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ABSTRACT
A counterparty credit limit (CCL) is a limit that is imposed by a financial 
institution to cap its maximum possible exposure to a specified coun-
terparty. CCLs help institutions to mitigate counterparty credit risk via 
selective diversification of their exposures. In this paper, we analyse 
how CCLs impact the prices that institutions pay for their trades during 
everyday trading. We study a high-quality data set from a large elec-
tronic trading platform in the foreign exchange spot market that 
allows institutions to apply CCLs. We find empirically that CCLs had 
little impact on the vast majority of trades in this data set. We also 
study the impact of CCLs using a new model of trading. By simulating 
our model with different underlying CCL networks, we highlight that 
CCLs can have a major impact in some situations.
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1. Introduction

The international financial crisis of 2008 underlines the vital importance of understand-
ing counterparty credit risk. The collapse of Lehman Brothers and the ensuing defaults 
and near-defaults by AIG, Bear Stearns, Fannie Mae, Freddie Mac, Merrill Lynch, the 
Icelandic banks, and the Royal Bank of Scotland demonstrated how the complex and 
highly interconnected nature of the modern financial ecosystem can cause counterparty 
failures to propagate rapidly between institutions and can thereby amplify their severity 
(May, Levin, and Sugihara 2008). Consequently, it is extremely important to assess and 
implement measures to mitigate this risk.

One possible mitigation measure, which has been implemented by several major 
trading platforms in the foreign exchange (FX) spot market, is the use of counterparty 
credit limits (CCLs). A CCL is a limit that is imposed by a financial institution to cap its 
maximum possible exposure to a specified counterparty. With CCLs in place, institutions 
can access only the subset of trading opportunities that are offered by counterparties with 
whom they possess sufficient bilateral credit.
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Limiting exposures in this way creates both benefits and drawbacks for individual 
financial institutions. On one hand, CCLs can protect an institution from suffering large 
losses as a result of a counterparty default. On the other hand, CCLs restrict the set of 
trading opportunities that an institution can access. This can result in an institution 
trading at a less favourable price than would be the case without such restrictions. 
Importantly, this restriction applies at all times, rather than only during periods of 
market-wide stress (when the default-protection benefit of CCLs is most useful).

One aim of the present paper is to assess how CCLs affect the prices that institutions 
pay for their trades during everyday trading. To study this question, we use an unusually 
rich data set that describes all trading activity for three liquid currency pairs on Hotspot 
FX during all of May and June in 2010. Hotspot FX is a large electronic trading platform 
in the FX spot market that allows institutions to apply CCLs.1 The Hotspot FX data 
enables us to measure how CCLs impact the prices that individual institutions pay for 
their trades. Because the period from May to June in 2010 was a relatively calm period 
with no major institutional failures, we are able to study the impact of CCLs during 
‘normal’ trading. To the best of our knowledge, our study is the first one to investigate 
this topic.

We introduce the notion of the ‘skipping cost’ of a trade to measure the additional cost 
that an institution bears from the application of CCLs. In our data set, more than half of 
the trades have a skipping cost of 0 and the mean skipping cost is less than half of a basis 
point. We do identify a handful of trades with large skipping costs, but we argue that the 
existence of such trades is a natural consequence of the heterogeneity in the types and 
sizes of institutions that trade on Hotspot FX. We also find that the realized volatility of 
trade prices is very similar to the corresponding realized volatility in the platform-wide 
best quotes.

Overall, our empirical results suggest that CCLs had little impact on the vast majority 
of the trades that we study. However, the empirical study of historical data does not 
provide insight into how these results may change if institutions make substantial 
modifications to their CCLs. We therefore complement our empirical analysis by inves-
tigating a second question: How does CCL network structure affect the prices that 
institutions pay for their trades? To do this, we simulate an agent-based model of trading 
in which institutions assign CCLs to each other. In contrast to our empirical analysis, in 
which the CCL network is fixed and unobservable to us, our model allows us to 
investigate how varying the CCL network can affect the prices of trades.

Our simulations illustrate that when the CCL network is dense (in the sense that most 
institutions can access most trading opportunities), CCLs have very little impact on the 
prices of trades. However, as the edge density falls, we observe that the skipping costs of 
trades rise sharply and that the trade-price volatility rises sharply, whereas the quote- 
price volatility remains almost constant. We also observe that network topology has 
noticeable effects on our results. For example, for a given edge density, the mean skipping 
cost is markedly higher for a core–periphery network than it is for an Erdős–Rényi 
network.

Together, our empirical and simulation results paint a complex picture of the impact 
of CCLs, raising important questions for policy makers and regulators. Both sets of 
results illustrate that the application of CCLs does not necessarily lead to many institu-
tions paying large skipping costs for their trades. Therefore, CCLs may provide market 
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participants with the benefits of selective diversification without causing them to incur 
large additional costs during everyday trading. However, our model also illustrates how 
an aggressive application of CCLs can lead to much larger skipping costs and can also 
create large jumps in the trade-price series, even when the quote-price series remains 
relatively stable. We thus argue that understanding and monitoring how institutions set 
and adjust their CCLs is vital for regulators when assessing how the implementation of 
CCLs may impact market stability.

Our paper proceeds as follows. In Section 2, we give an introduction to counterparty 
credit risk and discuss a variety of relevant literature. In Section 3, we describe the CCL 
mechanism in detail and discuss how CCLs are currently implemented by several large 
electronic trading platforms in the FX spot market. We present our empirical results in 
Section 4. In Section 5, we introduce and study our model of trading with CCLs. In 
Section 6, we discuss our results and present our conclusions. In the appendices, we give 
a detailed description of our data and describe our methodology for estimating realized 
volatility.

2. Literature review

Counterparty credit risk is the risk that one or more of a financial institution’s counter-
parties default on their agreed obligations. For a detailed survey, see Gregory (2010). In 
this section, we review a variety of studies to provide context for our work.

Jarrow and Yu (2001) observed that financial institutions face significant counterparty 
credit risk whenever their exposures are concentrated in a small number of counter-
parties, because the default of any such counterparty is likely to cause severe financial 
distress. In real financial markets, most financial institutions trade with a wide range of 
different counterparties, creating a network of interconnected credit relationships. As 
noted in Stiglitz (2010) and Roukny et al. (2013), these relationships create both benefits 
and drawbacks for counterparty credit risk. On one hand, network connections diversify 
financial institutions’ risk exposures; on the other hand, they create contagion channels 
through which shocks can spread.

Many studies (see, e.g., Anand, Gai, and Marsili (2012), Bardoscia et al. (2017), Gai, 
Haldane, and Kapadia (2011), Gandy and Veraart (2017), Giesecke and Weber (2004), 
Hautsch, Schaumburg, and Schienle (2015), Jorion and Zhang (2009), May, Levin, and 
Sugihara (2008), Battiston et al. (2012a, 2012b)) have illustrated how contagion channels 
can cause default cascades and can thereby lead to systemic risk. See Glasserman and 
Young (2016) and Jackson and Pernoud (2020) for surveys. A smaller number of studies 
have focused on how the topology of financial networks impacts such dynamics. Roukny 
et al. (2013) examined the sizes of default cascades in Erdős–Rényi networks and in 
networks with heavy-tailed degree distributions, and they concluded that network 
topology strongly impacts the probability and size of default cascades. From the per-
spective of systemic risk, they concluded that no single market topology is always better 
than all others. Luu et al. (2021) examined how network topology affects the dynamics of 
collateral (and the consequent systemic risk) in the presence of rehypothecation. They 
observed starkly different dynamics for different network topologies. Weber and Weske 
(2017) introduced a multi-factor model of how bankruptcy costs, fire sales, and cross- 
holdings impact systemic risk, and they simulated their model on both Erdős–Rényi 
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networks and core–periphery networks.2 They observed qualitatively similar results for 
both classes of networks (albeit with quantitative differences that depend on the precise 
edge placements in the networks). These studies all underline the potential severity of 
counterparty credit risk in the modern financial ecosystem and thereby provide strong 
motivation for exploring safeguards against it.

One possible approach to mitigating counterparty credit risk is to novate trades via 
a central counterparty (CCP). See Norman (2011) and Rehlon and Nixon (2013) for 
detailed discussions. The role of a CCP is to guarantee the obligations that arise from all 
contracts that are agreed between two counterparties. If one counterparty fails, the other 
is protected via the resources and default-management procedures of the CCP. During 
the past decade, several prominent regulatory bodies (see, e.g., The Basel Committee on 
Banking Supervision (2013) and The Counterparty Risk Management Policy Group II 
(2005)) have argued that CCPs are an effective tool for mitigating counterparty credit 
risk. However, several authors have noted that trade novation via a CCP also entails 
drawbacks. Pirrong (2012) argued that CCP novation does not reduce the aggregate 
counterparty credit risk across all institutions; instead, it concentrates risk into the CCP, 
which thus becomes a single point of failure with systemic importance. Biais, Heider, and 
Hoerova (2012) noted that although CCPs allow mutualization of the idiosyncratic risk 
that is faced by individual institutions, they cannot provide protection against the 
aggregate risk that affects all institutions. Menkveld (2015) suggested that the risk- 
management methodologies that are implemented by CCPs can greatly underestimate 
the probability of clustered defaults, which place severe stress on a CCP. Koeppl (2013) 
noted that CCPs generate a moral hazard by reducing the incentives for individual 
institutions to assess the creditworthiness of their trading counterparties. Given the 
historical failures of several CCPs in a wide variety of asset classes (Gregory 2010), 
concerns about whether CCPs truly mitigate counterparty credit risk or simply repackage 
it seem to be well-founded.

Another possible approach to mitigating counterparty credit risk is to apply a credit 
valuation adjustment (CVA). See Brigo, Morini, and Pallavicini (2013) for a detailed 
discussion. In this framework, an institution adjusts the price that it offers another 
institution to account for the risk of trading with it. Brigo, Morini, and Pallavicini 
(2013) introduced a method for calculating a CVA by pricing a contingent claim 
(whose payoff is triggered by the default of the given counterparty) such that the resulting 
net loss is 0. Recently, Barucca et al. (2020) and Banerjee and Feinstein (2018) extended 
this approach by deriving formulas for CVAs in a network of financial institutions that 
are interconnected via creditor and debtor relationships and correlated via similarities in 
their balance sheets. However, even with these extensions, CVA suffers from important 
practical and theoretical drawbacks. Importantly, it is not possible for institutions to use 
CVAs when trading on an exchange in which many different institutions access the same 
centralized set of trading opportunities. For example, this is the case in a limit order book 
(LOB). (See Gould et al. (2013) for a detailed introduction to LOBs.) Additionally, Cesari 
et al. (2010) noted that calculating even a single CVA requires an institution to estimate 
a specific counterparty’s default probability; this is extremely difficult in practice. They 
also remarked that CVA estimation provides no insight into how to construct an asset 
portfolio that gives the required payoff upon a counterparty default, and they noted that 
constructing such a portfolio is often impossible.
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The above weaknesses suggest that neither CCPs nor CVAs are a panacea for counter-
party credit risk. Their failure to provide a conclusive solution to the problem is strong 
motivation for exploring alternative avenues.

3. Counterparty credit limits

Consider a financial market that is populated by a set Θ ¼ θ1; θ2; . . .f g of institutions, 
and suppose that each institution θi assigns a CCL cði;jÞ � 0 to each other institution θj. 
The CCL cði;jÞ specifies the maximum level of counterparty credit exposure that θi is 
willing to extend to θj. Such counterparty credit exposures occur in all financial markets 
in which the agreement and settlement of trades does not occur simultaneously. For 
example, in the FX spot market, trades that are agreed on day D are settled on day Dþ 2, 
so each trade entails exposure to the counterparty between day D and day Dþ 2.

No institution θi can trade with any other institution θj if doing so would make θi’s 
total exposure to θj exceed cði;jÞ or would make θj’s total exposure to θi exceed cðj;iÞ. The 
maximum amount that θi and θj can trade is therefore equal to min cði;jÞ; cðj;iÞ

� �
. We call 

this amount the bilateral CCL between θi and θj. Bilateral CCLs determine the subset of 
trading opportunities that are available to each institution. This subset changes over time 
according to the relevant institutions’ trading activities.

Institutions can use CCLs to mitigate counterparty credit risk by selective diversifica-
tion of their exposures. If an institution θi perceives another institution θj to be unac-
ceptably likely to default, then θi can ensure that it never trades with θj by setting 
cði;jÞ ¼ 0. Alternatively, if θi perceives θj to be extremely unlikely to default, then θi can 
assign an unlimited amount of credit to θj by setting cði;jÞ ¼ 1.

In contrast to trade novation via a CCP, the application of CCLs does not require 
either (1) a single, centralized clearing node that constitutes a single point of failure for an 
entire market or (2) that every institution posts collateral.3 In contrast to CVAs, the use of 
CCLs does not require institutions to estimate the market value of their counterparty 
credit risk. Instead, CCLs enable all institutions to specify an upper bound for each of 
their counterparty exposures.

Several major multi-institution electronic trading platforms in the FX spot market 
offer institutions the ability to implement CCLs. On these platforms, each institution θi 
privately declares (to the exchange) their CCL cði;jÞ for each other institution θj. Trades 
occur via a mechanism that is similar to a standard LOB, except that institutions can only 
conduct transactions that do not violate their bilateral CCLs. More precisely, when an 
institution θi submits a buy (respectively, sell) market order, the order matches to the 
highest-priority sell (respectively, buy) limit order that is owned by an institution θj such 
that neither cði;jÞ nor cð j;iÞ is exceeded by conducting the given trade. We call this market 
organization a quasi-centralized LOB (QCLOB) because different institutions have access 
to different subsets of the same (otherwise centralized) LOB. For a detailed introduction 
to QCLOBs, see Gould, Porter, and Howison (2017).

Institutions that trade on a QCLOB platform cannot, in general,4 see the state of the 
global LOB (i.e., the set of all orders that are owned by all market participants on the 
platform). Instead, each institution sees only the subset of orders that correspond to its 
own trading opportunities (i.e., that would not violate any of its bilateral CCLs upon 
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execution of a trade) at time t. More precisely, for each j�i, the volume of each separate 
limit order placed by θj that is visible to θi is reduced (if necessary) so that its size does not 
exceed the bilateral CCL between θi and θj. Each institution therefore views a filtered set 
of all limit orders on the platform.

As well as viewing their filtered LOB, each institution in a QCLOB can access a trade- 
data stream, which lists the price, time, and direction (buy or sell) of every trade that 
occurs. All institutions can see all entries in the trade-data stream in real time, irrespec-
tive of their bilateral CCLs. Therefore, although institutions in a QCLOB can see only 
a subset of the trading opportunities that are available to other institutions, they have 
access to a detailed historical record of all previous trades.

4. Empirical results

Our empirical investigation uses a data set that was provided to us by Hotspot FX. The 
data set gives all trading activity on the Hotspot FX platform for the EUR/USD (euro/US 
dollar), GBP/USD (pounds sterling/US dollar), and EUR/GBP (euro/pounds sterling) 
currency pairs for the entire months of May and June in 2010.5 According to the 2010 
Triennial Central Bank Survey (Bank for International Settlements 2010), global trade for 
these currency pairs constituted about 28%, 9%, and 3% of the total turnover of the FX 
market, respectively. The period from May through June in 2010 was a relatively calm 
period in the FX spot market, with no major institutional failures. This makes it suitable 
for studying how CCLs impact the prices that institutions pay for their trades during 
everyday trading. For a detailed description of the Hotspot FX data, see Appendix A.

4.1. Skipping costs

We first examine the question of how CCLs impact the prices of individual trades. As we 
discussed in Section 3, when an institution θi on Hotspot FX submits a buy (respectively, 
sell) market order, the order matches to the highest-priority sell (respectively, buy) limit 
order that is owned by an institution θj such that the bilateral CCL between θi and θj is 
not violated. Therefore, the price at which a given market order matches is not necessa-
rily the best price that is available to other institutions at that time. The Hotspot FX data 
enables us to calculate the difference between the price at which each trade occurs and the 
lowest price among all sell limit orders (respectively, the highest price among all buy limit 
orders) at the same instant. It therefore enables us to quantify the additional cost (to the 
institution that submits the market order) as a result of CCLs preventing this institution 
from accessing a better-priced trading opportunity. We refer to this additional cost as the 
‘skipping cost’.

For a given currency pair on a given trading day, let pk denote the price of the kth trade 
and let bk and ak denote, respectively, the bid-price and ask-price in the global LOB 
immediately before this trade occurs. The skipping cost of a trade is 

rk ¼
pk � ak ; if the kth trade is buyer-initiated
bk � pk ; if the kth trade is seller-initiated :

�

(1) 
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The sign difference in Equation (1) ensures that every trade has a non-negative skipping 
cost. In the extreme case in which all institutions always have access to all trading 
opportunities, all trades occur at the best quotes, so rk ¼ 0 for all k. In this case, price 
formation is equivalent to that in a standard LOB.

Because the prices of trades vary across currency pairs and across time, we also 
normalize each skipping cost by the mid-price mk ¼ 0:5ðak þ bkÞ that prevails immedi-
ately before a trade occurs. Specifically, we calculate the normalized skipping cost 

~rk ¼
rk

mk
; (2) 

which we measure in basis points (where 1 basis point equals 0.01%). We apply this 
scaling to make ~rk independent of the size of the underlying exchange rate; this allows 
easier comparisons across different currency pairs.

In Figure 1, we show the empirical cumulative density functions (ECDFs) of normal-
ized skipping costs ~rk. More than half of all trades have a normalized skipping cost of 0, 
which implies that they occurred at the best price that was available in the global LOB at 
their time of execution. Up to about the 99.9th percentile, the distribution of normalized 
skipping costs has a similar shape for all three currency pairs. Beyond this point, EUR/ 
USD includes a handful of trades with extremely large skipping costs; this does not occur 
for the other two currency pairs.

In Table 1, we give summary statistics for the normalized skipping costs ~rk. For each of 
the three currency pairs, the mean normalized skipping cost is about 0.2 basis points and 
the standard deviation of the normalized skipping costs is about 0.5 basis points (i.e., 
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Figure 1. (Left) Empirical cumulative density function (ECDF) and (right) log-survival function (i.e., 1 
minus the ECDF) for the normalized skipping costs ~rk.

Table 1. Summary statistics for normalized skipping costs ~rk.
EUR/USD GBP/USD EUR/GBP

Minimum 0 0 0
Median 0 0 0
Maximum 30.31 9.65 5.62
Mean 0.19 0.12 0.12
Standard Deviation 0.46 0.43 0.45
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about 0.005%). As with Figure 1, these results suggest that the statistical properties of 
normalized skipping costs are similar for each of the three currency pairs.

When considering the raw skipping costs rk (i.e., without normalization), the mean 
skipping costs range from about 1.8 ticks (for EUR/GBP) to about 3.0 ticks (for GBP/ 
USD). Given that the tick size for each of the three currency pairs is 0.00001 units of the 
counter currency (see Appendix A), these skipping costs correspond to a mean additional 
cost of about £18 and 30 USD, respectively, for an institution that submits a market order 
for 1 million units (which is the modal market-order size for each of the three currency 
pairs). Although these mean skipping costs are relatively small, some trades in our data 
set have much larger skipping costs. The largest skipping cost that we observe exceeds 30 
basis points and corresponds to incurring an additional cost of about 3630 USD when 
submitting a trade of 1 million euros.

As we discussed in Section 3, institutions on Hotspot FX can infer the approximate 
skipping cost of their trades by comparing their local bid-price or ask-price (which they 
can observe from the filtered set of limit orders that they observe on the platform) to the 
prices of recent trades (which they can observe via their trade-data stream). Given that 
this is the case, why do some institutions perform trades that have extremely large 
skipping costs during everyday trading? We believe that the answer lies in the fact that 
Hotspot FX serves a wide variety of institutions, which have varying levels of access to 
other trading mechanisms. At times when submitting a market order would entail 
a considerable skipping cost, large institutions would likely perform the same trade 
using another mechanism, whereas small institutions may accept large skipping costs 
as an unavoidable aspect of their everyday trading. In a recent discussion of modern 
financial markets, Luu et al. (2021) argued that the advent of trading platforms (such as 
Hotspot FX) with relatively low barriers to entry have blurred the lines between the inter- 
bank market and less-traditional markets. The significant heterogeneity that we observe 
in skipping costs is consistent with the idea that a wide and heterogeneous population of 
financial institutions operate on such platforms and sometimes experience considerably 
different prices for similar trades.

4.2. Price changes

We now examine price changes between successive trades. Recall from Section 4.1 that pk 
denotes the price of the kth trade for a given currency pair on a given trading day. For 
a given k, let pk0 denote the price of the previous trade in the same direction as the kth trade 
(e.g., both of them are buyer-initiated). Similarly, let bk0 , ak0 , and mk0 denote the bid-, ask-, 
and mid-prices, respectively, immediately before the previous trade in the same direction as 
the kth trade. The change in trade price is 

fk ¼
pk � pk0 ; if the kth trade is buyer-initiated
pk0 � pk ; if the kth trade is seller-initiated :

�

(3) 

Similar to Equation (2), the normalized change in trade price is 

~fk ¼
fk

mk
: (4) 
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Our results in Section 4.1 revealed that skipping costs vary considerably across the trades 
in our data set. The existence of some trades with a normalized skipping cost of several 
basis points suggests that, due to their CCLs, some institutions have access to a relatively 
small fraction of the trading opportunities that are available on the platform. This 
observation raises the question of how strongly CCLs impact the price changes between 
successive trades. This question is important: If different institutions pay considerably 
different prices for the same asset at a similar time, then the trade-price series may 
include large fluctuations that do not reflect similar changes in an asset’s fundamental 
value. Therefore, the price-formation process on a platform that implements CCLs may 
be rather different than that on a platform in which all institutions can trade with all 
others.

To study this issue empirically, we decompose each term in the f k series into two 
constituent parts. We define the change in quote price between the kth trade and the 
previous trade in the same direction by 

gk ¼
ak � ak0 ; if the kth trade is a buyer-initiated trade
bk0 � bk ; if the kth trade is a seller-initiated trade :

�

(5) 

We similarly calculate the change in skipping cost: 

hk ¼
ð pk � akÞ � ð pk0 � ak0 Þ ; if the kth trade is a buyer-initiated trade
ðbk0 � pk0 Þ � ðbk � pkÞ ; if the kth trade is a seller-initiated trade :

�

(6) 

For buyer-initiated trades, 

fk ¼ pk � pk0 ¼ ak � ak0ð Þ þ ð pk � akÞ � ð pk0 � ak0 Þð Þ ¼ gk þ hk : (7) 

By a similar argument, the same identity holds for seller-initiated trades. Equation (7) 
enables us to decompose each change in trade price into its constituent change in quote 
price and change in skipping cost.

We now perform several statistical comparisons of the fk, gk, and hk series to quantify 
the relative impacts of CCLs and quote revisions on changes in trade prices. In the left 
panel of Figure 2, we show a quantile–quantile (Q–Q) plot of the fk series versus the gk 
series. In this plot, the quantile points cluster tightly along the diagonal, implying that the 
shape of the distribution of the fk series is very similar to that of the gk series. In the right 
panel of Figure 2, we show a Q–Q plot of the fk series versus the hk series. In this case, the 
distribution of changes in skipping costs is concentrated more tightly around 0 than is 
the distribution of changes in trade prices, suggesting that the changes in skipping costs 
account for only a small fraction of the total price changes between successive trades.

To assess whether these results also hold at the trade-by-trade level, we make scatter 
plots of the individual terms of the series. In the top row of Figure 3, we show scatter plots 
of the fk series versus the gk series. For GBP/USD and EUR/GBP, the points cluster 
strongly along the diagonal, which indicates that the change in trade price is very similar 
to the change in quote price for each trade. For EUR/USD, some points occur away from 
the diagonal, but the vast majority of points cluster along the diagonal. In the right 
column of Figure 3, we show scatter plots of the fk series versus the hk series. In stark 
contrast to the plots of fk versus gk, these plots do not reveal any visible relationship 
between the fk and hk series for any of the three currency pairs.
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To examine the relationships between the fk, gk, and hk series across all trades in our 
data set, we also calculate the Pearson correlation ρ between these series (see Table 2). 
When comparing the fk and gk series, we find that ρ � 1 for all three currency pairs. 

Figure 2. Quantile–quantile (Q–Q) plots for (left) fk versus gk and (right) fk versus hk. In each plot, the 
points indicate the percentiles of the empirical distributions. The dashed black lines indicate the 
diagonal.

Figure 3. Scatter plots of (top row) fk versus gk and (bottom row) fk versus hk for (left column) EUR/ 
USD, (middle column) GBP/USD, and (right column) EUR/GBP. The solid black lines indicate the 
diagonal.
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This quantifies the strong relationship between changes in trade price and changes in 
quote price (see the left panels of Figure 3) and indicates that changes in trade price are 
strongly correlated with corresponding changes in the underlying quotes. By contrast, 
when comparing the fk and hk series, we find that ρ � 0 for all three currency pairs. This 
provides further evidence that changes in skipping costs are uncorrelated with changes 
in trade price.

Taken together, our results in this subsection suggest the following interpretation of 
Equation (7). Each change in trade price consists of two components: a change in the 
underlying quotes and a change in the skipping cost. The change in trade price is strongly 
correlated with the change in quotes, but it has little or no correlation with the change in 
skipping cost. Therefore, although the change in skipping cost sometimes constitutes 
a considerable fraction of the total change in trade price, this impact manifests as 
(additive) uncorrelated noise in the trade-price series.

From an economic perspective, the strong positive correlation between the fk and gk 
series and the absence of a significant correlation between the fk and hk series suggests that, 
during the course of everyday trading, fundamental revaluations in trade prices arise from 
corresponding changes in the best quotes. One can regard the fk series as a noisy 
observation of the gk series, where the uncorrelated, additive noise arises from the 
restriction of institutions’ trading activities to their bilateral trading partners. The strength 
of this effect varies across institutions because of the heterogeneity of their CCLs.

4.3. Volatility

Our results in Section 4.2 suggest that changes in trade price have little or no correlation 
with changes in skipping costs. However, given that some trades have large skipping costs 
(see Section 4.1), it is possible that the volatility in the trade-price series differs signifi-
cantly from the corresponding volatility of the underlying quotes. In this section, we 
assess the extent to which this is the case.

Recall from Section 4.1 that if the CCLs on a given platform allowed all institutions to 
access all trading opportunities, then all trades would occur at the best quotes, so fk ¼ gk 
for all k. In this case, any volatility estimate would produce the same result when applied 
to either of these series. However, because CCLs restrict institutions’ access to liquidity, 
this is not true in general. By comparing the realized volatility of the trade-price series 
with the realized volatility of the corresponding quote-price series, it is possible to 
quantify the difference between the volatility in the prices that institutions actually pay 
for their trades and the underlying volatility that is observable in the platform-wide best 
quotes.

In contrast to studying the prices of individual trades, for which the application of 
CCLs always creates a non-negative additional cost, it is not clear a priori whether the 

Table 2. Pearson correlation between (top row) changes in trade price (fk) and changes in quote price 
(gk) and (bottom row) changes in trade price (fk) and changes in skipping cost (hk). The numbers in 
parentheses are the standard deviations of the estimates across 10,000 bootstrap samples of the data.

EUR/USD GBP/USD EUR/GBP

fk versus gk 0:94 ð< 0:01Þ 0:97 ð< 0:01Þ 0:99 ð< 0:01Þ
fk versus hk � 0:04 ð0:03Þ 0:00 ð< 0:01Þ 0:00 ð0:02Þ
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application of CCLs will cause the volatility of the trade-price series to be greater than or 
less than the volatility of the corresponding quote-price series. On one hand, it is possible 
for quote prices to remain stable while trade prices fluctuate. In this case, the volatility of 
the trade-price series is greater than that of the quote-price series. On the other hand, it is 
possible for quote prices to fluctuate while trade prices remain stable. This can occur, for 
example, if the best quotes are populated by electronic trading algorithms that are run by 
institutions with very few bilateral CCLs. In this case, the quote prices may fluctuate 
often, but most market orders will skip these limit orders and match deeper into the LOB, 
such that the volatility of the trade-price series is less than that of the quote-price series. 
The aim of this subsection is to determine which of these two possibilities occurs on 
Hotspot FX.

For each currency pair on each day, we estimate the sell-side trade-price volatility vA, 
the sell-side quote-price volatility va, the buy-side trade-price volatility vB, and the buy- 
side quote-price volatility vb by calculating the quadratic variation of each process, which 
we sample at regularly spaced intervals in trade time (i.e., sampling every xth trade)6 and 
subsample at regularly spaced offsets. See Appendix B for details. We study buyer- 
initiated and seller-initiated trades separately in an attempt to disentangle our results 
about CCLs from the possible impact of bid–ask bounce (see Roll (1984)).

Following Liu, Patton, and Sheppard (2015), we present our results for K ¼ 108 
regularly spaced sampling intervals each day (corresponding to a mean interval length 
of 5 minutes when measured in calendar time)7 and subsampled at L ¼ 10 regularly 
spaced offsets. We also repeat all of our calculations for a variety of different interval 
numbers (ranging from K ¼ 50 to K ¼ 500) and a variety of different numbers of 
subsampling offsets (ranging from L ¼ 5 to L ¼ 20). Our results are qualitatively similar 
in all cases.

In Figure 4, we show scatter plots of the quote-price volatility versus the trade-price 
volatility for each day in our data set. The points on the scatter plots cluster along the 
diagonal. To help quantify the strength of this relationship, we also calculate the Pearson 
correlation ρ, which we measure across all 30 days in our data set (see Table 3). In all 
cases, ρ � 1. Together, these results indicate that each day’s quote-price volatility is very 
similar to the corresponding trade-price volatility.

In Figure 4, some points lie slightly above the diagonal and others lie slightly below the 
diagonal. To examine the deviation from the diagonal, we calculate the log-ratio 

z ¼ ln vB=vbð Þ ; for seller-initiated trades
ln vA=vað Þ ; for buyer-initiated trades

�

(8) 

for each currency pair on each day. A positive value of z indicates that the trade-price 
volatility exceeds the quote-price volatility; a negative value of z indicates that the quote- 
price volatility exceeds the trade-price volatility. For each of the three currency pairs, the 
mean value of z is slightly positive for both buyer-initiated and seller-initiated trades (see 
Table 4), suggesting that, on average, the trade-price volatility on a given day typically 
exceeds the corresponding quote-price volatility. However, the magnitude of this over-
shoot is less than one standard deviation of the quote-price volatility, so the effect is very 
weak. Therefore, the vast majority of volatility in the trade-price series is also directly 
observable in the quote-price series. This implies that the volatility that is observable in 
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both the quote-price and trade-price series is dominated by a common, underlying 
volatility that supersedes the idiosyncratic impact of CCLs on the trade-price series.

5. A model of trading with CCLs

In Section 4, we used data from Hotspot FX to analyse how CCLs affect everyday trading 
in a real market. However, studying historical data is only one aspect of examining how 
this mechanism may affect financial markets, and such analysis does not provide insight 
into how these results may change if institutions make substantial modifications to their 
CCLs. Because the underlying network of CCLs on Hotspot FX is fixed and unobservable 
to us, empirical analysis does not provide a way to investigate this important issue. 
Therefore, in this section, we complement our empirical work by introducing and 

Figure 4. Scatter plots of realized trade-price volatility versus realized quote-price volatility for (left) 
seller-initiated trades and (right) buyer-initiated trades. The solid black lines indicate the diagonal.

Table 3. Pearson correlation between realized trade-price volatility versus rea-
lized quote-price volatility for (top row) seller-initiated trades and (bottom row) 
buyer-initiated trades. The numbers in parentheses are the standard deviations 
of the estimates across 10,000 bootstrap samples of the data.

EUR/USD GBP/USD EUR/GBP

vB versus vb 0:997 ð< 0:01Þ 0:985 ð< 0:01Þ 0:986 ð< 0:01Þ
vA versus va 0:997 ð< 0:01Þ 0:993 ð< 0:01Þ 0:985 ð0:01Þ

Table 4. Mean values of the log-ratio z for (top row) seller-initiated trades and 
(bottom row) buyer-initiated trades. The numbers in parentheses are the correspond-
ing standard deviations.

EUR/USD GBP/USD EUR/GBP

Seller-Initiated Trades 0:022 ð0:049Þ 0:020 ð0:064Þ 0:010 ð0:116Þ
Buyer-Initiated Trades 0:015 ð0:045Þ 0:012 ð0:050Þ 0:022 ð0:114Þ
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studying a model of trading in which institutions assign CCLs to their trading 
counterparties.

In our model, each institution updates its buy and sell prices for a single asset and 
performs a trade whenever it identifies a trading counterparty that is offering to buy or 
sell at a mutually agreeable price. A crucial feature of the model is that not all institutions 
can trade with all others; instead, each institution can trade only with other institutions 
with which it possesses a bilateral CCL. Therefore, trades occur at prices that depend not 
only on other institutions’ buy and sell prices, but also on the underlying network of 
bilateral CCLs.

We study a simple trading mechanism—ignoring many features of real markets—to 
highlight the relationship between the underlying CCL network (which we define 
formally in Section 5.2) and the trades. Our approach is similar to those of Luu et al. 
(2021), Roukny et al. (2013), and Weber and Weske (2017), who examined how the 
network topology and edge density of an underlying financial network can impact 
emergent properties (such as default cascades) in a simple model of trading. In our 
simulations (and analogous to the approaches in these papers), we fix all parameters 
except those that are related to the CCL network. Motivated by our empirical results in 
Section 4, we assess how restricting the trading opportunities that are available to 
institutions affects both the prices of individual trades and the realized volatilities of 
the quote-price and trade-price series.

5.1. The model

The setting for our model is an infinite-horizon, continuous-time market that is popu-
lated by a set Θ ¼ θ1; θ2; . . . ; θNf g of N institutions that trade a single risky asset. Each 
institution θi 2 Θ maintains a private buy-valuation Bi

t and a private sell-valuation Ai
t . 

The values of Bi
t and Ai

t vary across the different institutions to reflect differences in their 
views of the likely future value of the asset, as well as differences in their inventories, cash 
flows, financing constraints, and so on. To focus on the impact of CCLs without 
considering the impact of strategic activity (which could make our results more difficult 
to interpret), we model these prices using stylized stochastic processes. For each institu-
tion θi, we rewrite the buy and sell prices in terms of a mid-price Mi

t ¼ ðBi
t þ Ai

tÞ=2 and 
spread si

t ¼ Ai
t � Bi

t , so that 

Bi
t ¼ Mi

t �
si

t
2
; Ai

t ¼ Mi
t þ

si
t

2
: (9) 

We describe the dynamics of the spreads in detail in Section 5.1. For now, we remark only 
that we constrain the values of si

t to never fall below a minimum value s0 > 0.
Before simulating our model, we choose an initial state in which no trading is possible. 

We give details of this initialization in Section 5.4. Between trades, we assume that the si
t 

are governed by 

dsi
t ¼ � κ si

t � s0
� �

dt (10) 

for some constant κ > 0, and we assume that the Mi
t are governed by 

APPLIED MATHEMATICAL FINANCE 533



dMi
t ¼ γMi

t dWMi

t ; (11) 

where γ> 0 is the mid-price volatility (with units of ½time��
1
2) and WMi

t are mutually 
independent Brownian motions.8

In the absence of trading, the processes Mi
t are drift-free geometric Brownian motions. 

Equation (10) causes each institution’s spread to revert towards its minimum value s0. 
Our model minimizes the complications from the mixing of price scales and time scales 
in the model parameters.

Although a geometric Brownian motion with no drift has a constant mean, its variance 
increases with time. Without trading, our mid-prices thus spread out progressively and 
indefinitely over time. However, as we will see in Section 5.3, the occurrence of trades 
ensures that prices remain grouped together. By using the same values of γ for each 
institution, we ensure that the only difference between different institutions is the set of 
trading opportunities that they can access.

5.2. CCL networks

We assume that each institution θi assigns a CCL to each other institution θj. We also 
assume that each institution’s access to trading opportunities does not depend on time or 
on its trading history. Therefore, for each pair of institutions, θi and θj, we model the 
bilateral CCL with a binary indicator; either θi and θj are trading partners, or they are not. 
For simplicity, we allow trading partners to trade arbitrarily large amounts.

In a real financial market, a pair of financial institutions can access each other’s trading 
opportunities until they reach their bilateral CCL (see Section 3). Therefore, our model 
uses a simplification of the way that CCLs operate in real markets. There are three 
important benefits of this simplification. First, institutions in the FX spot market 
routinely trade huge volumes of FX each day, yet the modal size of market orders for 
each of the three currency pairs on Hotspot FX is just 1 million units of the base currency. 
If a given pair of institutions have a sufficient bilateral CCL to access each other’s trading 
opportunities once, then they are likely to be able to do so again. Second, in the FX spot 
market, trades that are agreed on day D are settled on day Dþ 2. Given this relatively 
short time interval, if an institution θi cannot access a trading opportunity that is offered 
by θj, we claim that it is more likely that this is because their bilateral CCL is actually 0 
than because they have gradually accumulated a large exposure. Third, this simplification 
makes our model time-stationary. By contrast, tracking the cumulative exposure between 
a pair of institutions and allowing them to trade only up to their bilateral CCL yields 
a model that is non-stationary in time. We opt for this significant gain in model 
simplicity in what we regard to be an adequately realistic equilibrium-pricing framework.

We encode CCLs using an undirected,9 unweighted network in which the nodes 
represent the institutions and the edges encode their bilateral credit relationships: θi 
and θj can trade with each other if and only if the edge θi $ θj exists in the network. We 
refer to such a network as a CCL network. For any network with N nodes (and no self- 
edges or multi-edges), the maximum number of edges is NðN � 1Þ=2. Therefore, a CCL 
network with N nodes and n edges has an edge density of 
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d ¼
2n

NðN � 1Þ
: (12) 

With our model, we can consider any connected CCL network with any number of nodes 
and any set of edges. However, to highlight the most salient features of our results, we 
restrict our discussion to two classes of networks with specific topological structures (see 
Figure 5).

The first class of CCL networks that we consider are Erdős–Rényi (ER) networks (Erdős 
and Rényi 1960; Newman 2018). We use this class of networks to model a market in 
which institutions choose their trading partners uniformly at random. Although this 
assumption is a poor reflection of how institutions set CCLs in a real market, studying ER 
networks enables us to investigate the temporal evolution of our model in a simple, 
stylized framework with no deterministic structure. To construct our ER networks, we fix 
the edge density d and use Equation (12) to calculate n. We place these n edges uniformly 
at random, and we then check whether the network consists of a single connected 
component. If it does not, we reject the CCL network and construct another network 
using the same rules. For a given value of d, we construct a sample of 1000 such CCL 
networks, and we then simulate 1000 independent runs of our model for each of these 
1000 CCL networks.

The second class of CCL networks that we consider are core–periphery (CP) networks 
(Rombach et al. 2017)). Specifically, we consider CP networks that have two types of 
nodes: core nodes and peripheral nodes. In our CP networks, each core node is adjacent 
to all other core nodes, each peripheral node is adjacent to exactly one core node, and the 
degrees of any two core nodes differ by no more than 1. We use these CP networks to 
model a market in which (1) a core group of institutions assign very high CCLs to each 
other, but (2) all other institutions have a credit line with just one institution (which is in 
the core). Several recent studies (see, e.g., Craig and von Peter (2014), Fricke and Lux 
(2012), Iori et al. (2008)) have suggested that many large financial markets have an 
approximate CP structure, with a core that consists of large banks and a periphery that 
consists of smaller financial institutions, such as small banks, hedge funds, or mutual 
funds. Our CP structure is a stylized (and deterministic) version of such a structure.

Figure 5. Schematics of the two classes of CCL networks that we study. (Left) An Erdős–Rényi (ER) 
network and (right) a core–periphery (CP) network in which 3 nodes are core nodes (in dark grey) and 
9 nodes are peripheral nodes (in light grey).
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To construct our CP networks, we first fix the fraction ψ of peripheral nodes. When 
ψ ¼ 0, all institutions are core institutions, so the CCL network is complete and all 
institutions are able to trade with all others. For a given choice of ψ (and therefore of d), 
we construct a single CCL network, and we then simulate 1000 independent runs of the 
model for this CCL network.

5.3. Trading

We assume that a trade occurs at each time t� for which there are institutions θi and θj with 
θi $ θj and prices that satisfy Bi

t� ¼ Aj
t� . We refer to this price as the trade price. To aid 

comparisons between the output of our model and our empirical results in Section 4, we 
use the following rule to classify trades as buyer-initiated or seller-initiated.10 Let �Mt denote 
the mean of the N institutions’ mid-prices at time t. Consider a trade that occurs between θi 

and θj at time t� with a trade price of p ¼ Bi
t� ¼ Aj

t� . If p � �Mt , we label this trade as buyer- 
initiated, and we call θi the initiator and θj the acceptor. Otherwise, we label this trade as 
seller-initiated, and we call θj the initiator and θi the acceptor.

For each trade, we think of the initiator as having submitted a market order at the 
trade price and we think of the acceptor as having owned a limit order (which is matched 
by this market order) at the trade price. The fewer bilateral CCLs that the initiator has, 
the more that we expect this price to be from �Mt. We thereby encode the relative 
competitive disadvantage of institutions with poor bilateral CCL connections.

Whenever a trade occurs between a pair of institutions, θi and θj, we record the 
skipping cost of the trade and then move Mi

t� and Mj
t� together by s0 to reflect that θi and 

θj have successfully satisfied their desires to trade with each other. If the trade is buyer- 
initiated, we subtract s0=2 from Mi

t� and add s0=2 to Mj
t� ; if the trade is seller-initiated, we 

instead subtract s0=2 from Mj
t� and add s0=2 to Mi

t� . We then increase both si
t and s j

t by 
s0=2. This adjustment models a decrease in trading desire from the initiator and acceptor 
from the execution of the trade (as reflected by widening the bid–ask spread), and it 
removes the undesirable possibility of the initiator’s price and acceptor’s price being 
equal infinitely often in an arbitrarily small time interval. After completing these updates, 
we recalculate the values of Bi

t� , Ai
t� , B

j
t� , and Aj

t� using Equation (9).
We now see how trading stops the mid-prices from spreading out indefinitely over 

time. If the distance between the mid-prices of θi and θj equals the mean of their spreads, 
then the buy price of one trader meets the sell price of another and a trade occurs.

5.4. Implementation and parameter choices

We simulate the evolution of our model in discrete time, with a time step Δt > 0, using 
a simple explicit (Euler–Maruyama) difference scheme. This discretization produces an 
overshoot before we detect that a trade should take place. Therefore, whenever a buyer- 
initiated trade occurs between a buyer θi and a seller θj, we actually observe Bi

t >Aj
t , rather 

than Bi
t ¼ Aj

t. In the simplest (and, for small spreads, generic) case, no other relevant prices 
are sandwiched between these buy and sell prices. Whenever this happens, we deem a trade 
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to have taken place at the end of the time step and at the price p ¼ ðBi
t þ Aj

tÞ=2. In a very 
small number of cases, the discrete time-stepping may create more than one trading 
opportunity in a single time step. In such a case, we first deal with the trade that occurs 
farthest from �Mt . After recording this trade and updating the buyer’s and seller’s prices (see 
Section 5.3), we then process the trading opportunity whose trade price is farthest from the 
updated value of �Mt , the opportunity with the second-farthest trading price, and so on until 
there are no remaining trading opportunities.11

Because we aim to investigate how CCLs affect skipping costs, we fix the values of γ, κ, 
and s0 and study our model’s output (and how it varies) for different CCL networks (see 
Section 5.2). We set s0 ¼ εM0 with ε ¼ 0:001, which implies spreads of about 0:1%. We 
choose κ ¼ 1, which sets the (otherwise arbitrary) time unit as 1=κ ¼ 1. We set γ ¼
ε
ffiffiffi
κ
p
¼ 0:001 to balance the changes in the spread and the changes in the mid-price.

We initialize the mid-prices Mi by drawing them randomly from a normal distribu-
tion with mean 1 and standard deviation ε. We then run the trade-processing algorithm 
that we described in Section 5.3 (but without actually recording any trades) to adjust the 
mid-prices and spreads of all institutions for whom this initial state would cause trading 
to occur. We repeat this step until no trading opportunities remain (i.e., until Bi

t0
<Aj

t0 
for 

each pair of institutions, θi and θj, for which θi $ θj).
The final parameter in our model is the discrete time step Δt. The dominant term in 

the discrete temporal evolution of the system is the noise term, which in relative terms 
(i.e., relative to the value of the relevant quantity at the beginning of the time step) is 
Oðγ

ffiffiffiffiffi
Δt
p
Þ. Accurate discretization of the stochastic processes requires this term to be 

small. Moreover, we wish to avoid the situation in which the discrete time steps regularly 
create multiple simultaneous trading opportunities. We expect the separation of the mid- 
prices to be OðεM0=NÞ. We would like this separation to be several times larger than the 
standard deviation of the noise term, such that the probability of observing a discrete 
price change that is larger than this is very small. Therefore, we take Δt ¼ 1=ð3N2Þ. This 
choice of Δt is also sufficiently small for us to be able to neglect errors that are associated 
with the numerical integration of the stochastic differential Equation (11).

For the simulation results that we present in Section 5.5, we consider networks with 
N ¼ 128 institutions.12 For each CCL network that we study, we simulate the temporal 
evolution of our model from t ¼ 0 to t ¼ 10. We discard all activity before t ¼ 2 as 
a burn-in period to avoid incorporating transient behaviour. We verified that these 
choices are sufficiently large by examining results using a variety of different burn-in 
periods and total time lengths. Our results are similar for all burn-in periods that are 
longer than about t ¼ 1 (which, for the parameter choices that we use in our simulations, 
is the temporal scale for the mean reversion of the spreads) and for all total time periods 
that are larger than about t ¼ 2. In Figure 6, we show a single simulation of our model to 
illustrate how heterogeneity in institutions’ access to trading opportunities (such hetero-
geneities arise as a direct consequence of their CCLs) manifest in the trade-price series.

5.5. Simulation results

We study buyer-initiated and seller-initiated trades separately via the trade-classification 
algorithm that we described in Section 5.3. In line with our expectations (due to the 
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symmetry of buyers and sellers in our model), our results are qualitatively the same for 
buyer-initiated and seller-initiated trades. To increase the sizes of our samples, we aggregate 
buyer-initiated and seller-initiated trades and present our results for all trades together.

We first study the number of trades and the skipping costs for each edge density d (see 
Figure 7). For both ER and CP networks, CCL networks with progressively lower edge 
densities result in progressively fewer trades and progressively larger skipping costs. The 
intuition is simple: the lower the edge density, the smaller the number of bilateral trading 
partners in a population. This, in turn, leads to a smaller number of trades and larger 
skipping costs. More interestingly, the mean number of trades is larger and the mean 
skipping cost is smaller for an ER network than for a CP network with the same edge 
density. From a practical perspective, this suggests that the influence of CCLs depends not 
only on the number of trading partners of each institution, but also on the network 
topology.

For both classes of networks, the mean skipping cost decreases rapidly as d increases 
from 0 to about 0:1. For ER networks, the mean skipping cost is very close to 0 for all 
values of d that are above about 0:3. In this regime, CCLs have a very small impact on 
individual trade prices. For CP networks, the mean skipping cost is very large for very 
small values of d, but it decreases to 0 as d approaches 1 (for which the CCL network is 
complete, so all trades have 0 skipping cost by definition).

In Figure 8, we plot the trade-price and quote-price volatilities for each d. We describe 
our methodology for measuring realized volatility in Appendix B.13

Figure 6. An example simulation of our model using a CCL network with N ¼ 3 institutions, the 
parameter values in Section 5.4, and a CCL network in which θ1 $ θ2 and θ1 $ θ3 but θ2 and θ3 
cannot trade with each other. The black crosses indicate trades.

538 M. D. GOULD ET AL.



For the ER networks, the trade-price volatility exceeds the quote-price volatility when 
d ⪅ 0.1. As d increases, the trade-price volatility decreases faster than the quote-price 
volatility. This observation is intuitively sensible because quote-price volatility is deter-
mined by the most extreme prices (i.e., the maximum among all buy prices and the 
minimum among all sell prices). An increase in d creates relatively few additional edges 
for each institution, including for the institutions whose prices reside at these extremes. 
Therefore, it has a relatively modest impact on quote-price volatility. By contrast, trade- 
price volatility depends on the prices of all trades that are conducted by all institutions, 
which in turn are affected by all bilateral CCLs between all pairs of institutions. 

Figure 7. (Left) Numbers of trades and (right) skipping costs for (green) ER and (orange) CP networks. 
The solid curves indicate the mean across all independent runs of our model. The dashed curves 
indicate one standard deviation from the mean.

Figure 8. (Left) Realized trade-price and quote-price volatilities and (right) mean of the log-ratio z (see 
Equation (8)). The solid curves indicate the mean across all independent runs of our model. The 
dashed curves indicate one standard deviation from the mean.
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Consequently, trade-price volatility is influenced by d much more strongly than is quote- 
price volatility.

For the CP networks, quote-price volatility is approximately constant across all values 
of d except for those that are close to 0 or 1. By contrast, trade-price volatility first 
increases sharply as d increases slightly above 0, and it subsequently decreases gradually 
and then decreases sharply as d increases beyond about 0:95. This result illustrates that, 
for the CP networks, edge density has a much stronger influence on trade-price volatility 
than it does on quote-price volatility.

Together, our simulations suggest that CCLs can significantly impact both trade prices 
(see Figure 7) and volatilities (see Figure 8). Two features are particularly interesting. 
First, as we decrease the edge density of a CCL network, both the skipping costs of 
individual trades and the trade-price volatility increase. These increases are not accom-
panied by a similar increase in quote-price volatility. Second, the impact of CCLs 
depends not only on edge density, but also on the specific topology of a CCL network. 
Therefore, forecasting how a difference in the edge density impacts skipping costs and 
trade-price volatility also requires knowledge of a CCL network’s topology. Intuitively, 
this result implies that understanding the possible impact of CCLs in financial markets 
requires knowledge not only of how many institutions are trading partners, but also of 
which institutions are trading partners with each other.

6. Conclusions and discussion

We investigated how the application of CCLs impacts the prices that institutions pay for 
their trades during everyday trading. We first examined this issue empirically by studying 
a data set from Hotspot FX, which is a large electronic trading platform in the FX spot 
market that utilizes CCLs. Although we observed that CCLs have little or zero impact on 
most of the trades in our data set, we also identified a handful of trades for which the 
application of CCLs created very large skipping costs. We argued that this is a natural 
consequence of the heterogeneity in the types and sizes of institutions that trade on 
Hotspot FX. By implementing CCLs, Hotspot FX can facilitate trading for a wide variety 
of different financial institutions while providing these institutions with the ability to 
decide for themselves whether or not to trade with specific counterparties. Because of this 
direct control of counterparty exposures, there is no need for Hotspot FX to set high 
barriers to entry for new participants. Indeed, two Triennial Central Bank Surveys from 
Bank for International Settlements have noted that direct participation of small, non- 
bank institutions has been a key driver for sustained growth in FX volumes (Bank for 
International Settlements 2010, 2013). Our findings are consistent with the hypothesis 
that a wide variety of different financial institutions, with access to different sets of 
trading opportunities, interact simultaneously on Hotspot FX.

We also considered how CCLs impact volatilities. By decomposing price changes 
into two components (one that is attributable to changes in the best quotes and another 
that is attributable to contemporaneous changes in skipping costs), we found empiri-
cally that CCLs contribute a small additional volatility to the trade-price series on 
Hotspot FX.

To complement our empirical analysis, we also introduced a model of a single-asset 
market in which institutions assign CCLs to their trading counterparties. In our model, 
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the network of CCLs gives explicit control over the interaction topology between 
different institutions. By fixing the model parameters and varying only the CCL network, 
we studied how CCLs impact trade in our artificial market. Our main observation is that 
both edge density and network topology are important for determining the skipping 
costs of trades and the corresponding volatility in the trade-price series. This presents 
a difficulty for regulators: How can one monitor the state of the CCL network between 
institutions in real time? In our view, to paint a realistic picture of market dynamics, 
policies that seek to improve financial stability must consider this important question.

To the best of our knowledge, our paper is the only empirical or theoretical study to 
explore the use of the CCL mechanism in a quantitative framework. Our results help to 
illuminate several important questions about the impact of CCLs on everyday trading. 
Our empirical results indicate that CCLs do not strongly impact the prices of the vast 
majority of trades during everyday trading on Hotspot FX. Therefore, we argue that one 
can regard the application of CCLs (and the consequent creation of skipping costs) as 
a reasonable cost of providing direct market access to a broad selection of different 
financial institutions, rather than as a weakness of this market design. However, the 
simulations of our model suggest that skipping costs and trade-price volatility can 
escalate rapidly as CCLs become more restrictive. Therefore, much like credit- 
valuation adjustments and trade novation via a central counterparty (see Section 2), 
CCLs do not provide a simple solution to the problem of counterparty credit risk.

It is interesting to compare our empirical results (see Section 4) to our simulation 
results (see Section 5). As a thought experiment, if we were to assume that our model is 
the exact data-generating mechanism for the trades that we observe empirically and that 
the only possible classes of CCL networks are the employed ER networks and CP 
networks, then we could use our empirical results to draw inferences about the under-
lying CCL network on Hotspot FX. In this highly stylized framework, the small mean 
skipping cost of trades (see Section 4.1) and the small mean log-ratio of trade-price 
volatility to quote-price volatility (see Section 4.3) are both consistent with the conclusion 
that the CCL network on Hotspot FX is an ER network whose edge density is larger than 
about 0:1. (See Figures 7 and 8.) Reflecting on this thought experiment yields two 
contrasting points. On one hand, it is clear that neither of the thought experiment’s 
assumptions hold in reality, because trades on Hotspot FX occur via a process that is 
much more complicated than the one in our model and real CCL networks are not 
constrained to be ER or CP networks. On the other hand, the qualitative message from 
our thought experiment is intuitively reasonable: If the CCL network on Hotspot FX has 
a very small edge density, then we would probably observe many more trades with very 
large skipping costs. Therefore, the true CCL network is unlikely to be extremely sparse. 
Similarly, if the CCL network has a deterministic structure, then we would probably 
observe some distinctive features when performing a statistical analysis of individual 
trades. For example, if the CCL network has a perfect partitioning into core institutions 
and peripheral institutions, there likely would be a clustering of trades into core–core 
trades and core–periphery trades. Given that no such clustering is apparent anywhere in 
our empirical results (see Figures 1–3), we conclude that an ER network may be a better 
choice than a CP network (of the form that we studied) as a stylized model of a CCL 
network.
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It is also important to compare our results to those of other studies of how financial 
networks can impact trade. As we discussed in Section 2, Luu et al. (2021) investigated 
the dynamics of collateral in the presence of rehypothecation and concluded that con-
tagion effects vary much more rapidly as a function of edge density for CP networks than 
they do for ER networks. Consistent with these findings, we also find that the impact of 
CCLs on trade prices varies much more sharply as a function of edge density for CP 
networks than it does for ER networks. Luu et al. (2021) argued that network structures 
(such as CP networks) with very concentrated collateral flows are characterized by a 
trade-off between systemic risk and liquidity. In other words, CP networks are preferable 
for increased liquidity, but ER networks are preferable for reduced spread of a default 
contagion. Our results illustrate that, on average, a CP network with a given edge density 
produces a larger impact on trade prices (via larger skipping costs) than an ER network 
with the same edge density.

It is also interesting to compare our findings to those of Roukny et al. (2013), who 
studied how a financial network’s topology can impact cascades of defaults. Roukny et al. 
concluded that network topology does not heavily influence default cascades when 
considering only load-redistribution (i.e., diversification) effects, but that it can be an 
important factor in the presence of a contagion. In our model, a larger edge density leads 
to a smaller mean skipping cost (much like the version of the Roukny et al. (2013) model 
that considers only load-redistribution effects). Our simulation results also illustrate that 
the topology of a CCL network can significantly impact both skipping costs (see Figure 7) 
and the corresponding volatilities of the trade-price and quote-price series (see Figure 8). 
Roukny et al. (2013) argued that ‘hub’ nodes (i.e., nodes that have a large degree) 
contribute both to improving market stability (by diversifying shocks) and to impairing 
it (by amplifying contagions of defaults). In our model, hub nodes exist in the core of 
a CP network with low edge density. Our simulations reveal that these types of CCL 
networks can lead to very large skipping costs. Intuitively, this makes sense: In the 
context of our model, hubs provide trading opportunities to a wide range of other 
financial institutions, many of which have relatively poor access to other institutions’ 
trading opportunities. This finding is consistent with market participants regarding 
skipping costs as a reasonable price to pay for direct market access.

There are many possible extensions to our model. For example, one can modify the 
temporal evolution of institutions’ buy and sell prices to more closely reflect behaviour in 
real markets. Possible extensions in this direction include incorporating stochastic 
volatility and exogenous jump discontinuities that affect all institutions. As another 
example, one can relax the assumption that different institutions’ mid-price series are 
independent, such as by incorporating a common dependence on the prices of recent 
trades (which are visible to all participants on Hotspot FX via the trade-data stream, as we 
discussed in Section 3). As a third example, one can extend our model to incorporate 
multiple assets, such as several different currency pairs. In the context of the FX spot 
market, this extension may provide insight into the possible emergence of arbitrage 
opportunities and more generally into how the efficiency of financial markets can emerge 
endogenously from interactions between many heterogeneous institutions. As a fourth 
example, one can incorporate strategic considerations into our model. For instance, 
different institutions can implement different time-update rules for their buy and sell 
prices to reflect heterogeneity in their trading styles or to reflect their estimated 
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probabilities of experiencing a counterparty default. The implementation of CCLs can 
thereby create an interesting feedback loop in each institutions’ buy and sell prices: By 
using CCLs to prevent trading with counterparties that a financial institution perceives to 
be intolerably likely to default, it may choose to offer a smaller spread than it would 
otherwise. In short, in our model, the progressively restrictive application of CCLs 
progressively increases the skipping costs of trades; however, in real markets, the ability 
to implement CCLs may actually convince some institutions to narrow their spread and 
thereby offer other institutions better prices than they would otherwise.

We have examined the question of how CCLs impact trade prices during everyday 
trading. An important topic for future work is to analyse CCLs during periods of market 
stress. Specifically, it is important to assess whether institutions modify their CCLs 
during turbulent periods to reflect the heightened probability of experiencing 
a counterparty failure. It is also important to examine whether (and when) such mod-
ifications significantly impact the statistical properties of the trade-price series.

Another important open question is how to implement CCLs alongside other mea-
sures to mitigate counterparty credit risk. For example, a platform can offer institutions 
the ability to apply CCLs and novate trades via a CCP. However, before such 
a configuration can be adopted, there is an important question to address: How should 
trades that are novated by the CCP count towards an institution’s CCLs? One possible 
solution is that institutions can have a CCL with the CCP itself to guard against the 
possibility that the CCP fails. Given the relatively low impact of CCLs that we observed 
on Hotspot FX, we encourage further research in this area to help improve under-
standing of this interesting but hitherto unexplored market mechanism.

Notes

1. In February 2017, Hotspot FX was acquired by Cboe Global Markets and rebranded as 
‘Cboe FX Markets’. At the time of writing, Cboe FX Markets remains a major electronic 
trading platform in the FX spot market (Cboe Global Markets 2017).

2. We use the same two classes of networks in our simulations of our model of trading in 
Section 5.

3. Note, however, that the use of CCLs does not exclude the subsequent clearing of trades via 
a CCP. We return to this discussion in Section 6.

4. The Reuters and Electronic Broking Services (EBS) platforms offer institutions an additional 
data feed that, in exchange for a fee, provides snapshots of the global LOB at regular time 
intervals.

5. A price for the currency pair XXX/YYY denotes how many units of the counter currency 
YYY are exchanged per unit of the base currency XXX.

6. Consequently, the number of seconds between successive samplings is larger in periods that 
have fewer trades. We repeated all of our calculations by sampling the same series at 
regularly spaced intervals in calendar time, and we obtain results that are qualitatively 
similar to those that we obtain with regularly spaced intervals in trade time.

7. When estimating the volatility of a price series, sampling with an interval length of 5 minutes 
is often regarded as a simple way to reduce the impact of microstructure noise (Hansen and 
Lunde 2006).

8. A possible refinement of our model is to include a common market factor WT in addition to 
the idiosyncratic noise terms. In that case, dMi

t ¼ γMi
t ρi dWt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ρ2

i
p

dWMi

t

� �
, where ρi 

is a Pearson correlation coefficient. We also performed simulations of this more complicated 
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model, but we found that this additional complication adds little to our model. Therefore, 
we restrict our discussion to our simpler model.

9. Recall from Section 3 that the bilateral CCL between θi and θj in real markets is given by 
min cði;jÞ; cð j;iÞ

� �
. Therefore, although it is necessary to use a directed network to model both 

cði;jÞ and cð j;iÞ between individual institutions, the network of bilateral CCLs is, by definition, 
an undirected network.

10. For simplicity, we use an unweighted average. It is possible to extend our model by instead 
using a weighted average to reflect possible asymmetries between different institutions. For 
example, one can assign a larger weight to larger institutions.

11. It is possible to avoid this situation by implementing an algorithm to search for the exact 
time t such that Bi

t ¼ Aj
t . However, as we discuss later in this subsection, we choose 

a sufficiently small value of Δt to ensure that it is rare for multiple trades to occur within 
a given time step. Therefore, we regard our choice of using fixed-length time steps as 
a sensible heuristic.

12. We also conducted simulations with several different choices of N between 100 and 1000 
(with appropriately modified values of Δt). Our results are qualitatively similar in each case.

13. When studying our model, we consider realized volatility that we compute based on event- 
time sampling. We did not repeat our calculations using calendar-time sampling, because 
our choice of time scale is arbitrary.

14. See Bech (2012) for estimated transaction volumes for several platforms during this period. 
Since then, the market share of Hotspot FX (which is now called ‘Cboe FX Markets’) has 
increased considerably.

15. Because each partial matching of a single market order is subject to the same CCLs, we 
regard it as inappropriate to study each such partial matching as a separate event, as doing so 
would produce long sequences of correlated data points from single market orders.
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Appendices

Appendix A. The Hotspot FX data

In this appendix, we describe the data that we examine in our empirical analysis. See Gould, Porter, 
and Howison (2017) for more details, including an explicit description of our data-processing 
algorithms.
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During our sample period (the months of May and June in 2010), three major multi-institution 
trading platforms dominated electronic trading volumes in the FX spot market: Reuters, Electronic 
Broking Services (EBS), and Hotspot FX.14 All three of these platforms use similar trading 
mechanics; in particular, all three implement CCLs via QCLOBs. Importantly, however, EBS 
and Reuters primarily serve the interbank market, whereas Hotspot FX serves both the interbank 
market and a broad range of other financial institutions, such as hedge funds, commodity-trading 
advisers, corporate treasuries, and institutional asset managers.

Hotspot FX operates continuous trading for 24 hours each day and 7 days each week. However, 
the vast majority of activity on the platform occurs during the peak trading hours of 
08:00:00–17:00:00 GMT from Monday to Friday. We exclude all data from outside these time 
windows to ensure that our results are not influenced by unusual behaviour during inactive 
periods. We exclude 3 May (i.e., the May Bank Holiday in the UK) and 31 May (i.e., the Spring 
Bank Holiday in the UK and Memorial Day in the US) because the market activity on these days 
was extremely low. We also exclude the 11 days that include a gap in recording that lasts 30 seconds 
or more. After making these exclusions, our data set contains the peak trading hours for each of 30 
trading days. In Table 5, we give summary statistics for each of the three currency pairs. Consistent 
with the market-wide volume ratios that were reported by the Bank for International Settlements 
(2010), the mean daily volume of market orders for EUR/USD exceeds that for GBP/USD by 
a factor of about 3 and that for EUR/GBP by a factor of about 9.

The Hotspot FX data has several features that are particularly important for our study. First, the 
data lists all limit order arrivals and departures, irrespective of each order’s ownership, so we can 
determine the complete set of all limit orders (irrespective of their owners’ CCLs) for a given 
currency pair at any time during the sample period. By doing this at the time of each trade, we are 
able to calculate detailed statistics about the impact of CCLs on trade prices. Second, the small tick 
sizes on Hotspot FX enable us to observe market participants’ price preferences (i.e., the prices at 
which they place orders) with a high level of detail. Data from platforms (such as Reuters and EBS) 
with larger tick sizes provide a more coarse-grained view that makes results more difficult to 
interpret, particularly for trades for which CCLs exert a small influence. Third, all limit orders on 
Hotspot FX represent actual trading opportunities that were available in the market. This is not the 
case on some other platforms, which allow institutions to post indicative quotes that do not 
constitute a firm commitment to trade.

For the purposes of our investigation, the Hotspot FX data also has some limitations. First, the 
data does not provide any way to identify financial institutions, nor does it allow us to ascertain 
which institutions participated in which trades. Therefore, our statistical analysis is limited to 
studying aggregate behaviour across all institutions, rather than more detailed properties. Second, 
the data does not include information about hidden orders. In the absence of further details about 
these orders, we exclude them from our study. Third, in some extremely busy periods, several limit 
order departures can occur at the same price in very rapid succession. Therefore, for some trades, it 
is not possible to determine exactly which limit order departure corresponds to a given trade. For 
each such trade, we use the limit order departure whose time stamp is closest to the reported trade 
time. We regard any incorrect associations from this approach as a source of noise in the data. To 
ensure that this choice does not influence our conclusions, we repeated all of our calculations after 
excluding all trades for which it is not possible to associate exactly one limit order departure, and 

Table 5. Summary statistics for the total daily volume of (Panel A) market orders and (Panel B) limit 
orders. All volumes are in units of the counter currency.

EUR/USD GBP/USD EUR/GBP EUR/USD GBP/USD EUR/GBP

Panel A: Volume of Market Orders Panel B: Volume of Limit Orders

Min 2:5� 109 7:4� 108 1:0� 108 7:2� 1012 5:5� 1012 3:7� 1012

Median 4:4� 108 1:5� 109 3:6� 108 9:4� 1012 7:8� 1012 6:2� 1012

Max 7:5� 109 2:5� 109 1:2� 109 1:4� 1013 9:7� 1012 7:6� 1012

Mean 4:6� 109 1:5� 109 4:0� 108 1:0� 1013 7:9� 1012 6:2� 1012

St. Dev. 1:2� 109 4:2� 108 2:4� 108 1:9� 1012 9:9� 1011 7:9� 1011
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we obtained results that are qualitatively the same as those that we report throughout the paper. 
See Gould, Porter, and Howison (2017) for further discussion of all of these points.

If a market order matches to several different limit orders, each partial matching appears as 
a separate line in the trade-data file, with a time stamp that differs from the previous line by at most 
1 millisecond. We regard all entries that correspond to a trade of the same direction and that arrive 
within 1 millisecond of each other as originating from the same market order, and we record the 
corresponding statistics for this market order only once. For trades that match at several different 
prices (i.e., they ‘walk up the book’), we record the volume-weighted average price (VWAP) as the 
price for the whole trade, and we calculate the corresponding skipping cost using this VWAP 
price.15

Although the Hotspot FX data does not include information about market activity on Reuters or 
EBS, we do not regard this to be an important limitation of the present study. Because of the 
greater heterogeneity among member institutions on Hotspot FX than on Reuters or EBS (see 
Section 3), it seems reasonable to expect that CCLs have a larger impact on trade prices on Hotspot 
FX than they do on these other platforms. For example, large banks that trade on Hotspot FX may 
be unwilling to trade with small counterparties, and they may therefore assign them a CCL of 0. By 
contrast, the CCLs between institutions on Reuters and EBS are likely to be much higher to reflect 
the confidence in large trading counterparties in the interbank market. By studying data from 
Hotspot FX, we are able to assess the impact of CCLs in a large and heterogeneous population.

Appendix B. Measuring realized volatility

In this appendix, we describe our methodology for measuring the realized volatility of the quote- 
price and trade-price series in our model. For a detailed discussion of this approach and its 
empirical performance, see Liu, Patton, and Sheppard (2015).

For concreteness, we describe our methodology for buyer-initiated trades; we treat seller- 
initiated trades in an analogous way. For a given simulation of our model, let X denote the total 
number of buyer-initiated trades that occur, let A1;A2; . . . ;AX denote the prices of these trades, 
and let a1; a2; . . . ; aX denote the ask-prices immediately before the arrival of these trades. For 
a given number K of intervals and a given number L of subsamples, let T ¼ X=K denote the 
sample width and let τ ¼ T=L denote the subsample width. For a given lag j, we calculate the sell- 
side trade returns 

r A
i ð jÞ ¼ ln A ðiþ1ÞTþjτb c

� �
� ln A iTþjτb c

� �
; i 2 1; . . . ;K � 1f g ; (13) 

where xb c denotes the largest integer less than or equal to x. We then calculate 

vAð jÞ ¼
XK� 1

i¼1
r A

i ð jÞ
� �2

: (14) 

We repeat this process for each j ¼ 0; 1; . . . ; L � 1 and calculate the sell-side trade-price quadratic 
variation 

vA ¼
1
L

XL� 1

j¼0
vAð jÞ : (15) 

We calculate the sell-side quote-price quadratic variation va similarly from a1; a2; . . . ; aX . We calculate 
the buy-side trade-price quadratic variation vB and the buy-side quote-price quadratic variation vb 
analogously.

To identify a suitable value of K, we create volatility signature plots and choose values of K in 
a plateau (see Andersen et al. (2000)). Other values of K in the same plateau produce results that 
are qualitatively the same as those that we report.
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