a previous (Hawk, Dove) or (Dove, Hawk) round. Mod-

fied Pavlov follows the same ‘win–stay, lose–shift’ philosophy of

avlov (see Nowak and Sigmund, 1993b ), but instead of treating

Hawk–Hawk’ as a loss in all circumstances (as in the original

avlov), Modified Pavlov treats ‘Hawk–Hawk’ as a loss only if the

ssociated fight is a loss. We assume that an animal that pursues

 Pavlov or Modified Pavlov strategy is equally likely to play Hawk

r Dove in its first move. In tournaments that we do not discuss in

his paper, we examined versions of Pavlov and Modified Pavlov in

hich the first move is either definitely Hawk or definitely Dove.

hese other choices for the first move had little effect on the over-

ll payoffs. 

In each tournament, we specify the cost of fighting (by spec-

fying c W 

and c L ), the discount rate ( γ ), and the shape param-

ter ( k ) of the symmetric beta distribution of win probabilities

t the outset, and we use the same values throughout the tour-

ament. In all of our tournaments, we take c W 

= 0 . 1 , γ = 0 . 995 ,

nd k = 1 . In this section, we describe the results of tournaments

ith three different values of c L (0.2, 0.6, and 1.2). Combined

ith taking c W 

= 0 . 1 , these values of c L give examples in differ-

nt parameter regimes (see Section 3.1 and Fig. 4 ). Specifically,

(c W 

, c L ) = (0 . 1 , 0 . 2) is in regime I, (c W 

, c L ) = (0 . 1 , 0 . 6) is in regime

I, and (c W 

, c L ) = (0 . 1 , 1 . 2) is in regime III. Our code (in Matlab )

or running our tournaments is available at https://bitbucket.org/

ameronLHall/dominancesharingassessmentmatlab/ . 

We now discuss our parameter choices and the probability dis-

ribution from which we select p A (i.e., the probability that animal
 t
 wins a fight). Taking k = 1 corresponds to choosing values of p A 
rom a uniform distribution between 0 and 1. We also perform nu-

erical simulations (which we do not present in the paper) using

he arcsine distribution by taking p A ∼ Beta ( 1 2 , 
1 
2 ) and using a uni-

odal beta distribution with a reasonably large variance by taking

 A ∼ Beta(2, 2). We obtain qualitatively similar results for all three

f these choices. 

We choose the discount rate γ to be close to 1 so that the

verall payoff from a contest is not dominated by payoffs from the

rst few rounds. Because of this, we use a large number of rounds

10 0 0 of them in our simulations) in each contest to minimize nu-

erical error from the finite nature of the contest. Because we

ake γ = 0 . 995 and the maximum (respectively, minimum) pay-

ff from each round is 1 (respectively, −c L ), the overall payoffs

rom our simulations differ from the overall payoffs for a contest

ith infinitely many rounds by no more than 

γ 10 0 0 

1 −γ max { c L , 1 } ≈
 . 33 max { c L , 1 } . 

We perform strategy-pair comparisons by assigning one strat-

gy to animal A and the other strategy to animal B and then cal-

ulating the mean payoff to animal A from a large number of sim-

lations (using a wide range of values of p A ). The resulting mean

ayoff to animal A approximates the expected payoff to animal A

n the given strategy pair. We use variance-reduction techniques

 Owen, 2013 ) to improve the efficiency and accuracy of our esti-

ates of the expected payoff. We describe the methods that we

se to compute our results in Appendix A . 

With 16 different strategies (7 informed ones and 9 simple

nes), we anticipate a tournament to consist of 256 strategy-pair

omparisons. In practice, however, we can reduce the number of

trategy-pair comparisons, because certain informed strategies are

dentical in some parameter regimes. For example, the ‘Bully’ and

Nash’ strategies are identical except when the stage game is PD

r PD–Deadlock. Because neither of these stage games occurs in

arameter regime III, the ‘Bully’ and ‘Nash’ strategies correspond

o identical behaviours in this parameter regime, so we can com-

ine them. In our tabulated results (see Appendix B ), we indicate

here we combine informed strategies that are identical in a given

arameter regime. 

In Appendix B , we give a full description of our results in the

orm of three tables (see Tables B1–B3 ) that show the mean pay-

ff to animal A when it pursues the strategy in the row and ani-

al B pursues the strategy in the column. To make ESSs easier to

dentify, we colour the cells in Tables B1–B3 based on the value of

(T , S) − E(S, S) . We show cells as red when E(T , S) − E(S, S) > 0

nd blue when E(T , S) − E(S, S) < 0 ; deeper shades correspond to

arger differences. A red cell indicates that the strategy in the row

s able to invade the strategy in the column. If a strategy is a strong

SS, all cells in the corresponding column (except for the cell on

he main diagonal) are blue. 

https://bitbucket.org/CameronLHall/dominancesharingassessmentmatlab/
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3.4. Discussion of tournament results for informed strategies 

From the tables in Appendix B , we see that no simple strategy

is a pure ESS and that at least one informed strategy is able to in-

vade each simple strategy (except the Pavlov strategy in parameter

regime III). The only strategy that is a pure ESS in all parameter

regimes is PD Tit for Tat (PD TfT); see column L in Table B1 , col-

umn N in Table B2 , and column J in Table B3 . 

Interpreting Tables B1–B3 as payoff matrices for the overall

contests, one can use the method of Haigh (1975) to determine

whether there are any mixed ESSs. Using this approach, we find

that no mixed ESSs are possible in parameter regimes I or II. In

parameter regime III, there is a mixed ESS in which 87% of the

animals pursue a Pavlov strategy and 13% of the animals pursue a

Modified Pavlov strategy. This ESS corresponds to an expected pay-

off to the animals of 94.3 (which is less than the expected payoff

of 99.3 of the PD TfT ESS). We concentrate on PD TfT in the rest of

our discussion, but it is worth highlighting that a combination of

simple strategies can be evolutionarily stable when fighting is very

costly. 

Consider the case in which animals A and B both pursue PD

TfT strategies. We use the definition of PD TfT from Table 4 to de-

scribe how the behaviour of these animals depends on the model

parameters c W 

, c L , and p A . We give the details of this analysis

in Appendix C . There are three possible pair behaviours (a dom-

inance relationship, continual fights, and sharing of resources) in

parameter regime I, two possible pair behaviours (a dominance re-

lationship and sharing of resources) in parameter regimes II and IV,

and only one possible pair behaviour (a dominance relationship) in

parameter regimes III, V, and VI. We illustrate these scenarios in

Fig. 4 , which we colour to indicate the values of μA and μB that

are associated with the different pair behaviours. 

4. Analysis of strategies for animals with no knowledge of p A 

The pair behaviours from Section 3.4 occur only if both an-

imals in a contest pursue a PD TfT strategy. Because PD TfT is

an informed strategy, the observation of such behaviour depends

on the ability of the two animals to perfectly assess each other’s

RHPs (and hence the value of p A ) before a contest begins. How-

ever, perfect assessment of RHP is unlikely without paying some

cost. Animals obtain some information from conventional signals,

but there is evolutionary pressure towards costliness of signals and

assessment to ensure their accuracy ( Dawkins and Guilford, 1991;

Arnott and Elwood, 2009 ). We incorporate a costly assessment pro-

cess into our model by assuming that animals start a contest with

no information about p A but use (potentially costly) Hawk–Hawk

fights to obtain information about p A . An animal’s beliefs about p A 
guide its behaviour. 

4.1. Defining learning strategies 

We model assessment using learning strategies with Bayesian

updating (see Section 2.3 ). Suppose that animal A pursues a learn-

ing strategy. At the outset of a contest, we represent animal A ’s ini-

tial beliefs about p A as a beta distribution Beta( α0 , β0 ). We need

to specify the values of α0 and β0 as part of the definition of the

learning strategy. After each Hawk–Hawk fight, we update animal

A ’s beliefs about p A . If animal A has won m fights and lost n fights

since the beginning of a contest, we represent its beliefs about p A 
by the beta distribution Beta (α0 + m, β0 + n ) . 

In each round, animal A decides its move using a memory-1

substrategy s (see Section 3.3 ) that depends on its current be-

liefs about p A . We need to specify the relationship between ani-

mal A ’s beliefs (which we represent by the probability distribution
eta( α, β)) about p A in a given round and the memory-1 substrat-

gy s that it uses in that round as part of its learning strategy. 

We base the relationship between animal A ’s current beliefs

nd its current substrategy on the PD Tit for Tat informed strat-

gy. As an animal becomes more certain about p A , its behaviour

hould converge to that of an informed animal that uses a PD TfT

trategy. Therefore, as α and β approach infinity with 

α
α+ β → p A ,

he substrategy that is associated with Beta( α, β) should converge

o the PD TfT strategy for that value of p A . 

There are many plausible learning strategies that achieve this

onvergence, and there are many possible choices for α0 and β0 .

s with our informed strategies (see Section 3.2 ), we define a small

et of plausible learning strategies and compare them using tour-

aments. We consider four types of learning strategies: 

(1) weighted learning strategies, 

(2) mean-based learning strategies, 

(3) median-based learning strategies, and 

(4) high-quantile learning strategies. 

For fixed c W 

and c L , recall that the substrategy that is asso-

iated with PD TfT changes abruptly as p A passes through the

ertain critical values. As we describe in Appendix C , we define

˜ p 1 and ˜ p 2 such that if animal A uses PD TfT, it pursues Always

ove when 0 ≤ p A < ˜ p 1 , Tit for Tat when ˜ p 1 < p A < ˜ p 2 , and Al-

ays Hawk when ˜ p 2 < p A ≤ 1 . These critical values of p A are im-

ortant for all of the different learning strategies; we give them for

ach parameter regime in Table C1 . 

In a weighted learning strategy, we construct the substrategy

ector s by taking a weighted mean of substrategy vectors for the

ifferent substrategies of PD TfT. The weighting for Always Dove is

iven by the probability that p A ∈ (0 , ˜ p 1 ) , the weighting for Tit for

at is given by the probability that p A ∈ ( ̃  p 1 , ˜ p 2 ) , and the weight-

ng for Always Hawk is given by the probability that p A ∈ ( ̃  p 2 , 1) . 

In a mean-based learning strategy, s is the substrategy of PD TfT

hat is associated with the mean of the distribution of an animal’s

urrent beliefs about p A . The mean of Beta( α, β) is α
α+ β , so animal

’s strategy is 

 = 

⎧ ⎨ 

⎩ 

s D , 0 ≤ α
α+ β < 

˜ p 1 , 

s TfT , ˜ p 1 ≤ α
α+ β < 

˜ p 2 , 

s H , ˜ p 2 ≤ α
α+ β ≤ 1 , 

(5)

here s D , s TfT , and s H denote the substrategy vectors of ‘Always

ove’, ‘Tit for Tat’, and ‘Always Hawk’, respectively. To maximize

he amount of information that an animal learns, we make the

ost aggressive available choice for s when 

α
α+ β is at a critical

alue. For example, when 

α
α+ β = ˜ p 2 , we use the Always Hawk sub-

trategy, rather than Tit for Tat or Always Dove. 

A median-based learning strategy is identical to a mean-based

earning strategy, except that we use the median of the distribu-

ion Beta( α, β) instead of the mean. High-quantile learning strate-

ies also use the same principle, but they are based on some other

uantile of the distribution of an animal’s beliefs about p A . By bas-

ng such a learning strategy on a high quantile, an animal can be-

ave aggressively until it has enough information to have a pre-

cribed amount of confidence that aggressive behaviour is subop-

imal. For example, if animal A pursues a learning strategy that

s based on the 0.95 quantile, it uses an Always Hawk substrat-

gy until the 0.95 quantile of Beta( α, β) is below the critical value

˜ p 2 . Therefore, the animal plays Hawk in every move until it is 95%

onfident that p A < ˜ p 2 . 

In addition to specifying the relationship between current be-

iefs and current substrategy, it is important to specify each ani-

al’s initial beliefs about p A . (We represent these initial beliefs us-

ng the parameters α0 and β0 .) Because we assume that animals

nitially have no information about p , apart from the fact that
A 
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 A ∼ Beta( k , k ), it may appear natural to choose α0 = β0 = k . How-

ver, there are potential advantages for an animal to use a prior

hat reflects its “optimism” about its chances of winning fights (as

eflected by a large value of α0 and/or a small value of β0 ). Such

n animal engages in more fights in the early rounds of a contest

o gain information about its RHP relative to that of its opponent.

ne possible result is weak animals sustaining avoidable costs that

hey would not incur if they were using an unbiased prior, but

hese costs can be outweighed by the benefits to stronger animals

hat might otherwise have “given up” following an unlucky loss in

n early fight. Consequently, the expected payoff (averaged over all

alues of p A ) may be larger for an animal that uses a biased prior

ith α0 > β0 instead of an unbiased prior. 

For the mean-based, median-based, and high-quantile learning

trategies, we introduce two additional features to deal with prob-

ems that can arise when changing substrategies. The first feature

nsures that sharing develops if both animals adopt a TfT substrat-

gy after a period of being more aggressive. The second feature in-

roduces some hysteresis that prevents frequent changes between

he Always Hawk and TfT substrategies. We describe these features

n detail in Appendix D . 

.2. Tournaments for comparing learning strategies 

As in Section 3.3 , we use tournaments to compare the perfor-

ance of several learning strategies against each other and against

he 9 simple memory-1 strategies from Table 5 . We tabulate our

esults in Appendix B . We consider 16 different learning strate-

ies. For each variety of learning strategy (weighted, mean-based,

edian-based, and high-quantile), we consider 4 different strate-

ies, which entail different levels of aggression. A more aggressive

nimal is willing to pay a higher cost for information about RHPs,

nd it requires more evidence (in the form of defeats in fights) be-

ore it adopts a less aggressive substrategy. In Table E1 , we outline

he 25 learning strategies in our tournaments. We take k = 1 , so

e draw p A from a uniform distribution. As with our tournaments

n Section 3.3 , we obtain the same qualitative results when we in-

tead use k = 1 / 2 or k = 2 . 

For weighted, mean-based, and median-based learning strate-

ies, we encode aggressiveness through the values of the shape pa-

ameters ( α0 , β0 ) that determine an animal’s initial beliefs about

ts chances of winning a fight. Recall that we draw the true proba-

ility p A of winning a fight from the distribution Beta (k, k ) . There-

ore, we interpret the parameters α0 and β0 biologically by com-

aring them to k . When the distribution Beta( α0 , β0 ) determines

n animal’s prior beliefs about winning a fight, the animal acts as

f it believes that it has already won α0 − k fights and lost β0 − k

ghts at the beginning of a contest. In our learning strategies, we

x β0 = k and modify the level of aggression by using different val-

es of α0 . Specifically, we consider α0 = k, α0 = k + 4 , α0 = k + 8 ,

nd α0 = k + 12 . 

As we describe in Appendix D , mean-based and median-based

earning strategies can include a secondary prior Beta ( ̄α0 , β̄0 ) to

ncorporate hysteresis into the process of changing substrategies.

e take ᾱ0 = β̄0 = k in all mean-based and median-based strate-

ies. For k = 1 , this choice entails a flat prior when making deci-

ions about increasing the level of aggression. 

We use a prior with α0 = β0 = k for all high-quantile strategies,

or which we examine different aggression levels by using differ-

nt quantiles of a distribution to reflect an animal’s beliefs about

ts chances of winning a fight. For our 4 different aggression levels,

e use the 0.8, 0.9, 0.95, and 0.98 quantiles. In the most aggres-

ive strategy, which is based on the 0.98 quantile, an animal uses

n Always Hawk substrategy until it has a 2% or lower confidence

hat p A is in the range where Always Hawk is the best substrategy.

e use a secondary quantile that is lower than the main quan-
ile (see Appendix D ) for deciding when to change from a less ag-

ressive substrategy to a more aggressive one. We use 0.7, 0.8, 0.9,

nd 0.95 as the secondary quantiles for 0.8, 0.9, 0.95, and 0.98,

espectively. 

In Tables E2 , E3 , and E4 , we present our results for our

ournaments in parameter regimes I, II, and III, respectively.

e indicate strategies using our notation from Table E1 . We

olour the squares in Tables E2–E4 according to the val-

es of Q(T , S) = [ E(T , S) − E (S, S)] / [ E ( AllH , AllD )] . See the sup-

lementary material for the values of the mean payoffs E ( T ,

 ). (They are also available at https://bitbucket.org/CameronLHall/

ominancesharingassessmentmatlab/ .) Each contest consists of

0 0 0 rounds, and we use the parameter values k = 1 , γ = 0 . 995 ,

nd c W 

= 0 . 1 . To examine results in the three main parameter

egimes, we consider c L = 0 . 2 , c L = 0 . 6 , and c L = 1 . 2 in the three

ournaments. In all tournaments, we use the variance-reduction

echniques from Appendix A . 

Unlike in our tournaments in Section 3.3 , we do not observe

ny strong ESSs. This is not surprising, because learning strate-

ies with similar parameters (or ones with similar structures, like

he mean-based and median-based strategies) are likely to perform

imilarly, and differences may be smaller than the ‘noise’ from sim-

lations. Consequently, our simulations are unlikely to reveal a sin-

le learning strategy as an unambiguous ESS. Additionally, it is dif-

cult to apply the method of Haigh (1975) to find mixed ESSs for

hese tournaments, both because the games that are defined by

he mean payoffs are nongeneric and because the time that is re-

uired for Haigh’s algorithm grows exponentially with the number

f strategies. Instead, we draw qualitative conclusions about the

elative performance of different learning strategies by examining

ables E2–E4 . 

As we describe in Appendix E , the colours of the cells in

ables E2–E4 indicate the ease with which an animal that uses the

trategy that is indicated by the row can invade a population of

nimals that use the strategy that is indicated by the column. A

hite or light-coloured cell indicates that the invading strategy has

 very similar or identical expected payoff to the population strat-

gy. Consequently, the row strategy may be able to slowly invade

he column strategy by genetic drift, leading to a mixed popula-

ion. Red cells indicate that the row strategy is able to invade the

olumn strategy, and blue cells indicate that the column strategy

s resistant to invasion by the row strategy. 

For the most part, we observe that the learning strategies (J–

) are resistant to invasion by the simple strategies (A–I). The

east aggressive (i.e., with α0 = β0 = 1 ) mean-based and median-

ased strategies are less successful (in the sense of being vulnera-

le to invasion) than the other learning strategies. Weighted strate-

ies are more successful than the least aggressive mean-based and

edian-based strategies, but they are less successful than other

earning strategies, especially in parameter regime III. Additionally,

he most aggressive mean-based, median-based, and high-quantile

trategies are less successful than some other learning strategies in

arameter regime III. 

We observe many white and light-coloured cells in Tables E2–

4 (especially in Table E2 , which corresponds to parameter regime

) when a pair of learning strategies interact with each other.

herefore, it appears that a variety of different learning strategies

ay be able to coexist successfully. In a population in which an-

mals use results from fights to inform their long-term behaviour,

here may not be a single optimal strategy for using such informa-

ion. Mean-based, median-based, and high-quantile learning strate-

ies all have the potential to be effective if the aggression pa-

ameters (i.e., α0 for the mean-based and median-based strategies

nd the quantile for the high-quantile strategies) are neither too

arge nor too small. Parameter regime I appears to have the broad-

st range of parameter values that correspond to effective learn-

https://bitbucket.org/CameronLHall/dominancesharingassessmentmatlab/
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ing strategies, possibly because the penalty for fighting is relatively

small. 

One prominent feature of the results in Tables E2–E4 is that

every cell in column G is either dark blue or white. This illus-

trates that the simple ‘Grim’ strategy is very successful, although

it is not a strong ESS, as evidenced by the white off-diagonal cells.

These white cells indicate that mutant animals who use some

other strategies (e.g., Always Dove or Tit for Tat) can successfully

obtain the same payoff as animals in a population who use the

Grim strategy, enabling the mutants to invade the population be-

cause of genetic drift. A population of animals that pursue a Grim

strategy all do very well, as they share their resources in each

round. However, a mutant animal that pursues a learning strategy

in a population of Grim animals is very unsuccessful. When a mu-

tant plays Hawk to obtain information about its probability of win-

ning fights, the response of a Grim animal is to punish the mutant

by playing Hawk in every subsequent round. Even if the mutant

has a relatively large RHP, this is likely to lead to an overall payoff

that is smaller than what it would obtain by playing Dove in every

round. 

The columns that correspond to strategies O, P, T, W, and X have

only white and blue cells in all parameter regimes. This indicates

that these strategies are also difficult to invade. Like Grim, it is

only possible to invade them via genetic drift. Strategies O, P, T,

W, and X share the property that animals that pursue these strate-

gies begin by playing Hawk in every round and then modify their

behaviour if they are unsuccessful in fights. This is consistent with

the idea that successful animals without prior knowledge of p A use

costly assessment (which we model as fighting) to establish their

strength relative to that of their opponent, and they then adopt a

long-term behaviour that is consistent with their estimate of their

own strength. From simulations (not shown) of contests between

animals that pursue these strategies, we find that the assessment

process takes longer (involving more rounds of fighting) when p A 
is close to a critical value. This indicates that assessment is more

costly when animals are matched more evenly. 

5. Conclusions and discussion 

We have developed a model of animal conflict based on an it-

erated Hawk–Dove game to analyse how different factors affect

whether the outcome of a contest between two animals is resource

sharing, overt aggression, or the formation of a dominance rela-

tionship. We have shown that the same model can explain the

conditions under which very different outcomes are evolutionarily

stable and that key factors that determine which outcomes occur

are costs of fighting, degree of asymmetry between animals in a

contest, and the ability to learn from experience. 

Although the Iterated Prisoners Dilemma and modifications of

it (see, e.g., Axelrod, 1984; Nowak, 2006 ) have been cited exten-

sively as evidence for the evolution of cooperation and resource

sharing, our findings demonstrate that sharing is stable only un-

der rather limited conditions — specifically, when the cost of fight-

ing is low and the animals in a contest have similar RHPs. As

the asymmetries between animals become larger, resource shar-

ing becomes less stable. By contrast, dominance hierarchies are

stable for a much wider range of conditions. The explanation ap-

pears to be that progressively larger differences in RHPs make it

progressively more beneficial both for the stronger animal in a

contest to fight (rather than share) and for the weaker animal

to demur without even displaying or attempting to fight. Con-

sequently, dominance hierarchies develop readily in the face of

asymmetries and become progressively more stable for progres-

sively larger asymmetries ( Dawkins, 2010 ). This provides an expla-

nation for why dominance hierarchies are widespread in so many

species ( Huntingford and Turner, 1987; Bonabeau, 1999; Braddock
nd Braddock, 1955; Beacham and Newman, 1987; Chase, 1982;

rummond, 2006; Guhl, 1968; O’Donnell, 1998 ). 

When animals do not know the RHPs at the outset of a con-

est, we found that the most successful strategies involve a limited

eriod of assessment followed by a longer period in which they

void fights and a stable dominance hierarchy arises. This is con-

istent with observations ( Chase, 1982; Pagel and Dawkins, 1997 ).

e also found that the duration of assessment depends both on

he costliness of fighting and on the difference between the RHPs

f the animals in a contest. Although animals that used assessment

ended to outperform animals that used simple strategies, we also

bserved that Grim is resistant to invasion from mutants who use

earning strategies. An interesting open problem is to determine

hether it is possible for a mixture of simple strategies to be an

SS when some animals are capable of using assessment. 

We have explored only a small number of the myriad strategies

hat are possible in our iterated asymmetric Hawk–Dove game. To

romote future efforts, we have developed software (see https://

itbucket.org/CameronLHall/dominancesharingassessmentmatlab/ ) 

o allow readers to pursue our ideas further and extend them to

 wider range of questions. For example, our informed strategies

rom Section 3 are examples of the memory-1 Markovian strate-

ies in Nowak and Sigmund (1993b) and Press and Dyson (2012) .

n interesting extension is to consider memory-1 Markovian

trategies for iterated asymmetric games more generally, following

 similar approach to those in Nowak and Sigmund (1990) and

owak and Sigmund (1993b) . Other valuable extensions include

he consideration of memory- s strategies for s ≥ 2, analysis of the

mpact of bifurcations on the dynamics of tournaments with noise,

nd the study of tournaments of animals on networks ( Szabó

nd Fath, 2007 ). We hope that the simplicity of our model and

he ease of use of our software will enable the development of

nswers to these and many other questions about animal conflict. 
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ppendix A. Computation of tournament results 

To maximize the accuracy of our approximations of expected

ayoffs and ensure that it is reasonable to compare payoffs from

ifferent strategy pairs, we employ variance-reduction techniques

hat are common in Monte Carlo methods ( Owen, 2013 ). We be-

in each tournament by generating a set of values for p A , and we

se the same set of values of p A for each strategy-pair comparison.

his is equivalent to using the method of common numbers for

ariance reduction ( Owen, 2013 ); it increases the likelihood that

he differences between mean payoffs for different strategy pairs

esult from differences in the expected payoffs, rather than from

andom fluctuations. We also use the method of antithetic sam-

ling ( Owen, 2013 ) to minimize any bias in favour of animals A

r B in the calculated mean payoffs. We implement the method of

ntithetic sampling by ensuring, for each value of p A , that we also

se its complement 1 − p A as a value for p A . 

In the tournaments in our paper, we draw 250 values for p A 
rom the uniform distribution U(0 , 1) = Beta (1 , 1) , and we then

enerate an additional 250 values of p A by taking the comple-

ents of the first set of values. For each strategy-pair compari-

on, we run 20 contests with each of the 500 values of p A . This

ives a total of 10,0 0 0 contests for each strategy comparison; we

eport the mean payoff to animal A from these 10,0 0 0 contests.

https://bitbucket.org/CameronLHall/dominancesharingassessmentmatlab/
https://ulsites.ul.ie/macsi
https://doi.org/10.13039/501100001602
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Table B1 

Overall payoffs to animal A in parameter regime I when it pursues the strategy in the row and animal B pursues the strategy in the column. Our parameter 

values are c W = 0 . 1 , c L = 0 . 2 , γ = 0 . 995 , and k = 1 . We colour each cell based on its value of Q(T, S) = [ E(T, S) − E (S, S)] / [ E ( AllH , AllD )] , where T is the strategy 

that is pursued by animal A (indicated by the row) and S is the strategy that is pursued by animal B (indicated by the column). Cells are red when Q(T, S) > 

10 −3 , blue when Q(T, S) < −10 −3 , and white when | Q(T, S) | ≤ 10 −3 . Cells are dark when | Q(T, S) | > 10 −1 , of a medium shade when 10 −2 < | Q(T, S) | ≤ 10 −1 , 

and light when 10 −3 < | Q(T, S) | ≤ 10 −2 . The column strategies correspond to the row strategies with the same letter. We assign a common letter to strategies 

that are identical in parameter regime I. We abbreviate the strategies as follows: AllH = Always Hawk; X%D = X% Dove and otherwise Hawk; AllD = Always 

Dove; TfT = Tit for Tat; Pav = Pavlov; MPav = Modified Pavlov; Bul = Bully; N = Nash; PDT = PD Tit for Tat; MN = Mixed Nash; Slf = Selfish; SDT = Snowdrift 

Tit for Tat; and InT = Informed Tit for Tat. 

Table B2 

Overall payoffs to animal A in parameter regime II when it pursues the strategy in the row and animal B pursues the strategy in the column. Our parameter values are 

c W = 0 . 1 , c L = 0 . 6 , γ = 0 . 995 , and k = 1 . We assign a common letter to strategies that are identical in parameter regime II. All other details are identical to those for 

Table B.1 . 
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Table B3 

Overall payoffs to animal A in parameter regime III when it pursues the strategy in the row and animal B pursues the strategy in the column. Our parameter 

values are c W = 0 . 1 , c L = 1 . 2 , γ = 0 . 995 , and k = 1 . We assign a common letter to strategies that are identical in parameter regime III. All other details are 

identical to those for Table B.1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table C1 

Critical values, ˜ p 1 and ˜ p 2 , of p A in the PD TfT strategy. Animal A 

pursues Always Dove when 0 ≤ p A < ˜ p 1 , Tit for Tat when ˜ p 1 < p A < 

˜ p 2 , and Always Hawk when ˜ p 2 < p A ≤ 1 . Tit for Tat is not used in 

parameter regimes III, V, and VI, so ˜ p 1 = ˜ p 2 in those regimes. 

Parameter regimes Critical values of p A 

˜ p 1 ˜ p 2 

I c L / (1 − c W + c L ) ( 1 
2 

+ c L ) / (1 − c W + c L ) 

II and IV c L / (1 − c W + c L ) (1 − c W ) / (1 − c W + c L ) 

III, V, and VI 1 
2 

1 
2 
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The purpose of performing multiple contests with each value of p A 
is to reduce the noise in our plots of mean payoff as a function

of p A . We do not show these plots in this paper, but one can gen-

erate them using the code at https://bitbucket.org/CameronLHall/

dominancesharingassessmentmatlab/ . 

Appendix B. Tournament results for animals with knowledge 

of p A 

In Tables B1, B2 , and B3 , we describe our results for simulations

in parameter regimes I, II, and III, respectively. In these tables, we

show the mean payoff to animal A when it pursues the strategy in

the row and animal B pursues the strategy in the column. 

The colours indicate whether a mutant with a different strat-

egy can successfully invade a population of animals who are using

a single strategy. In these tables, a mutant pursues a strategy in

the row and the population strategy is in the column. The colour

of a cell indicates whether the expected payoff to the mutant is

more than, the same as, or less than the expected payoff for an

animal using the population strategy against another animal using

the population strategy. A red cell indicates that the mutant has

a larger payoff than animals in the population, so the row strategy

can successfully invade the column strategy. By contrast, a blue cell

indicates that the mutant has a smaller payoff than animals in the

population, so the column strategy is resistant to invasion by that

row strategy. A white cell indicates that the mutant has a similar

or identical payoff to the population, so genetic drift may lead to a

mixed population with animals who pursue both strategies. 

The intensity of the colours indicates the size of the differ-

ence between the expected payoff to a mutant and the expected

payoff to an animal that uses the population strategy. Specifi-

cally, we colour each cell based on its value of Q(T , S) = [ E(T , S) −
E (S, S)] / [ E ( AllH , AllD )] , where T is the strategy that is pursued

by animal A and S is the strategy that is pursued by animal B .

Cells are dark when | Q(T , S) | > 10 −1 , of a medium shade when

10 −2 < | Q(T , S) | ≤ 10 −1 , and light when 10 −3 < | Q(T , S) | ≤ 10 −2 . 
ppendix C. Pair behaviours associated with the PD TfT 

trategy 

Suppose that animals A and B both pursue PD TfT strategies.

or fixed values of c L and c W 

, animal A ’s substrategy (Always Dove,

it for Tat, or Always Hawk) depends on the value of p A . To deter-

ine the parameter values that are associated with different pair

ehaviours, we seek critical values of p A that separate the differ-

nt substrategies of PD TfT. We define ˜ p 1 and ˜ p 2 such that ani-

al A pursues Always Dove when 0 ≤ p A < ˜ p 1 , Tit for Tat when

˜ p 1 < p A < ˜ p 2 , and Always Hawk when ˜ p 2 < p A ≤ 1 . From the defi-

ition of PD TfT in Table 4 and the boundaries between stage-game

lassifications (see Table 3 ), we calculate ˜ p 1 and ˜ p 2 in the different

arameter regimes and obtain the results in Table C1 . 

If both animals in a contest pursue a PD TfT strategy, there are

hree different pair behaviours (depending on the values of μA and

B ); we show these using coloured shading in Fig. 4 . If the stage

ame is PD, both animals use a TfT substrategy, and each animal

hus plays Dove in every round. If the stage game is PD–Deadlock

r Deadlock–PD, one animal uses a TfT substrategy and the other

ses an Always Hawk substrategy. Consequently, both animals play

awk in every round except for the first one. For any other stage

ame, the animal with the larger RHP uses an Always Hawk sub-

https://bitbucket.org/CameronLHall/dominancesharingassessmentmatlab/
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trategy and the animal with the smaller RHP uses Always Dove.

his corresponds to a dominance relationship. 

All three of the above possible pair behaviours can occur in

arameter regime I. If there is a sufficiently large difference in

he RHPs of the two animals (specifically, if | p A − 1 
2 | > 

1 −c W 

−c L 
2(1 −c W 

+ c L ) ),
ghting is too costly for the animal with the smaller RHP, so

here is a dominance relationship. If there is a moderate differ-

nce in the RHPs of the two animals (specifically, if 
1 −c W 

−c L 
2(1 −c W 

+ c L ) <

 p A − 1 
2 | < 

c W 

+ c L 
2(1 −c W 

+ c L ) ), fighting is not too costly, and the two ani-

als fight in every round. The weaker animal pursues a strategy of

it for Tat, but this is not a sufficient threat to prevent the stronger

nimal from playing Hawk in every round, leading to continual

ghting. If there is a sufficiently small difference in the RHPs of

he two animals (specifically, if | p A − 1 
2 | < 

c W 

+ c L 
2(1 −c W 

+ c L ) ), sharing re-

ources gives a larger payoff to the stronger animal than continual

ghting. Therefore, Tit for Tat is a credible threat, and both animals

lay Dove in every round to avoid the cost of fighting. 

In parameter regime II (and also in regime IV), the possi-

le pair behaviours are dominance relationships (when | p A − 1 
2 | >

1 −c W 

−c L 
2(1 −c W 

+ c L ) ) and resource sharing (when | p A − 1 
2 | < 

1 −c W 

−c L 
2(1 −c W 

+ c L ) ).
haring, in which both animals pursue a Tit for Tat substrategy,

ccurs if and only if the expected payoff from a fight is positive

or both animals. In this situation, the animal with the smaller

HP expects to do better from a fight than it would from playing

ove against its opponent’s Hawk, and the animal with the larger

HP expects to do better from sharing than it would from a fight.

herefore, the animal with the smaller RHP can credibly threaten

he animal with the larger RHP, and Tit for Tat becomes an effec-

ive substrategy for both animals. 

In parameter regime III (and also in regimes V and VI), the only

ossible pair behaviour is a dominance relationship. The animal

ith the larger RHP always plays Hawk, and the animal with the

maller RHP always plays Dove. Because fighting is costly (espe-

ially for the loser) in parameter regime III, dominance relation-

hips are favoured, even when the difference between the animals’

HPs is arbitrarily small. 

We see from the above results that the qualitative types of pair

ehaviours in our observations differ across the parameter regimes.

n parameter regime I, we observe all three pair behaviours; in pa-

ameter regimes II and IV, we observe only dominance relation-

hips and resource sharing; in parameter regimes III, V, and VI,

e observe only dominance relationships. From Fig. 5 , we see that

 W 

+ c L (i.e., the sum of the fighting costs of the two animals in

 contest) is a key parameter for determining possible pair be-

aviours. If c W 

+ c L < 

1 
2 , a dominance relationship, continual fights,

r sharing of resources can occur; if 1 
2 < c W 

+ c L < 1 , sharing of re-

ources or a dominance relationship can occur; and if c W 

+ c L > 1 ,

here can only be a dominance relationship. 

ppendix D. Incorporation of Tit for Tat into learning 

trategies 

In many of the learning strategies that we consider, animals

an abruptly change their substrategy from one round to the next.

his has the potential to create technical complications, especially

hen animals change their substrategy to or from Tit for Tat. To

eal with these issues, we introduce two additional features to the

ean-based, median-based, and high-quantile learning strategies. 

The first feature is a delay in adopting Tit for Tat. We specify

hat any animal that shifts from Always Hawk to Tit for Tat first

lays Dove for two rounds before beginning the Tit for Tat pro-

ess. To understand why this is important, suppose that animal B

ursues a Tit for Tat strategy and that animal A changes its sub-

trategy from Always Hawk to Tit for Tat after round m . Because

nimal A has been using an Always Hawk substrategy up to this
oint and animal B is imitating this choice in its Tit for Tat strat-

gy, animal B ’s move in round m is Hawk. If animal A immediately

witches to Tit for Tat for round m + 1 , the two animals then play

awk in every subsequent move. If animal A plays Dove in round

 + 1 and then starts copying animal B ’s previous move starting

rom round m + 2 , the two animals will alternate Dove–Hawk and

awk–Dove in all rounds starting from m + 1 . The only way to cre-

te the possibility of Dove–Dove interactions in all future rounds is

or animal A to play Dove for two rounds before pursuing a Tit for

at substrategy. 

The second feature is hysteresis, which prevents overly fre-

uent changes in substrategies. For mean-based and median-based

trategies, we specify two priors. One (the main prior, with param-

ters α0 and β0 ) determines whether to change to a less aggres-

ive substrategy, and the other (the secondary prior, with parame-

ers ᾱ0 and β̄0 ) determines whether to change to a more aggres-

ive substrategy. We require the secondary prior to be less opti-

istic about p A than the main prior by demanding that ᾱ0 ≤ α0 ,

hat β̄0 ≥ β0 , and that at least one of these inequalities is strict. 

Suppose that animal A pursues a mean-based learning strategy

n which the secondary prior is different from the main prior. We

se the main prior to determine the substrategy for the animal’s

rst move of a contest. If 
α0 

α0 + β0 
≥ ˜ p 2 , the animal’s substrategy in

he first round is Always Hawk. As the contest progresses, if the

ean 

α
α+ β of the main distribution goes from above ˜ p 2 to below

˜ p 2 , then s changes from s H to s TfT . The main prior thereby deter-

ines whether to change from a more aggressive substrategy (Al-

ays Hawk) to a less aggressive substrategy (Tit for Tat). If α
α+ β

ubsequently changes from below ˜ p 2 to above ˜ p 2 , an animal does

ot immediately change its substrategy again. If the true value of

 A is near ˜ p 2 , there may be frequent changes between Always

awk and Tit for Tat as α
α+ β fluctuates around ˜ p 2 . Because an ani-

al that changes from Always Hawk to Tit for Tat plays Dove for at

east two rounds, it is suboptimal for it to make frequent changes

n its substrategy. Instead, it changes from s TfT back to s H only if

he mean 

ᾱ
ᾱ+ ̄β of the secondary distribution increases above ˜ p 2 .

ecause ᾱ0 ≤ α0 and β̄0 ≥ β0 (where equality cannot occur simul-

aneously in these two inequalities when the main and secondary

riors differ from each other), it follows that ᾱ
ᾱ+ ̄β < 

α
α+ β , so ᾱ

ᾱ+ ̄β
ncreases to a value above ˜ p 2 only after α

α+ β increases to a value

bove ˜ p 2 . 

We also introduce hysteresis for high-quantile strategies, but

ow we do so by specifying a main quantile and a secondary

uantile, rather than by specifying a main prior and a secondary

rior. We require the secondary quantile to be lower than the main

uantile. In a quantile-based strategy, an animal changes from Al-

ays Hawk to Tit for Tat if the main quantile of Beta( α, β) changes

rom above ˜ p 2 to below ˜ p 2 . An animal changes its substrategy from

it for Tat to Always Hawk if the secondary quantile of Beta( α, β)

hanges from below ˜ p 2 to above ˜ p 2 . Similarly, an animal changes

rom Tit for Tat to Always Dove if the main quantile of Beta( α, β)

hanges from above ˜ p 1 to below it. 

ppendix E. Tournament results for animals with no 

nowledge of p A 

In Table E1 , we list the 25 different strategies (which we label

rom ‘A’ to ‘Y’) in our tournament for animals with no knowledge

f p A . We show the results of our tournaments in Tables E2 (for

arameter regime I), E3 (for regime II), and E4 (for regime III). We

olour the cells of Tables E2–E4 to indicate whether a mutant who

ursues a strategy that is indicated by the row can invade a popu-

ation of animals who pursue the strategy that is indicated by the
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Table E1 

Our 25 strategies in our tournaments of learning strategies. The first column indicates the label for the strategy 

(see Tables E2–E4 ), the second column indicates the strategy type, and the third column gives some further 

details about the strategy. 

Label Strategy type Description/details of prior 

A Simple Always Hawk 

B Simple 25% Dove 

C Simple 50% Dove 

D Simple 75% Dove 

E Simple Always Dove 

F Simple Tit for Tat 

G Simple Grim 

H Simple Pavlov 

I Simple Modified Pavlov 

J Weighted learning Prior: Beta(1, 1) (flat) 

K Weighted learning Prior: Beta(5, 1) 

L Weighted learning Prior: Beta(9, 1) 

M Weighted learning Prior: Beta(13, 1) 

N Mean-based learning Prior for decreasing aggression: Beta(1, 1) (flat) 

O Mean-based learning Prior for decreasing aggression: Beta(5, 1) 

P Mean-based learning Prior for decreasing aggression: Beta(9, 1) 

Q Mean-based learning Prior for decreasing aggression: Beta(13, 1) 

R Median-based learning Prior for decreasing aggression: Beta(1, 1) (flat) 

S Median-based learning Prior for decreasing aggression: Beta(5, 1) 

T Median-based learning Prior for decreasing aggression: Beta(9, 1) 

U Median-based learning Prior for decreasing aggression: Beta(13, 1) 

V Quantile-based learning Flat prior; Quantile for decreasing aggression: 0.8 

W Quantile-based learning Flat prior; Quantile for decreasing aggression: 0.9 

X Quantile-based learning Flat prior; Quantile for decreasing aggression: 0.95 

Y Quantile-based learning Flat prior; Quantile for decreasing aggression: 0.98 

Table E2 

Overall payoffs to animal A in parameter regime I when it pursues the strategy in the row and animal B pursues the strategy in the column. The letters in the 

rows and columns correspond to the strategies in Table E1 . The parameter values are c W = 0 . 1 , c L = 0 . 2 , γ = 0 . 995 , and k = 1 . We colour each cell based on 

its value of Q(T, S) = [ E(T, S) − E (S, S)] / [ E ( AllH , AllD )] , where T is the strategy that is pursued by animal A (indicated by the row) and S is the strategy that 

is pursued by animal B (indicated by the column). Cells are red when Q(T, S) > 10 −3 , blue when Q(T, S) < −10 −3 , and white when | Q(T, S) | ≤ 10 −3 . Cells are 

dark when | Q(T, S) | > 10 −1 , of a medium shade when 10 −2 < | Q(T, S) | ≤ 10 −1 , and light when 10 −3 < | Q(T, S) | ≤ 10 −2 . 
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Table E3 

Overall payoffs to animal A in parameter regime II when it pursues the strategy in the row and animal B pursues the strategy in the column. The letters in the 

rows and columns correspond to the strategies in Table E1 . The parameter values are c W = 0 . 1 , c L = 0 . 6 , γ = 0 . 995 , and k = 1 . We colour cells as in Table E2 . 
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Table E4 

Overall payoffs to animal A in parameter regime III when it pursues the strategy in the row and animal B pursues the strategy in the column. The letters 

in the rows and columns correspond to the strategies in Table E1 . The parameter values are c W = 0 . 1 , c L = 1 . 2 , γ = 0 . 995 , and k = 1 . We colour cells as in 

Table E2 . 
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column. This colouring system is identical to the colouring that we

described in Appendix B for Tables B1–B3 . 

Because of space limitations (and in contrast to Tables B1–B3 ),

we do not give numerical results for the mean payoff to animal

A when it pursues the strategy in the row and animal B pursues

the strategy in the column. These results are available at https://

bitbucket.org/CameronLHall/dominancesharingassessmentmatlab/ . 

Strategies N–U are examples of mean-based and median-based

learning strategies. As we described in Appendix D , we introduce

hysteresis to the transitions between Tit for Tat and Always Hawk

using a ‘secondary prior’ for deciding when to change from a less

aggressive substrategy to a more aggressive one. For all of these

strategies, we use a flat prior as the secondary prior. (This entails

that ᾱ0 = β̄0 = 1 .) 

Strategies V–Y are high-quantile strategies. For these strategies,

we introduce hysteresis using a ‘secondary quantile’ for decisions

that concern changing from a less aggressive substrategy to a more

aggressive one. For strategy V, we use a secondary quantile of 0.7;

for W, we use 0.8; for X, we use 0.9; for Y, we use 0.95. To de-

termine appropriate values for these secondary quantiles, we ran a

series of simulations in which animal A used a high-quantile strat-

egy, animal B used an Always Hawk strategy, and p A was approxi-

mately equal to ˜ p 2 . We chose the secondary quantiles to be suffi-

ciently close to the primary quantiles to enable animals to change

substrategy from Always Hawk to Tit for Tat and back again, but

sufficiently far away from the primary quantiles to ensure that it
as rare for an animal to make three or more changes in substrat-

gy (e.g., from Always Hawk to Tit for Tat to Always Hawk to Tit

or Tat). 

upplementary material 

Supplementary material for this article is available at the fol-

owing doi: 10.1016/j.jtbi.2019.110101 . 

eferences 

breu, D. , 1988. On the theory of infinitely repeated games with discounting. Econo-
metrica 56 (2), 383–396 . 

rcher, J. , 1988. The Behavioural Biology of Aggression. Cambridge University Press,
Cambridge, UK . 

rnott, G. , Elwood, R.W. , 2009. Assessment of fighting ability in animal contests.

Anim. Behav. 77 (5), 991–1004 . 
umann, R.J. , Maschler, M.B. , 1995. Repeated Games with Incomplete Information.

MIT Press, Cambridge, MA, USA . 
xelrod, R., 1984. The Evolution of Cooperation. Basic Books Inc., New

York, NY, USA https://www.basicbooks.com/titles/robert-axelrod/the- 
evolution- of- cooperation/9780465005642/ . 

xelrod, R., Hamilton, W., 1981. The evolution of cooperation. Science 211
(4489), 1390–1396. doi: 10.1126/science.7466396 . https://science.sciencemag.

org/content/211/4489/1390.abstract . 

aek, S.K. , Yi, S.D. , Jeong, H.C. , 2017. Duality between cooperation and defection in
the presence of tit-for-tat in replicator dynamics. J. Theoret. Biol. 430, 215–220 .

eacham, J.L. , Newman, J.A. , 1987. Social experience and the formation of domi-
nance relationships in the pumpkinseed sunfish Lepomis gibbosus . Anim. Behav.

35 (5), 1560–1563 . 

https://bitbucket.org/CameronLHall/dominancesharingassessmentmatlab/
https://doi.org/10.1016/j.jtbi.2019.110101
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0001
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0001
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0002
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0002
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0003
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0003
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0003
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0004
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0004
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0004
https://www.basicbooks.com/titles/robert-axelrod/the-evolution-of-cooperation/9780465005642/
https://doi.org/10.1126/science.7466396
https://science.sciencemag.org/content/211/4489/1390.abstract
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0007
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0007
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0007
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0007
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0008
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0008
http://refhub.elsevier.com/S0022-5193(19)30470-9/sbref0008


C.L. Hall, M.A. Porter and M.S. Dawkins / Journal of Theoretical Biology 493 (2020) 110101 17 

B  

B  

B  

B
C  

 

 

 

C  

 

C  

D  

D  

D  

D  

E  

E  

 

E  

E  

F  

 

F  

F  

G  

G  

 

G  

 

G  

H  

H  

H  

H  

 

H  

J  

K  

K  

M  

M  

M  

M  

M  

M  

M  

 

M  

 

N  

 

N  

N  

 

N  

N

O  

 

O  

P  

P  

P  

 

P  

 

P  

 

R  

S  

 

S  

T  

 

T  

 

V  

W
W  
onabeau, E. , 1999. Dominance orders in animal societies: the self-organization hy-
pothesis revisited. Bull. Math. Biol. 61 (4), 727–757 . 

raddock, J.C. , Braddock, Z.I. , 1955. Aggressive behavior among females of the
siamese fighting Betta splendens . Physiol. Zool. 28 (2), 152–172 . 
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