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Preface to the Series

The subject of dynamical systems has matured over a period of more than a century.
It began with Poincaré’s investigation into the motion of the celestial bodies, and he
pioneered a new direction by looking at the equations of motion from a qualitative
viewpoint. For different motivation, statistical physics was being developed and
had led to the idea of ergodic motion. Together, these presaged an area that was
to have significant impact on both pure and applied mathematics. This perspective
of dynamical systems was refined and developed in the second half of the twentieth
century and now provides a commonly accepted way of channeling mathematical
ideas into applications. These applications now reach from biology and social
behavior to optics and microphysics.

There is still a lot we do not understand and the mathematical area of dynamical
systems remains vibrant. This is particularly true as researchers come to grips with
spatially distributed systems and those affected by stochastic effects that interact
with complex deterministic dynamics. Much of current progress is being driven
by questions that come from the applications of dynamical systems. To truly
appreciate and engage in this work then requires us to understand more than just
the mathematical theory of the subject. But to invest the time it takes to learn
a new subarea of applied dynamics without a guide is often impossible. This is
especially true if the reach of its novelty extends from new mathematical ideas to
the motivating questions and issues of the domain science.

It was from this challenge facing us that the idea for the Frontiers in Applied
Dynamics was born. Our hope is that through the editions of this series, both new
and seasoned dynamicists will be able to get into the applied areas that are defining
modern dynamical systems. Each article will expose an area of current interest and
excitement and provide a portal for learning and entering the area. Occasionally,
we will combine more than one paper in a volume if we see a related audience as
we have done in the first few volumes. Any given paper may contain new ideas
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viii Preface to the Series

and results. But more importantly, the papers will provide a survey of recent activity
and the necessary background to understand its significance, open questions, and
mathematical challenges.

Editors-in-Chief
Christopher K.R.T Jones, Björn Sandstede, Lai-Sang Young



Preface

Origin

Traditionally, much of the study of networks has focused on structural features.
Indeed, mathematical subjects such as graph theory have a rich history of inves-
tigating network structure, and most early work by physicists, sociologists, and
other scholars also focused predominantly on structural features. The beginnings
of the field of “network science,” which one can characterize as the science
of connectivity, also started out by focusing on network structure (i.e., literal
connectivity). Although some scholars (e.g., many control theorists) have tradi-
tionally stressed the importance of dynamics in their study of networks, many
network-science practitioners who were trained in fields like dynamical systems and
nonequilibrium statistical mechanics (which are both concerned very deeply with
dynamical processes) have written myriad papers that seem to focus predominantly
or even exclusively on structure. This is valuable and we ourselves have written
papers on network structure, but one also needs to consider dynamics, and it is good
to wear a dynamical hat even for investigations whose primary explicit focus is on
structure. Indeed, a major purpose for studying network structure is as a necessary
prerequisite for attaining a deep understanding of dynamical processes that occur
on networks. How do social contacts affect disease and rumor propagation? How
does connectivity affect the collective behavior of oscillators? The purpose of our
monograph is to provide a tutorial for conducting investigations that explore (and try
to answer) those types of questions. We will occasionally discuss network structure
in our tutorial, but we are wearing our dynamical-systems hats.

Scope, Purpose, and Intended Audience

The purpose of our monograph is to give a tutorial for studying dynamical systems
on networks. We focus on “simple” situations that are analytically tractable, though

ix



x Preface

it is also valuable to examine more complicated situations, and insights from simple
scenarios can help guide such investigations. There is a large gap between toy
models and real life, and it is crucial to worry about what insights the very simplistic
models that we know and love are able to reveal about the much more complicated
situations that occur in real life. Our monograph is intended for people who seek to
study dynamical systems on networks but who might not have any prior experience
with graph theory or networks. We hope that reading our tutorial will convey why it
is both interesting and useful to study dynamical systems on networks, how one
can go about doing so, the potential pitfalls that can arise in such studies, the
current research frontier in the field, and important open problems. We touch on
a large number of applications, but we focus explicitly on simple models, rules, and
equations rather than on realism or data analysis. We do, however, include pointers
to references that consider more realistic scenarios. As the eminent philosopher (and
baseball player) Yogi Berra once said, “In theory, there is no difference between
theory and practice. In practice, there is.”

We expect that our tutorial will be most digestible for people who have already
had introductory courses in linear algebra and dynamical systems, and some prior
experience with probability will also occasionally be helpful. Despite the many
contributions from scholars in fields such as statistical physics and sociology
(and others), we do not expect our monograph’s readers to have any background
whatsoever in such subjects. We hope that our tutorial will provide an entry point
for graduate students, sufficiently advanced undergraduate students, postdoctoral
scholars, or anybody else from mathematics, physics, or engineering who wants
to study dynamical systems on networks. It can also perhaps serve as textbook
material for the final parts of a course on dynamical systems or statistical physics.
Additionally, our tutorial can also be part of the core material in a course on
networks or on appropriate topics within networks (e.g., dynamical systems on
networks, to give a “random” example), and ideally experts in dynamical systems
and network science will also enjoy and benefit from reading our monograph. We
have purposely included numerous pointers to interesting papers to read, and we
hope that our tutorial will facilitate readers’ ability to critically read and evaluate
papers that concern dynamical systems on networks. To give a brief warning, our
monograph is not a review (or anything close to one) on dynamical systems on
networks, and we are citing only a small subset of the existing scholarship in this
voluminous area. As a complement to citing “classical” pieces of scholarship in the
area, we have also purposely included pointers to very recent papers that discuss
ideas that we find interesting. New articles on dynamical systems on networks are
published or posted on preprint servers very frequently, so we couldn’t possibly cite
all of the potentially relevant articles even if we tried. See Chapter 7 for a list of
books, review articles, surveys, and tutorials on various related topics.

Oxford, UK Mason A. Porter
Limerick, Ireland James P. Gleeson
September 2015
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Chapter 1
Introduction: How Does Nontrivial Network
Connectivity Affect Dynamical Processes on
Networks?

When studying a dynamical process, one is concerned with its behavior as a
function of time, space, and its parameters. There are numerous studies that examine
how many people are infected by a biological contagion and whether it persists
from one season to another, whether and to what extent interacting oscillators
synchronize, whether a meme on the internet becomes viral or not, and more.
These studies all have something in common: the dynamics are occurring on a
set of discrete entities (the nodes in a network) that are connected to each other
via edges in some nontrivial way. This leads to the natural question of how such
underlying nontrivial connectivity affects dynamical processes. This is one of the
most important questions in network science [228], and it is the core question that
we consider in our tutorial.

Traditional studies of continuous dynamical systems are concerned with qualita-
tive methods to study coupled ordinary differential equations (ODEs) [127, 292]
and/or partial differential equations (PDEs) [63, 65], and traditional studies of
discrete dynamical systems take analogous approaches with maps [127, 292].1

If the state of each node in a network is governed by its own ODE (or PDE or map),
then studying a dynamical process on a network entails examining a (typically large)
system of coupled ODEs (or PDEs or maps). The change in state of a node depends
not only on its own current state but also on the current states of its neighboring
nodes, and a network encodes which nodes interact with each other and how strongly
they interact.2

1Of course, nothing is stopping us from placing more complicated dynamical processes—which
can be governed by stochastic differential equations, delay differential equations, or something
else—on a network.
2In addition to current states, one can also incorporate dependencies on some of the previous states
or even on entire state histories. As suggested both in this footnote and in the previous one, it is
possible to envision scenarios that are seemingly arbitrarily complicated.

© Springer International Publishing Switzerland 2016
M.A. Porter, J.P. Gleeson, Dynamical Systems on Networks, Frontiers in Applied
Dynamical Systems: Reviews and Tutorials 4, DOI 10.1007/978-3-319-26641-1_1
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2 1 Introduction: How Does Nontrivial Network Connectivity Affect Dynamical. . .

An area of particular interest (because of tractability and seeming simplicity)
is binary-state dynamics on nodes, whose states depend on the states of their
neighboring nodes and which often have stochastic update rules. (Dynamical
processes with more than two states are obviously also interesting.) Examples
include simple models of disease spread, where each node is considered to be in
either a healthy (susceptible) state or an unhealthy (infected) state, and infections
are transmitted probabilistically along the edges of a network. One can apply
approximation methods, such as mean-field approaches, to obtain (relatively) low-
dimensional descriptions of the global behavior of the system—e.g., to predict the
expected number of infected people in a network at a given time or as a function of
time—and these methods can yield ODE systems that are amenable to analysis via
standard approaches from the theory of dynamical systems.

Importantly, it is true not only that network structure can affect dynamical
processes on a network, but also that dynamical processes can affect the dynamics
of the network itself. For example, when a child gets the flu, he/she might not go
to school for a couple of days, and this temporary change in human activity affects
which social contacts take place, which can in turn affect the dynamics of disease
propagation. We will briefly discuss the interactions of dynamics on networks
with dynamics of networks (these are sometimes called “adaptive networks”
[124, 272]) in this monograph, but we will mostly assume time-independent network
connectivity so that we can focus on the question of how network structure affects
dynamical processes that occur on top of a network. Whether this is reasonable for
a given situation depends on the relative time scales of the dynamics on the network
and the dynamics of the network.

The remainder of our tutorial is organized as follows. Before delving into
dynamics, we start by recalling a few basic concepts in Chapter 2. In Chapter 3,
we discuss several examples of dynamical systems on networks. In Chapter 4, we
give various theoretical considerations for general dynamical systems on networks
as well as for several of the systems on which we focus. We overview software
implementations in Chapter 5. In Chapter 6, we briefly examine dynamical systems
on dynamical (i.e., time-dependent) networks, and we recommend several resources
for further reading in Chapter 7. Finally, we conclude and discuss some open
problems and current research efforts in Chapter 8.



Chapter 2
A Few Basic Concepts

For simplicity, we frame our discussions in terms of unweighted, undirected
networks. When such a network is time-independent, it can be represented using
a symmetric adjacency matrix A D AT with elements Aij D Aji that are equal to
1 if nodes i and j are connected (or, more properly, “adjacent”) and 0 if they are
not. We also assume that Aii D 0 for all i, so none of our networks include self-
edges.1 We denote the total number of nodes in a network (i.e., a network’s “size”)
by N. The degree ki of node i is the number of edges that are connected to it. For
a large network, it is common to examine the distribution of degrees over all of
its nodes. The degree distribution Pk is defined as the probability that a node—
chosen uniformly at random from the set of all nodes—has degree k, and the degree
sequence is the set of all node degrees (including multiplicities). The mean degree
z is the mean number of edges per node and is given by z D P

k kPk. For example,
classical Erdős–Rényi (ER) random graphs have a Poisson degree distribution,
Pk D zke�z

kŠ , in the N ! 1 limit.2 However, many real-world networks have
right-skewed (i.e., heavy-tailed) degree distributions [55], so the mean degree z only
provides minimal information about the structure of a network. The most popular
type of heavy-tailed distribution is a power law [295], for which Pk � k�� as
k ! 1 (where the parameter � is called the “power” or “exponent”). Networks with
a power-law degree distribution are often called “scale-free networks” (though such
networks can still have scales in them, so the monicker is misleading), and many
generative mechanisms—such as de Solla Price’s model [68] and the Barabási–
Albert (BA) model [16]—produce networks with power-law degree distributions.

1This is a standard assumption, but it is not always desirable. For example, one may wish to
investigate narcissism in people tagging themselves in pictures on Facebook, a set of coupled
oscillators can include self-interactions, and so on.
2By analogy with statistical physics, the N ! 1 limit is often called a “thermodynamic limit.”

© Springer International Publishing Switzerland 2016
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4 2 A Few Basic Concepts

When studying dynamical processes on networks, it can be very insightful
to construct networks using convenient random-graph ensembles (i.e., probability
distributions on graphs), including both “realistic” ones and patently unrealistic
ones.3 The effects of network structure on dynamics are often studied using
a random-graph ensemble known as the configuration model [34, 228]. In this
ensemble, one specifies the degree distribution Pk (or the degree sequence), but
the network stubs (i.e., ends of edges) are then connected to each other uniformly
at random. In the limit of infinite network size, one expects a network drawn
from a configuration-model ensemble to have vanishingly small degree–degree
correlations and local clustering.4 It is also important to consider computational
implementations (and possible associated biases) of the configuration model and
its generalizations [21]. Moreover, note that there exist multiple variants of the
configuration model.

Degree–degree correlation measures the (Pearson) correlation between the
degrees of nodes at each end of a randomly chosen edge of a network. (The edge
is chosen uniformly at random from the set of edges.) Degree–degree correlation
can be significant, for example, if high-degree nodes are connected preferentially
to other high-degree nodes. This is true in a social network if popular people tend
to be friends with other popular people, and one would describe the network as
“homophilous” by degree. By contrast, a network for which high-degree nodes are
connected preferentially to low-degree nodes is “heterophilous” by degree.

The simplest type of local clustering arises as a result of a preponderance of
triangle motifs in a network. (More complicated types of clustering—which need
not be local—include motifs with more than three nodes, community structure, and
core–periphery structure [64, 228, 259].) Triangles are common, for example, in
social networks, so the lack of local clustering in configuration-model networks
(in the N ! 1 limit) is an important respect in which their structure differs
significantly from that in most real networks. Investigations of dynamical systems
on networks with different types of clustering is a focus of current research
[129, 213, 216].

3Reference [212] gives one illustration of how considering a very unrealistic random-graph
ensemble can be crucial for developing understanding of the behavior of a dynamical process
on networks.
4Strictly speaking, one also needs to ensure appropriate conditions on the moments of Pk as
N ! 1. For example, one could demand that the second moment remains finite as N ! 1.



Chapter 3
Examples of Dynamical Systems

Myriad dynamical systems have been studied in numerous disciplines and from
multiple perspectives, and an increasingly large number of these systems have
also been examined on networks.1 In this chapter, we present examples of some
of the most prominent dynamical systems that have been studied on networks.
We focus on “simple” situations that are analytically tractable, though studying
more complicated systems—typically through direct numerical simulations—is also
worthwhile.

Many of the dynamical processes that we consider can of course be studied
in much more complicated situations (including on directed networks, weighted
networks, temporal networks [141], and multilayer [28, 173] networks), and many
interesting new phenomena occur in these situations. In our tutorial, however, we
want to keep network structure as simple as possible. We explore ways in which
network structure has a nontrivial impact on dynamical processes, but we will only
include minimal discussion of the aforementioned complications.2 When placing
a dynamical process on a network, one sometimes refer to that network as a
“substrate.”

In this chapter, we discuss examples of both discrete-state and continuous-state
dynamical systems. For the former, it is important to consider whether to update
node states synchronous or asynchronously, so we include an interlude that is
devoted to this issue.

1Some scholars choose to draw a distinction between the terms “dynamical process” (e.g.,
stochastic processes, percolation processes, etc.) and “dynamical system” (e.g., a coupled set of
ordinary differential equations). We purposely do not distinguish carefully between the two terms.
2In Chapter 6, we do briefly consider time-dependent network structures, because contemplating
the time scales of dynamical processes on networks versus those of the dynamics of the networks
themselves is a crucial modeling issue.

© Springer International Publishing Switzerland 2016
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6 3 Examples of Dynamical Systems

3.1 Percolation

Percolation theory is the study of qualitative changes in connectivity in systems
(especially large ones) as its components are occupied or removed [270, 277].
Percolation transitions provide an archetype for continuous transitions, and there has
been a lot of work on percolation problems (especially on lattices but increasingly on
more general network structures) from both physical and mathematical perspectives
[171, 228]. Many percolation problems are deeply related to models for (both
biological and social) contagions [217], such as the susceptible–infected (SI) model
for biological contagions (see Sec. 3.2.1) and the Watts threshold model for social
contagions (see Sec. 3.3.1).

3.1.1 Site Percolation

The simplest type of percolation problem is site percolation (i.e., node percolation)
[228]. Consider a network, and let each of its nodes be either occupied or
unoccupied. One can construe occupied nodes as the operational nodes in a network,
whereas unoccupied nodes are nonfunctional. We might select nodes uniformly at
random and state that they are unoccupied (i.e., are effectively removed from the
network) with uniform, independent probability q D 1 � p 2 Œ0; 1�. This is a so-
called “random attack” with an occupation probability of p (and thus an “attack
probability” of 1 � p). Alternatively, we could be devious and perform some kind
of “targeted attack” in which we remove (i.e., set as unoccupied) some fraction of
nodes preferentially by degree (which is, by far, the most usual case considered),
geodesic node betweenness centrality (a measure of how often a node occurs on
short paths), location in the network, or some other network diagnostic. In the limit
as the number of nodes N ! 1 in one of these processes, what fraction qc of
the nodes needs to be removed so that the network no longer has a very large
connected component—called a giant connected component (GCC)—of occupied
nodes? A percolation transition occurs at the critical occupation probability pc D
1 � qc that indicates the point of appearance/disappearance of a GCC, which is
defined as a connected network component that scales in linear proportion to N as
N ! 1. (Such scaling is called “extensive” in the language of statistical mechanics
[277].)

3.1.2 Bond Percolation

In bond percolation (i.e., edge percolation), one tracks occupied edges instead
of occupied nodes. Edges are labeled, independently and uniformly at random,
as occupied with probability p, which is called the bond occupation probability.
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As with site percolation, the primary question of interest is the existence and size
of a GCC, where connections occur only using occupied edges. If p is below a
critical value pc, then too few edges are occupied to globally connect the network,
and a GCC does not exist. However, above the threshold pc, there is a GCC, and the
number of nodes in the GCC scales in linear proportion to N as N ! 1.

3.1.3 K-Core Percolation

The K-core of an unweighted, undirected network is the maximal subset of nodes
such that each node is connected to at least K other nodes [275]. It is computation-
ally fast to determine K-cores, and they are insightful for many situations [64, 79].
Every unweighted, undirected network has a K-core decomposition. A network’s K-
shell is the set of all nodes that belong to the K-core but not to the .K C1/-core. The
network’s K-core is given by the union of all c-shells for c � K, and the network’s
K-core decomposition is the set of all of its c-shells.

One can examine the K-core of a network as the limit of a dynamical pruning
process. Start with a network, and then delete all nodes with fewer than K neighbors.
After this pruning, the degree of some of the remaining nodes will have become
smaller, so repeat the pruning step to delete nodes that now have fewer than K
remaining neighbors. Iterating this process until no further pruning is possible leaves
the K-core of the network.

3.1.4 “Explosive” Percolation

A few years ago, Ref. [2] suggested the possibility of an “explosive” percolation
process in which the transition (as a function of a parameter analogous to the bond
occupation probability p) from a disconnected network to a network with a GCC is
very steep and could perhaps even be discontinuous. It has now been demonstrated
that the proposed family of “explosive” processes, which are often called Achlioptas
processes, are in fact continuous (in the thermodynamic limit) [66, 326, 327], but the
very steep nature of the transitions that they exhibit has nevertheless fascinated many
scholars. One can also generalize these processes to ones that exhibit genuinely
discontinuous transitions [84].

Let’s consider the simplest type of Achlioptas process. Start with N isolated
nodes and add undirected, unweighted edges one at a time. Choose two possible
edges uniformly (and independently) at random from the set of N.N �1/=2 possible
edges between a pair of distinct nodes. One adds only one of these edges, making
a choice based on a systematic rule that affects the speed of development of a GCC
(as compared to the analogous process in which one picks a single edge, rather
than making a choice between two possible edges, using the same original random
process). One choice that yields “explosive” percolation is to use the so-called
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“product rule,” in which one always retains the edge that minimizes the product
of the sizes of the two components that it merges (with an arbitrary choice when
there is a tie).

Investigation of Achlioptas processes using different types of network structures
and with different choices of rules—especially with the aim of developing rules that
do not use global information about a network—is an active area of research. See
[84] for a review of work on explosive percolation.

3.1.5 Other Types of Percolation

There are numerous other types of percolation, and it’s worth bringing up a few more
of them explicitly. Bootstrap percolation is an “infection” process in which nodes
become infected if sufficiently many of their neighbors are infected [3, 4, 23, 51].
It is related to the Centola–Macy threshold model for social contagions that we will
discuss in Sec. 3.3.1. In limited path percolation, one construes “connectivity” as
implying that a sufficiently short path still exists after some network components
have been removed [195]. To appreciate this idea, imagine trying to navigate a city
in which some streets are blocked. The percolation of K-cliques (i.e., completely
connected subgraphs of K nodes) has been used to study the algorithmic detection
of dense sets of nodes known as “communities” [238]. Various percolation processes
have also been studied in several different types of multilayer networks (e.g.,
multiplex networks and interdependent networks) [28, 173].

3.2 Biological Contagions

One of the standard ways to study biological contagions is through what are
traditionally called compartmental models (although it would be apt to use such a
term to describe a much broader set of models), in which the compartments describe
a state (e.g., “susceptible,” “infected,” or “recovered”) and there are parameters
that represent transition rates for changing states [37]. The simplest compartmental
models are applicable to “well-mixed” populations, in which each individual can
meet every other individual and in which each type of state change has a single
associated probability. Compartmental models can be described using ODEs if one
is considering continuous-time state transitions or using maps if one is considering
discrete-time state transitions. One can add complications by incorporating space in
the form of diffusion (via a Laplacian operator) or by constructing a metapopulation
model, in which different populations (“patches”) can have different fractions of
entities in different states of an epidemic (or have other differences, such as different
transition rates between their component states). In a sense, a metapopulation model
provides a simple way of incorporating network information, and one can think of
each node as representing some subpopulation of the full population rather than as
an individual entity. This distinction is important when one wishes to consider a
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metapopulation model on a network [58] (where, e.g., each node might represent a
population and the edges indicate interactions between those populations).

The above frameworks assume that one is examining a well-mixed situation
(or, for metapopulation models, a partially well-mixed situation), but it is much
more realistic in modern society to consider a network of contacts among agents
[18, 86, 99, 202, 220, 228, 234, 242, 312]. To do this, one places a compartmental
model on a network, so that each node can be in one of several epidemic states
(e.g., “susceptible” or “infected”), and the nodes have update rules that govern how
the states change. As we discuss in detail in Sec. 3.5, the updates can occur either
synchronously or asynchronously. In synchronous updating, one considers discrete
time, and all nodes are updated at once. By contrast, in asynchronous updating, some
small fraction of nodes—often just one node—are randomly chosen for update in
each time step dt, or the updating algorithm can be event-driven.

Models of biological contagions are often called “simple contagions” because
of the mechanism of an infection passing directly from one entity to another.
This is a reasonable toy model of some biological contagions, though of course
real life can be significantly more complicated [133]. One can also examine
biological contagions on more complicated types of networks (such as temporal
[139, 141, 142] and multilayer [173, 271] networks).

3.2.1 Susceptible–Infected (SI) Model

The simplest type of biological epidemic has two states—susceptible and infected—
where healthy nodes are considered “susceptible” (and are in the “S” compartment)
because they are not currently infected but can become infected, and “infected”
nodes (in the “I” compartment) permanently remain in that state. This yields the
susceptible–infected (SI) model.

One can define the detailed dynamics of SI models in which several different
ways. The most common is to consider a stochastic process in which infection
is “transmitted” from an infected node to a susceptible neighbor at a rate �. The
parameter � is a “hazard rate,” and the probability of a transmission event occurring
in an infinitesimal time interval dt on a chosen edge that connects an infected node
to a susceptible node is � dt. Suppose that we consider a susceptible node that has m
infected neighbors. The probability of this node becoming infected during the time
interval dt is then

1 � .1 � � dt/m ! �m dt as dt ! 0 : (3.1)

We therefore say that the infection rate for a susceptible node with m infected
neighbors is �m.
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3.2.2 Susceptible–Infected–Susceptible (SIS) Model

Let’s consider a (somewhat more complicated) disease-transmission process in
which a node can become susceptible again after becoming infected. (Alas,
permanent recovery is still impossible.) This process is known as a susceptible–
infected–susceptible (SIS) model.

We must now introduce stochastic rules for the recovery of infected nodes (i.e.,
the transition from the infected state to the susceptible state). This transition is
usually modeled as a spontaneous process that is independent of the states of
neighbors [242].3 Consequently, each infected node switches to the susceptible state
at a constant rate �. Therefore, in an infinitesimal time interval dt, the probability
for a node to switch from the infected state I to the susceptible state S is � dt.

3.2.3 Susceptible–Infected–Recovered (SIR) Model

Another ubiquitous compartmental model is the susceptible–infected–recovered
(SIR) model, in which susceptible nodes can still transition to “going” infected,
but infected nodes recover to a state R in which they can no longer be infected [37].
Fatalistic people might let state R stand for “removed” instead of recovered, but
we’re going to be more positive than that.

As with an SIS process, two rates define the stochastic dynamics. These are the
transmission rate � and the recovery rate �. They are both defined as we described
above for SIS dynamics, but now the recovery process takes nodes from the I state
to the R state rather than returning them to the S state. Interestingly, one can relate
the steady-state of the basic SIR model on a network to a bond-percolation process
[123]. See [132, 170, 306] for additional discussion of the connection between SIR
dynamics and bond percolation.

3.2.4 More Complicated Compartmental Models

The contagion models that we have discussed above are interesting to study, and
they provide a nice family of tractable examples (including for some analytical
calculations, as we will discuss in Chapter 4) to examine the effects of nontrivial
network structure on dynamics. They also provide interesting toy situations for
biological epidemics, although they are grossly unrealistic for most situations.
Nevertheless, they are useful for illustrating several ideas, and in particular they
have significant potential value in demonstrating effects of network structure on
dynamical processes that can also occur in more complicated epidemic models.

3As with the SI model on networks, there are many variants of the SIS model and other contagion
models, and different variants of the SIS model can have different qualitative characteristics (such
as different equilibrium behavior) [224].
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One step forward is to do similar investigations of more complicated compart-
mental models on networks. For example, one can add an “exposed” compartment
to obtain an SEIR model, include age structures, and more [37, 242]. One can
also study metapopulation (and “metacommunity”) models on networks [58] to
examine both network connectivity and subpopulations with different character-
istics, consider non-Markovian epidemics on networks to explore the effects of
memory [30, 172, 204, 247, 314], and explicitly incorporate the effects on contagion
dynamics of individuals with essential societal roles (e.g., health-care workers)
[273]. One can also examine models in which biological contagions are coupled
with information (e.g., “awareness”) spread [100].

Another option is to throw analytics out the window, be data-driven, and conduct
simulations of incredibly detailed and complicated situations while estimating
parameter values (and their uncertainties) from real data (as well as doing direct
data analysis of epidemics). Some of these ideas are explored in Refs. [15, 57, 305].
Ultimately, it is important to make advancements in both simple and realistic
approaches, because they complement each other.

3.2.5 Other Uses of Compartmental Models

A variant set of models involves zombification instead of infections [282], and some
of the particular details of the models are occasionally slightly different to reflect
this different application. Compartmental models have also been used for various
models of social influence and information dissemination [205, 242], though they
are not the most common approach to such topics. (See Sec. 3.3 for a selection of
models that are built specifically to study social influence and related phenomena.)

3.3 Social Contagions

Ideas spread along social networks in a manner that appears to be somewhat
analogous to biological contagions, and the perceived similarity between social
and biological epidemics has led to the adoption of the term “contagion” when
describing social influence and the spread of ideas, innovations, and memes
[50, 154, 155, 266, 308, 311]. It is common to discuss ideas “going viral,” and
some empirical studies have suggested that the spread of ideas in a social network
can sometimes be genuinely epidemic-like [330]. Specifically, an epidemic-like
(or “simple”) contagion refers to cases in which—much like with a virus or a
disease—exposure to a single source is enough to initiate propagation. Unlike
biological contagions, however, ideas spread in a manner that involves social
reinforcement: having 100 friends adopt a behavior (or buy a product, join a
movement, etc.) can be rather different than if only one friend does so. Because
of social reinforcement, social contagions need not just spread discretely (or even
discreetly) from one specific source to another. This is why they are sometimes
called complex contagions [50].
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Identifying causal mechanisms of the spread of ideas is more difficult than for
the spread of diseases, and development and (especially) validation of models is
significantly less mature in social contexts than in biological ones. Even discerning
whether or not genuine social influence is occurring in a network is extremely
challenging [278]. We find it helpful (for, e.g., the development of models) to
illustrate this difficulty based on a data stream that one might encounter in real life.
Suppose that one starts from the empirical observation that the actors represented
by the network nodes are adopting (or at least newly exhibiting) some sort of
behavior at different times. For example, suppose that various actors in a network
are becoming obese or starting to smoke [53, 54, 197], changing their Facebook
profile picture into an equal sign [14, 289, 290], or decorating their Facebook profile
picture with a rainbow [206]. It is seemingly common for news outlets to posit
such observations as “contagions” (e.g., for the United Kingdom riots of 2011 [83]),
although the same observations can result from one or more of the following effects
[6, 278]:

(1) Genuine spread via social influence, though this could also be social learning
(as what might be spreading in a network could be awareness or knowledge
about something, a desire to adopt some behavior, or a combination of them).
Nevertheless, there is something that is genuinely spreading in a network.

(2) Homophily: Agents tend to adopt the same behavior because they have some
common traits that lead to such a propensity. That is, there is some sort of
internal similarity between agents (and that may well even be why some of
the network edges exist in the first place), but they happen to be adopting the
behavior at different times.

(3) Environment: There is a common external influence on the agents. That is, there
is some sort of external similarity (or a covariate) that causes agents in a network
to adopt the behavior at different times.

Given observations of agents in a network who adopt some behavior at different
times, an important goal is to distinguish the relative importances of the above
effects. This is not easy, and control strategies (e.g., legislation) clearly depend on
whether the cause of the observations is primarily effect (1), (2), (3), or (most likely)
some combination of the three. Naturally, one can also consider a more nuanced
classification of mechanisms than the simple one above [7].

To address such issues, it is important to do a lot of data collection (e.g., through
surveys, online resources, and other means) along with data analysis and statistics,
and the majority of studies of social influence tend to take such a perspective. How-
ever, it is also important to develop simple, tractable models of social influence—in
which the various other phenomena that can lead to observations that resemble
those from social influence are, by construction, not confounded with something
that genuinely spreads on a network—and to examine such dynamical processes
on networks. Such models include a wealth of “simple” dynamical systems on
networks. Efforts to construct simple models of social influence date back several
decades [20, 69, 98, 122, 310], and they have remained an active topic over the years.
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3.3.1 Threshold Models

Let’s start by discussing simple threshold models of social influence, which have a
percolation-like flavor. (In particular, they resemble bootstrap percolation [4].)

In the 1970s, Granovetter posited a simple threshold model for social influence
in a fully mixed population [122] (also see the work of Dozier [81]), and it is
natural to consider the effects on network structure on such dynamical processes
[165, 169, 310, 311, 328]. A well-known threshold model for social influence on
networks is the Watts model [328], which uses a threshold-based rule (which is
closely related to Granovetter’s rule) for updating the states for nodes on a network.
For simplicity, we restrict our discussion of the Watts model and other threshold
models to unweighted and undirected networks. However, we note in passing that
the Watts model has been generalized to weighted [146], directed [102], temporal
[164], and multilayer [333] networks.

In binary-state threshold models (such as the Watts model, the Centola–Macy
model [50], and others), each node i has a threshold Ri that is drawn from some
distribution and which does not change in time.4 At any given time, each node
can be in one of two states: 0 (inactive, not adopted, not infected, etc.) or 1
(active, adopted, infected, etc.). Although a binary decision process on a network
is a gross oversimplification of reality, it can already capture two very important
features [237]: interdependence (an agent’s behavior depends on the behavior of
other agents, as we discuss below) and heterogeneity (differences in behavior are
reflected in the distribution of thresholds). Typically, some seed fraction �.0/ of
nodes is assigned to the active state, although that is not always true (e.g., when
Ri < 0 for some nodes i). Depending on the problem under study, one can choose the
initially active nodes via some random process (typically, uniformly at random) or
with complete malice and forethought. For the latter, for example, one can imagine
planting a rumor at specific nodes in a network.

The states of the nodes change in time according to an update rule. As with
the models of biological contagions in Sec. 3.2, one can update nodes either syn-
chronously or asynchronously. The latter, which leads naturally to approximations
in terms of continuous-time dynamical systems, will be our main focus. When
updating the state of a node in the Watts model, one compares the node’s fraction
mi=ki of infected neighbors (where mi is the number of infected neighbors and ki

is the degree of node i) to the node’s threshold Ri. If node i is inactive, it then
becomes active (i.e., it switches to state 1) if mi=ki � Ri. Otherwise, its state remains
unchanged.

A similar model to the Watts model is the Centola–Macy model [50], in which
one considers a node’s total number mi of active neighbors rather than the fraction
of such neighbors. (One then writes mi � Ri and makes other similar changes to the
formulas that we wrote above.) The special case in which Ri D R for all i in the
Centola–Macy model is equivalent to bootstrap percolation [4].

4Given that people change, it is also relevant to consider models with time-dependent thresholds.
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Both the Watts model and Centola–Macy model have a monotonicity property:
once a node becomes infected, it remains infected forever. As we will discuss
below, this feature is particularly helpful when deriving accurate approximations
for the global behavior of these models. The Centola–Macy update rule makes
it easier than the Watts update rule for hubs to become active, and this can lead
to some qualitative differences in dynamics. It is useful to ponder which of these
two toy models provides a better caricature for different applications. For posts on
Facebook, for example, one can speculate that the number of posts about a topic
might make more of a difference than the fraction of one’s Facebook friends that
have posted about that topic.

Scholars have also studied several more complicated threshold models. For
example, one recent interesting threshold model [207] decomposed the motivation
for a node to adopt some behavior as a weighted linear combination of three terms:
(1) personal preference, (2) an average of the states of its neighbors, and (3) a
system average, which is a measure of the current social trend. It is also interesting
to incorporate “synergistic” effects from nearby neighbors into update rules [250].
Another recent study [212] allowed nodes to be in one of three states: 0 (inactive),
1 (active), and 2 (hyper-active).5 In this so-called “multi-stage” complex contagion,
each node has two thresholds. An inactive node exerts no influence, an active
node exerts some influence, and a hyper-active node exerts both regular influence
and some bonus influence. (A hyper-active node is necessarily active, so state 2
is a subset of state 1. However, state 1 is disjoint from state 0.) In such a multi-
stage generalization of the Watts model, a node updates its state when its “peer
pressure” P D Œl1 C ˇl2�=k equals or exceeds a threshold. (The multi-stage version
of the Centola–Macy model has a peer pressure of P D l1 C ˇl2.) The number
of neighbors in state i is li, ˇ is the bonus influence. In [212], a node whose peer
pressure equals or exceeds the first threshold R.1/j achieves state 1, and a node whose

peer pressure equals or exceeds the second threshold R.2/j � R.1/j achieves state 2.
Note that this multi-stage complex contagion model is still monotonic. Some studies
have considered non-monotonic generalizations of the Watts and similar threshold
models—e.g., by including “hipster” nodes that become inactive if too many of their
neighbors are active [76]. It is also interesting to examine the effects of incorporating
“Luddite” nodes [211], which can help prevent infections in parts of a network.

3.3.2 Other Models

Although the threshold models of social influence that we described above have the
advantage of being mathematically tractable (at least when suitable approximations
hold, as we discuss in Chapter 4) and providing a nice (and convenient) caricature of
adoption behavior, they are exceptionally simplistic. For example, these threshold

5Reference [176] also examined a multi-stage update mechanism, although it does not include
network structure.
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models do not consider specific signals from nodes (e.g., an individual tweeting
about the same thing multiple times), which is a “more microscopic” aspect of
human behavior. Social reinforcement can arise from multiple friends adopting
the same or similar behavior, but it can also arise from the same person sending
multiple signals. Moreover, the threshold models are “passive” in the sense that the
only signal that ever arises from a node is whether or not it exhibits a behavior
(i.e., what state it is in), and the dynamics focus entirely on whether a node is
sufficiently influenced (purely from what state other nodes are in) to adopt a new
behavior. Reference [254] tried to address this situation by adopting an idea from
neuroscience [91] by supposing that each person is an integrate-and-fire oscillator,
where the “firing” corresponds to actively sending a signal (e.g., sending a tweet).
This can then lead to other nodes adopting the behavior and sending their own
signals. Recent models of tweeting have examined the spread of ideas and memes,
with an emphasis on the competition between memes for the limited resource of
user attention [111, 113, 329].

Approaches other than threshold models to modeling social influence and social
learning also date back at least to the 1970s, and some of the models that have been
studied are also analytically tractable (although they have a rather different flavor
from threshold models). For example, in the DeGroot model [69], individual j has
opinion yj, and the discrete-time opinion dynamics satisfy the equation

y.t C 1/ D Wy.t/ ; t D 0 ; 1 ; 2 ; : : : ; (3.2)

where W is a row-stochastic weight matrix (so that
P

j wij D 1 for all i), and the
matrix element wij (including the case i D j) represents the influence of node j on
node i. Friedkin and coauthors (and others) have generalized the DeGroot model in
many ways [98, 161].

There are, of course, many other models (see, e.g., the discussion in the
introduction of Ref. [212]), so our treatment should not be viewed as even remotely
exhaustive. It is interesting to study interactions between biological and social
contagions [100] and to consider non-Markovian models of social contagions [324].
There have also been efforts to develop models that attempt to unify biological and
social contagions [78], and the percolation-like flavor of threshold models naturally
makes it desirable to compare them directly to percolation processes [217]. See
Refs. [35, 155, 242] for additional discussions of social contagions.

3.4 Voter Models

Another well-known family of dynamical systems that are often studied on networks
are so-called voter models [48]. Voter dynamics were first considered by Clifford
and Sudbury [56] in the 1970s as a model for species competition, and the dynamical
system that they introduced was dubbed the “voter model” by Holley and Liggett
a couple of years later [137]. Voter dynamics are fun and versatile (and are very
interesting to study on networks), though it is important to ask whether one can ever
genuinely construe the voter model (or its variants) as a model for voters [94].
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The standard (or “direct”) voter model is defined on a network as follows. Each
node is associated with a binary variable that can either be in state C1 or in state �1.
(For example, the former might represent the US Democratic party, and the latter
might represent the US Republican party.) At every discrete time step, one node
(say, node i) is selected uniformly at random, and node i then adopts the opinion sj

of one of its neighbors j (which is selected uniformly at random from among all of
i’s neighbors). If i and j were already voting in the same way before the time step,
then no change occurs. One can map the standard voter model to a model of random
walkers that coalesce when they encounter each other [56, 137]. An alternative to
the direct voter model is the “edge-update” voter model [296], in which one chooses
an edge (rather than a node) uniformly at random at each time step. If the opinions of
the nodes at the two ends of the chosen edge are different, then one randomly selects
one of the nodes, and that node adopts the opinion of the other node. The standard
voter model and the edge-update voter model have different conserved quantities
[287], so we expect them to behave differently from each other. As discussed in
Ref. [48], there are a wealth of studies (including mathematically rigorous ones) on
voter models.

The original voter model is of course a gross oversimplification of reality, but it
is analytically tractable and provides a foundation for numerous interesting general-
izations. Indeed, there are a large number of variants of the original voter model, and
many of them provide fodder for wonderfully snarky jokes (e.g., see below), and this
is especially true if one chooses to label the opinions of nodes with terminology such
as “infected” (as is sometimes tempting in political discussions). These models also
grossly oversimplify reality, but they are fascinating, are sometimes mathematically
tractable (depending on the network structure under consideration), and can even
yield insights that are legitimately interesting for applications. For example, whether
consensus is reached and how long it takes to reach consensus (or other equilibrium
states) depends both on the specific dynamics and on the network on which those
dynamics occur. For the direct voter model on configuration-model networks with a
power-law degree distribution, the mean consensus time scales linearly with the
number N of nodes in the network if the exponent � of the degree distribution
exceeds 3, whereas it scales sublinearly with N if � � 3 [286, 287]. By contrast, the
edge-update voter dynamics can have different asymptotic properties. For example,
in a BA network (which has a power-law degree distribution as N ! 1), the
consensus time depends linearly on N for any exponent [47]. See [152] for a
discussion of consensus times for the direct and edge-update voter models and of
which network structures maximize those times.

One nice variant voter model is a “constrained” voter model [317] (see also
the more general “political positions process” in [151] and recent work such as
[183]), in which nodes can be in one of three states (Left, Right, and Center). All
interactions in the constrained voter model involve centrists, as extremists refuse
to talk to each other. By considering this model on a complete graph and thereby
examining the mean-field limit (see Sec. 4.3 for a discussion of mean-field and
related approximations) in which the voters are perfectly mixed, Vázquez et al.
[316] derived probabilities, which depend on the initial conditions, of reaching a
consensus in one of the three states or of achieving a mixture of the two extremist
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states. Another interesting variant of the voter model is the (two-state) “vacillating”
voter model [180], in which the node i that has been selected examines the states
of two of its neighbors, and it changes its state if either of them is different from
its own state.6 See Ref. [48] for discussions of many more types of voter models.
Additionally, considering voting and opinion dynamics on multilayer networks
allows the formulation of models with especially rich dynamics. (See [22] for
an illustration.) Examining voter models (and opinion and influence models) on
networks with community structure has the potential to help provide insights into
the so-called “majority illusion” [187].

3.5 Interlude: Asynchronous Versus Synchronous
Updating

Before discussing additional types of dynamical processes on networks, it is useful
to pause and examine how to implement update rules in discrete-state dynamics.

When simulating (stochastic or deterministic) discrete-state dynamics on a
network, it is necessary to select a method for choosing which nodes to update
and when to update them. Some dynamical processes are defined in a way that is
simple to simulate numerically. The voter model described in Sec. 3.4, for example,
is defined explicitly in terms of discrete time steps, and one node is chosen uniformly
at random to update in each time step. This is a form of asynchronous updating,
whose monicker reflects the fact that individual nodes are updated independently,
so that the new state of a node becomes visible to its neighbors before they attempt
to update their own states. One can also employ asynchronous updating for the
Watts threshold model described in Sec. 3.3.1. One again chooses a node uniformly
at random in each time step and—if it is in the inactive state—one compares the
fraction of its active neighbors to its threshold to determine if it becomes active.
Alternatively, one can choose to update the states of all nodes simultaneously in each
time step; this is called synchronous (or parallel) updating. When updating in this
way, nodes change their states based on the states of their neighbors from the previ-
ous time step. If updating nodes using discrete time steps (as is common in computer
simulations), one can construe the above synchronous and asynchronous schemes as
limiting cases of a more general update scheme in which a fraction f of the nodes are
chosen uniformly at random in each time step and one then updates these particular
nodes synchronously. If f D 1=N, then (on average) one node is updated in each
time step, giving the asynchronous methods that we described above (as used, for
example, in voter models). The choice f D 1 gives synchronous updating.

Synchronous updating has the advantage of allowing fast simulations. By
contrast, asynchronous updating admits gradual changes, because only one node
is updated per time step, so the fraction of nodes that change state is at most 1=N in

6As an example of a snarky joke, one might imagine that this model is more realistic in some
countries than in others. Identification of any such countries is left as an exercise for the diligent
reader.
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a time step. Consequently, asynchronous updating can lead—in the limit in which
a vanishingly small fraction of the nodes are updated in each discrete time step—to
dynamics that can be described accurately using a continuum approximation (e.g.,
by a set of coupled differential equations). For certain classes of dynamics, such as
the monotonic dynamics of Sec. 3.3.1, the steady-state (i.e., t ! 1) limits obtained
using either synchronous or asynchronous updating schemes are identical, but this
need not be true in general. Moreover, the finite-time dynamics are clearly different
for asynchronous versus synchronous updating even when the t ! 1 limits are
identical. See also [95], which discusses limitations of discrete-time approaches to
continuous-time contagion dynamics.

For stochastic dynamical processes (such as the biological contagion models
of Sec. 3.2), which are defined in terms of hazard rates, some care is needed in
the implementation of an update rule in computational simulations [138]. If a
given node i has a rate Fi (i.e., a hazard rate) for changing states, then it has a
probability of Fi dt of changing its state during an infinitesimal time interval dt.
The “infinitesimal” part of this definition is important: it requires that the discrete
time step dt of simulations is very small. In practice, dt should be sufficiently small
so that only one (or at most a few) nodes are updated in each step. Implementing
an update rule in this way ensures that the underlying processes are reproduced
faithfully. For example, the time length T that a node spends in its current state
before being updated (assuming that no neighbors are updated during this time)
should be exponentially distributed. To see that this is reproduced in simulations,
note that for each time step of length dt, the probability of node i not changing its
state is 1� Fi dt. Because there are T=dt discrete time steps in the interval Œ0;T�, the
probability that the node survives until time T without changing state is the product
of the survival probabilities in each step:

Prob(survival until at least T) D .1 � Fi dt/
T
dt : (3.3)

In the dt ! 0 limit, this yields the exponential distribution of survival times (as
expected for a Markov process,7 where the probability of changing state depends
only on the current state of the system [30, 314]):

lim
dt!0

.1 � Fi dt/
T
dt D exp .�FiT/ : (3.4)

One can use the interpretation of stochastic transition rates in terms of survival
times to consider alternative asynchronous updating methods, such as Gillespie
or Kinetic Monte Carlo algorithms [30, 105], which are event-driven rather than
using equally-spaced time steps. Although they are not entirely straightforward to
code, Gillespie algorithms can considerably accelerate simulation times for certain
dynamical processes, and we expect their use for stochastic dynamics on networks
(including for non-Markovian dynamics [30, 204] and dynamical processes on
temporal networks [319]) to become increasingly popular.

7Naturally, it is also important to consider the effects of memory on dynamical processes on
networks [172, 182].
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3.6 Coupled Oscillators

Coupled oscillators are a heavily studied type of dynamical system, and associating
each oscillator with a node of a network allows one to investigate how nontrivial
connectivity affects collective phenomena such as synchronization [10]. Perhaps
the most famous model of coupled oscillators is the Kuramoto model [1, 10, 128,
178, 265, 293] of phase oscillators. It is one of the canonical models to use in the
study of synchronization [255, 256], which refers to an adjustment of rhythms of
oscillating objects due to their (possibly weak) interactions with each other. The
Kuramoto model is also one of the most popular dynamical systems to study on
networks. Because each node is associated with an oscillator, it is rather different
from the contagion and voter models that we discussed previously.

In the Kuramoto model, each node i has an associated phase �i.t/ 2 Œ0; 2�/

whose dynamics are governed by

P�i WD d�i

dt
D !i C

NX

jD1
bijAijfij.�j � �i/ ; i 2 f1; : : : ;Ng ; (3.5)

where the natural frequency !i of node i is typically drawn from some distribution
g.!/ (though it can also be deterministic), A D ŒAij� is the adjacency matrix of
an unweighted network, bij gives the coupling strength between oscillators i and j
(so that bijAij gives an element of an adjacency matrix of a weighted network), and
fij.y/ is some coupling function that depends only on the phase difference between
oscillators i and j.

Equation (3.5) is much more general than the traditional Kuramoto model, for
which fij.y/ is the same function f .y/ for all node pairs, the coupling function
is f .y/ D sin.y/, and bij D b for all node pairs. The traditional networks on
which to study the Kuramoto model have either all-to-all coupling or nearest-
neighbor coupling, but it is both very popular and very interesting to examine the
Kuramoto model on networks with more general architectures [1, 10, 128, 159, 265].
The properties of g.!/ have a significant effect on the dynamics of Eq. (3.5). For
example, it is important whether or not g.!/ has compact support, whether or not
it is symmetric, and whether or not it is unimodal. In traditional studies of the
Kuramoto model, g.!/ is unimodal and symmetric about some mean frequency
˝. The original Kuramoto model also uses all-to-all coupling.

Let’s briefly consider the original Kuramoto model. To study it, one can track
deviations from the mean oscillator frequency ˝ by transforming to a rotating
frame. (The quantity 	i WD !i � ˝ gives the deviation of oscillator i’s natural
frequency from the mean frequency.) One can thereby see directly which nodes
are oscillating faster than the mean frequency and which ones are oscillating slower
than the mean frequency. One then defines a complex “order parameter”8 [10, 293]

8In statistical physics, an order parameter is a quantity (e.g., a scalar) that summarizes a system
and is used to help identify and measure some kind of order [277].
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r.t/ei .t/ WD 1

N

NX

jD1
ei�j.t/ ; (3.6)

where r.t/ 2 Œ0; 1� measures the coherence of the set of oscillators and  .t/ gives
their mean phase. The quantity r.t/ quantifies the extent to which the oscillators
exhibit phase-locking, which is a form of synchrony in which (as the name implies)
the phase differences between each pair of oscillators have the same constant
value. The oscillators are phase-locked when r.t/ D 1, and they are completely
incoherent when r.t/ D 0. However, these extreme situations only occur in the
thermodynamic (N ! 1) limit. In practice, r.t/ � 1 (rather than r.t/ D 1) when
one is considering a finite number of synchronized oscillators, and r.t/ � 0 for a
finite number of completely incoherent oscillators. The finite-size fluctuations have
a size of O.1=

p
N/ [293]. Additionally, one can affect synchronization properties

in interesting ways by perturbing the Kuramoto model with noise (which can either
promote or inhibit synchrony, depending on the precise details) [179].

When placing Kuramoto oscillators on a network, one can then ask the usual
question: how does nontrivial network topology (i.e., connectivity) affect the
synchronization dynamics of the oscillators [10, 128]? In addition to numerical
simulations, one can conduct analytical investigations using generalizations of the
order parameter in (3.6) along with concomitant calculations (see, e.g., [147, 148,
184, 263]) that are more intricate versions of what has been used in studies of
the original Kuramoto model [10, 178, 293]. Ideas from spectral graph theory and
control theory are also helpful for examining the stability of synchronous dynamics
in the Kuramoto model on networks [159].

A particularly interesting phenomenon that can occur in coupled Kuramoto
oscillators on networks is explosive synchronization [121], which was motivated
by prior studies of explosive percolation (see the discussion in Sec. 3.1.4) [2].
Reference [121] elucidated a situation that can lead to a genuinely “explosive”
(i.e., discontinuous or “first-order”) phase transition in a set of interacting Kuramoto
oscillators,

P�i D !i C b
NX

jD1
Aij sin.�j � �i/ ; i 2 f1; : : : ;Ng ; (3.7)

on a family of networks (see Ref. [120] for a precise specification) that interpolates
between BA networks in one limit and ER networks in the other limit. This family
of networks is parametrized by one parameter, which we denote by ˛. One obtains
a BA network when ˛ D 0 and an ER network when ˛ D 1. Suppose that the
oscillator frequency !i / kˇi (where ˇ > 0) is positively correlated with node
degree. In contrast to most studies of Kuramoto oscillators, these natural frequencies
are deterministic rather than chosen randomly from a (nontrivial) distribution.
Plotting r.t/ from Eq. (3.6) versus the coupling strength b illustrates a phase
transition that appears to become discontinuous in the ˛ ! 0 limit. The positive
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correlation between the node degrees and the natural frequencies of the oscillators
seems to lead to a positive feedback mechanism that results in a discontinuous phase
transition.

To verify that one can truly obtain a discontinuous phase transition (and hence a
genuinely “explosive” synchronization transition9), let’s consider a star network. In
such a network, there is a central hub node that is adjacent to all other nodes (the
“leaves”), which are each adjacent only to the hub. Suppose that there are N D KC1
nodes, so that the hub has degree K and the K leaf nodes each have degree 1. Denote
the natural frequency of the hub oscillator by !h, and let each leaf node have a
natural frequency of !.

We let '.t/ D '.0/C˝t, where

˝ D K! C !h

K C 1
(3.8)

is (as usual) the mean frequency of the oscillators. We take '.0/ D 0 without loss
of generality, because we can uniformly shift the phases of all oscillators. We thus
transform the angular variables as follows:

'h WD �h �˝t ; j D K C 1 .hub node/ ;

'j WD �j �˝t ; j 2 f1; : : : ;Kg ; (3.9)

where we have labeled the .K C 1/th node using “h” because it is the hub. The
equations of motion in Eq. (3.7) thus become

d'h

dt
D .!h �˝/C b

KX

jD1
sin.'j � 'h/ ;

d'j

dt
D .! �˝/C b sin.'h � 'j/ ; j 2 f1; : : : ;Kg : (3.10)

As usual, we define the order parameter using Eq. (3.6) and hence write

r.t/ei .t/ WD 1

K C 1

KC1X

jD1
ei'j.t/ � hei'i ; (3.11)

where we note that one can express the complex order parameter in terms of
an ensemble average over the oscillators. In our current coordinates (a rotating
reference frame), the mean oscillator phase is 0, so  D '.0/ D 0, and separately
equating real and imaginary parts in Eq. (3.11) yields

9Recall from Sec. 3.1.4 that the “explosive” percolation process that we described is actually a
steep but continuous transition [66, 84, 326, 327]. Fizz.
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r.t/ D 1

K C 1

KC1X

jD1
cos'j.t/ � hcos'.t/i ;

0 D 1

K C 1

KC1X

jD1
sin'j.t/ � hsin'.t/i : (3.12)

We multiply Eq. (3.11) by e�i'h.t/ to obtain

rei. �'h/ D re�i'h D 1

K C 1

KC1X

jD1
ei.'j�'h/ ; (3.13)

which implies that

r cos'h � ir sin'h D 1

K C 1

KC1X

jD1
cos.'j � 'h/C i

1

K C 1

KC1X

jD1
sin.'j � 'h/

D 1

K C 1

2

41C
KX

jD1
cos.'j � 'h/

3

5 C i
1

K C 1

KX

jD1
sin.'j � 'h/ ;

(3.14)

where we have separated the hub term (with j D K C 1 D h) from the other
terms in the sums. (Note that we are now suppressing the explicit indication of
time-dependence for quantities such as r.t/ and '.t/.) We separately equate the real
and imaginary parts of Eq. (3.14), and the latter yields

�r sin'h D 1

K C 1

KX

jD1
sin.'j � 'h/ ; (3.15)

which we insert into the first equation in Eq. (3.10) to obtain10

d'h

dt
D .!h �˝/ � b.K C 1/r sin.'h/ ; (3.16)

where the second term is a mean-field coupling term because all interactions with
other oscillators depend only on the ensemble average. As we are using a mean-field
approach, we are thinking of K > 0 as large.

10Note that the analog of Eq. (3.16) in Ref. [121] has a sign error.
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The hub oscillator is phase-locked when d'h
dt D 0 (i.e., when the relative phases

are constant), which occurs when

sin.'h/ D !h �˝
b.K C 1/r

: (3.17)

For leaf oscillators to be phase-locked, we need P'j D 0 for all j 2 f1; : : : ;Kg. We
thus require that

cos'j D 1

b

(

.˝ � !/ sin'h ˙
r

�
1 � sin2.'h/

� h
b2 � .˝ � !/2

i
)

; j 2 f1; : : : ;Kg ;

which is valid as long as ˝ � ! � b. We lose phase-locking at a critical coupling
of b D bc WD ˝ � !. For example, if !h D K and ! D 1 (i.e., when each oscillator
frequency is equal to the degree of the associated node), we obtain

˝ D 2K

K C 1
; bc D K � 1

K C 1
: (3.18)

The critical value rc of the order parameter r is then11

rc D r.b D bc/ D cos'h C K cos'j

K C 1

ˇ
ˇ
ˇ
ˇ
bDbc

D K

K C 1
> 0 : (3.21)

Because rc > 0, we obtain a vertical gap (i.e., a discontinuous synchronization
transition) in the phase diagram (i.e., bifurcation diagram) of r versus b. When
K ! 1, the critical value rc ! 1, so there is a discontinuous (i.e., “explosive”)
phase transition from no synchrony (i.e., complete incoherence) to complete
synchrony in the thermodynamic limit. Kaboom!

11Using an approach based on phase-locking manifolds, Zou et al. [334] calculated that

r2 D K2 C 1

.K C 1/2
C 2K

.K C 1/2

s

1�
�
.K � 1/

b.K C 1/

�2
; (3.19)

from which they determined that

rc D
p

K2 C 1

K C 1
(3.20)

is the value of r for which the phase-locking manifold (and hence the phase-locking solution)
ceases to exist. The expressions for rc in Eqs. (3.21) and (3.20) approach each other as K ! 1,
so they give the same result for explosiveness. However, as K ! 0, the expression in Eq. (3.21)
approaches rc D 0 instead of giving the correct limiting value of rc D 1. (Equation (3.21) was
derived using a mean-field argument, and K ! 0 leaves only the hub, which is very far away from
a mean-field setting.) The expression in Eq. (3.20) correctly gives rc ! 1 as K ! 0.
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3.7 Other Dynamical Processes and Phenomena

Numerous other dynamical systems have also been studied on networks, and
obviously many others can be. In this section, we briefly discuss a few of these
other dynamical processes. As with most of our other discussions, we are not being
even remotely exhaustive.

General ideas for dynamical systems on networks (see Sec. 4.1 for an example
of one type of methodology) have been used to examine stability for a wealth of
both continuous and discrete dynamical systems on networks [101, 198, 243, 249].
Such ideas have been applied to investigate numerous phenomena, including
synchronization of chaotic systems (such as Rössler circuits [96]) on networks. In
addition to stability, there are also many studies on the control of dynamical systems
on networks [60, 70, 192, 193, 225, 269, 276].

Synchronization, which we discussed using the Kuramoto model as an example
in Sec. 3.6, refers to a diverse set of phenomena and is just one form of collective
behavior. Additionally, there exist numerous forms of synchronization, which can
be rather elaborate. For example, in “cluster synchronization” [246], different sets of
nodes synchronize separately, and it is possible to desynchronize the nodes in some
of these sets without disturbing other sets of nodes. Additionally, different densely
connected communities in networks can synchronize on different time scales [9],
and in “chimera states,” which have now been observed experimentally in a large
variety of systems, some sets of nodes synchronize with each other while other sets
consist of nodes that oscillate incoherently [239].

Synchronization and other collective phenomena arise ubiquitously in both
natural and engineered systems. For instance, oscillator synchrony on networks
can play a role in animal behavior, such as in cattle synchrony [297]. Indeed, it
is supposedly beneficial for cattle welfare when cows lie down at the same time.
The model for cow behavior in Ref. [297] exhibits an interesting feature that has
also been noted more generally for dynamical systems on networks [229]: it is
possible that increasing the coupling strength of edges or increasing the number of
coupling edges can lower, rather than raise, the amount of synchrony. The scenario
of reducing synchrony by adding new edges is a direct analog of the Braess paradox
[36, 185, 332], a general (and often counterintuitive) phenomenon that has also
been studied in traffic systems, power systems, and more. Other forms of collective
behavior in animals (e.g., flocking in seagulls and other animals) and many other
forms of collective, coordinated, and such dynamics [157, 320] are also studied
heavily, although they are often phrased using the language of agent-based models
rather than as dynamical processes on networks. A control-theoretic perspective can
be useful for studying such dynamics [158, 223, 236, 300, 301]. A particularly well-
known and well-studied model for flocking was first introduced about 20 years ago
by Vicsek et al. [321], and also recall the voter models from Sec. 3.4. See [248] for
a survey of group dynamics on networks using a perspective that combines physics
and evolutionary game theory.
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Given the natural network description of neuronal systems, it is crucial to
investigate simple models of neural signal propagation on networks [11, 91] to
illuminate the effects of network structure on dynamics (and, ideally, on functional
behavior). For example, it is desirable to understand the synchronization properties
of such models in networks with different topologies, and some investigations
of Kuramoto models on networks have had neuronal applications in mind. It
is necessary, however, to also consider dynamical processes that more directly
model neuronal systems. Neural signal models that have been studied on networks
include integrate-and-fire models [41], Hindmarsh–Rose oscillators [73], Fitzhugh–
Nagumo models [45], and more. In neuroscience applications, it is also important
to investigate the effects of delay (e.g., due to propagation along longer neurons)
[45, 73].

It is also important to study classical examples of stochastic processes on
networks, such as the numerous flavors of random walks [5]. In addition to
the intrinsically interesting properties of random walks, they have a wealth of
applications—we alluded to one very briefly in our discussion of voter models in
Sec. 3.4—that range from clustering “communities” of densely connected nodes
in networks [160, 181, 259] to ranking Web pages, sports teams, mathematics
programs, and much more [39, 114, 304]. Naturally, many Markov processes other
than random walks have also been studied on networks.

As we have discussed at length, a lot of work has examined stochastic processes
or ODEs on networks, but comparatively little work has considered PDEs on
networks. Thankfully, the amount of scholarship on both linear and nonlinear PDEs
on networks is starting to increase (see, e.g., [12, 59, 115, 116, 149, 221]), and there
are many exciting avenues to pursue. For example, it is intuitively sensible to study
models of vehicular (and other) traffic flow on networks [103], and investigating
shock-forming PDEs (like Burger’s equation), which have often been employed for
models of traffic flow [331], on networks should be really interesting. It is also
worthwhile to examine mathematical objects such as delay differential equations,
integral equations, and integro-differential equations on networks. They are relevant
for many applications, such as for incorporating delay in the propagation of neural
signals [11].

Percolation processes and related models have been applied to the study of
a multitude of applications [228], such as in the study of biological and social
contagions (see Secs. 3.2 and 3.3). In percolation processes, much of the focus
is on network connectivity, which also often takes center stage in the study of
spreading phenomena. Notably, percolation-based models have also been used for
many applications, such as cascading failures in power grids [134] and in finance
[102], that also include phenomena (e.g., oscillations) other than spreading. In such
applications, which often exhibit nonlocal behavior, one needs to be particularly
careful when interpreting results based on percolation models, as they can be
misleading. Fascinatingly, a recent investigation of cascading failures in power
grids constructed an “influence network” and reported that power outages do
propagate locally in that network (even though the propagation is nonlocal in the
original network) [134]. For power grids, one type of oscillator model that has been
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employed resembles the Kuramoto model, except for the very important addition
of a term with a second-order time derivative. See, e.g., [332] for a derivation of
such a model for a power grid. In financial applications, a family of examples that is
related to some of our previous discussions (see Sec. 3.3.1) are models of financial
contagions and systemic risk in banking networks in terms of threshold models
of complex contagions that include additional complications [44, 102, 130, 145].
One can reduce the simplest such models to threshold models on directed networks,
but the incorporation of weighted edges (e.g., to represent the values of interbank
loans) is important for the development of increasingly realistic models. It is also
essential to incorporate internal dynamics of agents (as pursued in the literature on
quantitative finance) and to examine stochastic differential equations on networks
of financial entities [40].

Coordination games on networks—a subtopic of the much larger topic of games
on networks—are also related directly to threshold models [155]. (See [153, 156] for
extensive discussions of an enormous variety of games on networks.) Consider the
example of technology adoption, and suppose that there are two choices (i.e., game
strategies) A and B that represent, for example, technologies for communicating with
friends (e.g., mobile-phone text messaging versus Facebook messaging). The game
is played by the nodes on a network, where each node adopts one of the possible
strategies. If two neighbors on a network both choose strategy A, then they each
receive a payoff of q. If they both choose strategy B, then they each receive 1 � q.
If they choose opposite strategies, then they each receive a payoff of 0 because
they cannot communicate with each other. If q > 1=2, strategy A is construed as
representing the superior technology. Consider a network in which all nodes initially
play strategy B, and then a small number of nodes begin to adopt strategy A. If one
applies best-response updates to the nodes, they end up adopting strategy A only
when enough of their network neighbors have already adopted A (as in the Watts
threshold model). Specifically, suppose that m of the k neighbors of a given node are
playing strategy A and that the remaining k � m neighbors of the node are playing
strategy B. If a node plays A, then its payoff is mq; however, if it plays B, then its
payoff is .k�m/.1�q/. Comparing the payoffs in the two situations, we see that the
node should play strategy B until the fraction m=k of its neighbors who are playing
A is at least 1 � q [89]. The spreading of technology A thus proceeds as a complex
contagion precisely as specified in the Watts threshold model. There exist rigorous
mathematical results on the speed of adoption cascades in such coordination games
on various network topologies [89, 222]. See Sec. A.3.3 for a discussion of cascades
in complex contagions.

Boolean networks are another popular topic in the study of dynamical systems on
networks [323]. Each node in a Boolean network, which is directed, is in one of two
states (e.g., 0 or 1) at each (discrete) time step, and each node has a function (which
is often one that is generated randomly) that defines how the states update depending
on the states of the neighboring nodes (i.e., in-neighbors). Boolean networks have
been very prominent in the study of genetic-expression dynamics [52, 168, 257,
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280], although they have also been used in modeling many other systems. Given a
network with N nodes and a Boolean update rule, one can write down a network
(sometimes called a “state-transition network”) with 2N nodes and directed edges to
represent transition from one N-vector of states to another.

Many other types of dynamical processes have also been studied on networks.
For example, there is considerable research on dynamical processes on networks in
ecology [19, 240, 267]. Chemical-reaction networks have also been studied for a
long time and from many perspectives (see, e.g., [61, 62, 93]).



Chapter 4
General Considerations

Now that we have discussed several families of models as motivation (and because
they are interesting in their own right), we present some general considerations for
studying dynamical systems on networks. We alluded to several of these ideas in
our prior discussions.

4.1 Master Stability Condition and Master
Stability Function

In this section, we derive a master stability condition (MSC) and a master stability
function (MSF), which allow one to relate the qualitative behavior of a dynamical
system on a network to the structure of the network via eigenvalues of the associated
adjacency matrix [243–245]. (One can also, of course, express such results in terms
of the eigenvalues of graph-Laplacian matrices.) Computation of matrix spectra
(i.e., their sets of eigenvalues) is easy, so relating spectra to dynamics provides
a convenient means to obtain necessary and sufficient conditions for the linear
stability of equilibria, periodic orbits, or other types of behavior. The use of such
techniques is therefore very common in the investigation of phenomena such as
synchronization in networks of coupled oscillators [10]. In our discussion, we
closely follow (parts of) the presentation in [228], which illustrates these ideas in
the context of continuous dynamical systems. As usual, one can consider much
more general situations than what we will present [10, 245]. In particular, we
present a calculation for equilibrium points (e.g., representing a synchronized state)
for a dynamical system, and one can use a variational formulation of an MSF to
examine more general types of behavior (including, e.g., synchronization of chaotic
dynamics) [245]. Given various assumptions, one can derive a set of variational
equations that are the same for all networks, and one can then analyze the generic
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variational equations that generate an MSF. In our presentation, we wish only to
illustrate a few ideas of why an MSF approach can be very powerful, so we will do
a few calculations “by hand.”

Let’s suppose that each node i is associated with a single variable xi. We use x to
denote the vector of these variables. Consider the continuous dynamical system

Pxi WD dxi

dt
D fi.xi/C

NX

jD1
Aijgij.xi; xj/ ; i 2 f1; : : : ;Ng ; (4.1)

where A D ŒAij� is the adjacency matrix of a network and gij.xi; xj/ represents the
effect of network neighbors on each others’ dynamics. As usual, the equilibrium
points for Eq. (4.1) [127, 292] satisfy Pxi D 0 for all nodes i. To determine the local
stability of these points, we (of course) do linear stability analysis: let xi D x�

i C 
i

(where j
ij � 1) and take a Taylor expansion. We assume that the network
represented by the adjacency matrix A is time-independent, so one can clearly be
much more general than what we do for our presentation. For each i, we obtain

Pxi D P
i D fi.x
�
i C 
i/C

NX

jD1
Aijgij.x

�
i C 
i; x

�
j C 
j/

D fi.x
�
i /„ƒ‚…

�1

C
NX

jD1
Aijgij.x

�
i ; x

�
j /

„ ƒ‚ …
�2

C 
if
0
i

ˇ
ˇ
xiDx�

i„ ƒ‚ …
�3

C 
i

NX

jD1
Aij

@gij

@xi

ˇ
ˇ
ˇ
ˇ
xiDx�

i ; xjDx�

j
„ ƒ‚ …

�4

C
NX

jD1

jAij

@gij

@xj

ˇ
ˇ
ˇ
ˇ
xiDx�

i ; xjDx�

j
„ ƒ‚ …

�5

C : : : ; (4.2)

where f 0
i WD dfi

dxi
and we define �l, for l 2 f1; : : : ; 5g, from the five corresponding

terms in Eq. (4.2). Because x� is an equilibrium point, it follows that �1 C �2 D 0.
The terms �3 and �4 are linear in 
i, and �5 is linear in each of the 
j terms. We are
doing linear stability analysis, so we neglect all higher-order terms.

To simplify notation, we define

ai WD f 0
i .xi/

ˇ
ˇ
xiDx�

i
;

bij WD @gij

@xi
.xi; xj/

ˇ
ˇ
ˇ
ˇ
xiDx�

i ; xjDx�

j

;

cij WD @gij

@xj
.xi; xj/

ˇ
ˇ
ˇ
ˇ
xiDx�

i ; xjDx�

j

: (4.3)
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We can then write

P� D M� C : : : ; (4.4)

where M D ŒMij� and

Mij D ıij

"

ai C
X

k

bikAik

#

C cijAij : (4.5)

Assuming that the matrix M has N distinct eigenvectors (which need not always be
the case [127], although it will typically be if we are away from a bifurcation point)
and is thus diagonalizable, we expand

� D
NX

rD1
˛r.t/vr ; (4.6)

where vr (with corresponding eigenvalue1 �r) is the rth (right) eigenvector of the
matrix M. It follows that

P� D
NX

rD1
P̨rvr D M� D M

NX

rD1
˛r.t/vr D

NX

rD1
˛r.t/Mvr D

NX

rD1
�r˛r.t/vr : (4.7)

Separately equating the linearly independent terms in Eq. (4.7) then yields
P̨r D �r˛r, which in turn implies that ˛r.t/ D ˛r.0/ exp.�rt/. As usual for
dynamical systems [127, 292], we obtain local asymptotic stability if Re.�r/ < 0

for all r, instability if any Re.�r/ > 0, and a marginal stability (for which one needs
to examine nonlinear terms) if Re.�r/ D 0 for some r and none of the eigenvalues
have a positive real part.

As an example, let’s consider a (significantly) simplified situation in which every
node has the same equilibrium value: that is, x�

i D x� for all nodes i. (This arises,
for example, in the SI model of a biological contagion.) We also assume that fi � f
for all nodes and gij � g for all node pairs. These are also major simplifications, but
they are employed in the overwhelming majority of studies that use MSFs [10, 245],
predominantly because they are convenient. Typically, it is still hard to perform
analytical studies of dynamical systems on networks even with these simplifications.
After applying the simplifications, we can write

f .x�/C
NX

jD1
Aijg.x

�; x�/ D f .x�/C kig.x
�; x�/ D 0 ; (4.8)

1Note that we previously used the notation � in Sec. 3.2.1 to represent the transmission rate in the
SI model. In this section, we use � with appropriate subscripts to represent the eigenvalues of A.
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where we recall that ki is the degree of node i. (Recall as well that we are considering
unweighted and undirected networks.) Equation (4.8) implies that either all nodes
have the same degree (i.e., that our graph is “z-regular,” where z is the degree)
or that g.x�; x�/ D 0. We do not wish to restrict the network structure severely,
so we suppose that the latter condition holds. It then follows that f .x�/ D 0, so
the equilibria of the coupled equations in Eq. (4.1) in this simplified scenario are
necessarily the same as the equilibria of the intrinsic dynamics that are satisfied by
individual (i.e., uncoupled) nodes. This yields a simplified version of the notation
from Eq. (4.3):

ai � a WD f 0ˇˇ
xiDx�

;

bij � b WD @g

@xi

ˇ
ˇ
ˇ
ˇ
xiDxjDx�

;

cij � c WD @g

@xj

ˇ
ˇ
ˇ
ˇ
xiDxjDx�

: (4.9)

We thus obtain

P
i D .a C bki/
i C c
NX

jD1
Aij
j ; i 2 f1; : : : ;Ng: (4.10)

If we assume that g.xi; xj/ D g.xj/, which is yet another major simplifying
assumption (don’t you love how many assumptions we’re making?), we obtain

Pxi D f .xi/C
NX

jD1
Aijg.xj/: (4.11)

Consequently, b D 0 and

P� D M� D .aI C cA/�; (4.12)

where I is the N 	 N identity matrix.
An equilibrium of (4.12) is (locally) asymptotically stable if and only if all of the

eigenvalues of M D aI C cA D MT are negative. (The matrix M is symmetric, so
all of its eigenvalues are guaranteed to be real.) Let wr denote an eigenvector of A
with corresponding eigenvalue �r. It follows that

.aI C cA/wr D .a C c�r/wr (4.13)

for all r (where there are at most N eigenvectors and there are guaranteed to be
exactly N of them if we are able to diagonalize A), so wr is also an eigenvector of
the matrix M. Its corresponding eigenvalue for the matrix M is a C c�r. For (local)
asymptotic stability, we thus need a C c�r < 0 to hold for all �r. This, in turn,
implies that we need a < 0, because the adjacency matrix A is guaranteed to have
both positive and negative eigenvalues [228]. We thus need (i) �r < �a=c for c > 0
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and (ii) �r > �a=c for c < 0. If (i) is satisfied for the most positive eigenvalue �1
of A, then it (obviously) must be satisfied for all eigenvalues of A. If (ii) is satisfied
for the most negative eigenvalue �N of A, then it (obviously) must be satisfied for
all eigenvalues of A. It follows that

1

�N
< � c

a
<
1

�1
; (4.14)

which becomes much more insightful when we insert the definitions of a and c. We
thereby write

1

�N
< �

@g
@xj

ˇ
ˇ
ˇ
xiDxjDx�

f 0jxDx�

<
1

�1
: (4.15)

The left and right terms in Eq. (4.15), which is called a master stability condition,
depend only on the structure of a network, and the central term depends only on the
nature (i.e., functional forms of the individual dynamics and of the coupling terms)
of the dynamics.2 In our opinion, that’s really awesome! Less enthusiastically but
even more importantly, it also illustrates that the eigenvalues of adjacency matrices
have important ramifications for the qualitative behavior of dynamical systems on
networks. Indeed, investigations of the spectra (i.e., set of eigenvalues) of adjacency
matrices (and of other matrices, such as different types of graph Laplacians) can
yield crucial insights about dynamical systems on networks [228, 285]. These
insights have repeatedly been important in the analysis of such systems [10, 242,
313].

Now let’s suppose that each node is associated with QN variables rather than just
one. We now write

Pxi D fi.xi/C
NX

jD1
Aijgij.xi; xj/ ; i 2 f1; : : : ;Ng : (4.16)

In other words, the variables and functions are now vectors. As before, we do linear
stability analysis, and we again derive an equation of the form

P� D M� ; (4.17)

where � is now a matrix of size N 	 QN and one can think of M as a doubly indexed
matrix (it’s technically a tensor).3 The component 
im denotes the perturbation

2Although we were able to separate the dependence on structure and dynamics in our example,
note that the analysis is more complicated when the equilibrium points are different for different
nodes and when considering other types of behavior (e.g., periodic or chaotic dynamics) [244].
3See [175] for a discussion of tensors.
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(in the linear stability analysis) of the mth variable on the ith node (where m 2
f1; : : : ; QNg and i 2 f1; : : : ;Ng). If we assume that the same vector function f � fi

describes the intrinsic dynamics on node i and that the coupling function g � gij is
the same for all pairs of nodes, then the components Mim; jn of M, which we index
using a pair of index pairs, are [228]

Mim; jn D ıijamn C ıijkibmn C Aijcmn; (4.18)

where

amn WD @fm
@xn

.x/

ˇ
ˇ
ˇ
ˇ
xDx�

;

bmn WD @gm

@un
.u; v/

ˇ
ˇ
ˇ
ˇ
u;vDx�

;

cmn WD @gm

@vn
.u; v/

ˇ
ˇ
ˇ
ˇ
u;vDx�

; (4.19)

and we are using the dummy variables u WD xi and v WD xj in Eq. (4.19) to prevent
confusion. The notation in (4.19) gives the components of a trio of QN 	 QN matrices:
a D Œamn�, b D Œbmn�, and c D Œcmn�.

Let’s now assume once again that g.xi; xj/ D g.xj/. This yields

P
im D
X

jn

Mim; jn 
jn D
X

jn

�
ıijamn C Aijcmn

�

jn : (4.20)

As before, we assume for each nodal variable m that we can expand 
im.t/ as a linear
combination of N distinct eigenvectors wr of the adjacency matrix A. We write


im.t/ D
X

r

˛rm.t/wri ; (4.21)

and we separately equate the coefficients of the independent eigenvectors wr (with
corresponding eigenvalues �r). The ith component of wr is wri, and the coefficients
˛rm.t/ satisfy the dynamical system

P̨ r D .a C �rc/˛r.t/ ; r 2 f1; : : : ;Ng ; (4.22)

where �r is the rth eigenvalue of the adjacency matrix and the vector ˛r has
components ˛rm (where m 2 f1; : : : ; QNg).

Define �.�/ to be the largest positive real part among the eigenvalues of the
QN 	 QN matrix P WD a C �c. For the dynamics to be (locally) asymptotically stable
near the equilibrium point x�, we require that �.�r/ < 0 for all r. The function
�.�/, which is an example of a master stability function [10, 243–245], tends to be
easy to evaluate numerically. This is excellent news, because one can then use it
readily to obtain interesting insights.
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Now that we have slogged through the above calculations, let’s review and
illustrate what we can learn from MSFs [10, 244, 245]. The idea of studying an
MSF (and an MSC) is to have a general way to relate network structure to the
behavior of dynamical systems on networks. As we have seen, one can use an MSF
or MSC to derive a relation between the spectrum of a network’s adjacency matrix
(or some other matrix associated with a network) to the stability of some kind of
qualitative behavior. Obviously, it is of interest to see how this kind of approach
manifests for specific network architectures and for specific functions (and families
of functions) that describe the dynamics of the individual nodes (namely, fi) and
those that describe how nodes interact with each other (namely, gij).

The use of MSFs and MSCs to investigate dynamical systems on networks is
widespread and can be very insightful [10, 96, 230, 244, 245, 261, 298]. As discussed
in [10, 244], they have been employed to great effect in the examination of the
stability of various types of dynamical behavior in coupled oscillators on networks,
although there is far from a complete understanding of such phenomena. An MSF
can give explicit conditions for how easily a dynamical system on a network can stay
in a stable state (such as one that corresponds to synchrony of oscillators associated
with the network’s nodes), and it is useful to compare the relative ease of remaining
stable in different families of networks. In some cases, it is possible to use an MSF to
derive necessary conditions for the linear stability of a state in terms of the spectrum
of a network’s adjacency matrix (or some other matrix associated with it). One can
either compute the spectrum numerically or can take advantage of exact analytical
expressions, approximate analytical expressions, and bounds about the spectra of
appropriate matrices. Using such an analysis, it has been demonstrated that it tends
to be very difficult in a “ring” network, in which each node is adjacent to its 2b
nearest neighbors, to stay in a synchronized stable state for a large class of oscillators
and a large variety of ways to couple them [10]. However, by adding a small number
of “shortcut” edges (which connect distant nodes in the ring) to such a network
[258], it is possible to significantly speed up the return to a stable synchronous
state for many types of coupled oscillators [17]. Although one cannot typically use
an MSF to fully separate structural and dynamical properties, as we did with the
special examples that we discussed above, it is often possible to use an MSF to make
broad statements about the stability of states for a large set of dynamical systems
without having to individually explore every type of function fi and gij. Therein lies
the power of an MSF approach. The primary weakness of an MSF approach is that
it does not indicate the route towards a stable state, as it is concerned with linear
stability [10].

Finally, we note that although our above discussion (and our example cal-
culations, which closely followed the presentation in [228]) included numerous
simplifying assumptions for expository convenience, many of them can be relaxed.
More general situations (e.g., complex spectra from directed networks, bifurcation
phenomena, chaotic behavior, etc.) necessitate more complicated expressions and
analysis, but our presentation nevertheless conveys some of the fundamental ideas
of an MSF approach. See [10, 244, 245] for further discussion.
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4.2 Other Approaches for Studying Dynamical
Systems on Networks

There are also other ways to relate network structure and the behavior of dynamical
systems on networks. In this section, we discuss a few of them very briefly.

As we discussed in Sec. 4.1, using an MSF can yield necessary and sufficient
conditions for the linear stability of a state (e.g., a synchronized state) of a dynamical
system on a network [10]. There are also other approaches for determining
conditions for the stability of a state. For example, one way to obtain a necessary
condition for stability is to construct spanning trees of the Coates graph (i.e., the
network with the self-edges removed) of the Jacobian matrix near that state [75, 90].
Additionally, [24] gives an alternative (and also analytically tractable) approach to
an MSF for studying synchronization dynamics. The analysis in [24], which is based
on calculating path lengths through edges rather than on the eigenvalues of a matrix,
allows one to examine global stability of synchronous states in coupled oscillators
with both time-independent and time-dependent interactions. It is thereby also
useful for examining coupled oscillators in networks with time-dependent structure
[25]. See Chapter 6 for a brief discussion of dynamical systems on time-dependent
networks.

Another way to examine the effects of network architecture on dynamics is
through the investigation of coupled-cell networks [291]. The structure of a coupled-
cell network is a graph that indicates how the cells are coupled and which cells
are equivalent, and a “multiarrow formalism” [119] allows pairs of nodes to have
multiple types of connections between them. This also provides an approach for
studying dynamical systems on multilayer networks [28, 173], and a tensorial
formalism and the construction of “quotient networks” [291] can be very helpful
for exploring general bifurcation phenomena and robust patterns on coupled-cell
networks (see, e.g., [118]). Such patterns include various forms of synchrony,
and the formalism of coupled-cell networks also allows one to conduct in-depth
investigations of synchrony-breaking bifurcations.

Several other mathematical ideas have also been very useful for obtaining
insights into the behavior of dynamical systems on networks. For example, isospec-
tral compression, isospectral expansion, and other isospectral transformations can
help characterize dynamical systems on networks [42, 43]. Methodology from
algebraic geometry is also being employed increasingly to elucidate the qualitative
behavior (e.g., the number and type of equilibria) of dynamical systems on
networks [61, 62, 163, 210]. More recently, such methodology has also been used
to investigate network behavior quantitatively (e.g., with data) using computational
algebra and statistics [126, 131, 199]. Methods from computational topology are
also being explored increasingly actively in the study of networks (e.g., to analyze
spreading processes [303]), and the notion of “large graph limits” have been used to
gain insights (which should be compared with the results of mean-field and similar
theories) into dynamical systems on networks [208, 209]. Ideas from Morse theory
are also worth pursuing [104].
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4.3 Discrete-State Dynamics: Mean-Field Theories, Pair
Approximations, and Higher-Order Approximations

Several approaches to approximating global (i.e., network-scale) observables have
been developed to try to understand the relationship between network structure and
local (i.e., node-level) discrete-state dynamics. Given the (discrete-state and possi-
bly stochastic) dynamics, one seeks to accurately predict emergent characteristics
of the dynamics (e.g., the number of nodes that are infected with a disease). If an
approximation method is amenable to mathematical analysis, it can also be possible
to use it to identify bifurcation points or critical parameters that affect the qualitative
dynamics. In biological contagion models, for example, it is desirable to estimate
the epidemic threshold (e.g., via the ratio of transmission rate to recovery rate) that,
if equaled or exceeded, enables a disease to spread globally through a networked
population.

Analytical approximation approaches vary in their complexity, and there is
usually an associated tradeoff in accuracy (as measured, for example, by comparing
the prediction from theory with a large-scale Monte Carlo simulation of the
dynamics). Theories of mean-field (MF) type are most common, as they can provide
reasonable—and in some cases, very high—levels of accuracy and are relatively
straightforward to formulate.

We now introduce some typical MF approximation schemes, which we illustrate
with an example biological contagion (namely, SI disease-spread dynamics) and a
threshold model of a social contagion. We also discuss generalizing beyond mean-
field theories.

4.3.1 Node-Based Approximation for the SI Model

We begin by considering node-based approximation schemes for the SI model for
biological epidemics (see Sec. 3.2.1). We closely follow the presentation in [228].
The simple dynamics of this example allows one to clearly identify the important
approximations.

A node-based approximation is one in which a variable xi is defined for every
node i in a network. In a given stochastic simulation of a system, xi takes the value
1 when node i is infected and the value 0 when it is not. If one then considers
an ensemble of stochastic simulations, the dynamics evolves differently in each
realization, but one can compute the (time-dependent) expectation hxi.t/i of xi over
all simulations in the ensemble. (In practice, one also needs to compare such an
expectation to the sample mean over the simulations that one performs.) To write
an equation for the temporal evolution of hxii, we first note that if xi is 0, then
it can change to 1 only when the disease is transmitted (at a rate �) from an
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already-infected neighbor of node i. The ensemble-averaged quantities hxii thus
obey the following set of differential equations:

d hxii
dt

D �
X

j

Aij
˝
.1 � xi/xj

˛
; i 2 f1; : : : ;Ng ; (4.23)

where Aij is the adjacency matrix (so the sum over j has nonzero contributions only
from neighbors of node i) and the quantity

˝
.1 � xi/xj

˛
is the probability (over the

ensemble of realizations) that node i is susceptible and node j is infected.
The set of equations in Eq. (4.23) is large—there is one equation for each

node in a network—but a more serious issue is that it is not a closed system. To
close Eqs. (4.23), we must either approximate the quantity

˝
.1 � xi/xj

˛
in terms

of the variables hxii or we need to derive an equation for its temporal evolution.
For example, by assuming independence—i.e., no “dynamical correlations” [112]
between the states of nodes i and j, as we discuss in Sec. 4.3.4—we can write

h.1 � xi/xji D h1 � xiihxji D .1 � hxii/ hxji ; (4.24)

which allow us to solve for hxii. We have just performed a moment closure in which
we have closed at the first moment to produce a mean-field theory. See [177] for a
survey about moment closure in numerous situations (including networks).

Alternatively, we can derive

dhsixji
dt

D ��hsixji C �
X

k¤i

Ajkhsisjxki � �
X

l¤j

Ailhxlsixji ; (4.25)

where we have written si D 1� xi for convenience. However, we now have to either
approximate the triplet terms (to obtain a so-called pair approximation [228], once
we also express the pair terms hsisji and hxixji in terms of hsixji) or derive dynamical
equations for the triplet terms. Of course, if we choose to do the latter, the resulting
equations will include quadruplet terms.

As an explicit example of closing Eqs. (4.25) to obtain a pair approximation
[228], we use Bayes’ theorem to derive the approximations

hsisjxki � hsisjihsjxki
hsji and hxlsixji � hxlsiihsixji

hsii :

We also use

hsisji D hsi.1 � xj/i D hsii � hsixji ;
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and we thereby derive the closed system of equations

dhsixji
dt

D ��hsixji C �
X

k¤i

Ajk
.hsii � hsixji/hsjxki

hsji � �
X

l¤j

Ail
hxlsiihsixji

hsii

D ��hsixji C �
hsii � hsixji

hsji
X

k¤i

Ajkhsjxki � �

hsii
X

l¤j

Ailhxlsiihsixji ;

(4.26)

which, along with Eq. (4.23) and the expression xi D 1 � si, constitutes a pair
approximation.

The above discussion has given some examples of the moment-closure problems
that often arise for stochastic dynamics on networks. See Refs. [177, 218] for much
more detail on moment closures, and see Ref. [144] for a discussion of the use of
algebraic methods for moment closure.

4.3.2 Degree-Based MF Approximation for the SI Model

Dealing with the issue of moment closure requires truncating a hierarchy of
differential equations at some stage. Given the complexity of the equations that
arise, it is common to reduce the number of equations by assuming that all nodes of
degree k behave in a manner that is dynamically similar. In applying such a scheme,
which is sometimes called a degree-based approximation [228] or a heterogeneous
mean-field approximation [318], one is making the assumption that it is reasonable
to consider the dynamics (at least as concerns the observables of interest) on a
configuration-model network.

Suppose that node i has degree k. We replace hxii in Eq. (4.23) with a new variable
�k.t/, which is defined as the fraction of nodes of degree k that are infected at time
t. Another way to think of �k.t/ is that if, at time t, we choose one node (e.g., node
i) from the set of all nodes that have degree k, then the probability that the node is
infected is �k.t/. We are making the following approximation: we are replacing a
quantity that is specific to node i by a quantity that is defined for the entire class of
degree-k nodes (and which is assumed to be the same for all nodes in that class).
With the MF approximation (4.24), the right-hand side of Eq. (4.23) becomes

� .1 � hxii/
X

j

Aij
˝
xj

˛
; (4.27)

and the degree-based approximation allows us to replace 1 � hxii by 1 � �k. In the
same spirit of approximation, we replace the sum over neighbors (

P
j Aij

˝
xj

˛
) by

k!k, where !k.t/ represents the mean-field approximation for the probability that
a given neighbor of i (or, indeed, of any node with degree k, because we do not
distinguish between these nodes in the degree-based approximation) is infected.
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Because we are assuming that our network is a configuration-model network, the
probability that a neighbor of node i (or, indeed, of any specific node) has degree k0
is given by

k0

z
Pk0 ; (4.28)

where we recall that z is the mean degree. To understand this, consider that when
a node (e.g., node i) is part of a network that is connected according to the
configuration-model rules described in Chapter 2, it has a larger probability of being
adjacent to a high-degree node than to a low-degree node, because a high-degree
node has more stubs (i.e., ends of edges) available for selection. Thus, because
we know that the neighbors of node i are, by definition, adjacent to node i, it
follows that these neighbors are more likely to have a high degree k0 than would
be expected if we choose a node uniformly at random. (For example, we know that
a neighbor of node i cannot have degree 0.) Accounting for this bias gives the k0Pk0

term in Eq. (4.28), and the denominator z ensures that the probability distribution
is correctly normalized, so it sums to 1 when all possible k0 values are considered.
Returning to the probability !k that a neighbor of a degree-k node is infected, we
see that the probability that the neighbor has degree k0 is given by Eq. (4.28), and
the probability that a degree-k0 node is infected is �k0.t/. We can then calculate !k.t/
(within the MF approximation) by multiplying these probabilities and summing over
all possible values of k0. We thereby obtain

!k.t/ � !.t/ D
X

k0

k0

z
Pk0�k0.t/ ; (4.29)

where we note that !k in fact turns out to be independent of k. This is a consequence
of the random-linking property of the configuration model, and more generally (e.g.,
in networks with degree–degree correlations) the values of !k need not be the same
for every k.

Applying all of our approximation steps to Eq. (4.23) yields an MF degree-based
approximation for the SI model:

d�k

dt
D �k.1 � �k/! ; (4.30)

where ! is given by Eq. (4.29). Note that the system (4.30) contains one equation
for each degree class k in the network, and typically this number is much smaller
than the number N of nodes, so the dimension of the system (4.30) is considerably
lower than that of (4.23). To take an extreme example, consider a z-regular network,
in which every node has exactly z neighbors. In this case, Eq. (4.30) reduces to a
single equation,
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d�

dt
D �z.1 � �/� ; (4.31)

for the fraction �.t/ of infected nodes. This is the well-known (and analytically
solvable) logistic differential equation that appears in SI models of homogeneous,
well-mixed populations [37].

4.3.3 Degree-Based MF Approximation for a Threshold
Model

We now derive an MF approximation for the Watts threshold model of a social
contagion. (See Sec. 3.3.1 for a discussion of social contagions.) In this section, we
give an ad hoc derivation that highlights some of the important assumptions of MF
approximations. In Appendix A, we discuss a more systematic approach for deriving
MF (and other, higher-accuracy) approximations.

Let’s consider the Watts threshold model with asynchronous updating. For
simplicity, as in Eq. (4.31), we assume that the network is z-regular, but one can
readily generalize the derivation to networks with arbitrary degree distributions and
degree–degree correlations [29, 241]. Define �.t/ to be the fraction of nodes that
are active at time t. We assume that a given seed fraction �.0/ of nodes are initially
activated, where we choose the seed nodes uniformly at random. To derive an MF
approximation, we examine how �.t/ changes in time. Consider an updating event,
in which we have selected a node uniformly at random for a possible change of
state. The probability that the chosen node is inactive at time t is 1 � �.t/. We want
to calculate the probability that m of the neighbors of the node are active, and we
then compare the fraction m=z with the threshold R of the node. The probability that
m=z � R is the probability that the updating node becomes active, and the activation
of a node increases �. To continue, we will need to make two assumptions.

In the first of our assumptions, we suppose that all of the neighbors of the
selected node are (independently) active with probability �(t). This independence
assumption is an important one: as we will discuss in assumption (1) of Sec. 4.3.4,
such independence cannot be exactly true on networks that contain triangles or
other short cycles. However, with this independence assumption, we can write the
probability that the chosen node has m active neighbors as the binomial distribution

Bz;m .�/ D
�

z
m

�

�m.1 � �/z�m; (4.32)

because we are considering z neighbors, who are each (independently) active with a
probability of �.t/.

A second important MF assumption arises when we suppose that the probability
that the updating node is inactive and that it has m active neighbors is given by
Œ1 � �.t/�Bz;m .�.t//. To obtain this expression, we multiply the probability 1 � �

of a node being inactive by the probability Bz;m.�/ that it has m active neighbors.



42 4 General Considerations

Calculating a joint probability in this way is justified if the two events—in this
case, that the “updating node is inactive” and that the “updating node has m active
neighbors”—are independent. Consequently, the second important MF assumption
(see assumption (2) in our discussion in Sec. 4.3.4) is that the state (active or
inactive) of an updating node is independent of the states of its neighbors. This
assumption also cannot be exactly correct. For instance, a node whose neighbors
are all active is more likely to be active than a node with no active neighbors. The
dynamics of the system induce correlations between the states of nodes and their
neighbors, but our MF assumptions are ignoring such “dynamical correlations.”

Returning to our derivation, we have thus far agreed—we didn’t really give you
a choice, to be honest, except possibly to look at the more complicated approach in
Appendix A—to approximate the probability that the updating node is inactive and
has m active neighbors by Œ1 � �.t/�Bz;m .�.t//. We now ask the following question:
what is the probability that such a node will become active and thereby increase
the active fraction �.t/? According to the update rule in the Watts model—which
becomes equivalent to the Centola–Macy update rule on a z-regular network—the
node will become active if the fraction m=z of active neighbors equals or exceeds
its threshold R. Recall that we chose R from a predefined distribution, so we need
to determine the probability that a threshold value R drawn from this distribution is
less than or equal to the value m=z. This probability is given by

Prob

�

R � m

z

�

D C

�
m

z

�

; (4.33)

where C is the cumulative distribution function (CDF) of the thresholds.
Putting together the probabilities that we calculated above and summing over the

possible values of m, we obtain the following MF approximation for the fraction
�.t/ of active nodes:

d�

dt
D .1 � �/

zX

mD0
Bz;m.�/C

�
m

z

�

: (4.34)

Equation (4.34) is a nonlinear ODE for �.t/, with an initial condition of �.0/, and
one can easily solve it numerically to obtain the time-dependent MF prediction
for �.t/. In Fig. 4.1, we show a few examples, in which we compare the solutions
of the MF equation (green dash-dotted curves) with ensemble averages of direct
(stochastic) numerical simulations of the Watts model (black symbols). See Sec. 5.1
for a description of how to perform such numerical simulations. Although the MF
predictions in Fig. 4.1 are qualitatively correct for the better-connected networks
(with z D 6 and z D 7), the quantitative agreement tends to be poor. Moreover,
on low-degree networks (e.g., z D 4), the MF approximation is even qualitatively
incorrect. It predicts that the social contagion spreads through the whole network,
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Fig. 4.1 Fraction �.t/ of infected nodes in a Watts threshold model on z-regular random graphs
(for which the degree distribution is Pk D ık;z) for z 2 f4; 5; 6; 7g. We show the results of the
mean-field (MF) approximation (4.34) using the green dash-dotted curves, and we also show the
results of pair approximation (PA) and approximate master equation (AME) schemes. (We discuss
these latter two approximations in Appendix A.) The initial fraction of infected nodes is �.0/ D
0:055 in all cases, and all nodes in each network have the same threshold level of R D 2=z (so
that a node activates if 2 or more of its neighbors are active). We show the results of numerical
simulations (see Chapter 5) for networks with N D 105 nodes, and we use a time step of dt D
10�5. The black symbols show the means over 24 realizations, and the error bars indicate one
standard deviation above and below the mean. Each realization uses the same network from the
random graph ensemble, but different nodes are infected initially (and the update order is also
different).4 Because we are examining large z-regular random graphs, the dynamics are essentially
the same for any network from a given random-graph ensemble.

whereas in fact only a very small fraction of nodes ever adopt the contagion. To
address this situation, one can use higher-accuracy approximations (as we describe
in Appendix A), albeit at the cost of increased complexity of the dynamical system
and of the derivation.

4When calculating a sample mean using numerical simulations of a dynamical system on a network
(or a family of networks), there are several possible sources of stochasticity: (1) choice of initial
condition, (2) choice of which nodes to update (when considering asynchronous updating), (3) the
update rule itself, (4) parameter values that are used in an update rule, and (5) selection of particular
networks from a random-graph ensemble. Some or all of these sources of randomness can be
present when studying dynamical systems on networks, and (when possible) it is also desirable
to compare the sample means to ensemble averages (i.e., expectations over a suitable probability
distribution).
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4.3.4 Discussion of MF Approximation for Discrete-State
Dynamics

As our discussions in this section have illustrated, the main assumptions that underly
the derivation of MF theories are as follows [112]:

(1) Absence of local clustering: When the state of node i is updated, the states of the
neighbors of node i are considered to be independent of each other. This holds,
for example, when one makes a locally tree-like assumption on the structure of
a network. With such a structural assumption, the cycles in a network become
negligible as N ! 1, so there are very few pairs of connected neighbors to
consider in the first place. (This motivates the terse name for the assumption.)

(2) Absence of dynamical correlations: When updating the state of node i, its
own state and the state of its neighbors are assumed to be independent. Such
dynamical correlations are rather different from structural correlations like
degree–degree correlations. Note that dynamical correlations can have strong
effects even in z-regular random graphs (see Sec. 4.3.3 and Fig. 4.1), whereas
degree–degree correlations play no role in this situation by construction [107].

(3) Absence of modularity: It is usually assumed that one can describe the state
of every node of a given degree k using a single quantity (namely, by the mean
over the class of degree-k nodes). However, this may not be the case if a network
has significant modularity, as degree-k nodes can often be located in different
communities, and there can also be other sources of diversity among the degree-
k nodes.5

One can capture dynamical correlations in part by using generalizations of
MF theories that incorporate information on the joint distribution of node states
at the ends of a random edge in a network. Such theories are often called pair
approximations (PA) and are more complicated to derive than MF theories [218].
However, they also tend to be more accurate than MF theories. One can also
include the dynamics of triplets, quadruplets, and as many nodes as one wants by
considering more general motif expansions [71, 218, 302].

It is also possible to derive very accurate approximations using compartmental
models in which one considers the states of all neighbors when updating a node.
Such approaches are expensive computationally, but it has been demonstrated that
they can yield high accuracy for models of biological contagions [191, 201]. They
have also been successfully generalized for a wide class of binary-state models
[108]. Reference [108] also illustrates how to systematically derive PA and MF
theories from higher-order compartmental models. See Appendix A for some
technical details.

5It may also be useful to develop analogous class-based approximations that use structural
characteristics other than degree.
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Despite the fact that MF assumptions (1)–(3) are violated for many (and perhaps
most?) real-world networks, MF theories often give reasonably accurate predictions
of global dynamics—at least for well-connected networks and when the dynamical
system under consideration is far from any bifurcation points. However, for sparse
networks and for accurate bifurcation analysis, one often needs to work harder to
achieve high levels of accuracy. This motivates a move beyond pair approximations
to methods (such as motif expansions) that include more information on the states
of the neighbors of each node [31, 71].

MF theories and their generalizations provide analytical approaches for reducing
the dimensionality of a dynamical system on a network via an approximation
scheme. Alternatively, one can take a philosophically similar approach (for both
dynamics on networks and dynamics of networks) using only computations. See
Refs. [32, 262] for examples of such an “equation-free” approach.

4.4 Additional Considerations

As we discuss in Appendix A, there exist rather sophisticated approximation
methods for binary-state dynamics on configuration-model networks. Moreover, for
monotonic binary dynamics, there has also been significant progress in extending
theories to networks with degree–degree correlations, clustering, modularity, and
multilayer structures. Indeed, degree–degree correlations have been incorporated
into many MF and PA methods.

However, despite this progress, much remains to be done. Moving beyond
binary-state dynamics is a significant challenge. There has been notable progress in
some dynamical systems that include three states—particularly when the dynam-
ics remains monotonic (i.e., transitions between states still occur only in one
direction). Examples include the multi-stage complex contagion model of social
influence in Ref. [212] and high-accuracy approximations for SIR disease spread
[191, 215]. It would be very interesting—though also rather challenging—to extend
the compartmental AME approach to dynamics with more than two states and to
subsequently use the results of such analysis to derive PA and MF approxima-
tions like (A.4) and (A.6) in a systematic fashion. Other open problems include
developing high-accuracy approximations of nodal dynamics with a continuum of
states—e.g., with differential equations at each node, as in the Kuramoto model
of coupled oscillators [147]—and developing a better understanding of the novel
features that were observed in [76] for non-monotonic binary dynamics with
synchronous updates. Given observed binary-state dynamics, one can also examine
the inverse problem of trying to reconstruct network architecture [189].



Chapter 5
Software Implementation

In this chapter, we briefly discuss practical issues related to simulating dynamical
systems on networks.

5.1 Stochastic Simulations (i.e., Monte Carlo Simulations)

As we noted in Sec. 3.5, it is relatively straightforward to implement a Monte Carlo
simulation of stochastic discrete-state dynamics using equal-length time steps. (See
our discussion in Sec. A.1.1 as well.) The special case of monotonic threshold
dynamics is especially simple, so we will now describe it briefly in the context of
the Watts threshold model. See [138] for discussions of fast algorithms for epidemic
models on networks, and see [30, 319] for Gillespie-type algorithms in which the
time steps do not have equal lengths.

Given an adjacency matrix A and an N 	 1 vector v that stores the states of
each node (at a given time, vi D 0 if node i is susceptible and vi D 1 if node i is
infected), we calculate the number mi of infected neighbors of each node i using
matrix multiplication:

m D Av : (5.1)

Similarly, the degree ki of each node i is the ith element of the vector k defined by

k D A1 ; (5.2)

where 1 represents the N 	 1 vector .1; 1; 1; : : : ; 1/T . At each time step in an
asynchronous updating scheme (see Sec. 3.5), a node i is chosen uniformly at
random for updating, and vi is set to 1 if mi=ki equals or exceeds the threshold
Ri of node i.
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One then uses the updated state vector v to calculate the updated vector m of
infected neighbors from Eq. (5.1), and the simulation continues to the next time
step. One can terminate the temporal evolution when the condition

mi

ki
< Ri for all nodes i with vi D 0 (5.3)

is satisfied, as this implies that no further susceptible nodes can be infected and
thus that the system has reached a steady state. One can show [109] that the steady
state of monotonic threshold dynamics is independent of whether one employs
asynchronous or synchronous updating, so one can accelerate the algorithm that
we just described by updating all nodes simultaneously in each time step if one is
interested only in the steady state. (Naturally, it is often the case that one wishes to
explore phenomena other than a steady state [212].)

5.2 Differential-Equation Solvers for Theories

OCTAVE/MATLAB code for implementing and solving the systems of ODEs that
arise from various approximation schemes for stochastic binary-state dynamics is
available at http://www.ul.ie/gleesonj/solve_AME. In this code, a user specifies as
inputs the degree distribution Pk of a network, the initial fraction �.0/ of infected
nodes, and the transition rates of the dynamics. (See Sec. A.1.1 for a description
of these rates.) The code then automatically implements the approximate master
equations (AME) (see Ref. [108] and the discussion in Appendix A), the pair-
approximation equations in Eq. (A.6), and the mean-field equations in Eq. (A.4)
as systems of ODEs and solves them using standard numerical techniques for
differential equations. Results are output as plots that show the infected fraction
�.t/ of nodes and the (time-dependent) fraction of edges that connect susceptible
nodes to infected nodes.

Additionally, Gerd Zschaler and Thilo Gross have posted software [335] for
simulating adaptive networks at http://www.biond.org/node/352. In an adaptive
network, recall that a dynamical system on the network is coupled to structural
changes of the network [124, 272]. See Chapter 6 for a general discussion of
dynamical systems on time-dependent networks.

http://www.ul.ie/gleesonj/solve_AME
http://www.biond.org/node/352


Chapter 6
Dynamical Systems on Dynamical Networks

The study of dynamical systems on time-dependent (i.e., “temporal” or
“dynamical”) networks has become extremely popular recently, but there are
also much older quantitative studies of such situations. For example, Farmer et
al. [92] and Bagley et al. [13] used such a framework more than two decades ago in
studies of chemical reactions. Moreover, even in the early part of the 20th century,
biostatistician Ronald Fisher posited that one could describe the seemingly random
fluttering of a colony of butterflies as a dynamical network of information [97].

In prior chapters, we focused on dynamics that occur on time-independent
networks or on ensembles of such networks. The presence of temporal dynamics
of network nodes and/or edges evokes crucial modeling issues. One needs to ponder
whether one should study a dynamical system on a temporal network, study only a
temporal network, study a dynamical system on a time-independent network (or on
an ensemble of such networks), or perform multiple such studies [139]. There are
also numerous ways to “project” from a temporal network to a time-independent
network (or an ensemble of such networks), as such a transition involves issues
about the interactions (e.g., time scales, durations, and continuous versus discrete).

If one is considering a single time-independent (i.e., “static”) network, then one
is assuming that the network’s structure does not change on the time scale of the
nodal dynamics or at least that it changes so little that it is permissible to pretend
that it is time-independent.1 If one is studying a dynamical process on an ensemble
of time-independent random graphs, there are two main possibilities:

• We are in the same situation as above as concerns the balance of time scales
(so we have an ensemble of static networks), and the randomness is employed
because of uncertainties about the network structure. (For example, perhaps one

1In the physics literature, such situations with extremely slow structural dynamics are sometimes
called “quenched,” because the networks are almost frozen.
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believes in a certain situation that only degree distribution is important, so one
fixes the degree distribution and randomizes everything else.)

• The network structure changes on such a fast time scale that it is reasonable
only to use a random-graph ensemble (rather than something more specific)
to describe its properties. That is, instead of an ensemble of “static” networks,
one uses a description that takes the form of a statistically stationary probability
distribution,2 as only appropriate averaged properties of the network are reliable.

There are many situations in which a network itself can be dynamic, with edges
(or edge weights) and/or nodes changing in time, perhaps in response to a dynamical
system associated with the nodes. In general, three basic situations are possible
[139, 242, 252]:

• The dynamics of a network are much faster than the dynamical system that one
is examining on that network. In this case, it is reasonable (at least to a first
approximation) to assume that the states of the network nodes are fixed (e.g.,
a “susceptible” node will not change to being “infected”) and to consider only
the dynamics of the underlying network. (One can also make a similar comment
about the states of edges if that is what one is studying.) However, if the dynamics
of the network structure are too fast, then it may be necessary (as we indicated
above) to consider ensembles of time-independent networks, because only the
measurement of suitable averaged properties is appropriate.

• A dynamical system on a network evolves on a much faster time scale than
the dynamics of the network itself. In this case, it is reasonable (at least to a
first approximation) to assume that the network is time-independent. However, if
the states of the nodes—or edges, if one is studying their states—are changing
too rapidly, then it may only be reasonable to consider statistical ensembles
of the states, because only the measurement of suitable averaged properties is
appropriate.

• The dynamics on a network and the dynamics of the network itself operate
on comparable time scales, so it is not reasonable to ignore either of them.
Such networks are sometimes called “adaptive networks” [124, 272]. This
terminology emphasizes the coupling between the dynamics on the networks and
the dynamics of the networks.

The dynamics of networks can have a profound impact on dynamical systems
on networks, and this has now been explored in numerous papers. See, e.g.,
[25, 26, 135, 136, 139, 141–143, 150, 164, 166, 203, 219, 223, 235, 251–253, 274,
281, 288, 299, 301, 309, 322] and a multitude of other references. The bursty—
and, more generally, non-Poisson—nature of interactions in temporal networks
affects both (1) the effective weights of time-independent interactions derived
from aggregating over time-dependent interactions and (2) the behavior of dynam-
ical processes on time-dependent networks versus processes on their associated

2In the physics literature, such an idea is invoked to justify certain approximations in models, and
the word “annealed” is sometimes used to describe such a situation.
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time-independent networks [30, 135, 136, 162, 252, 264]. It is also important to
develop computational techniques, such as Gillespie algorithms, for dynamical
processes on temporal networks [204, 319].

A good example of a dynamical system on a time-dependent network [139, 141,
142] is an adaptive SIS model [125], in which a susceptible node can break any
edge it has to an infected node and rewire to a randomly chosen susceptible node.
Compartmental approaches have been applied successfully to this model [201], and
they agree very well with the results of numerical simulations. Similar approaches
were also used to study a two-opinion adaptive voter model in Ref. [87], which built
on the model in [140]. (This model was generalized to n > 2 opinions in [279]
and to include mechanisms that reinforce local clustering in [200].) In [87], an edge
of a network is chosen uniformly at random at each time step. If the opinions of
the two nodes attached to the edge are different, then one node imitates the opinion
of the other with a probability of 1 � ˛. However, with probability ˛, the edge
is broken and one node instead makes a new connection to another node (chosen,
depending on the variant of the model, either at random from the whole network or
at random from those who hold the same opinion as the node). On a finite network,
such adaptive voter dynamics eventually results in a steady state in which a network
can contain disconnected components, where each component contains only nodes
who share the same opinion. Adaptive voter dynamics provide a challenging testbed
for approximation methods. The review [71] carefully examined an adaptive voter
model and concluded that none of the approximation schemes that it tested were
able to give fully satisfactory results in all regions of parameter space.

A nice way to examine dynamical systems on temporal networks is to use so-
called activity-driven networks [251]. One constructs an “activity potential” for each
agent in such a network to encapsulate the number of interactions that it performs
in a characteristic time window. One thereby attempts to characterize interactions
between agents, and activity rates can come either from specified functions or from
empirical data. Using the activity potentials (which can be different for different
agents), one can construct an instantaneous temporal description of network dynam-
ics. This approach has led to insights on phenomena such as the emergence of strong
ties in temporal communication networks [167] and how to control contagions in
temporal networks [194].

It can also be useful and interesting to take a statistical perspective on dynamical
systems on temporal networks (see, e.g., [283, 284]). For example, one can use a
time-dependent generalization of exponential random graph models (ERGMs) [196]
and thereby study a temporal ERGM (TERGM) [72].

When studying dynamical systems on time-dependent networks, there is a
lively debate about whether dynamics of networks slow down dynamical processes
or speed them up [139, 141, 142, 164, 166, 203, 253, 274, 299] (and, naturally,
the answer is different for different dynamical systems), and it is desirable to
examine such effects on a wide variety of dynamical systems. For example, bursty
communication patterns can either speed up or slow down adoption speed in
threshold models, and temporal-network generalizations of the Watts (i.e., fractional
threshold) and Centola–Macy (i.e., absolute threshold) complex-contagion models
exhibit interesting differences [164, 299].



Chapter 7
Other Resources

We now list several references that can complement the present monograph, and we
indicate particular directions for which we think that you will find them helpful.
Obviously, many other resources (e.g., several books) are also available.

• Reference [294] is a friendly introduction to dynamical systems on networks.
It surveys the state of the field in 2001, so it is out of date in many respects.
(Network science is a young, immature field that advances quickly.)

• Reference [226] is a more recent (but very short) expository article about
dynamical systems on networks.

• Reference [318] is a survey article that discusses dynamical systems on networks.
It is not very technical, but it provides a big-picture overview of several areas.

• Reference [228] is a very good textbook on network science, and some of
its later chapters cover dynamical systems on networks. For example, some
of our discussion of general considerations in Chapter 4 followed part of the
presentation in this book, which also has thorough discussions of processes
like percolation and biological contagions. Reference [228] also discusses the
use of mean-field theories and related techniques for studying such dynamical
processes, and we drew on some of those discussions for portions of our
presentation. In particular, in Sec. 4.3.1, we largely followed the presentation in
[228].

• Reference [174] is a textbook on networks that takes a statistical perspective.
It includes material on dynamical systems on networks.

• Two of the classical review articles in network science are [227] and [27]. How-
ever, because network science advances quickly, they are somewhat out of date.

• Reference [18] is a book devoted to dynamical systems on networks from a
physics perspective.

• Reference [234] is a recent survey of spreading processes on networks from a
control-theoretic perspective.

• The survey article [38] examines flows on networks from a mathematical
perspective.
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• Reference [270] is a review article on recent advances in percolation theory.
• Reference [242] is a recent, extensive review of contagions on networks. It

focuses especially on biological contagions, but it also includes discussions of
other spreading processes.

• Reference [99] is a book about biological contagions on networks, although there
is also some discussion of the spread of information.

• Reference [218] is a review of contagions on networks that focuses on moment-
closure methods and discusses the challenges of generalizing methods from
configuration-model networks to more complicated random-graph ensembles.

• Reference [48] is a review of social dynamics from the perspective of statistical
physics.

• Reference [156] is a survey about games on networks.
• Reference [8] reviews synchronization on networks, although there has been a

lot of work on this topic since it was published.
• Reference [192] is a recent review of control in networks, and Ref. [225] is a

recent survey of the topic.
• Reference [11] is a review of oscillatory dynamics on networks in the context

of neuroscience. In addition to its discussions of neuroscientific phenomena and
models, it also discusses numerous broader theoretical issues that are important
for studying coupled oscillators on networks.

• References [28, 173, 186, 271, 325] all include extensive discussions that review
work on various types of dynamical processes on multilayer networks. The
body of such work is exploding rapidly, and these five articles offer different
perspectives.

• The survey articles [139, 141] and the edited collection [142] discuss a wealth of
research on time-dependent networks (so-called “temporal networks”), including
many topics in dynamical processes on temporal networks.

• The tutorial article [71] discusses moment-closure approximations for discrete
adaptive networks, in which a discrete dynamical system is coupled to a network
that changes in discrete time. References [124, 272] review research on adaptive
networks.

• Reference [80] is a review article that discusses analytical methods to study
critical phenomena in networks. It includes discussions of phase transitions,
percolation, synchronization, and many other phenomena.



Chapter 8
Conclusion, Outlook, and Open Problems

In this monograph, we have given a tutorial for studying dynamical systems on
networks. By reading our tutorial, you should now have a reasonable understanding
of (1) why it is interesting and desirable to study dynamical systems on net-
works; (2) several of the popular families of problems and models; (3) basic
considerations about dynamical systems on networks; (4) the use and range of
validity of techniques for analytical approximations such as mean-field theories,
pair approximations, and higher-order motif expansions; and (5) time-scale issues
and challenges for investigating dynamical systems on time-dependent networks.
We have also given pointers to software implementations for direct numerical simu-
lations and for solving the systems of equations that result from the aforementioned
approximation methods. As our monograph is a tutorial rather than a literature
review, there is a lot that we haven’t covered, and we strongly encourage you to
scour the literature for interesting problems to study and generalize. The primary
purpose of our tutorial is to equip you with the background knowledge to be able to
do so successfully. We have also provided numerous references to get you started.

Before saying “goodbye,” it is also worth commenting on some of the particularly
challenging problems that are available. For example, although one can study
problems by purely computational means, we believe that it is desirable (when
possible) to try to develop analytical techniques in order to gain insights on these
problems. In network science, mathematically rigorous results tend to be rare—see,
e.g., [85, 86]—but approximations and heuristic techniques have been employed
on many toy problems. A key goal is to find the “next easiest” sets of dynamical
systems on networks to study using more general versions of these techniques and
to use them to help develop these methods further (and to devise new methods).
Additionally, many of the dynamical processes that have been investigated are either
some type of percolation or fairly (or even very) closely related to percolation, and
it is also important to move beyond these types of models.
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There are many open issues in the study of dynamical systems on time-dependent
networks. One needs to examine the balance of time scales for dynamics on
networks versus the dynamics of the networks themselves [139, 252], and the effects
that this has on the validity and choices of analytical techniques to use is also
very important. Most of the studied situations with both dynamics on networks
and dynamics of networks tend to be rather unrealistic, so this is an area that is
particularly ripe for further study.

Finally, many networks are multiplex (i.e., include multiple types of edges) or
have other multilayer features [28, 173]. The existence of multiple layers on which
different dynamical processes can occur and the possibility of both structural and
dynamical correlations between layers offers another rich set of opportunities in the
study of dynamical systems on networks. The investigation of dynamical systems
on multilayer networks is only in its infancy, and this area is also loaded with a rich
set of problems [28, 173, 186, 271].

Goodbye.



Appendix A
Appendix: High-Accuracy Approximation
Methods for General Binary-State Dynamics

A.1 High-Accuracy Approximations for Binary-State
Dynamics

To illustrate some general concepts for how network structure affects dynamics,
let’s examine a class of stochastic binary-state dynamics on configuration-model
networks. Recall from Chapter 2 that a network in a configuration-model ensemble
is specified by a degree distribution Pk but is otherwise maximally random [33, 228].
Pairs of stubs (i.e., ends of edges) are connected to each other uniformly at
random, so no degree–degree (or other) correlations are input, and taking the
N ! 1 limit guarantees negligible clustering (if we assume, e.g., that the
second moment of Pk remains finite as N ! 1). In this section, we discuss a
general class of binary-state dynamics and then examine approximation methods
at mean-field, pair-approximation, and higher-order levels [218]. We choose to
focus on approximations that yield deterministic systems in the form of ODEs.
Deterministic approximations are valid when, for example, the number of initially
infected nodes (i.e., the seed size of infections) is sufficiently large so that one
can neglect stochastic (i.e., realization-to-realization) fluctuations. Otherwise, it is
necessary to use other methods, such as ones that are based on branching processes
[111, 113, 231–233].

A.1.1 Stochastic Binary-State Dynamics

In a binary-state dynamical system, each node is in one of two states at any time.
For convenience, we usually refer to these states as susceptible (i.e., of type S) and
infected (i.e., of type I) in our discussion. However, such states could actually mean

© Springer International Publishing Switzerland 2016
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“spin up” versus “spin down” magnetic dipoles in an Ising spin model, “inactive”
versus “active” nodes in a social system, and so on. We presented many examples of
binary-state dynamics in Chapter 3. See, for example, our discussions of percolation
models in Sec. 3.1, biological contagions in Sec. 3.2, and social contagions in
Sec. 3.3.

In the present section, we will consider asynchronous updating and local rules
for node updates. In other words, the transition rates depend only on the state of
a node and on the states of its immediate neighbors in a network. Consequently,
an updating node that is susceptible becomes infected with a probability of Fk;m dt,
where k is the node’s degree and m is the number of its neighbors that are infected.
We refer to the function Fk;m as the infection rate. Similarly, an updating node that is
infected becomes susceptible with a probability of Rk;m dt, and we refer to Rk;m as the
recovery rate.1 (Note that one can also consider functions Fk;m and Rk;m that depend
on network diagnostics other than degree, but we restrict ourselves to degree.)

It is straightforward to implement these update rules using Monte Carlo simula-
tions. During a small time step dt, a node i of degree k with m infected neighbors
is endowed with probability �i D Fk;m dt (if the node is susceptible) or probability
�i D Rk;m dt (if it is infected) of changing its state. By drawing random numbers ri

from the uniform distribution on Œ0; 1� and comparing the probabilities recorded for
each node, the nodes that change states are the nodes i for which ri � �i. The time
step dt needs to be sufficiently small so that the number of nodes that change state
in a single time step is a small fraction of N. As discussed in Sec. 3.5, it is common
to make dt sufficiently small so that a single node is updated.

We now consider some examples of binary-state dynamics of the type that we
just described. We begin with the classical SIS mode of disease spread. We endow
this model with a transmission rate of � and a recovery rate of �. In a small time
interval dt, each susceptible node has probability � dt of being infected by each
of its infected neighbors. The probability of a susceptible node becoming infected
during the time interval dt is then m dt as dt ! 0 [see Eq. (3.1)]. We thus identify
the infection rate for SIS dynamics as

FSIS
k;m D �m ; (A.1)

which is linear in the number m of infected neighbors. In the SIS model, each
infected node can recover to the susceptible state at a constant rate �. This yields

RSIS
k;m D � ; (A.2)

which is independent of m.
As another example, consider the standard voter model (see Sec. 3.4). In this

example, the labels “susceptible” and “infected” refer to the two opinions. At

1The notation Rk;m should not be confused with the threshold value Ri of node i in the Watts model
and other threshold models.
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each time step, one node is chosen uniformly at random for updating (during the
interval dt D 1=N), and this node copies the state of one of its neighbors (chosen
uniformly at random). Therefore, a degree-k node that has m infected neighbors
has probability m=k of copying an infected neighbor and probability .k � m/=k of
copying a susceptible neighbor. This yields

FVoter
k;m D m=k and RVoter

k;m D .k � m/=k : (A.3)

Within this general framework, one can consider a wide class of well-studied
binary-state dynamics. Table I in Ref. [108] lists the infection rates Fk;m and
recovery rates Rk;m for models such as the Bass model for the spread of innovations
[20, 77], the Ising spin model, the majority-vote model [67, 190], and threshold
opinion models. This unified perspective on stochastic binary-state dynamics also
allows general derivations of mean-field and pair approximations from a higher-
order approximation scheme.

A.2 Approximation Methods for General Binary-State
Dynamics

Reference [108] derived equations for degree-based mean-field (MF) and pair-
approximation (PA) theories for general stochastic binary-state dynamics, which are
defined in terms of an infection rate Fk;m and a recovery rate Rk;m. The MF equations
are

d�k

dt
D ��k

kX

mD0
Rk;mBk;m.!/C .1 � �k/

kX

mD0
Fk;mBk;m.!/ ; (A.4)

where Bk;m.!/ denotes the binomial term

�
k
m

�

!m.1 � !/k�m and we recall that

�k.t/ is the fraction of nodes of degree k that are infected at time t. We obtain the
quantity !.t/ in terms of �k.t/ using Eq. (4.29). For example, if we consider the SI
model for disease spread, then Fk;m D �m and Rk;m D 0. Using the binomial sum

kX

mD0
m Bk;m.!/ D k! (A.5)

in Eq. (A.4) yields the MF theory that we derived in Eq. (4.30).
If a network has non-empty degree classes from k D 0 up to some cutoff

kmax, then Eq. (A.4) consists of a closed system of at most kmax C 1 nonlinear
differential equations. (If some of those degree classes are empty, then there
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will be fewer differential equations.) Standard numerical methods for simulating
differential equations enable one to solve these equations efficiently (see Chapter 5).

One can obtain better accuracy than the MF equations in Eq. (A.4) using the PA
equations

d�k

dt
D ��k

kX

mD0
Rk;mBk;m.qk/C .1 � �k/

kX

mD0
Fk;mBk;m.pk/ ;

dpk

dt
D

kX

mD0

h
pk � m

k

i �

Fk;mBk;m.pk/ � �k

1 � �k
Rk;mBk;m.qk/

	

C ˇs.1 � pk/ � � spk ;

dqk

dt
D

kX

mD0

h
qk � m

k

i �

Rk;mBk;m.qk/ � 1 � �k

�k
Fk;mBk;m.pk/

	

C ˇi.1 � qk/ � � iqk

(A.6)

for the variables �k.t/, pk.t/, and qk.t/. The rates ˇs, � s, ˇi, and � i are determined
from these variables. For example,

ˇs D
P

k Pk.1 � �k/
P

m.k � m/Fk;mBk;m.pk/
P

k Pk.1 � �k/k.1 � pk/
(A.7)

is the rate at which SS edges (i.e., edges that are attached to two nodes of type S)
become SI edges. See Ref. [108] for details. The quantity pk.t/ [respectively, qk.t/]
is the probability that a randomly chosen (in particular, chosen uniformly at random)
neighbor of a susceptible (respectively, infected) degree-k node is infected at time t.
The system of equations in Eq. (A.6) consists of at most 3kmax C 1 differential
equations, and it typically gives solutions that are more accurate than the MF
equations in Eq. (A.4).

Equations (A.4) and (A.6) reduce to known MF and PA approximations for
several well-studied dynamical system on networks. For example, consider the SIS
disease model. Inserting Fk;m D �m and Rk;m D � from Eqs. (A.1) and (A.2) into
these general equations yields the MF equations that were derived in Ref. [241] and
the PA equations from Refs. [88, 188]. Similarly, using the voter-model rates from
Eq. (A.3) yields the MF equations of Ref. [286]. The voter-model PA equations that
one obtains in this way [107] constitute a dynamical system whose dimensionality
lies between those of Refs. [260] and [315].

References [107, 108] derived the general MF and PA equations in Eqs. (A.4)
and (A.6), respectively, by considering a more complicated approximation scheme
that involves what are called approximate master equations (AME). In this AME
system, one divides nodes into compartments based both on node state and on the
number of infected neighbors. One approximates transitions between compartments
by global rates to yield a system of (at most) Œ.kmax C 1/.kmax C 2/� closed
nonlinear differential equations. (See Sec. III of Ref. [108].) One can then derive
PA equations from the AME system by assuming that the number m of infected
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neighbors of a susceptible (respectively, infected) node is distributed according to
the binomial distribution Bk;m.pk/ [respectively, Bk;m.qk/] and then using this ansatz
to derive Eq. (A.6) for pk.t/ and qk.t/. This ansatz is exact when it is correct to
treat the neighbors of a node as independent of each other. As we discussed in MF
assumption (2) of Sec. 4.3.4, dynamical correlations imply that this independence-
of-neighbors assumption is not true in general, so the AME solutions typically
are more accurate than PA solutions. The MF equations in Eq. (A.4) result from
replacing both pk and qk by!. In this situation, one neglects the dependence between
the state of the node itself and the states of its neighbors when the node is updated
[see MF assumption (1) of Sec. 4.3.4].

A.3 Monotonic Dynamics and Response Functions

For general binary-state dynamics, an AME system like the one discussed in [108] is
high-dimensional and difficult to analyze. However, in the special case of monotonic
threshold dynamics (see Chapter 3), the AME system reduces to a coupled set of just
two ODEs. This dramatically simplifies analysis. Note that this reduction is exact—
i.e., it does not involve any approximation—so the two-dimensional (2D) system is
more accurate than naive PA or MF theories. See Fig. 4.1 for an example calculation.

A.3.1 Monotonic Threshold Dynamics

Monotonic dynamics allow only one-way transitions, so Rk;m � 0 for all k and m.
Threshold dynamics occur when the transition rate has the form

Fk;m D


0 ; if m < Mk

1 ; if m � Mk
: (A.8)

This reflects deterministic infection (or activation) of a node (once it is chosen for
updating) when m equals or exceeds the threshold level Mk. We have introduced
the vector k to encode two properties of the nodes: their degree k (a scalar) and
their type r. (More generally, the type could be a vector r.) Together, these two
properties determine the threshold Mk for the nodes in a network. For example, all
nodes of type 1 might have the same threshold M1, and all nodes of type 2 might
have a common threshold M2. Thus, the set of nodes is partitioned into disjoint sets
that are labeled by their degree and their type. The type might be some external
label for a node (e.g., the dormitory residence of a student in a university Facebook
network [307]), the assignment of a node into some community [213], an indicator
of whether a node is immune to peer pressure [268], or something else. We combine
the degree and type labels into a 2-vector by writing k D .k; r/ for the k class of
nodes. We generalize the degree distribution to the joint distribution Pk, which gives
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the probability that a node that is chosen uniformly at random has feature vector k
(i.e., it has degree k and is of type r). If the threshold of the nodes are chosen at
random using a process that doesn’t depend on k (i.e, the thresholds are independent
of the node degrees), then one can factor the Pk distribution as Pk D PkPr, where
Pk is the degree distribution and Pr is the probability that a node is of type r.

By considering a large set of discrete types, it is possible to approximate a
continuous distribution of thresholds (e.g., a Gaussian distribution) to a desired level
of accuracy. Reference [108] demonstrated that the AME system reduces exactly to
the pair of ODEs

d�

dt
D h./ � � ; (A.9)

d

dt
D g./ �  ; (A.10)

where the functions h./ and g./ are

h./ D �.0/C Œ1 � �.0/�
X

k

Pk

X

m�Mk

Bk;m./ ; (A.11)

g./ D �.0/C Œ1 � �.0/�
X

k

k

z
Pk

X

m�Mk

Bk�1;m./ : (A.12)

The variable .t/ is the probability that a node at one end of an edge is infected,
conditional on the node attached to the other end of the edge being susceptible
[106]. The initial conditions for Eqs. (A.9, A.10) are

.0/ D �.0/ D
X

k

Pk�k.0/ : (A.13)

Solving (A.9, A.10) with the initial conditions (A.13) yields the fraction �.t/ of
infected nodes in a network at time t to a very high level of accuracy. See Fig. 4.1
for some examples. Note that the AME solutions (red curves) are identical to the
solution of the 2D system (A.9, A.10), and they match the numerical simulations of
the original system (black symbols) very closely.

A.3.2 Response Functions for Monotonic Binary Dynamics

Although Ref. [108] derived Eqs. (A.9, A.10) from a full AME system, it is
also possible to obtain these equations using other approaches. For example,
[106] used methods from the study of zero-temperature random-field Ising mod-
els [74, 110] to derive (A.9, A.10) as the asynchronous limit of corresponding
synchronous-updating equations. These methods are related to belief-propagation
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and message-passing algorithms [214], and the approach of Ref. [106] makes it
possible to generalize beyond the (uncorrelated) configuration-model networks that
we have considered thus far. Low-dimensional descriptions such as (A.9, A.10)
for monotonic threshold dynamics have also been derived for networks with
degree–degree correlations and/or community structure [106, 213], networks with
non-negligible clustering [129], and multiplex networks [333]. In Ref. [106], it was
also demonstrated that one can express several structural characteristics of networks,
such as the sizes of K-cores [79] and the giant connected component (GCC) sizes
for site and bond percolation, as steady states of monotonic threshold dynamics.
Such characteristics can thereby be determined using equations of the form (A.9,
A.10). This perspective is likely to be particularly fruitful in the extension of
traditional network measures to multiplex networks and other multilayer networks
[28, 49, 173, 333].

As an example, we show how to apply Eqs. (A.9, A.10) to the Watts threshold
model for social influence (see Sec. 3.3.1). Recall that each node has a threshold Ri

that is drawn from some distribution PR, and a node i that is being updated becomes
active (i.e., moves to the “infected” state) if its fraction of active neighbors mi=ki �
Ri. The thresholds Ri are distributed independently of node degrees, so Pk D PkPR.
Equation (A.8) for this model is

Fk;m D


0 ; if m < kR
1 ; if m � kR

; (A.14)

and the sums over types in Eq. (A.11) become

X

k

Pk

X

m�Mk

Bk;m./ D
X

R

PR

X

m�kR

Bk;m./

D
kX

mD0
Bk;m./

Z 1

�1
PRH .m � kR/ dR

D
kX

mD0
Bk;m./

Z m
k

�1
PR dR

D
kX

mD0
Bk;m./C

�m

k

�
; (A.15)

where H denotes the Heaviside function and C is the cumulative distribution
function (CDF) of the thresholds.

Reference [106] showed that the C.m=k/ term in Eq. (A.15) is an example of a
response function for monotonic dynamics. A response function encapsulates the
mechanism by which a susceptible node becomes infected when it is updated. For
the present discussion, we suppose that a response function f .k;m/ depends on the
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degree k of a node and the number m of infected neighbors. (More generally, a
response function can also depend on other network characteristics.) In this setting,
Eqs. (A.11, A.12) take the form

h./ D �.0/C Œ1 � �.0/�
X

k

Pk

kX

mD0
Bk;m./f .k;m/ ; (A.16)

g./ D �.0/C Œ1 � �.0/�
X

k

k

z
Pk

k�1X

mD0
Bk�1;m./f .k;m/ : (A.17)

Response functions of this type have also been defined for other monotonic
threshold models (such as many of the complex-contagion models in Chapter 3)
and related processes. In bond percolation, for example, the equations for the size
of the GCC (i.e., the steady-state epidemic size in an SIR model) relative to the total
number of nodes, which were previously derived using generating-function methods
[46], are reproduced by taking the limit �.0/ ! 0, using the response function

f .k;m/ D



0 ; if m D 0

1 � .1 � p/m ; if m > 0
; (A.18)

and applying the identity

kX

mD1
Bk;m./ Œ1 � .1 � p/m� D 1 � .1 � p/k : (A.19)

See Sec. II.B of [106] for additional discussion.

A.3.3 Cascade Conditions

In addition to giving very accurate predictions for monotonic dynamics,
Eqs. (A.9, A.10) make it possible to obtain analytical insights into dynamical
processes. Let’s again use the Watts threshold model as an example. Consider
the question of whether, for a given distribution of thresholds, global cascades
can occur on configuration-model networks with degree distribution Pk. Watts
used percolation theory in [328] to derive a cascade condition that addresses this
question. We will now derive the same cascade condition by using linear stability
analysis of the 2D dynamical system defined by Eqs. (A.9, A.10, A.16, A.17).

Suppose that all nodes have positive thresholds, so C.0/ D 0, and consider the
seed fraction �.0/ to be vanishingly small. The system (A.9, A.10) then has an
equilibrium point at .�; / D .0; 0/ that corresponds to a complete absence of
infection. However, if this equilibrium point is (linearly) unstable, then a small
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perturbation (e.g., the infection of a single node) can move the dynamical system
away from the equilibrium at .0; 0/ and result in values �.t/ > 0, constituting a
global cascade. By “global,” we mean that a nonzero fraction of the nodes in a
network become infected in the N ! 1 limit of infinite network size.

The stability of the system in Eqs. (A.9, A.10) is controlled by Eq. (A.10). When
this 1D dynamical system is unstable at  D 0, the values of � determined from
Eq. (A.9) are also strictly positive. One uses standard linear stability analysis [82,
292] to show that a local instability occurs at  D 0 if and only if the following
condition holds:

d

d
Œg./ � �

ˇ
ˇ
ˇ
ˇ
D0

> 0 : (A.20)

That is, there is a local instability when g0.0/ > 1, and the monotonic nature of
the dynamics guarantees in this case that �.t/ is strictly positive for all time (i.e.,
that a global cascade occurs). We now differentiate Eq. (A.17), which is the general
response-function form of g, using f .k;m/ D C.m=k/ for the Watts model and
incorporating the facts that Bk;m.0/ D ım;0 and f .k; 0/ D 0. This yields the cascade
condition that was found in [328]:

X

k

k

z
.k � 1/Pk f .k; 1/ > 1 : (A.21)

When Eq. (A.21) is satisfied, global cascades can occur in the Watts model. Note
that this general condition incorporates information about both network topology
(via the degree distribution Pk) and node-level dynamics (through the expected
response f .k; 1/ of a degree-k node to a single infected neighbor). It thereby yields
interesting and useful information on how network topology influences dynamics.
Further generalizations were considered recently in Ref. [268].

In closing, we note that there are several ways to define a “cascade,” especially
in the context of more general applications than the specific models that we have
considered. When studying empirical data, one may wish to define a “cascade”
based on a specified minimum fraction of nodes that eventually become infected
or a specified minimum fraction that become infected within a specified amount of
time. In practical situations, it can be important to consider the “infection” of people
with a meme (or with something else) within a finite duration of time, so the t ! 1
limit that one typically considers to compute cascade sizes is too restrictive on some
occasions. For example, looser notions of a cascade are relevant when considering
social influence on networks in the commercial and governmental sectors, as it may
be necessary to convince as many people as possible to adopt an idea in a rather
limited amount of time. One can also use heterogeneous measures by, for example,
separately considering whether different parts (e.g., communities) of a network are
affected by a contagion to different extents or by measuring the depth of infection
chains starting from different nodes. As an example, see the “structural virality”
diagnostic of [117].
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