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In the social, behavioral, and economic sciences, it is important to predict which individual opinions eventually
dominate in a large population, whether there will be a consensus, and how long it takes for a consensus to form.
Such ideas have been studied heavily both in physics and in other disciplines, and the answers depend strongly both
on how one models opinions and on the network structure on which opinions evolve. One model that was created to
study consensus formation quantitatively is the Deffuant model, in which the opinion distribution of a population
evolves via sequential random pairwise encounters. To consider heterogeneity of interactions in a population
along with social influence, we study the Deffuant model on various network structures (deterministic synthetic
networks, random synthetic networks, and social networks constructed from Facebook data). We numerically
simulate the Deffuant model and conduct regression analyses to investigate the dependence of the time to reach
steady states on various model parameters, including a confidence bound for opinion updates, the number of
participating entities, and their willingness to compromise. We find that network structure and parameter values
both have important effects on the convergence time and the number of steady-state opinion groups. For some
network architectures, we observe that the relationship between the convergence time and model parameters
undergoes a transition at a critical value of the confidence bound. For some networks, the steady-state opinion
distribution also changes from consensus to multiple opinion groups at this critical value.
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I. INTRODUCTION

Social interactions play a central role in the process of deci-
sion making and opinion formation in populations of humans
and other animals [1,2]. Discussions among acquaintances,
coworkers, friends, and family members often lead interlocu-
tors to adjust their viewpoints on politics, participation in a
social movement, adoption of technological innovations, or
other things [3–7]. Indeed, trying to forecast collective opinion
formation in a population from attributes of individuals is one
of the most important problems in the social sciences [8,9].
Consensus dynamics is also a key problem in areas such as
control theory [10,11] and collective dynamics more generally
[12]. From a physical and mathematical standpoint, the study
of opinion dynamics is one of the key motivating examples
for examining the effects of network structure on dynamical
processes on networks [13].

There are various methods for studying opinion forma-
tion in social networks, such as through Bayesian learning
or generative social-interaction mechanisms [14]. Bayesian
updating requires some unrealistic assumptions about indi-
viduals’ knowledge and reasoning ability, and it becomes
computationally infeasible in complex settings [1,14]. Even
in opinion models that do not suffer from these issues, there
remains significant arbitrariness in the choice of specific
models and parameters to use, and different choices can lead
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to markedly (and qualitatively) different results [14,15]. A
substantial amount of work on non-Bayesian approaches to
opinion formation employs models and tools from dynam-
ical systems, probability theory, and statistical physics [8].
Moreover, a major theme in statistical physics is how global
properties can emerge from local rules, which is similar to the
question in the social sciences of how the collective opinion
of a population evolves as a result of individual attitudes and
the mutual influence of individuals on each other [16]. Some
notable generative models of opinion formation include voter
models [17–20], majority-rule models [21], models based on
social-impact theory [22,23], the Sznajd model [24,25], and
bounded-confidence models [26–29].

Bounded-confidence models, first introduced (to our knowl-
edge) by Deffuant et al. [26,30] and Hegselmann and Krause
[27,28], capture the notion of a tolerance threshold based on
experimental social psychology [31,32]. Bounded confidence
reflects the psychological concept of selective exposure, which
refers to an individual’s tendency to favor information that
supports his/her views while neglecting conflicting arguments
[33,34]. The Deffuant model and the Hegselmann–Krause
(HK) model both consider a set of agents who hold continuous
opinions that can change. Agents are connected to each other
by an interaction network, and neighboring agents adjust their
opinions at discrete time steps whenever their opinions are
sufficiently close to each other. The two models differ primarily
in how they model communication. In the HK model, agents
interact with all of their compatible neighbors simultaneously
at each time step, and they update their opinions to agree with
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the mean opinion of these neighbors. In contrast, the Deffuant
model adopts a sequential updating rule and can be viewed as a
discrete-time repeated game that is played in pairwise fashion
among a set of agents until the agents’ opinions converge to
either a single opinion or multiple opinions [1,35,36]. One
can also tune the speed at which opinions converge in the
Deffuant model using an additional parameter, sometimes
called a cautiousness parameter, that describes openness to
compromise. The Deffuant model was developed to study
opinion-formation processes in large populations in which
individual agents interact in pairs, whereas the HK model is
suitable for contexts such as meetings with many participants.
Despite the differences in interaction mechanisms in the two
models, the original versions of the Deffuant and HK models
have identical sets of stable opinion configurations [37]. The
fact that there are many such configurations makes this result
especially interesting. Two questions have drawn considerable
attention: (1) How does the parameter space influence the
number of steady-state opinion groups, where no further
changes in opinions are possible? (2) How long does it take
for a system to reach steady state [26,30,38–40]?

The study of opinion-formation processes has traditionally
considered an opinion to be a discrete variable, which is a
reasonable assumption for some applications. For instance,
the classical voter model [17,18] has a binary variable that
specifies one’s decision in a vote. However, it is important
to develop models that incorporate more nuanced opinions,
and the Deffuant and HK models both have a continuous
opinion space, as an individual’s stance on a specific matter
can vary smoothly from one extreme to another in many
real-world scenarios [8]. For instance, a political position (on
a single dimension) is not typically simply “left” or “right” but
somewhere in between two extremes.

Although the Deffuant model may seem simple, analytical
results about its convergence rate and steady-state behavior
are hard to obtain in general, and most conclusions rely on
Monte Carlo simulations. It has been shown numerically, for
a few values of the cautiousness parameter, that consensus
occurs for large confidence-bound values on complete graphs
with a probability close to 1 in the large-population limit,
whereas multiple opinion groups persist at steady state for low
confidence bounds [30,38,40,41]. Different confidence-bound
thresholds have been proposed for transitions from consensus
to multiple opinion groups at steady state. When there are
multiple groups, one can approximate the number of them
by a function of the confidence-bound value [30,40]. Some
numerical simulations have suggested that the time to reach
steady-state opinions is proportional to the number of agents
in a network [38]. Moreover, a larger value of the cautiousness
parameter increases not only the convergence speed but also
the number of agents who hold extreme opinions at steady state
[38].

Some prior work has compared results for the Deffuant
model on complete graphs with those on other networks.
Results for complete graphs and square lattices are similar
for large confidence-bound values, except that a few extreme
opinions remain on square lattices at steady state [30]. The
Deffuant model has also been simulated on random graphs
[42] generated by Barabási–Albert (BA), Erdős–Rényi (ER),
and Watts–Strogatz (WS) mechanisms [41,43–45]. However,

different assumptions and update rules are often used, and this
poses a major barrier for comparing results across different
networks.

There have also been efforts to study the Deffuant model
from an analytical perspective using a density function for
the agents in opinion space [39,46]. Assuming continuous
time, such an approach adopts a classical strategy in statistical
physics by deriving a rate equation (also called a “master
equation”) and can be interpreted as taking an infinite limit
of the number of agents [47]. These derivations have not led
to analytical solutions of the Deffuant model, but they require
numerical integration of only a master equation, which is faster
than running Monte Carlo simulations of the original model.
One major finding of [46] is that the number of steady-state
opinion groups grows via a series of bifurcations as the relative
size of the confidence bound decreases. Moreover, major and
minor opinion groups seem to emerge alternately. A bifurcating
and alternating pattern was also observed in [47] through
interactive discrete-time Markov chains. Unfortunately, how-
ever, analyses using a density-based method have relied on
restrictive assumptions, such as homogeneous mixing and
averaging agents’ opinions as the model of compromise.

The Deffuant model itself also has limitations, and nu-
merous efforts have been made to extend it to better reflect
reality. For instance, the confidence bound imposes a boundary
on interacting agents’ decisions of whether or not to adjust
their opinions. A small change in the difference between their
opinions may lead to an entirely different decision. Therefore,
some scholars have proposed the use of smooth confidence
bounds, with which the attraction of agents decreases as their
opinion difference increases [48,49]. Others have considered
random deviations from the bounded-confidence assumption
[50], spatial heterogeneities [51], heterogeneous tolerance
thresholds [30,32,52], and time-dependent thresholds [30].
Additionally, the Deffuant model can be extended to incorpo-
rate vector-valued opinions, although this requires specifying
how to compute a distance between opinions [53]. It is also
worthwhile to study bounded-confidence models on networks
(such as multilayer networks) with increasingly complicated
structures [54], couple bounded-confidence models with the
dynamics of social balance [55], and develop tractable models
that incorporate various other social mechanisms and features
(such as [56], which draws some motivation from fluid flow).

In this paper, we take a systematic approach to studying
the Deffuant model on networks. Quantifying the confidence
bound and the cautiousness of a population is an open question
for many applications, and we hope to gain insight on these
issues. Additionally, although various variants of the Deffuant
model have been studied, prior work has usually considered
specific parameter values and networks, and the conclusions
in many studies have relied on visual inspection and vari-
ous simplifying assumptions. We also make assumptions, of
course, though we hope that our systematic approach will
help inspire additional studies of the Deffuant model and its
generalizations.

We explore the dependence of convergence time and the
number of steady-state opinion groups on network structure,
confidence bound, the number of participating agents, and their
willingness to compromise. We conduct regression analyses to
model convergence time as a function of the model parameters
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and study the qualitative behavior of steady-state opinion
groups. The results of such a regression analysis can be
very helpful for suggesting subsequent studies to obtain a
mechanistic understanding of results. The networks that we
study fall into three categories. The first set of networks—
complete graphs, cycles, prism graphs, square lattices, and
complete multipartite graphs—are synthetic and deterministic.
The Deffuant model has been much studied on complete
graphs and square lattices due to their simple structures, and
we extend this list of simple network structures and compare
our simulation results on these networks with those on more
complex architectures. From our simulations on deterministic
graphs, we find that network topology and the parameter values
of the Deffuant model appear to have an intertwined effect
on convergence time, with the behavior of convergence time
undergoing a transition at a confidence-bound threshold for
some network structures. The second set of networks are ran-
dom graphs (which are also synthetic), including cycles with
random edges, prisms with random edges, and random graphs
generated by an Erdős–Rényi model [57]. Due to their simplic-
ity, these models are a good starting point for understanding
the Deffuant model on random graphs. Our simulations suggest
that the behavior of convergence time on random-graph models
is similar to that on counterpart deterministic networks. The
third set of networks are empirical and deterministic. In
particular, we use two FACEBOOK100 networks, which are
constructed using Facebook “friendship” data [58,59] and
which are a type of network in which agents have discussions
and their opinions can change over time. Using all three types
of networks, we discuss the number of steady-state opinion
groups and phenomena such as a confidence-bound threshold
for a transition from consensus to multiple-opinion steady
states. As in [26], we take into account all opinion groups when
considering convergence time and the number of steady-state
opinion groups. This corresponds to circumstances in which all
opinions matter, as even small groups with antiestablishment
opinions can be important [60]. See [38,47] for discussions
about distinguishing major and minor opinion groups.

The rest of our paper is organized as follows. First, we
introduce relevant definitions from network science, define
the Deffuant model in mathematical terms, and present some
important known results for the Deffuant model on networks.
We then describe our methodology and introduce the networks
and the approach that we use for numerical simulations. We
then conduct regression analyses on our simulation results to
explore the dependence of convergence time on network struc-
ture, confidence bound, the number of participating agents, and
their cautiousness. We also discuss the phenomena that we
observe about the number of steady-state opinion groups, and
we comment on their sociological implications. In appendices,
we give further details about our statistical analysis, present
results for additional example graphs, and give the results of
the best-fit parameters from the regressions.

II. BACKGROUND

In this section, we recall relevant definitions from network
science. We then define the Deffuant model, give some in-
tuition about its design, and present some important known
results about the Deffuant model on networks.

A. Basic definitions from network science

A network is a set of items (called nodes) with connections
(called edges) between them [42]. Many ideas in network
science originated in graph theory, and we present some
definitions [42,61] that are pertinent to our study. A graph
G is a triple consisting of a node set V (G), an edge set E(G),
and a relation that associates each edge with two nodes (not
necessarily distinct), which are its end points. The simplest
type of network is a graph. Two nodes are adjacent, and are
called neighbors of each other, if and only if they are end points
of the same edge. The degree of a node is equal to the number
of its neighbors. A regular graph is a graph in which each node
has the same degree. A random-graph model is a probability
distribution on graphs that has some fixed parameters and
generates networks randomly in other respects.

B. The Deffuant model

In the Deffuant model, randomly selected neighboring
agents interact in a pairwise manner and make a compromise
toward each other’s opinion whenever their opinion difference
is below a given threshold. (Otherwise, their opinions do not
change.) Consider a population of N agents, who are connected
to each other socially via a network G; and let [a,b] ⊂ R be the
opinion space. At time t ∈ N, suppose that each agent i holds a
time-dependent opinion xi(t) ∈ [a,b]. Given an initial opinion
profile �x(0) ∈ [a,b]N , a confidence bound c ∈ [0,b − a], and a
cautiousness parameter that we call the multiplier m ∈ (0,0.5],
the Deffuant model is the random process (�x(t))t�0 defined as
follows. At time t , a pair of neighboring agents, i and j �= i, are
selected uniformly at random (i.e., we select an edge uniformly
at random) and update their opinions according to the equations

xi(t + 1) =
{
xi(t) + m�j,i(t), if |�i,j (t)| < c,

xi(t), otherwise,
(1)

xj (t + 1) =
{
xj (t) + m�i,j (t), if |�i,j (t)| < c,

xj (t), otherwise,

where �j,i(t) = xj (t) − xi(t).
As in the original paper [26] that introduced the Deffuant

model, most later studies treated the initial opinions as inde-
pendent and identically distributed according to the uniform
distribution on the opinion space [a,b]. We also adopt this
convention, as our goal is to explore the basic version of the
Deffuant model in a systematic manner to provide a point
of reference for results on the model’s variants. Nonuniform
initial opinion distributions were considered, for example, in
[62].

The confidence bound c characterizes a population’s toler-
ance of diverse viewpoints. If the opinion difference between
a pair of agents is smaller than this threshold, they reduce
their disagreement by making a compromise. Otherwise, the
two agents keep their current opinions after they interact (or
perhaps are unwilling to discuss the issue at all). In the extreme
case of c = 0, no interaction can lead to compromise, and the
initial opinion profile is a steady state. At the other extreme,
if c = b − a, then with probability 1, any pair of interacting
agents will compromise their opinions if they interact with each
other. (In this case, the only situation without a compromise is
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if one agent has an opinion of exactly a and the other has an
opinion of exactly b.)

The multiplier (i.e., cautiousness parameter) m, which is
called a convergence parameter in some papers [26,30,38,53],
specifies a population’s cautiousness in the modification of
opinions. A larger value of m indicates that individuals are
more willing to compromise. In the special case m = 0.5,
pairs of interacting agents agree on the mean of their opinions
whenever their opinion difference is below the confidence
bound. Prior studies of the Deffuant model typically have taken
m between 0 and 0.5. However, we allow m ∈ (0,1), as taking
m > 0.5 allows us to capture an “overadaptation” behavior.
Overadaptive agents tend to comply with the beliefs of other
agents, and they are sometimes seen as peacemakers [63–65].
Most past work has considered homogeneous m, but it would
be interesting to examine the effects of heterogeneous levels
of cautiousness. For example, [49] used a smooth influence
function in which agents whose opinions have low uncertainty
are more influential than those whose opinions have high
uncertainty, and other types of heterogeneity are also worth
exploring.

The Deffuant model, in its original form [26], considers the
confidence bound and the multiplier to be constant in time and
homogeneous across a whole population. In this setting, the
mean opinion of two agents is the same before and after they
interact.

Convergence of opinions is generally defined as the appear-
ance of a stable configuration in which no more changes can
occur. The steady-state opinion distribution is a superposition
of Dirac delta functions in the opinion space [a,b], such that
consecutive spikes are separated by a distance of at least c. In
other words, any two agents either hold the same opinion or
their viewpoints differ by a distance of at least c. We use the
notation K ∈ N to denote the number of steady-state opinion
groups.

C. The Deffuant model on various networks

The agents in a Deffuant model are represented by nodes
of a network, and a pair of agents on a randomly selected edge
can interact with each other. To the best of our knowledge,
the Deffuant model has been studied on only a few types of
networks, including complete graphs, square lattices, Erdős–
Rényi (ER) random graphs, Watts–Strogatz (WS) random
graphs, and Barabási–Albert (BA) random graphs.

The Deffuant model on complete graphs has received
considerable attention. Complete graphs can be used to model
small communities, such as high-level political leaders in a
country or inhabitants of a village, in which everyone knows
each other. Complete graphs are also sometimes used as
approximations for individual communities in large social
networks, as individuals within communities are more closely
connected with each other than with outsiders [66,67]. When
there is homogeneous mixing in a population, the set of
opinions always reaches a steady state [39]. It has been
demonstrated numerically that a large confidence bound c

yields consensus at steady state, whereas multiple opinion
groups can persist for small values of c [26,30,38,40,41]. Such
results were also obtained in simulations on square lattices,
ER random graphs, WS random graphs, and BA random

graphs [16,26,45,68]. Moreover, some numerical simulations
on complete graphs suggested that one can estimate the number
K of major steady-state opinion groups by the integer part
of 1/(2c) [26], such that perhaps the multiplier m and the
number N of participating agents do not have a significant
effect on K [26,30]. However, a later study [38] observed that
the number of “major opinion” groups that include many agents
is a function of c, and the number of “minor opinion” groups
(i.e., groups of minorities) depends on m.

On square lattices, WS random graphs, and BA random
graphs, the Deffuant model includes behavior that differs
from that in homogeneously mixing populations. For instance,
simulations on square lattices and BA random graphs suggest
that K depends not only on c, but also on N , when multiple
opinion groups persist at steady state [26,45]. Simulations on
WS random graphs indicate that K depends both on c and on
network architecture, and that the presence of “disorder” in the
form of random “shortcut” edges seems to have only a small
effect on the convergence time T [43].

Existing research on the Deffuant model on ER random
graphs has often focused on adaptive networks, which evolve
along with the opinions [16,68]. For WS random graphs, the
study of the Deffuant model has centered around steady-state
opinion groups [43].

III. METHODS

For each network structure, we conduct a regression anal-
ysis to examine convergence time as a function of confidence
bound, the number of participating agents, and the multiplier
that measures cautiousness. We then qualitatively examine the
number of steady-state opinion groups.

A. Networks studied

We study the Deffuant model on a variety of networks
to improve understanding of the effect of network structure
on convergence time and the number of steady-state opinion
groups. Some of the networks that we study have deterministic
structures, and others are random graphs. In Table I, we
give notation, definitions, and examples for these networks.
The first set of networks that we examine are deterministic
graphs, including complete graphs (Kn), cycles (Cn), prism
graphs (Yn), square lattices (Sl), and complete multipartite
graphs (Kn,r ). These networks have been studied extensively
because of their simple structures. Our simulation results on
these networks provide reference points for comparisons with
conclusions about (1) variants of the Deffuant model and (2)
the original Deffuant model on more complicated network
structures. The second set of networks that we study consists
of random graphs: cycles with random edges (Cn,s) (which are
related to WS small-world networks [71,72]), prism graphs
with random edges (Yn,s), and random graphs generated by
the Erdős–Rényi G(n,p) model. Finally, we investigate the
Deffuant model on real social networks constructed using
Facebook “friendship” data [58,59].

B. Simulation specifications

Without loss of generality, we consider the Deffuant model
with opinions on the space [0,1] and the confidence bound
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TABLE I. Summary of the definitions of the synthetic networks on which we study the Deffuant model. In each example network, solid
lines represent deterministic edges, and dashed lines represent edges that are generated randomly.

Network Definition Example

Kn A complete graph Kn has n pairwise adjacent nodes [61].

Cn For n � 3, a cycle Cn has node set {vj | j ∈ {1, . . . ,n}} and edge set {vjvj+1 | j ∈ {1, . . . ,n − 1}} ∪ {vnv1}
[61].

Yn For an even integer n � 6, let {vj | j ∈ {1, . . . , n

2 }} and {wj | j ∈ {1, . . . , n

2 }} be the node sets of two
disjoint cycles. The prism Yn is defined as the graph obtained by joining the two cycles using the edges
{vjwj | j ∈ {1, . . . , n

2 }} [69].

Sl For a positive integer l, we define a square lattice Sl of side length l as the graph with node set
{(x,y) | 0 � x,y � l, with x,y ∈ Z} and edges {(x1,y1)(x2,y2)} such that ‖(x1 − x2,y1 − y2)‖2 = 1.

Kn,r For an integer r � 2 and positive integers n1, n2, . . . , nr , a complete r-partite graph Kn1,n2,...,nr
is a graph

whose node set can be partitioned into r subsets (called partite sets) of sizes n1, n2, . . . , nr , such that two
nodes are adjacent if and only if they are from two distinct subsets. We consider complete r-partite graphs
with equal-sized partite sets and denote such graphs as Kn,r , where r equals the number of partite sets and
n (a multiple of r) is the size of the node set [70].

Cn,s For n � 4 and s ∈ (0, n−3
2 ), we define Cn,s as follows: start with the cycle Cn and add edges uniformly at

random between nonadjacent nodes until there are sn extra edges.

Yn,s For an even integer n � 6 and s ∈ (0, n−4
2 ), we define Yn,s as follows: start with Yn and add edges uniformly

at random between nonadjacent nodes until there are sn extra edges.

G(n,p) For n ∈ N and p ∈ [0,1], we generate random graphs from the Erdős–Rényi (ER) G(n,p) model [57] as
follows: start with n disconnected nodes and place an edge between each distinct pair of nodes with
independent probability p.

c ∈ [0,1]. In other words, we normalize the opinion dynamics
so that each agent’s opinion lies between 0 and 1 at each time
step. We also consider the multiplier m ∈ (0,1), as opposed to
the interval (0,0.5] in the original model [26]. This generaliza-
tion is useful, as interacting agents can perhaps be convinced
to believe in others’ opinions more than their own. Moreover,
considering m ∈ (0,1) reveals interesting phenomena that we
will discuss in Sec. IV. A few of the parameter values
have specific interpretations. For example, for c = 1, with
probability 1, any pair of interacting agents makes convergent

opinion adjustments that correspond to interaction without a
confidence bound. For m = 0.5, each pair of interacting agents
agrees on their mean opinion whenever their opinion difference
is below c. Theoretically, there is no upper bound on the
number of agents that one can consider in a population, but
running numerical simulations on extremely large populations
is computationally intensive. For our simulations, we use a
maximum of N = 1000 agents, and one can infer the behavior
of the model for larger populations from our regression
analyses.
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The convergence time T and the number K of steady-state
opinion groups are both difficult to predict, as the initial opinion
profile, the pair of agents that interact at each time step, and
the particular graphs generated by random-graph ensembles
are all stochastic. To smooth out these sources of noise, we
run 10 groups of independent simulations for each network
in Sec. III A and each combination of the values of N , c, and
m that we consider. During one simulation, we first generate
a group of N independent and identically distributed initial
opinions from a uniform distribution on [0,1], and we then
simulate the evolution of opinion dynamics according to the
Deffuant model.

In principle, it takes infinitely long to reach a steady state,
as the opinion space is continuous and opinions approach each
other arbitrarily closely without reaching the same value in
a finite time unless m = 0.5 [38]. However, the emergence
of a steady state is evident at finite times, as consecutive
opinion groups must be separated by a distance of at least
c to avoid merging. Therefore, in practice, we need to set a
convergence criterion in our numerical simulations. For our
study, we consider an opinion profile to be a steady-state
one if consecutive opinion groups are separated by a distance
of at least c and the differences in each group are no more
than 0.02. Based on some test runs, we also choose a bailout
time of 109 iterations for each simulation. If a steady state is
reached by the bailout time, we record the convergence time
(T ) and the number (K) of opinion groups. Otherwise, we
record T = 3.55 × 109, a strict upper bound that is higher than
all possible convergence times, for the purpose of visualization.

IV. NUMERICAL SIMULATIONS AND RESULTS

In this section, we study the Deffuant model on various
deterministic, randomly generated, and real-world networks
by considering different network structures and interaction-
parameter values. For each type of network, we first conduct
data exploration and linear regression analysis to model con-
vergence time (T ) as a function of the number (N ) of participat-
ing agents, the confidence bound (c), and the multiplier (m). We
then discuss our qualitative observations about the number of
steady-state opinion groups (K). In Appendix A 1, we provide
a brief introduction to linear regression analysis. Because
the processes of data exploration and regression analysis are

similar, we only give full details (in Appendix A 2) for a subset
of the parameter space for our simulations on complete graphs.

We select the network structures that we present in this
section based on features of the dynamics on them that we wish
to highlight. We also study other examples, which we discuss
in Appendix B. The examples that we relegate to Appendix B
still have interesting dynamics, but similar dynamics arise in
one or more of the examples in this section.

For each set of parameters and network structure that we
consider, we conduct regression analysis using the mean results
of 10 different simulations. We only use simulation results of
networks with 100 or more agents to reduce the stochasticity
introduced by the random initial opinion profile and to ensure
that there is a sufficient quantity of data for testing the model
assumptions. In Appendix C, we give detailed results of our
statistical analysis for each of our examples.

A. Complete graphs

The simplest form of the Deffuant model allows any pair
of agents in a system to interact [26]. This is equivalent to
studying the model on a complete graph.

In Fig. 1, we summarize the values of ln(T ) that we
observe in simulations for various N (recall that N denotes the
number of nodes in a graph), as these are representative of the
trends that we observe in all simulations. We present a similar
set of plots for other network structures in the subsequent
subsections.

Our data exploration (see Appendix A 2) suggests that
the convergence time T has qualitatively different behavior
for c < 0.5 and c � 0.5, so we consider different regression
models for these two cases.

For c < 0.5, model selection based on the Akaike informa-
tion criterion (AIC) yields

ln(ln(T )) = β0 + β1N + β2N
2 + β3c

2 + β4Nc + ε, (2)

where we assume that ε is an independent and normally
distributed error with mean 0 and constant variance for every
observation. We give our estimates for the coefficients βj (with
j = 0,1, . . . ,4) in Table IV of Appendix C. The values of the
AIC and R2 are −2037.1 and 0.8246, respectively.

FIG. 1. Convergence times for simulations on N -node complete graphs for various N . These are representative of the trends that we observe
in all simulations. (We generate this and all subsequent figures of this type using the MATPLOTLIB library for PYTHON developed by Hunter
[73].)
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FIG. 2. Number of steady-state opinion groups in simulations on complete graphs for various N . These are representative of the trends that
we observe in all simulations. We use the color gray to represent simulations that do not converge by the bailout time (109 iterations) in this
figure and our subsequent figures of this type.

For c � 0.5, regression analysis suggests the model

ln(T ) = β0 + β1 ln(N ) + β2(c − 1)2 + β3(m − 0.5)2 + ε,

(3)

where we give our estimates for the coefficients in Table V of
Appendix C. The values of the AIC and R2 are −3240.9 and
0.9964, respectively.

The different forms of Eqs. (2) and (3) support our conjec-
ture based on data exploration that T undergoes a transition at
c = 0.5. More precisely, our regression results suggest that the
behavior of T differs for c � 0.4 and c � 0.5. To determine
a more precise transition point for c, one should conduct
numerical simulations using c ∈ (0.4,0.5). For c < 0.5, the
multiplier m has no statistically significant impact on T .
Moreover, T tends to increase with N and tends to decrease
with c. For c � 0.5, the effects of N , c, and m on T seem to be
independent (or at least predominantly independent) of each
other. In particular, T increases roughly linearly with N . We
also observe that T increases exponentially with (c − 1)2 and
has a minimum at c = 1, which corresponds to interactions
without a confidence bound. In other words, for fixed N and
m, the convergence time on complete graphs is minimal when,
with probability 1, any pair of interacting agents makes a con-
vergent compromise. Our regression analysis also suggests that
T increases exponentially with (m − 0.5)2 and has a minimum
at m = 0.5. This corresponds to the case in which each pair of
interacting agents agrees at their mean opinion whenever their
opinion difference is below the confidence bound.

For each combination of N , c, and m, we average the
number K of steady-state opinion groups if and only if at
least 60% of simulations reach steady state within the bailout
time. Otherwise, we state that we observe a “division” of
opinions for the associated parameter combination. We use the
same standard to determine the number of steady-state opinion
groups in our subsequent numerical experiments.

In Fig. 2, we summarize the number of steady-state opinion
groups that persist in our simulations on complete graphs.
We observe that K depends on N only when the confidence
bound is c < 0.5, with the most dramatic changes occurring
near c = 0.1. For c � 0.5, consensus is reached consistently.
For c ∈ [0.1,0.4], we observe that K tends to increase with
N . Additionally, for c < 0.5 and N � 600, we observe that
K tends to be larger for m closer to 0.5. This is reasonable,
because, as m → 0.5, interacting agents tend to settle on the
mean of their opinions, which reduces the length of time for
opinions stabilize. Therefore, more opinion groups tend to
persist at steady state.

B. Cycle graphs

In this subsection, we explore the behavior of the conver-
gence time and the number of steady-state opinion groups
by simulating the Deffuant model on N -node cycles. We
will compare these simulation results to ones on cycles with
additional, randomly placed “shortcut” edges in Sec. IV D.

In Fig. 3, we summarize the values of ln(T ) that we observe
in our simulations on cycles. Our simulations suggest that ln(T )

FIG. 3. Convergence time for simulations on N -node cycles for various N .
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FIG. 4. Number of steady-state opinion groups in simulations on cycles for various N .

changes rapidly with m when c is close to 1. We speculate that
a singularity arises at c = 1 and m = 0.5 as N → ∞. Our
linear regression models cannot capture singular points, and
we exclude data points that correspond to c � 0.7 from our
regression analysis for cycles. Our regression analysis gives
the model

ln(T ) = β0 + β1 ln(N ) + β2c + β3c
2 + β4(m − 0.5)2

+ β5Nm + ε, (4)

where we give our coefficient estimates in Table VI of Ap-
pendix C. The values of the AIC and R2 are −3257.6 and
0.9991, respectively.

In contrast to our observations on complete graphs, our
simulations on cycles indicate that the dependence of T on
N , c, and m does not undergo a transition with respect to c.
We observe that T decreases with c, and, as c gets closer to 1,
the value of ln(T ) changes with m increasingly rapidly as N

increases. The convergence time T tends to increase with N

and has a global minimum at approximately m = 0.5 for fixed
values of N and c.

In Fig. 4, we summarize the number of steady-state opinion
groups that arise in our simulations on cycles. A consensus is
reached for N ∈ [100,700]. Although some of our simulations
for N ∈ [800,1000] do not converge by the bailout time, we
conjecture that all simulations on cycles with large values of
N will eventually converge, for any values of c and m, if
the Deffuant dynamics occur for sufficiently many iterations.
A consensus is reached when c � 0.5 for N = 10 and when
c � 0.2 for N = 50. This observation is reasonable, as, with
fewer agents, the initial opinions of neighboring nodes tend to

be farther apart, which leads to more groups. As with our results
for complete graphs, we observe that more opinion groups tend
to emerge in the final state as m → 0.5 if multiple opinion
groups persist at steady state.

C. Square lattice graphs

Apart from complete graphs, square lattices are the most
common deterministic networks on which the Deffuant model
has been studied previously [30]. In Fig. 5, we summarize
the values of ln(T ) that we observe in our simulations on
square lattices. For c < 0.5, most of the simulations do not
converge by the bailout time, so we conduct regression analysis
for c � 0.5.

Our regression analysis suggests for c � 0.5 that

(ln(T ))1/4 = β0 + β1 ln(N ) + β2N + β3N
2 + β4c + β5c

2

+ β6m + β7m
2 + β8Nm + ε, (5)

where we give our coefficient estimates in Table VII of
Appendix C. The values of the AIC and R2 are −5684.4 and
0.9908, respectively. Equation (5) suggests that T increases
with N and that T tends to decrease as c increases.

In Fig. 6, we summarize the number of steady-state opinion
groups in our simulations on square lattices. As with our results
on prism graphs (see Appendix B 1), a consensus occurs for
all simulations on square lattices for c � 0.5.

D. Cycle graphs with random edges

We consider graphs generated by the ensemble CN,s (see
Table I) for s = 0.1, s = 0.2, and s = 0.3. These cycles with

FIG. 5. Convergence times for simulations on square lattices.
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FIG. 6. Summary of the number of steady-state opinion groups in simulations on square lattices.

additional, random “shortcut” edges are related to Watts–
Strogatz small-world networks [71,72,74] (see also earlier
work by Bollobás and Chung [75]), except that nodes initially
have degree 2, which yields (for cycles that are not too small) a
clustering coefficient of 0 for each node before we add random
edges.

In Fig. 7, we summarize the values of ln(T ) that we observe
in our simulations on CN,s for s = 0.1, s = 0.2, and s = 0.3.
Regression analysis suggests the model

(ln(T ))α = β0 + β1 ln(N ) + β2N + β3N
2 + β4c + β5c

2

+ β6(m − 0.5)2 + β7Nc + ε, (6)

where the power-transformation parameter is α = −1/3,
α = −2/3, and α = −5/6 for s = 0.1, s = 0.2, and s = 0.3,
respectively. For s = 0.1, the Nc term is statistically in-
significant, so we drop it. In Table VIII of Appendix C, we
summarize our coefficient estimates for Eq. (6). For s = 0.1,
we obtain AIC ≈ −10378.2 and R2 ≈ 0.9853; for s = 0.2, we
obtain AIC ≈ −10443.3 and R2 ≈ 0.9829; and for s = 0.3,
we obtain AIC ≈ −10719.2 and R2 ≈ 0.9816.

Our data exploration and regression analysis suggest that T

does not experience a transition with respect to c. According

to Eq. (6), T increases with N for s = 0.1, s = 0.2, and
s = 0.3. Additionally, T has a global minimum at m = 0.5
for fixed N and c. Adding random shortcut edges to cycles
significantly decreases the convergence time. Additionally, T

increases much more slowly with N for CN,s graphs than it
does for cycles.

In Fig. 8, we summarize the number of steady-state opinion
groups in our simulations on cycles with random edges. With
only a small proportion (specifically, s = 0.1) of random
edges, the number K of steady-state opinion groups is roughly
the same as what we observed in our simulations on cycles
(see Fig. 4). However, with progressively more random edges,
multiple opinion groups start to emerge at steady state for
c � 0.3. We conjecture that, as we increase the fraction of
random edges relative to deterministic ones, the behavior of K

becomes progressively more similar to complete graphs than
to cycles.

E. Erdős–Rényi graphs

We now consider random graphs generated by the Erdős–
Rényi G(N,p) model, where p ∈ [0,1] is an independent
probability for an edge to exist between a pair of nodes.

FIG. 7. Convergence times for simulations on CN,s for s = 0.1, s = 0.2, and s = 0.3 for various values of N .
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FIG. 8. Number of steady-state opinion groups in simulations on CN,s for s = 0.1, s = 0.2, and s = 0.3 for various values of N .

Erdős–Rényi graphs are one of the best-studied random-graph
models [42], and they have been used in previous studies of
the Deffuant model on networks [16,41,68,76]. Interestingly,
existing research on the Deffuant model on ER random graphs
has often focused on adaptive networks that evolve along with
the opinions [16,68]. In our simulations, we consider the ER
G(N,p) model for p = 0.1,0.2, . . . ,0.9. Complete graphs are
a special case of the ER G(N,p) model, as one obtains a
complete graph for p = 1.

In Fig. 9, we show a subset of the values of ln(T ) that we
obtain in our simulations. These values are representative of the
observed trends in all of our simulations. As in our simulations
on complete graphs, we observe qualitatively distinct behavior
for T for c < 0.5 and c � 0.5. Therefore, we conduct separate

regression analyses for these two cases. For c < 0.5, our
regression analysis suggests the model

ln(ln(T )) = β0 + β1N + β2N
2 + β3c

2 + β4(m − 0.5)2

+ β5Nc + ε, (7)

where we give estimates for the coefficients in Table IX.
Random graphs generated by the ER G(N,p) model are a
source of stochasticity for the opinion dynamics. It is thus
not surprising that we observe a larger number of outliers for
our ER simulations than for complete graphs. Let q ∈ [0,1]
be the proportion of data points that we identify as outliers
and thus exclude from our regression analysis. (We construe
a data point as an outlier if T > 600 000. Each data point

FIG. 9. Convergence times for simulations on random graphs generated by the Erdős–Rényi G(N,p) model. We conduct simulations for
p = 0.1, 0.2, . . . , 0.9, and we present a subset of our plots to illustrate the observed trends.
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FIG. 10. Number of steady-state opinion groups in simulations on random graphs generated by the Erdős–Rényi G(N,p) model. We conduct
simulations for p = 0.1, 0.2, . . . , 0.9, and we present a subset of our plots to illustrate the observed trends.

is a mean over 10 simulations, and we choose this value of
T so that all 10 simulations converge by the bailout time of
3.55 × 109.) For c < 0.5, we conduct a regression analysis
for the G(N,p) graphs for p = 0.7, p = 0.8, and p = 0.9, as
q > 0.15 for smaller values of p (and this would undermine the
reliability of the regression analysis). For p = 0.7, we obtain
q ≈ 0.1133, AIC ≈ −1515.5, and R2 ≈ 0.8360; for p = 0.8,
we obtain q ≈ 0.0767, AIC ≈ −1658.1, and R2 ≈ 0.8114;
and for p = 0.9, we obtain q = 0.05, AIC ≈ −1774.1, and
R2 ≈ 0.7984. For c � 0.5, our regression analysis suggests
the model in Eq. (3) for each value of p that we consider.
For each p, Table X of Appendix C gives our estimates
for the coefficients βj (with j = 0,1,2,3), together with the
corresponding values of AIC and R2.

The different forms of Eqs. (3) and (7) support our conjec-
ture from our data exploration that T undergoes a transition at
c = 0.5. For c < 0.5, the convergence time T tends to increase
with N and tends to decrease with c. Equation (7) suggests
that ln(T ) is proportional to exp [(m − 0.5)2] for c < 0.5, in
contrast to the results of our regression model for complete
graphs [see Eq. (2)], which does not illustrate a statistically
significant influence of m on T . For c � 0.5, our regression
model for the ER G(N,p) model is the same as what we
obtained for complete graphs, so the behavior of T with respect
to N , c, and m is similar in that parameter regime. For large
values of p, the estimated coefficients are very close to those
for complete graphs. This suggests that it is probably accurate
to use a mean-field approximation to study convergence time
for the Deffuant model on Erdős–Rényi G(N,p) graphs if p is
close to 1.

In Fig. 10, we illustrate the number of steady-state opinion
groups that arise in our simulations of the Deffuant model on
random graphs generated by the ER G(N,p) model. When
the connection probability p is close to 1, the behavior of K

is similar to what we observed for complete graphs. As p →
0, the major qualitative difference is that opinions sometimes

fail to converge within the bailout time for small values of c.
This is reasonable, because random graphs generated by the
ER G(N,p) model with small p values normally have small
components in addition to the largest connected component.
This impedes (and can also prevent) convergence of opinions.

V. CONCLUSIONS AND DISCUSSION

We studied the Deffuant model on several types of deter-
ministic and random networks. For each of these networks,
we systematically examined the number of groups of different
opinions and the time to reach steady state as a function of the
number (N ) of agents that participate in the opinion dynamics,
the population’s confidence bound (c), and their cautiousness
(which we measure using the multiplier m). For the time
to reach steady state, we used both numerical simulations
and regression analyses to obtain qualitative and quantitative
insights. For the number K of steady-state opinion groups, we
used numerical simulations to examine the qualitative behavior
of the dynamics in different types of networks.

We obtained many insights from our systematic computa-
tions. Studying the effects of network structure on dynamical
processes (such as opinion models) is challenging, and we
were able to achieve several interesting insights about the inter-
twined effects of network topology and the parameter values of
the Deffuant model on the convergence time T . For example,
our regression analyses suggest that the convergence time T

undergoes a transition at a critical value of the confidence
bound (c = 0.5) on complete graphs, prism graphs, prism
graphs with random edges, and Erdős–Rényi networks, but
not on cycles or cycles with random edges. For the prism and
cycle examples, it is interesting that adding a small number of
edges uniformly at random does not seem to alter the presence
or absence of a transition in T . We observed some dynamical
features only in specific types of networks. For complete
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graphs, m has no statistically significant effect on T for c <

0.5, whereas T increases exponentially with (m − 0.5)2 for
c � 0.5. For cycles, we speculated based on simulation results
that T has a singularity at c = 1 and m = 0.5 as N → ∞.
Another interesting observation is that our ER graphs, ranging
from very sparse graphs to complete graphs, have a very similar
relationship (for all values of p that we considered) between
T and the other parameters for c � 0.5. This suggests that it
would be useful to study the Deffuant model on ER graphs
using a mean-field approximation, especially as useful results
have been obtained for other dynamical processes in this way
[13]. Additionally, adding random shortcut edges to cycles
and prism graphs significantly decreases the convergence time,
especially for small values of c. For all networks, our regression
analyses suggest that T tends to decrease as c increases and
that T tends to increase as N increases.

Our results also shed further light on educated guesses and
other claims that have appeared in the literature. We examined
quantitatively how the convergence time T increases with the
number N of agents in a network, and we thereby obtained
several insights for Deffuant dynamics on different network
topologies. For example, although [38] speculated that T is
proportional to N , our regression results indicate that the linear
relationship need not hold and that it depends on the underlying
network topology. Additionally, several papers have concluded
based on numerical simulations for a few values of the multi-
plierm that consensus occurs for the Deffuant model for several
networks (e.g., ER networks, WS networks, and BA networks)
when the confidence bound is large, whereas multiple opinion
groups persist at steady state for low confidence bounds
[30,38,40,41]. However, different transition thresholds (e.g.,
0.25, 0.3, and 0.5) have been proposed for the confidence
bound c. In the synthetic networks that we study (except for
cycles and cycles with random edges), our simulation results
suggest that a transition threshold of c ∈ [0.4,0.5] is most
likely for large populations. For c � 0.5, consensus occurs on
all of our families of deterministic networks (both synthetic
and empirical), except for bipartite graphs. For c < 0.5, more
opinion groups persist at steady state as node degree increases
for our simulations on k-regular graphs given by cycles (for
which the degree is k = 2 for each node), prism graphs (k = 3
for each node), and complete graphs (of progressively larger
size, starting from N = 10 nodes, and hence of progressively
larger degree for each node). This is possibly because, with
larger k, agents in a k-regular graph have more neighbors
with “competing” opinions, which makes it harder for them to
make up their minds. Therefore, more opinion groups remain
at steady state. Additionally, it was proposed in [26] based on
numerical simulations that one can approximate the number of
major steady-state opinion groups by the integer part of 1/(2c)
for a large population. However, our simulations show that this
statement is not true in general. For instance, for simulations
on prism graphs, K = 2 for c � 0.3 when N is large.

Our simulations suggest that the number K of steady-
state opinion groups is similar for random-graph models and
appropriate counterpart deterministic networks (at least for the
network families that we study). For example, adding a small
number of uniformly random edges per node (specifically, the
number of random edges divided by total number of nodes is
small) to cycles and prism graphs does not have an obvious

impact on K . We conjecture that K approaches the value that
one obtains for complete graphs as one progressively increases
the proportion of random edges relative to deterministic ones
on cycles and prism graphs. For the Erdős–Rényi G(N,p)
model, we observed that the behavior of K is similar to that
on complete graphs when the edge generation probability
p is close to 1, corroborating the potential usefulness of a
mean-field approximation.

Our results provide insight into the convergence of opinion
dynamics into stable groups of different opinions and on how
long it takes to achieve such groups in differently structured
populations. For instance, when it is desirable to achieve a
consensus among many individuals (especially in a potentially
contentious situation), one may try to obtain agreement as
quickly as possible, and it is useful to obtain a better under-
standing of which network structures can best achieve such
useful outcomes. It is also noteworthy that one topic in early
studies of bounded-confidence models such as the Deffuant
model was to examine how extremism can take hold in a
population [48,49,77], and (perhaps especially given recent
events) it seems useful to revisit such applications of these
models. In developing models further for such applications, it
will be important to incorporate recent insights, such as those
in [9].

Our systematic approach for studying the Deffuant model
on various network structures is also applicable to other
bounded-confidence models and to models of opinion dy-
namics more generally. For example, the Hegselmann–Krause
model was invented and subsequently attracted much attention
at about the same time as the Deffuant model. It would
be interesting to study the HK model using a systematic
approach that is similar to the one in the present paper. One
can also generalize bounded-confidence models to incorporate
population heterogeneity, such as by drawing cautiousness
parameters from a distribution (analogous to what is done
in threshold models of social influence [13,78]), rather than
using the same value for all individuals, as openness to
compromise varies among individuals. Another generalization
is to take background social conditions into account, such
as by allowing agents’ interactions to have divisive effects
[79,80]. Distinguishing major and minor opinion groups is
also an important future direction for systematic studies of
opinion-dynamics models. Our regression approach should
also be useful more generally for studying dynamical processes
on networks, including generalizations of standard graph struc-
tures (such as multilayer networks [81], temporal networks
[82], and adaptive networks [83]).
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APPENDIX A: STATISTICAL ANALYSIS

In this appendix, we illustrate our statistical analysis in
detail. For concreteness, we briefly introduce linear regression
in Sec. A 1, and we then discuss our analysis in the context
of the Deffuant model on complete graphs in Sec. A 2. We
perform the same procedure for all of our regression analyses.
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1. Linear regression models

In this subsection, we provide a brief introduction, based on
the one in [84], to linear regression models. A key benefit of
a regression approach is that it permits one to draw far more
accurate inferences with small sample sizes than one can obtain
using data fitting.

Given a data set {(xi,yi)} for which the scalar yi is a
dependent variable and the vector xi denotes the explanatory
variables, a linear regression model takes the form

yi = ŷ(xi,β) + εi for all i, (A1)

ŷ(xi,β) = β0 + β1�1(xi) + · · · + βl�l(xi), (A2)

where εi is a mean-0 noise term and �j are basis functions
that extract important features of the explanatory variables.
The model is linear in the unknown parameters βj , which one
estimates from data. Linearity allows the model to have simple
analytical properties. Nevertheless, linear regression models
are powerful tools for describing the relationship between the
dependent variable and the explanatory variables, as �j can
have nonlinear forms.

We fit Eq. (A1) to {(xi,yi)} by minimizing a sum-of-squares
error function

∑
i[ŷ(xi,β) − yi]2 over β. For this loss function,

the estimator is unbiased and consistent if εi have the same
finite variance and are uncorrelated with x [85]. If it is also
the case that εi are normally distributed, then Eq. (A2) is
also the maximum-likelihood estimator. We evaluate these
assumptions throughout our model-selection process.

For model selection, we use the Akaike information crite-
rion (AIC) [86] to select the “best” subset of basis functions, as
this method balances the trade-off between the goodness of fit
and the complexity of a model. This model-selection approach
aims to minimize the AIC value

AIC = 2[k − ln(L)], (A3)

where k is the number of estimated parameters and L is the
maximum value of the likelihood function for the model.
The “coefficient of determination” R2 ∈ [0,1] measures the
fraction of variation in the data that is explained by a regression
model, with R2 = 0 implying no fit and R2 = 1 implying a
perfect fit. The formula for the coefficient of determination is

R2 = 1 −
∑

i[yi − ŷ(xi,β)]2∑
i(yi − ȳ)2

, (A4)

where ȳ is the sample mean. We use the AIC to select regression
models and R2 to measure the goodness of fit.

2. Statistical analysis of simulation results on complete graphs

The scatter plots in Fig. 11 suggest that the convergence
time (T ) depends on the number (N ) of participating agents,
the population’s confidence bound (c), and possibly on their
cautiousness (which we measure using the multiplier m). In
particular, the relationship between T and c seems to undergo
a transition at a critical value c = 0.5, below which we observe
a larger variation in T . In Fig. 12, we show separate scatter plots
for c < 0.5 and c � 0.5 to illustrate the qualitatively distinct
behavior in the two regimes.

First, we consider the case c < 0.5. We start by fitting a
linear model

T = β0 + β1N + β2N
2 + β3c + β4c

2 + β5m + β6m
2

+ β7mc + β8Nc + β9Nm + ε, (A5)

where βj (with j = 0,1 . . . ,9) are coefficients to be esti-
mated and we assume for each observation that ε is an
independent and normally-distributed error with mean 0 and
constant variance. To account for the curvature observed
in Fig. 12, we include explanatory variables up to sec-
ond order in the model in Eq. (A5). We will subsequently
drop statistically insignificant variables in a model-reduction
procedure.

Before proceeding with model selection, we check the
validity of our model assumptions. In Fig. 13, we check the
assumption that the errors have mean 0 and constant variance
by plotting studentized residuals versus the response values
predicted by Eq. (A5). Ideally, variance should be constant
in the vertical direction, and the scatter should be symmetric
vertically about 0. However, Fig. 13 indicates that the variance
is not constant, as the points follow a clear wedge-shaped
pattern, with the vertical spread of the points increasing with
the fitted values. In Fig. 13, we check the assumption of nor-
mality by plotting the sample quantiles versus the quantiles of a
normal distribution. Data generated from a normal distribution
should closely follow the 45◦ line through the origin, but this
is contradicted by the Q–Q plot in Fig. 13. Therefore, the
diagnostics show the necessity of stabilizing the variance to
make the data more like a normal distribution.
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FIG. 11. Scatter plots of convergence time (T ) on complete graphs versus the number of agents (N ), the confidence bound (c), and the
multiplier (m). (We drew this figure using the software environment R [87].)
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FIG. 12. Scatter plots of T versus N , c, and m using simulation results on complete graphs with confidence bound (top) c < 0.5 and
(bottom) c � 0.5. (We drew this figure using R [87].)

The one-parameter Box–Cox method [88] is a popular way
to determine a transformation on strictly positive scalar depen-
dent variables (which are sometimes known as “responses”
in this context) [89]. A Box–Cox transformation maps T to
T (λ), where the family of transformations indexed by λ ∈ R is
defined by

T (λ) =
{

T λ−1
λ

, if λ �= 0,

ln(T ), if λ = 0.
(A6)

In Fig. 14, we show that the confidence interval for λ at
the 95% confidence level is roughly [−0.2,0]. We choose to

set λ = 0, as this corresponds to taking a natural logarithm.
The diagnostics of the new model suggest another logarithmic
transformation, leading to the model

ln(ln(T )) = β0 + β1N + β2N
2 + β3c + β4c

2 + β5m

+ β6m
2 + β7mc + β8Nc + β9Nm + ε,

(A7)

where we assume for each observation that ε is an independent
and normally-distributed error with mean 0 and constant
variance. The variance for ε is not necessarily the same for
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FIG. 13. (a) Studentized residuals versus fitted values and (b) normal Q–Q plot of studentized residuals for Eq. (A5) using our simulation
results on complete graphs with confidence bound c < 0.5. In panel (a), the dashed reference line is the horizontal line through the origin.
Ideally, variance should be constant in the vertical direction, and the scatter should be symmetric vertically about 0. In panel (b), the dashed
reference line is the 45◦ line through the origin. Data generated from a normal distribution should closely follow the dashed line.
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FIG. 14. Profile log-likelihood for the parameter λ of the Box–
Cox transformation.

Eqs. (A5) and (A7). However, we use the same notation for
ε, with the understanding that it is of course allowed to be
different for different models.

We again evaluate our assumptions, and we show our results
in Fig. 15. This time, we observe approximately constant
variance in the vertical direction, and the scatter is roughly
symmetric vertically about 0. There are no studentized
residuals outside the [−3,3] range, revealing no serious
outliers. In Fig. 15, the points closely follow the 45◦ line
through the origin. Therefore, our model assumptions appear
to be reasonable for Eq. (A7).

It is also important to minimize the number of regression
terms in our models. Based on the results of AIC-based model
selection, we drop the linear term in c that is independent of
N and all terms that include m to yield Eq. (2). The diagnostic
graphs for Eq. (2) are similar to those in Fig. 15 and are
therefore acceptable.

Cook’s distance [90] measures the influence of a data point
in a least-squares regression analysis. A common threshold for
detecting highly influential observations is 8/(ñ − 2k̃), where
ñ is the number of observations and k̃ is the number of fitting

TABLE II. Values of AIC and R2 of regression models that we
consider for our simulations on complete graphs with confidence
bound c < 0.5. They are accurate to 5 and 4 significant figures,
respectively.

Model AIC R2

Eq. (A5) 8148.1 0.5272
Eq. (A7) −2038.5 0.8164
Eq. (2) −2044.9 0.8246

parameters. Figure 16 reveals 3 highly influential observations
(which are very far above the threshold) for the model given
by Eq. (2). We remove these 3 points and give the resulting
estimates (accurate to 4 significant figures) for the coefficients
βj (with j = 0,1, . . . ,4) of Eq. (2) in Table IV of Appendix C.

In Table II, we summarize the values of AIC and R2 for the
regression models that we consider for simulations on com-
plete graphs with confidence bound c < 0.5. The substantial
increase in R2 and decrease in AIC indicate that our final model
[see Eq. (2)] has a much better goodness of fit and a consider-
ably simpler form than our original model [see Eq. (A5)].

For c � 0.5, we go through a model-selection process
similar to that for c < 0.5, and we obtain

ln(T ) = β0 + β1 ln(N ) + β2c + β3c
2 + β4m + β5m

2 + ε .

(A8)

We include an ln(N ) term in the full model [see Eq. (A8)]
to account for the linear dependence of T on N that Fig. 12
suggests. AIC-based model selection indicates the statistical
significance of the ln(N ) term. For Eq. (A8), we obtain
AIC ≈ −3248.9 and R2 ≈ 0.9965. In Table III, we give our
estimates for the coefficients βj (with j = 0,1, . . . ,5) of
Eq. (A8).

Table III suggests that one should combine m and m2 into
a single term (m − 0.5)2, and it also suggests that one should
combine c and c2 into (c − 1)2. The model with the combined
terms has AIC ≈ −3240.9 and R2 ≈ 0.9964, which are very
close to those of Eq. (A8) but with two fewer coefficients
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FIG. 15. (a) Studentized residuals versus fitted values and (b) normal Q–Q plot of studentized residuals for Eq. (A7) using simulation
results on complete graphs with confidence bound c < 0.5. The dashed reference lines in panels (a) and (b) are, respectively, the horizontal line
through the origin and the 45◦ line through the origin. These diagnostic plots show that our model assumptions of normally-distributed errors
with mean 0 and constant variance are reasonable for Eq. (A7).
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FIG. 16. Cook’s distances for the regression model in Eq. (2). The
dashed line is a horizontal line through 8/(ñ − 2p̃), where ñ is the
number of observations and p̃ is the number of fitting parameters. This
line gives the threshold for detecting highly influential observations
that are particularly worth checking for validity.

to estimate. Therefore, we update our model for c � 0.5 to
the simpler model in Eq. (3). We give our estimates for the
coefficients of Eq. (3) in Table V of Appendix C.

APPENDIX B: ADDITIONAL EXAMPLES

1. Prism graphs

In this subsection, we explore the behavior of convergence
time and the number of steady-state opinion groups by simu-
lating the Deffuant model on prism graphs (which are a special
type of generalized Petersen graph [91]). We will compare our
simulation results on prism graphs to those on prisms with
additional random edges in Sec. B 3.

In Fig. 17, we summarize the values of ln(T ) that we observe
in our simulations on prism graphs. As with our computations
for complete graphs in Sec. IV A, scatter plots of ln(T ) versus
N , c, and m exhibit qualitatively distinct behavior for c < 0.5
and c � 0.5. We thus conduct separate regression analyses for
c < 0.5 and c � 0.5. For c < 0.5, regression analysis suggests
the model

(ln(T ))2 = β0 + β1N + β2N
2 + β3c + β4c

2 + β5(m − 0.5)2

+ β6Nc + ε, (B1)

TABLE III. Estimates of regression parameters for Eq. (A8).

Estimate Std. Error t value Pr(> |t |)
β0 4.024 5.038 × 10−2 7.988 × 10 <2 × 10−16

β1 1.062 3.039 × 10−3 3.495 × 102 <2 × 10−16

β2 −1.316 1.277 × 10−1 −1.031 × 10 <2 × 10−16

β3 7.346 × 10−1 8.472 × 10−2 8.671 <2 × 10−16

β4 −6.261 3.704 × 10−2 −1.690 × 102 <2 × 10−16

β5 6.262 3.612 × 10−2 1.733 × 102 <2 × 10−16

where we give our coefficient estimates in Table XI of Ap-
pendix C. The values of the AIC and R2 are 1301.9 and
0.9919, respectively. For c � 0.5, regression analysis suggests
the model√

ln(T ) = β0 + β1 ln(N ) + β2c + β3c
2 + β4(m − 0.5)2

+ β5Nc + ε, (B2)

where we give our coefficient estimates in Table XII of
Appendix C. The values of the AIC and R2 are −4219.1 and
0.9845, respectively.

As with complete graphs, the different forms of Eqs. (B1)
and (B2) support our conjecture based on data exploration that
T undergoes a transition at c = 0.5. According to Eqs. (B1)
and (B2), T tends to increase with N . Additionally, T increases
with respect to N more rapidly for c < 0.5 than for c � 0.5.
The convergence time T tends to decrease as c increases for
fixed values of N and m. The convergence time T has a global
minimum at m = 0.5 for constant N and c.

In Fig. 18, we summarize the number of opinion groups
that persist in our simulations on prism graphs. For c � 0.5,
we observe consensus for all simulations on prism graphs. For
c < 0.5, the steady state is mostly polarized into 2 distinct
opinion groups if N � 100 and can sometimes have more than
2 opinion groups for N ∈ {10,50}. As with our simulations
on cycles in Sec. IV B, we observe that large discrepancies in
the initial opinion distribution hinder the agents from agreeing
with each other through their interactions on a prism graph.

2. Complete multipartite graphs

In this subsection, we consider complete multipartite graphs
KN,r , where N is an integer multiple of r . We use the values
r = 2,5,10, and we note that one can construe a complete graph
KN (see Sec. IV A) as a complete multipartite graph KN,r with

FIG. 17. Convergence times for simulations on N -node prism graphs for various N .
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FIG. 18. Number of steady-state opinion groups in simulations on prism graphs for various N .

r = N . By varying the value of r , we explore the effect of
network density (i.e., the ratio of the number of edges to the
maximum possible number of edges [61]) on the behavior of
the Deffuant model.

In Fig. 19, we summarize the values of ln(T ) that we
observe in our simulations on complete r-partite graphs (with
r = 2,5,10). For a confidence bound c < 0.6, most of our
simulations do not converge by the bailout time (109 iterations),
so we conduct regression analysis for c � 0.6. For c � 0.6,
our regression analysis suggests the model given by Eq. (3),
which has the same form as the regression model of complete
graphs when c � 0.5 but has different coefficient values (see
Table XIII of Appendix C).

The regression model in Eq. (3) suggests that the behavior
of the convergence time on a complete multipartite graph
is similar to that on a complete graph. As the number r of
partite sets increases, the growth rate of T with respect to
N decreases slightly for fixed values of c and m. In other
words, as a complete multipartite graph becomes more densely
connected, adding agents to it increases the convergence time
of the Deffuant model at a slower rate if all other conditions
remain the same. Additionally, T increases with (m − 0.5)2

progressively more slowly as r increases.

In Fig. 20, we summarize the number of steady-state opinion
groups in our simulations on complete r-partite graphs (with
r = 2,5,10). For r ∈ {5,10}, we observe consensus for all
c � 0.5. We also observe consensus in all of our simulations
on bipartite graphs with c � 0.6, but some simulations fail to
converge by the bailout time for c = 0.5.

3. Prism graphs with random edges

We consider random graphs generated by the ensemble YN,s

(see Table I) for s = 0.1, s = 0.2, and s = 0.3. We study the
effect of adding uniformly random edges on the behavior of
the Deffuant model by comparing our simulation results with
the ones that we obtained for prism graphs in Sec. B 1.

In Fig. 21, we summarize the values of ln(T ) that we observe
in our simulations on YN,s for s = 0.1, s = 0.2, and s = 0.3.
As with our results for prism graphs in Sec. B 1, we observe
qualitatively distinct behavior of the convergence time for
c < 0.5 and c � 0.5 for the Deffuant model on YN,s . Therefore,
we conduct separate regression analyses for these two cases.
For c < 0.5, our regression analysis suggests the model

ln(T ) = β0 + β1N + β2N
2 + β3c + β4c

2

+ β5(m − 0.5)2 + β6Nc + ε, (B3)

FIG. 19. Convergence times for simulations on N -node complete r-partite graphs (with r = 2,5,10) for various N .
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FIG. 20. Number of steady-state opinion groups in simulations on N -node complete r-partite graphs (with r = 2,5,10) for various N .

where we give our coefficient estimates in Table XIV of
Appendix C. For s = 0.1, we obtain AIC ≈ −592.1 and
R2 ≈ 0.9613; for s = 0.2, we obtain AIC ≈ −427.99 and
R2 ≈ 0.9283; and for s = 0.3, we obtain AIC ≈ −482.58 and
R2 ≈ 0.9336. For c � 0.5, our regression analysis suggests
the model

ln(T ) = β0 + β1 ln(N ) + β2c + β3c
2 + β4(m − 0.5)2

+ β5Nc + ε, (B4)

where we give our coefficient estimates in Table XV of
Appendix C. For s = 0.1, we obtain AIC ≈ −2596.67 and
R2 ≈ 0.9914; for s = 0.2, we obtain AIC ≈ −2693.1 and
R2 ≈ 0.9922; and for s = 0.3, we obtain AIC ≈ −2912.41
and R2 ≈ 0.9947.

The different forms of Eqs. (B3) and (B4) support our con-
jecture based on data exploration that T undergoes a transition

at c = 0.5. The convergence timeT tends to increase withN for
fixed values of c and m. Moreover, T increases exponentially
with (m − 0.5)2 and has a minimum at m = 0.5. We also
observe that T tends to decrease as c increases for fixed values
of N and m. Adding edges uniformly at random to prism graphs
decreases T more substantially for c < 0.5 than for c � 0.5.

In Fig. 22, we summarize the number of opinion groups
that persist in our simulations on prism graphs with randomly
generated extra edges. As we observed for prism graphs,
we always obtain consensus on prism graphs with random
edges for confidence bound c � 0.5. However, for c < 0.5 and
N � 50, we observe K � 2, in contrast to K ≈ 2 for prism
graphs. Therefore, when a population’s confidence bound is
small, adding edges uniformly at random to prism graphs
tends to expedite the process of opinions dividing into distinct
groups, instead of helping to achieve consensus in a popula-
tion.

FIG. 21. Convergence times for simulations on YN,s for s = 0.1, s = 0.2, and s = 0.3 for various values of N .
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FIG. 22. Number of steady-state opinion groups in simulations on YN,s for s = 0.1, s = 0.2, and s = 0.3 for various values of N .

4. Facebook friendship networks

We now simulate the Deffuant model on two Facebook
“friendship” networks [58]—one of Swarthmore College and
the other of the California Institute of Technology (Caltech)—
from one day in autumn 2005. We consider the largest con-
nected component (LCC) of each network. For the Swarthmore
network, the LCC has 1657 nodes and 61049 edges. The LCC
of the Caltech network has 762 nodes and 16651 edges.

In Fig. 23, we summarize the values of ln(T ) that we observe
in simulations. For c < 0.5, most of the simulations on both
networks fail to converge by the bailout time, so we consider
only the results of c � 0.5 in our regression analyses. For the
Swarthmore network, we obtain a regression model of

T − 7
8 = β0 + β1c + β2c

2 + β3(m − 0.5)2 + ε, (B5)

where we give our estimates for the coefficients in Table XVI
of Appendix C. The values of the AIC and R2 are −1279.02
and 0.9987, respectively. For the Caltech network, we obtain
a regression model of

T − 2
3 = β1c + β2c

2 + β3(m − 0.5)2 + ε, (B6)

FIG. 23. Convergence times for simulations on the largest con-
nected components of the Swarthmore and Caltech Facebook net-
works from the FACEBOOK100 data set [58].

where we give our estimates for the coefficients in Table XVII
of Appendix C. The values of the AIC and R2 are −1001.8
and 0.9981, respectively.

For both networks, the parameters c and m have an inter-
twined effect on T . Moreover, if m is fixed, the convergence
time T tends to decrease as c increases. If c is fixed, T

increases with (m − 0.5)2. The convergence time for both of
the networks is qualitatively similar to what we observed for
cycles with uniformly random edges (see Sec. IV D) of compa-
rable network sizes. This empirical observation suggests that
simulating the Deffuant model on random graphs generated by
these and similar networks (e.g., WS networks) may yield some
useful insights about the convergence time for the Deffuant
model on social networks.

In Fig. 24, we summarize the number of steady-state opinion
groups in our simulations on the LCCs of the Swarthmore
and Caltech Facebook networks. In both networks, consensus
occurs for all confidence bounds c � 0.5. For c < 0.5, at least
half of the simulations fail to converge within the bailout time,
but those that converge suggest that K increases as c → 0. In

FIG. 24. Number of steady-state opinion groups in simulations
on the largest connected components of the Swarthmore and Caltech
Facebook networks.
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contrast, our simulations of Deffuant dynamics on cycles with
uniformly random edges reach a steady state before the bailout
time (see Sec. IV D).

APPENDIX C: BEST-FIT PARAMETERS IN
REGRESSION MODELS

In this appendix, we present part of our regression output in
Tables IV–XVII. (We use the software environment R [87] for

our regressions.) In Tables IV–VII, XI, XII, XVI, and XVII, we
also indicate standard errors, and the column for t values gives
the values of the t-statistic for the hypothesis test with the null
hypothesis that the corresponding regression coefficient is 0.
The column for Pr(> |t |) in these tables gives the probability
that a test statistic is less likely than the observed t value if the
null hypothesis is true. A low value of Pr(> |t |) suggests that
it is rare to obtain a result as extreme as the observed value
if the coefficient under consideration were 0. In that case, we
should keep the corresponding term in the model.

TABLE IV. Estimates of regression coefficients for Eq. (2). In this and subsequent tables, we present estimates for regression coefficients
that are accurate to four significant figures. We also give standard errors, t values, and the probabilities that a test statistic is less likely than the
observed t value if the null hypothesis is true.

Estimate Std. Error t value Pr(> |t |)
β0 2.139 1.380 × 10−2 1.550 × 102 <2 × 10−16

β1 7.124 × 10−4 5.255 × 10−5 1.356 × 10 <2 × 10−16

β2 −3.763 × 10−7 4.178 × 10−8 −9.006 <2 × 10−16

β3 −9.922 × 10−1 1.076 × 10−1 −9.220 <2 × 10−16

β4 3.696 × 10−4 8.983 × 10−5 4.114 4.850 × 10−5

TABLE V. Estimates of regression coefficients for Eq. (3).

Estimate Std. Error t value Pr(> |t |)
β0 1.865 1.916 × 10−2 9.734 × 10 <2 × 10−16

β1 1.062 3.067 × 10−3 3.463 × 102 <2 × 10−16

β2 4.530 × 10−1 2.398 × 10−2 1.889 × 10 <2 × 10−16

β3 6.262 3.646 × 10−2 1.718 × 102 <2 × 10−16

TABLE VI. Estimates of regression coefficients for Eq. (4).

Estimate Std. Error t value Pr(> |t |)
β0 −6.313 × 10−1 3.054 × 10−2 −2.067 × 10 <2 × 10−16

β1 3.018 5.142 × 10−3 5.870 × 102 <2 × 10−16

β2 −2.630 6.357 × 10−2 −4.137 × 10 <2 × 10−16

β3 −1.624 7.708 × 10−2 −2.107 × 10 <2 × 10−16

β4 9.371 4.669 × 10−2 2.007 × 102 <2 × 10−16

β5 −7.642 × 10−5 1.713 × 10−5 −4.461 9.770 × 10−6

TABLE VII. Estimates of regression coefficients for Eq. (5).

Estimate Std. Error t value Pr(> |t |)
β0 1.505 1.194 × 10−2 1.261 × 102 <2 × 10−16

β1 7.361 × 10−2 2.550 × 10−3 2.887 × 10 <2 × 10−16

β2 −4.931 × 10−5 1.358 × 10−5 −3.630 3.110 × 10−4

β3 1.336 × 10−8 7.154 × 10−9 1.868 6.227 × 10−2

β4 −5.129 × 10−2 1.288 × 10−2 −3.982 7.790 × 10−5

β5 3.154 × 10−2 8.543 × 10−3 3.692 2.460 × 10−4

β6 −2.430 × 10−1 4.093 × 10−3 −5.938 × 10 <2 × 10−16

β7 1.396 × 10−1 3.654 × 10−3 3.821 × 10 <2 × 10−16

β8 1.544 × 10−5 2.862 × 10−6 5.395 1.030 × 10−7
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TABLE VIII. Estimates of regression coefficients for Eq. (6). For s = 0.1, the Nc term is statistically insignificant, so we drop it.

s β0 β1 β2 β3 β4 β5 β6 β7

0.1 5.485 × 10−1 −3.140 × 10−2 6.760 × 10−5 −2.908 × 10−8 1.820 × 10−1 −1.101 × 10−1 −9.576 × 10−2 N/A
0.2 2.763 × 10−1 −2.351 × 10−2 4.343 × 10−5 −1.653 × 10−8 1.779 × 10−1 −1.084 × 10−1 −8.901 × 10−2 −1.008 × 10−5

0.3 2.031 × 10−1 −1.977 × 10−2 3.548 × 10−5 −1.090 × 10−8 1.452 × 10−1 −8.829 × 10−2 −7.934 × 10−2 −1.093 × 10−5

TABLE IX. Estimates of regression coefficients for Eq. (7).

p β0 β1 β2 β3 β4 β5

0.7 2.098 8.744 × 10−4 −4.854 × 10−7 −8.606 × 10−1 2.294 × 10−1 N/A
0.8 2.111 8.328 × 10−4 −4.349 × 10−7 −7.874 × 10−1 1.255 × 10−1 N/A
0.9 2.117 7.901 × 10−4 −4.327 × 10−7 −8.926 × 10−1 1.200 × 10−1 2.323 × 10−4

TABLE X. Estimates of regression coefficients, AIC values, and coefficients of determination (R2) for Eq. (3) from our simulation results on
ER random graphs. For comparison, we also include the coefficients for the complete graphs (which arise from the ER model with connection
probability p = 1) that we studied in Sec. IV A.

p β0 β1 β2 β3 AIC R2

0.1 1.953 1.050 4.412 × 10−1 6.362 −3156.1 0.9958
0.2 1.931 1.053 4.500 × 10−1 6.290 −3194.2 0.9961
0.3 1.918 1.055 4.512 × 10−1 6.275 −3215.1 0.9962
0.4 1.886 1.060 4.453 × 10−1 6.270 −3233.7 0.9963
0.5 1.827 1.068 4.548 × 10−1 6.284 −3209.2 0.9963
0.6 1.870 1.062 4.499 × 10−1 6.255 −3233.6 0.9964
0.7 1.851 1.065 4.470 × 10−1 6.242 −3213.7 0.9963
0.8 1.873 1.061 4.555 × 10−1 6.289 −3267.4 0.9966
0.9 1.838 1.067 4.676 × 10−1 6.261 −3251.8 0.9965
1 1.865 1.062 4.530 × 10−1 6.262 −3240.9 0.9964

TABLE XI. Estimates of regression coefficients for Eq. (B1).

Estimate Std. Error t value Pr(> |t |)
β0 1.062 × 102 2.803 3.789 × 10 <2 × 10−16

β1 4.319 × 10−1 6.206 × 10−3 6.960 × 10 <2 × 10−16

β2 −1.790 × 10−4 4.822 × 10−6 −3.712 × 10 <2 × 10−16

β3 7.759 × 10 1.830 × 10 4.239 2.890 × 10−5

β4 −5.946 × 102 3.400 × 10 −1.749 × 10 <2 × 10−16

β5 2.839 × 102 5.924 4.792 × 10 <2 × 10−16

β6 −1.332 × 10−1 1.083 × 10−2 −1.230 × 10 <2 × 10−16

TABLE XII. Estimates of regression coefficients for Eq. (B2).

Estimate Std. Error t value Pr(> |t |)
β0 2.263 2.634 × 10−2 8.592 × 10 <2 × 10−16

β1 2.072 × 10−1 3.160 × 10−3 6.556 × 10 <2 × 10−16

β2 −1.212 4.976 × 10−2 −2.436 × 10 <2 × 10−16

β3 7.507 × 10−1 3.273 × 10−2 2.294 × 10 <2 × 10−16

β4 1.064 1.395 × 10−2 7.624 × 10 <2 × 10−16

β5 −6.056 × 10−5 9.865 × 10−6 −6.138 1.650 × 10−9
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TABLE XIII. Estimates of regression coefficients, AIC values, and coefficients of determination (R2) for Eq. (3) using our simulation results
on complete r-partite graphs with r = 2,5,10.

r β0 β1 β2 β3 AIC R2

2 1.489 1.093 4.843 × 10−1 6.553 −2675.68 0.9966
5 1.672 1.074 3.252 × 10−1 6.415 −2726.16 0.9969
10 1.763 1.068 3.330 × 10−1 6.305 −2709.59 0.9965

TABLE XIV. Estimates of regression coefficients for Eq. (B3).

s β0 β1 β2 β3 β4 β5 β6

0.1 1.225 × 10 1.240 × 10−2 −6.048 × 10−6 −6.132 −1.087 × 10 6.183 −5.739 × 10−3

0.2 1.309 × 10 1.067 × 10−2 −5.535 × 10−6 −1.699 × 10 1.088 × 10 6.964 −4.199 × 10−3

0.3 1.353 × 10 8.670 × 10−3 −4.073 × 10−6 −2.060 × 10 1.764 × 10 6.879 −3.324 × 10−3

TABLE XV. Estimates of regression coefficients for Eq. (B4).

s β0 β1 β2 β3 β4 β5

0.1 3.528 1.200 −4.263 2.628 6.720 −2.061 × 10−4

0.2 3.300 1.161 −3.242 2.002 6.634 −1.808 × 10−4

0.3 3.193 1.116 −2.436 1.465 6.671 −5.580 × 10−5

TABLE XVI. Estimates of regression coefficients for Eq. (B5).

Estimate Std. Error t value Pr(> |t |)
β0 1.338 × 10−4 5.718 × 10−6 2.340 × 10 <2 × 10−16

β1 1.419 × 10−4 1.533 × 10−5 9.258 6.81 × 10−12

β2 −7.964 × 10−5 9.963 × 10−6 −7.993 4.13 × 10−10

β3 −7.208 × 10−4 3.989 × 10−6 −1.807 × 102 <2 × 10−16

TABLE XVII. Estimates of regression coefficients for Eq. (B6).

Estimate Std. Error t value Pr(> |t |)
β1 6.662 × 10−3 9.431 × 10−5 7.063 × 10 < 2 × 10−16

β2 −4.201 × 10−3 1.056 × 10−4 −3.979 × 10 < 2 × 10−16

β3 −7.608 × 10−3 2.117 × 10−4 −3.593 × 10 < 2 × 10−16
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