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Schizophrenia, a mental disorder that is characterized by abnormal social behaviour and failure to distin-
guish one’s own thoughts and ideas from reality, has been associated with structural abnormalities in the
architecture of functional brain networks. In this article, we (1) investigate whether mesoscale network
properties give relevant information to distinguish groups of patients from controls in different scenarios
and (2) use this lens to examine network effects of different antipsychotic treatments. Using various meth-
ods of network analysis, we examine the effect of two classical therapeutic antipsychotics—Aripiprazole
and Sulpiride—on the architecture of functional brain networks of both controls (i.e., a set of people who
were deemed to be healthy) and patients (who were diagnosed with schizophrenia). We compare commu-
nity structures of functional brain networks of different individuals using mesoscopic response functions,
which measure how community structure changes across different scales of a network. Our approach does
a reasonably good job of distinguishing patients from controls, and the distinction is sharper for patients
and controls who have been treated with Aripiprazole. Unexpectedly, we find that this increased sepa-
ration between patients and controls is associated with a change in the control group, as the functional
brain networks of the patient group appear to be predominantly unaffected by this drug. This suggests that
Aripiprazole has a significant and measurable effect on community structure in healthy individuals but not
in individuals who are diagnosed with schizophrenia, something that conflicts with the naive assumption
that the drug alters the mesoscale network properties of the patients (rather than the controls). By contrast,
we are less successful at separating the networks of patients from those of controls when the subjects have
been given the drug Sulpiride. Taken together, in our results, we observe differences in the effects of the
drugs (and a placebo) on community structure in patients and controls and also that this effect differs across
groups. From a network-science perspective, we thereby demonstrate that different types of antipsychotic
drugs selectively affect mesoscale properties of brain networks, providing support that structures such as
communities are meaningful functional units in the brain.

© The authors 2019. Published by Oxford University Press. All rights reserved.
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1. Introduction

Investigating the structure and dynamics of neuronal networks is crucial for understanding the human
brain, and the nascent field of ‘network neuroscience’ has yielded fascinating insights into a diverse
variety of neurological phenomena [1, 2]. Recent advances in imaging technology have made it possible to
perform increasingly detailed investigations of brain structure and dynamics, and it is now possible to map
anatomical regions and their interconnecting pathways at near-millimetre resolution. This yields large-
scale networks with which to describe the brain’s structural connectivity (i.e., the human connectome)
[3, 4]. These structural connections have a crucial influence on large-scale neuronal dynamics, which
can be captured as patterns of functional connectivity in so-called ‘functional brain networks’ [5–8].
Such functional networks are usually built by estimating coordination or other interdependencies in the
neuronal activity of brain regions.

One can construct functional brain networks using various approaches, such as by measuring blood
oxygen level-dependent (BOLD) signals gathered via functional magnetic resonance image (fMRI) scans
or by using other modalities [1, 2, 4, 7]. Such studies have yielded many fascinating insights for various
disorders and diseases, including Alzheimer’s disease [9], autism [10], schizophrenia [11–13] and oth-
ers [14]. In this article, we examine the effects of two antipsychotics (Aripiprazole and Sulpiride) on the
architecture of functional brain networks of both controls (who are deemed to be healthy) and patients
who have been diagnosed with schizophrenia.

Schizophrenia is often characterized by abnormal and inconsistent social behaviour, along with failure
to differentiate between thoughts and reality. Methods for diagnosing schizophrenia have been somewhat
controversial [15], and scientists and doctors seek to understand and develop effective diagnoses and
treatment (in the form of therapy and drugs) [16]. Sulpiride, a ‘first-generation antipsychotic’ (FGA) and
hence a ‘typical’ antipsychotic, works as a selective dopamine agonist and is used for the treatment of
schizophrenia [17]. The ‘atypical’ (and thus ‘second-generation antipsychotic’ (SGA)) drug Aripiprazole,
which acts as a partial dopamine agonist, is also used to treat schizophrenia [18, 19]. FGAs are cost-
effective and have been demonstrated to effectively alleviate positive symptoms, but they carry a risk of
extrapyramidal effects (including dystonia, parkinsonism and tremor). SGAs have the desirable property
of avoiding extrapyramidal effects, but they often come with metabolic side effects and are far more
costly. Studies are not conclusive as to which drug type is most effective, and identifying the best course
of treatment is a complex issue that varies substantially and must be tailored carefully for each individual
[20, 21]. The effectiveness of Sulpiride and Aripiprazole has been reported widely in the literature, and
their use for treatment has been approved in many countries [22, 23] (though the United States, Canada
and Australia are notable exceptions). The biological mechanisms of Aripiprazole and Sulpiride are well-
understood, but their effects at the functional level of the brain are not. This motivates our goal to explore
the effects of these drugs on the architecture of functional brain networks.

It has been hypothesized that schizophrenia is related to abnormalities in the connectivity between
components of functional brain networks [11]. An important property of a functional brain network—one
that appears to be abnormal in patients who are diagnosed with schizophrenia—is community struc-
ture [2, 24]. Loosely speaking, a community is a set of nodes in a network that are connected densely
to each other but connected sparsely to other parts of a network [25, 26]. Community structure in a
network is one type of mesoscale organization, and both community structure and other mesoscale orga-
nizations (e.g., core–periphery structure [27]) are important in a variety of contexts in functional brain
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934 R. FLANAGAN ET AL.

networks [2]. Although the effects that antipsychotics have on fMRI data have been examined previously
[28], few studies have considered the effects of antipsychotics on functional brain networks [13, 29]. In
our exploration of such effects, we focus on community structure of functional brain networks and how
it is affected by different antipsychotics.

Our research is based on two working hypotheses. The first one is that community structure is a
relevant mesoscale structure that may be informative for diagnosing a particular disease. To examine
community structure in individuals who are deemed to be healthy (i.e., ‘controls’) versus individuals
with schizophrenia (‘patients’) under the effects of different drugs, we employ several characterizations
of graph similarity. We consider both basic features (such as the number of common edges) and more
sophisticated ones (such as how community structure changes across different scales of a network [30]).
This suite of techniques allows us to build a set of distance matrices between subjects, and we apply
unsupervised clustering algorithms to these matrices to try to identify discernible groups of subjects. Our
second working hypothesis is that the effects of different antipsychotics leave a measurable fingerprint on
a network’s community structure. To evaluate this hypothesis, we focus on studying the effects of each
drug within a given group (intra-subject comparisons), and we also compare groups who have been given
the same drug (inter-subject comparisons). We thereby investigate both the difference between controls
and patients and the effects that each of the drugs have on the functional brain networks of each group of
subjects.

Our article proceeds as follows. In Section 2, we briefly discuss the employed data set and some
relevant previous studies, including a contrast with the recent paper [29] in particular. In Section 3, we
detail the protocol and the methods that we use to make comparisons between groups of subjects. In
Section 4, we present our results. Finally, in Section 5, we discuss the implications of our findings. We
include additional details and technical results in a trio of appendices. For example, we give the statement
and proof of a theorem (that a certain diagnostic has a metric structure) that we use in the main text
in Appendix A, and we discuss an urn-type model to assess the statistical significance of our results in
Appendix B.

2. Data and previous studies

We study a data set, which came from Bristol Myers Squibb (BMS) and which we call the ‘BMS data
set’, of measurements of 15 human subjects (‘controls’) who were deemed to be healthy and 12 human
subjects (‘patients’) who were diagnosed previously with schizophrenia. All participants were pretreated
with Domperidone on all three days to reduce side effects. Over three sessions, which were 1–2 weeks
apart, each of the 27 subjects was given one of three different drug treatments:

1. (‘Placebo’) Oral placebo, 180 and 90 min before scanning;

2. (‘Sulpiride’) Oral placebo, 180 min before scanning; and then oral Sulpiride (400 mg), 90 min before
scanning;

3. (‘Aripiprazole’) Oral Aripiprazole (15 mg), 180 min before scanning; and then oral placebo, 90 min
before scanning.

All participants and investigators were blind to the drug condition. All participants were provided with
a detailed Patient Information Sheet (PIS) that explained the nature of the pharmacological experiment
(comparison of single doses of the two drugs being used for the treatment of schizophrenia with placebo
pill) and the double-dummy design.
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EFFECTS OF ANTIPSYCHOTICS ON FUNCTIONAL BRAIN NETWORKS 935

At each session, after being given one of the drug treatments, each individual was placed in an fMRI
scanner to measure blood flow, at resting state, in the brain. The fMRI scanner captures a single image
once every 2 s. The scans lasted 17 min and 4 s, so each BOLD time series has 512 time points. The data
are parcellated into 298 regions of interest (RoIs), and each region corresponds to a node in a functional
brain network. We used an anatomically-driven parcellation scheme and methodology, as described in
[31], to partition the data for each subject into 325 contiguous regions, which were as uniform as possible.
However, 27 regions did not have high-quality fMRI time series for one or more individuals and were
later removed from all subjects, leading to a total of 298 homogeneously-sized regions. Each region has
a corresponding time series that represents an average level of activity in that region. We remove four
controls (2, 8, 10 and 14) and three patients (3, 5 and 11) from our calculations due to missing data and/or
problems due to head motion. We thus examine a total of 20 subjects: 11 controls and 9 patients. (However,
we use the original numerical labels for the subjects.) See [32–34] for discussions of issues with head
motion, and see [35, 36] for discussions of preprocessing of fMRI data to correct for head motion.

There have been three other studies [11, 29, 37] that employed this particular data set. References
[11, 37], which were published a few years ago, focused on the task of distinguishing controls from
patients who had been diagnosed with schizophrenia, so they were trying to find effective biomarkers for
schizophrenia. Using a parcellation with 90 RoIs, Ref. [11] reported that the patients have ‘less strongly
connected’ brain networks (in the sense of a lower mean pairwise wavelet coherence between regions)
and ‘more diverse’ profiles (in the sense of larger mean variances in a wavelet coherence between a given
region and the others) of brain functional connectivity than the controls. They also calculated that brain
networks in the schizophrenia group have a greater robustness to uniform-at-random removal of nodes,
in the sense that the number of nodes in the largest connected component (LCC) decays more slowly as a
function of the number of removed nodes. Reference [37] built functional networks via ‘spatial pairwise
clustering’ (a novel approach that they introduced) of individual voxels (thereby foregoing the need
to choose a parcellation) and combining spatially proximate voxels into nodes. In their computations,
they observed weaker inter-nodal correlations in patients than in controls. Finally, using a very similar
parcellation to the one that we employ but with different techniques from network analysis, a very recent
paper [29] studied the effects of the drugs on (1) the networks of the subjects and (2) the subjects’ cognitive
abilities. Their results suggest that (1) Aripiprazole has a major effect on the networks of controls and
that (2) both drugs make it harder to distinguish between controls and patients. This study also found that
Aripiprazole diminished the performance of controls at a working-memory task.

3. Methods and preliminary computations

We illustrate our analysis pipeline with a schematic in Fig. 1. In Sections 3.1 and 3.2, we briefly describe
how to build a functional network from fMRI time series using wavelet correlations and thresholding
techniques (see Step 1 in Fig. 1). In Section 3.3, we discuss our preliminary computations on our collec-
tion of networks. In Sections 3.4 and 3.5, we discuss how to define two distance functions to examine
dissimilarities of functional networks (see Step 2 in Fig. 1) and how to apply hierarchical clustering to
cluster similar subjects (i.e., similar functional networks) according to Step 3 in Fig. 1.

3.1 Building the networks

Wavelet-based correlations allow one to examine functional similarities between brain regions based
on activity in a specified frequency interval (a so-called wavelet ‘scale’). We use the maximal-overlap
discrete wavelet transform [38] to decompose each regional mean fMRI time series (see Step 1 in Fig. 1).
Examining wavelets is useful for studying resting-state fMRI data, and functional connectivity between
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936 R. FLANAGAN ET AL.
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Fig. 1. Protocol to obtain a dendrogram that conveys hierarchical clustering of a set of subjects. There are 20 subjects, and there
are three different drug treatments for each subject. This yields 60 networks, and we compute a distance between each pair of
networks. This yields a 60 × 60 distance matrix. (As we discuss in Section 3.4, we construct such a matrix for two different notions
of distance.) We do hierarchical clustering using various submatrices of each distance matrix, where the submatrix that we use
depends on our particular comparison from Fig. 6. We explain the vertical axis (which uses a particular choice of distance) in the
dendrogram in Section 3.4.2. In the example dendrogram in this schematic, we consider unweighted networks that include the
strongest 20% of the edges (see Section 3.1).

regions is typically largest at certain frequency bands (below 0.1 Hz) [39]. Let gi denote the time series of
node (i.e., RoI) i (where i ∈ {1, 2, . . . , 298}), and let Vs(gi) denote the vector of scale-s wavelet coefficients
of gi. At scale s, the connection strength between two nodes, i and j, in a functional network is given by
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EFFECTS OF ANTIPSYCHOTICS ON FUNCTIONAL BRAIN NETWORKS 937

the wavelet correlation

Fij =
∑

k Vs,k(gi)Vs,k(gj)√
(
∑

k(Vs,k(gi))2(
∑

k(Vs,k(gj))2
∈ [−1, 1] . (1)

We compute values of Fij for scales s = 1, 2, 3, 4; and we then choose to work with the most informative
scale (see Section 4).

There are N = 298 RoIs for each subject, so we extract functional networks with N = 298 nodes.
This yields a similarity matrix F whose elements are given by Eq. (1). To avoid negative weights,1 we
transform F into a weighted adjacency matrix W by taking Wij := (Fij + 1)/2 ∈ [0, 1]. The associated
network is fully connected by construction, and there are two customary ways to prune edges. These
are (1) thresholding the networks by keeping a fixed fraction τ of the strongest weights (assigning the
remaining edges a weight of 0 and producing thresholded weighted networks) and (2) first performing the
previous step and then subsequently setting the remaining edges to have a weight of 1, thereby producing
thresholded binary networks. In both cases, the resulting thresholded networks have E ≈ N(N − 1)τ/2
edges. (The reason for the approximation symbol is that we need to round E to an integer.) Of course,
one can also simply keep all edges and examine the original fully connected, weighted networks. In this
article, we initially examine the original networks and both the weighted and binary thresholded networks.
Based on some preliminary calculations, we will then decide which of these networks to examine further.

3.2 Choosing a scale and thresholding parameter

To construct the functional networks, we choose a wavelet scale s and then consider thresholding the
networks (with an associated threshold value). Previous work has noted differences in both ‘connectivity’
(i.e., the mean edge weight of a network) and mean local clustering coefficient between controls and
patients with schizophrenia [11, 41, 42]. The observed differences were more statistically significant at
lower frequencies, and they were particular evident at scale 2. This is consistent with previous research
on resting-state fMRI [43]. To make an educated choice of scale, Ref. [11] calculated the mean value of
Fij over controls and patients for each scale, performed a t-test, and selected the scale with the smallest
p-value. We follow a similar procedure, but we also threshold the networks for both binary and weighted
versions using a thresholding parameter τ , such that we keep a fraction τ of the strongest edges (i.e.,
those with the largest weights).2 (For example, if τ = 0.4, we keep the strongest 40% of the edges.) For
each of the three drug treatments and for each of the scales 1, 2, 3 and 4, we then perform a t-test on the
mean local clustering coefficients of controls and patients. In Fig. 2, we show all 12 plots and the p-values
associated with the t-tests. Based on these results, we make two decisions. First, from now on, we use
scale 2 (which corresponds to the frequency band 0.060–0.125 Hz), because it has the smallest p-values
(in agreement with previous work [11]). For very small values of τ , we observe spikes in the p-values
that likely arise from the networks breaking up into many components. Second, because our results on
binary networks have smaller p-values than the corresponding ones for weighted networks, we focus our

1 There are also other ways to transform F into a weighted adjacency matrix W. For example, one can take the absolute value of
the similarity values, though it is then impossible to distinguish negative wavelet similarities from positive ones. The weakness of
our approach is that we transform initially strongly negative weights into weights that are near 0, and they then tend to be removed
if one subsequently prunes a network by keeping only the most strongly weighted edges of W. Recently, Ref. [40] examined the
significance of such negative wavelet similarities.

2 We consider values of τ in increments of 0.01.
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938 R. FLANAGAN ET AL.

Fig. 2. The p-values associated with t-tests on the mean local clustering coefficient (between patients and controls) for weighted
networks (solid orange curves) and binary networks (blue dashed curves) for different values of the thresholding parameter τ .
Wavelet scale 2 produces the smallest p-values. We also observe differences in the curves associated with the three drug treatments
and that the p-values associated with the binary networks are consistently smaller than those for the weighted ones.

subsequent calculations on thresholded binary networks (except for our calculations of connectivity). The
controls tend to have much larger edge weights than the patients, so our comparisons between patients
and controls are more directly parallel if we use binary networks, as many network quantities are affected
in nontrivial ways by edge weights. From now on, we fix τ = 0.2. (We repeat our calculations for several
values of τ ∈ [0.2, 0.4], and we obtain qualitatively similar results.)

Half of our networks (30 out of 60) have more than one component when τ = 0.2. This can be
problematic for some types of computations, such as those that involve path lengths. In practice, however,
this issue did not cause problems in our investigation; the LCC of each network has almost the maximum
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EFFECTS OF ANTIPSYCHOTICS ON FUNCTIONAL BRAIN NETWORKS 939

of 298 nodes, with the exception of Control 5 on Aripiprazole, whose LCC has 268 nodes. In Appendix
C, we show the number and sizes (i.e., numbers of nodes) of the components in each of our networks.

3.3 Connectivity and mean local clustering coefficient

We now do some preliminary calculations. Previous research using thresholded, binary networks has
highlighted significant differences in ‘connectivity’ (defined, for an individual subject, as the mean edge
weight 〈Wij〉 of a network) and mean local clustering coefficients of networks from control subjects
versus those from patients who were diagnosed with schizophrenia [11]. In our case, by construction,
connectivity corresponds (up to a scaling and a shift) to the mean wavelet correlation. For weighted
networks, we compute the weighted local clustering coefficient [44]

ci = 1

ki(ki − 1)

∑
j,k

(WijWikWjk)
1/3 for ki ≥ 2 , (2)

where ki is the degree of node i and ci = 0 for ki ∈ {0, 1}. Equation (2) reduces to the usual local clustering
coefficient for the special case of binary networks.

For connectivity, we calculate 〈Wij〉 for each subject, and we then calculate the means for both controls
and patients. We follow the same process for the local clustering coefficient. In our preliminary analysis,
we explore how these basic quantities differ for different drug treatments. Specifically, we calculate
connectivity using the non-thresholded weighted versions of the networks and mean local clustering
coefficient using the thresholded binary networks. We show our results in Fig. 3, where for each case
we plot the mean and standard deviation across subjects. For each drug treatment, we also perform a
two-sample t-test on the values of connectivity and mean local clustering coefficients for controls and
patients, and we extract a p-value. We observe small differences in connectivity and mean local clustering
coefficients between controls and patients; this difference is smaller than what was reported previously
with these data using other approaches [11]. We also observe that Aripiprazole has a small effect on the
connectivity and mean local clustering coefficients of controls but no significant effect on patients, in
agreement with other recent work [29]. Sulpiride appears to have little effect on either group, though
we observe a larger difference between controls and patients for mean local clustering coefficient than
we do for connectivity. We obtain a p-value of p ≈ 0.0326 for mean local clustering coefficient and a
p-value of p ≈ 0.1680 for connectivity. We show the connectivity for all subjects under placebo in Fig. 4,
and we note that Patient 8 has a very large value of connectivity. However, given the sizes of the error
bars, we cannot reject the hypotheses that the connectivity and/or mean local clustering coefficients are
indistinguishable in the different situations. This suggests either that (1) this data set is not large enough
for these measures to detect robust differences and/or that (2) these simple network diagnostics may
not give clear information about whether the drugs have any discernible effects on the architecture of
functional brain networks. Given the inconclusiveness of these results, we need to do a more sophisticated
analysis.

3.4 Distance measures

As we mentioned in Section 1, we aim to classify similar functional brain networks using unsupervised
clustering of subjects. A subject is associated with a functional network. To classify these networks in
a systematic way, we define a pairwise distance function between graphs, and we then use this function
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940 R. FLANAGAN ET AL.

Fig. 3. Means and standard deviations of (left) connectivity for non-thresholded weighted networks and (right) mean local clustering
coefficients for binary networks thresholded to 20% of the strongest edges. The results are similar in each case, though we observe
for Sulpiride that the controls and patients have different p-values for the two-sample t-test.

to compute a distance matrix for a set of subjects. (See Step 2 in Fig. 1.) We consider distance functions
based on two rather different aspects of networks.

3.4.1 Hadamard-like distance. One can construct a simple similarity measure between binary networks
A and B that both have the same number of edges by computing the Hadamard product of the matrices
and then summing the entries AijBij of the resulting matrix. For binary networks, this sum (

∑
i>j AijBij) is

the number of common edges in the networks. (We sum over i > j because our networks are undirected.)
Because it is common to threshold functional networks so that one retains only a specified, fixed fraction of
edges, we can use this similarity measure to compare adjacency matrices that we extract from thresholded
functional networks. We define the metric

d1(A, B) = 1 − 1

E

∑
i>j

AijBij ∈ [0, 1] , (3)

which is well-defined when A and B have the same number E of edges.
We have proven rigorously (see Appendix A for the precise statement of the theorem and its proof)

that d1 satisfies the properties of a metric. We can then construct a distance matrix D1, whose element
D1

αβ gives the distance between the functional networks of subjects α and β. Using D1 has the advantage
of being computationally efficient and based on a mathematically sound metric, although d1 is a rather
simplistic measure—two networks are more distant from each other when they have fewer common
edges—and we do not expect it to capture certain details (e.g., community structure) of the networks.

3.4.2 Distance based on community structure. We also use a more sophisticated distance measure,
introduced by Onnela et al. [30], that is based on network community structure [25, 26]. It requires using
a method of partitioning that assigns each node to a community (i.e., it is a ‘hard partition’). In this
article, we use modularity maximization [45, 46] and employ the code of Onnela et al. that implements
the (locally greedy) Louvain method [47].
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EFFECTS OF ANTIPSYCHOTICS ON FUNCTIONAL BRAIN NETWORKS 941

Fig. 4. Connectivity of each subject under placebo. We observe that Patient 8 has an abnormally large value of connectivity. (Recall
that we removed Patients 3 and 5 from consideration because of missing data and problems with head motion, but we use the
original numerical labelling of the subjects.)

Given a network described by its weight matrix W, one can detect communities in it by maximizing
modularity, which one does by minimizing the objective function

H(γ ) = −
∑
i �=j

(
Wij − γ

rirj

2M

)
δ(Ci, Cj), (4)

where γ is a resolution parameter, Ci is the community assignment of node i (and Cj is the community
assignment of node j), ri is the strength (i.e., sum of incident edge weights) of node i, and M is the total
edge weight. We consider undirected networks, so we use the Newman–Girvan null-model matrix P with
elements Pij = rirj/(2M) [46, 48]. The quantity Wij − Pij is the ‘effective weight’ of the edge between
nodes i and j. For unweighted networks, node strength reduces to degree (i.e., ri = ki and rj = kj), and
the total edge weight reduces to the total number of edges (i.e., M = E). For each value γ , minimizing
the objective function (4) gives a partition of a network into disjoint communities. The quantity H(γ )

also quantifies the (scaled) energy of the system [49]. For illustration, we show a particular partition of a
functional brain network into communities in the left panel of Fig. 5. (See the middle panel of the same
figure for the same network embedded in a three-dimensional (3D) physical space, where node locations
correspond to the actual physical regions.)

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article-abstract/7/6/932/5460291 by U
C

LA D
igital C

ollections Services user on 10 D
ecem

ber 2019



942 R. FLANAGAN ET AL.

Onnela et al. defined ‘mesoscopic response functions’ (MRFs) for three quantities that describe, from
different perspectives, how a partition of a network changes as a function of γ . In calculating a network’s
MRF, one varies the parameter γ between γmin (where community detection yields a single community)
and γmax (where each node is assigned to its own community). Let nk denote the number of nodes in
community k and define pk = nk/N to be the probability of choosing a node uniformly at random from
community k. One can then define a partition entropy of the associated community-size distribution as
S(γ ) = − ∑η(γ )

k=1 pk log(pk), where η(γ ) is the number of communities. One then defines the effective
energy (Heff), effective entropy (Seff) and the effective number of communities (ηeff) as follows:

Heff(γ ) = H(γ ) − H(γmin)

H(γmax) − H(γmin)
= 1 − H(γ )

H(γmin)
, (5)

Seff(γ ) = S(γ ) − S(γmin)

S(γmax) − S(γmin)
= S(γ )

log(N)
, (6)

ηeff(γ ) = η(γ ) − η(γmin)

η(γmax) − η(γmin)
= η(γ ) − 1

N − 1
. (7)

One uses a parameter ξ that tracks, in a discrete manner (keeping track of when each effective weight
changes sign), which edges have a positive effective weight and which have a negative effective weight. By
construction, varying γ from γmin to γmax corresponds to varying ξ from 0 to 1. For a detailed discussion,
see [30].

To each network, one associates a curve for each of Heff, Seff and ηeff (or for any other quantity
that one wishes to track [50]) as a function of ξ ; these are the MRFs. In the right panel of Fig. 5, we show
example MRFs that we compute from our functional brain networks. We show average MRFs (which we
compute as a pointwise mean of the MRFs for the 60 networks), along with the maximum and minimum
MRFs (which we determine based on ordering the area under the curve of each MRF from largest to
smallest), of these networks.

To compare a pair of networks, we compare the differences in their profiles. Consider a pair of
networks, α and β, along with the following three distances:

dH
αβ =

1∫
0

∣∣∣Hα
eff(ξ) − Hβ

eff(ξ)

∣∣∣ dξ , (8)

dS
αβ =

1∫
0

∣∣∣Sα
eff(ξ) − Sβ

eff(ξ)

∣∣∣ dξ , (9)

dη

αβ =
1∫

0

∣∣∣ηα
eff(ξ) − η

β

eff(ξ)

∣∣∣ dξ . (10)

The three distances in Eqs. (8)–(10) capture different aspects of community structure. The effective
energy (Heff) is a rescaled version of the objective function H, the effective entropy (Seff) quantifies the
amount of heterogeneity in the sizes of the detected communities, and the effective number of communities
(ηeff) is a rescaled version (with respect to network size) of the total number of communities. From these
distances matrices, we construct a single distance matrix by projecting each 3D coordinate using principal
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Fig. 5. An example, which we show both (left) in 2D and (right) in 3D, of a particular network (Control 1 on placebo) partitioned
into communities for a specific value of the resolution parameter (γ = 1, so ξ ≈ 0.02). (Right) An average MRF, which we
determine by taking a pointwise mean of the MRFs of all 60 networks, along with the maximum and minimum curves (based on
the area under each MRF curve). For each colour, the upper curve is the maximum, the middle curve is the pointwise mean, and the
bottom curve is the minimum. We show Heff(ξ), as defined in Eq. (5), in orange; we show Seff(ξ), as defined in Eq. (6), in blue;
and we show ηeff(ξ), as defined in Eq. (7), in green.

component analysis (PCA) and keeping the first component. That is, we construct a distance matrix by
calculating a linear combination of the three distance measures:

dP
αβ = wHdH

αβ + wSdS
αβ + wηdη

αβ , (11)

where the weights w	 (with 	 ∈ {H, S, η}) are the coefficients of the first principal component. There are
a total of 60 networks (11 controls and 9 patients, each of which is on three different drug treatments). We
calculate a matrix with 60 × 59/2 (the total number of network pairs) rows and 3 columns, where each
column corresponds to the vector representation3 of the upper triangle of one of the distance matrices
DH, DS and Dη. We perform a PCA on this matrix to create a distance matrix DP.

The final outcome of the above calculation is a 60×60 distance matrix DP, where each entry measures
the distance between networks α and β based on how the community structure of each network varies
as a function of the parameter ξ . We henceforth use the term ‘MRF distance’ for the quantity that we
compute in Eq. (11).

3.5 Hierarchical clustering

Once we have our distance matrix (see Section 3.4.2), we take a submatrix of it for each of the comparisons
in Fig. 6. For example, if we are comparing controls and patients under the drug Aripiprazole, we keep only
the rows and columns that correspond to this drug, leaving us with a 20 × 20 distance matrix, where the
rows and columns correspond to the 11 controls and 9 patients. We then cluster the new, smaller distance
matrix using one of numerous possible methods. For simplicity, we use average linkage clustering to
group similar subjects (i.e., similar networks) together and show our results in the form of dendrograms.
We then order the leaves of the dendrogram to maximize the sum of the similarities between adjacent
leaves by reordering its branches (without further partitioning of the clusters). We colour the leaves of

3 We obtain a vector via concatenation, which we do row by row using the ‘squareform’ command in Matlab.
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944 R. FLANAGAN ET AL.

Fig. 6. Illustration of possible comparisons between the groups of subjects and different drug treatments.

Fig. 7. Dendrogram for the drug Aripiprazole in which we compare the 11 controls and 9 patients using the distance measure
d1(A, B). There is some separation between patients and controls.

the dendrograms based on their annotations: patients or controls without drugs, patients or controls on
one drug, or patients and controls on the other drug.

4. Main results

As we mentioned in Section 1 and depicted in Fig. 6, we make a total of nine comparisons, including
both inter-subject ones (different groups under the effect of the same drug) and intra-subject ones (the
same group under the effect of different drugs). In our ensuing discussions, we present the results of these
comparisons.

4.1 Inter-subject comparisons

We do inter-subject comparisons using the procedure that we outlined in Fig. 1. We start by comparing
controls and patients under the effects of the drug Aripiprazole using the simple distance measure d1(A, B)

from Eq. (3). We show the resulting dendrogram in Fig. 7. We observe some separation between patients
and controls.
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EFFECTS OF ANTIPSYCHOTICS ON FUNCTIONAL BRAIN NETWORKS 945

To do a more sophisticated analysis, we compute a dendrogram from the same data using the MRF
distance matrix DP (see Section 3.4). We show the resulting dendrogram in Fig. 8. The separation between
patients and controls is now better, and we correctly classify almost every individual. The only exception
is Patient 8, who is assigned to the same group as the controls. Although this misclassification seems
surprising at first, it agrees with our previous calculations (see Fig. 4), which also suggest that Patient 8
has different network characteristics than the other patients.

The above result suggests that, under the drug Aripiprazole, we are able to almost completely dis-
tinguish patients from controls, based only on information about their community structure. This also
suggests that the distance matrix DP incorporates more meaningful information than the simplistic distance
measure in Eq. (3), so we use only the former for our subsequent computations.

We show our results from comparing controls and patients under placebo in the left panel of Fig. 9.
In this case, we still observe a relatively good separation between patients and controls, in agreement
with previous results that functional brain networks encode biomarkers that separate patients diagnosed
with schizophrenia from controls [11, 37]. In this situation as well, Patient 8 appears to be more similar
to the controls than to the other patients. Even more interesting, we observe a less-clear separation
between the controls and patients than we did under Aripiprazole. We thus conclude that Aripiprazole
alters community structure for at least one group and that this alteration makes it easier to distinguish
between the patient and control groups. However, it is not yet obvious whether Aripiprazole is affecting
the architecture of the functional brain networks of patients, controls or both.

In the right panel of Fig. 9, we show our results for computations of functional brain networks for
individuals under the influence of Sulpiride. The control and patient groups are now less distinct from
each other than they were with placebo. This suggests that Sulpiride has a mild but detectable effect of
increasing the similarity between community structures of patients and controls. Again, it is not clear
whether Sulpiride affects the functional brain networks of patients, controls or both.

4.2 Intra-subject comparisons

To examine the effects of the drug treatments on network architecture, we make intra-subject comparisons,
such as comparing the control group under Aripiprazole to the control group under Sulpiride. We do these
comparisons using the procedure that we outlined in Fig. 1.

4.2.1 Aripiprazole versus placebo. For our intra-subject comparisons (see Fig. 6), we first compare the
effects of Aripiprazole on the functional brain networks of controls to those of patients. To do this, we
use all 11 controls under Aripiprazole and the same 11 controls under placebo and do average linkage
clustering on the associated 22 × 22 distance matrix with MRF distances. We also do average linkage
clustering using the MRF distance for the 18 × 18 distance matrix that we obtain by considering the nine
patients under Aripiprazole and the same patients under placebo.

In Fig. 10, we show the dendrogram for our comparison between Aripiprazole and placebo for patients.
At the coarsest level of detail (i.e., a separation for a large MRF distance in the dendrogram), we observe
that both the Aripiprazole and placebo network of Patient 8 is grouped away from those of the other
patients. This is consistent with our prior results: we saw in Fig. 4 that Patient 8 has a much larger value
of connectivity than the other patients and saw in Fig. 8 that Patient 8 was grouped with the controls.
At the finest level of detail, we also find for both Aripiprazole and placebo that Patients 4 and 9 cluster
close to each other. We thus expect, given the inter-subject comparisons in Section 4.1, that Aripiprazole
does affect community structure in controls. We confirm this hypothesis in Fig. 11, where we observe
that controls under Aripiprazole are clearly separated from controls under placebo.
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946 R. FLANAGAN ET AL.

Fig. 8. Dendrogram for our MRF analysis of functional brain networks for the drug Aripiprazole. We compare the 11 controls and
9 patients using the distance measure DP . There is a clear separation between patients and controls, although Patient 8 appears with
the control group.

Fig. 9. Dendrogram for our MRF analysis of functional brain networks for (left) placebo and (right) the drug Sulpiride. In order of
most successful to least successful (compare this figure to Fig. 8), the clustering performs best for Aripiprazole, second-best for
placebo and worst for Sulpiride. (See Section 4.3 for a quantitative justification of this observation.)
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EFFECTS OF ANTIPSYCHOTICS ON FUNCTIONAL BRAIN NETWORKS 947

Fig. 10. Dendrogram for our MRF analysis of functional brain networks for our comparison between Aripiprazole and placebo for
the patient group. Each patient thus appears twice on the horizontal axis. There is no clear separation between the two drugs, and
the two instances of some patients (e.g., 4, 8 and 9) cluster very close to each other, suggesting that there is very little difference in
community structure in the networks under placebo and under Aripiprazole in these patients.

Fig. 11. Dendrogram for our MRF analysis of functional brain networks for our comparison between Aripiprazole and placebo for
the control group. We observe a mostly clear separation between networks under the two drug treatments.

4.2.2 Sulpiride versus placebo. In Section 4.2.1, we observed a very clear separation between controls
and patients under the drug Aripiprazole, and we also observed evidence (though the situation is less
clear) of separation under placebo. We observed less separation between controls and patients under
Sulpiride. We hypothesized that Sulpiride has a mild but detectable effect of increasing the similarity
between community structure in patients and controls, and we therefore suggest that Sulpiride affects
community structure in either patients or controls (or both), in agreement with [29]. In Fig. 12, we show
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948 R. FLANAGAN ET AL.

Fig. 12. Dendrogram for our MRF analysis of functional brain networks for our comparison between Sulpiride and placebo for the
control group.

Fig. 13. Dendrogram for our MRF analysis of functional brain networks for our comparison between Sulpiride and placebo for the
patient group. As with our comparison of placebo to Aripiprazole, several identical patients appear close together and Patient 8 is
again distant from the others.

a dendrogram of the intra-subject comparison of placebo versus Sulpiride in controls. We do not observe
any clear clustering, and we also do not observe clear clustering in the same comparison for patients (see
Fig. 13). Therefore, we do not find any clear indication of why Sulpiride seems to make controls and
patients less distinguishable from each other. Additionally, we do not observe a clear separation under
placebo or under Sulpiride either for controls (see Fig. 12) or for patients (see Fig. 13).
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EFFECTS OF ANTIPSYCHOTICS ON FUNCTIONAL BRAIN NETWORKS 949

Fig. 14. Dendrogram for our MRF analysis of functional brain networks for our comparison between Aripiprazole and Sulpiride
for the control group.

Fig. 15. Dendrogram for our MRF analysis of functional brain networks for our comparison between Aripiprazole and Sulpiride.
In both the Aripiprazole and Sulpiride networks, it is once again easy to distinguish Patient 8 from the other patients.

4.2.3 Aripiprazole versus Sulpiride. We can partly distinguish controls under Aripiprazole from those
under Sulpiride (see Fig. 14). This is unsurprising, given that we found (see Section 4.2.1) that Aripiprazole
alters community structure in controls. We do not observe any obvious difference between patients under
Aripiprazole and those under Sulpiride (see Fig. 15).
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4.3 Synthesis of our results from hierarchical clustering and quantitative assessment

Our results from average linkage clustering of collections of functional brain networks using the distance
functions yield the following conclusions:

• Aripiprazole affects the community structure of functional brain networks in controls, but not in
patients; and it thereby facilitates the distinction between controls and patients under the effect of this
drug treatment.

• Sulpiride reduces the distinguishability between patients and controls, although our intra-subject
computations were inconclusive in both patients and controls.

4.3.1 Preliminary quantitative assessment based on purity. In this article, we used hierarchical cluster-
ing as a simple method to observe how individuals cluster. The main reason for choosing this approach
over other possibilities (such as k-means clustering) is that dendrograms provide more information about
how individuals group at different distances. For instance, we observed in the dendrogram in Fig. 10
that Patient 8 is a clear outlier. If we had instead performed k-means clustering with k = 2, we would
be left with Patient 8 in one community and the other patients in the other community. It would still
seem that Patient 8 is an outlier, but the extent to which this is the case would be obscured. Furthermore,
hierarchical clustering gives insights at different scales; for example, in Fig. 10, we observed that, at a
finer scale, Patient 4 on Aripiprazole is grouped with Patient 4 on placebo. At a larger scale, we cannot
distinguish between patients under Aripiprazole and those under placebo, which itself is an interesting
observation.

The above discussion notwithstanding, it is convenient to attach a number to each partition to quan-
titatively compare different dendrograms, which is potentially desirable to more precisely evaluate our
observations, such as the extent to which Aripiprazole is better than Sulpiride at separating controls
from patients. We leave a detailed analysis for future work, but we perform a preliminary quantitative
justification based on the notion of purity [51]. Consider a partition of a set of B binary data points (i.e.,
each data point, which for us is a node, belongs to one of two classes) into k communities. To compute
purity, we assign each community to the more-common class in that community; and we measure the
accuracy of this assignment by counting the number of correctly-assigned nodes and dividing by B.

To measure the purity of a dendrogram, we use the following simple recipe. For clustering to emerge in
a dendrogram, purity should be a non-monotonic function as a function of the cut level; and we expect it to
reach its maximum for a cut at which the number of communities is small (i.e., when the cut is near the top
of the dendrogram). More specifically, in a well-clustered dendrogram, we expect that a purity function
may peak for a cut with a relatively small number of communities, then stay roughly constant or decay,
and finally increase at the bottom of the dendrogram (as, by definition, purity is trivially maximized when
each of the communities has just one element). For well-clustered dendrograms, we take the clustering
quality as the earliest peak value of the purity function. However, if purity increases monotonically as a
function of the number of communities, we conclude that no good clustering emerges in a dendrogram.
We sketch three typical shapes (which constitute the three simplest nontrivial possibilities) of the purity
function in Fig. 16.

Consider three dendrograms from our inter-subject comparisons: controls versus patients under Arip-
iprazole (denoted by A; see Fig. 8), controls versus patients under placebo (denoted by P; see the left
panel of Fig. 9), and controls versus patients under Sulpiride (denoted by S; see the right panel of
Fig. 9). For Sulpiride (S), a dendogram’s purity function increases monotonically, so we conclude that
there is no good clustering. In other words, one cannot easily distinguish controls from patients under
Sulpiride, in agreement with our earlier qualitative results. For both Aripiprazole and Sulpiride, however,
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(a) (b) (c)

Fig. 16. Three cartoons that illustrate idealized purity curves as a function of the number of disjoint communities in a dendrogram.
In (a), purity increases monotonically as a function of the number of communities, so we conclude that no good clustering emerges.
In (b), purity decreases to a local minimum, and it then increases towards the trivial maximum as the number of communities
approaches the total number of nodes. We highlight the clustering quality with a red dot. (We report the purity value at this
location as the quality.) In (c), purity increases to a local maximum, then decreases to a minimum, and finally approaches the trivial
maximum. We again highlight the clustering quality with a red dot.

the dendrogram’s purity function is not monotonic, so quantifiable clustering emerges. It peaks at k = 2
communities for Aripiprazole (A) and at k = 3 communities for placebo (P). The values of purity are

purity(A) = 19/20 and purity(P) = 17/20 ,

so observable clustering exists in these two cases, but it is stronger under Aripiprazole than under placebo.
This also agrees with our prior qualitative results.

4.3.2 An urn-type null model to assess statistical significance. Although our preliminary analysis sug-
gests that there are different levels of clustering in the data, because the data set is small (there are only 20
subjects), one cannot rule out the possibility that putative clustering may be contaminated by statistical
artefacts or finite-size effects. A simple way to assess ‘how probable’ it is that the observed amount of
clustering arises from chance is to construct an urn-type null model. Our construction and results (see
Appendix B for details) suggests that the observed differences are genuine ones, rather than arising simply
by chance.

5. Conclusions and discussion

We used network analysis to examine the effects of two antipsychotics—Aripiprazole and Sulpiride—on
the architecture of functional brain networks of both controls (who were deemed to be healthy) and patients
who were diagnosed with schizophrenia. Our motivation for our study was two-fold: (1) to evaluate
whether mesoscale network properties (such as community structure) can distinguish controls from
patients who were diagnosed with schizophrenia and (2) to examine how the results of such calculations
differ across different types of antipsychotic treatments. Using MRFs, we compared community structures
of functional brain networks of both patients and controls under the effects of Aripiprazole, Sulpiride and
a placebo.

We will now summarize the results of our computations. However, before doing so, we stress that
when interpreting the results of fMRI studies, it is very important to consider the cautionary notes
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in [52], who noted that computations with fMRI data (even before constructing any networks from such
data) rely on a variety of statistical assumptions of questionable validity. These important complications
notwithstanding, our computations produced several interesting results. First, we did a reasonable job of
distinguishing between controls and patients under placebo. This result suggests that community structure
in functional brain networks is a relevant way to help with diagnoses of schizophrenia. Second, we found
that community detection did a much better job (yielding a high-quality clustering) of distinguishing
the two groups when Aripiprazole had been administered than for Sulpiride or placebo, suggesting that
Aripiprazole has a larger effect on community structure than Sulpiride in at least one of the control group
or the patient group. By comparing controls under Aripiprazole and under placebo, we concluded that
Aripiprazole appears to improve the distinguishability between patients and controls through its effects
on community structure in the control group, rather than in the patient group.

We obtained mixed results for community detection on networks associated with individuals who
were treated with the drug Sulpiride. We found that patients who were treated with Sulpiride are closer
to controls than they are under either Aripiprazole or a placebo (where no clustering seems to emerge,
as discussed Section 4.3). This is also consistent with [29]; and it suggests that Sulpiride has a mild
effect on community structure that is appreciably larger than, for instance, the effect of Aripiprazole on
community structure in patients (which we observed to be very small). We have not been able to clearly
establish the origin of this observation, as our intra-group comparisons suggest that community structure
in both controls and patients is mostly unaltered by Sulpiride.

One of the main objectives of an antipsychotic is to manage and reduce symptoms that an individual
experiences. For schizophrenia, this involves modifying behaviour and symptoms to cause an individual
be more similar, in terms of behaviour and symptoms (or lack thereof), to an average healthy person
without the disease. A tempting, but naive, reasoning may suggest that one may therefore expect their
associated functional brain networks to also be more similar. This link is poorly understood (though see
[29]). Mesoscale network properties, such as communities, are well-known to be important for functional
brain networks [2]; and network analysis in general is often useful for disentangling structure, function
and their complex interrelations in the brain. However, the link between drug effectiveness and the effect
on functional brain networks is not clear; and it both merits and requires further investigation. It is
noteworthy that our observations that Aripiprazole primarily affects community structure in controls,
rather than patients, is consistent with the results of Towlson et al. [29], who reported that Aripiprazole
has a radical effect on the organization of the brain networks of controls but decreases the performance
of the controls at cognitive tasks. Our work also leaves additional open questions for future work. For
instance, an interesting technical point that is worth exploring in more detail is to examine clustering
methods other than hierarchical clustering. The sample size (20 subjects) in the experimental data that
we studied is small; and conducting new, large-scale experiments is highly desirable to test the validity
of our results (although evidence in Section 4.3 and Appendix B suggests that our results are statistically
significant).

From a network-science viewpoint, we highlight that we used community structure and MRFs for
a classification task in time-independent, monolayer functional brain networks. Extending these results
and analysis to time-dependent and multilayer settings [53, 54] is another interesting open problem.
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29. Towlson, E. K., Vértes, P. E., Müller, U. & Ahnert, S. E. (2018) Brain networks reveal the effects of
antipsychotic drugs on schizophrenia patients and controls. ArXiv:1806.00128.

30. Onnela, J.-P., Fenn, D. J., Reid, S., Porter, M. A., Mucha, P. J., Fricker, M. D. & Jones, N. S. (2012)
Taxonomies of networks from community structure. Phys. Rev. E, 86, 036104.

31. Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C. & Bullmore, E. T. (2010)
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54. Buldú, J. M. & Porter, M. A. (2018) Frequency-based brain networks: From a multiplex network to a full
multilayer description. Netw. Neurosci., 2, 418–441.

A. Appendix: Metric properties of d1

In this appendix, we state and prove a theorem on the metric properties of d1 (which we defined in Eq. (3))
that is slightly more general than the one that we used in the main text. The result in the main text follows
from it as a trivial corollary.

Theorem 1 Let Sn(E) be the set of n × n square matrices with entries of 0 or 1 (i.e., ‘binary matrices’),
where the number E of 1 entries satisfies E < n2. Let A, B ∈ Sn(E) be two arbitrary elements of the set.
Consider the function d1 defined by

d1 : Sn(E) × Sn(E) → [0, 1] , d1(A, B) = 1 − 1

E

n∑
i=1

n∑
j=1

AijBij . (A.1)

The function d1 is a metric.

The definition in (A.1) for d1 is slightly more general than the one in Eq. (3), as here we are not
assuming that (1) A and B are symmetric or that (2) there are no 1 entries in the diagonal (so E is the
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number of 1 entries). In the main text, we imposed some restrictions on E that are not present here: we
used E to denote the number of edges in an associated network, so for Eq. (3) (which is designed to deal
with unweighted, undirected adjacency matrices with no self-loops), one needs either to restrict to the
case in which there are no 1 entries in the main diagonal and then do the relabelling E → E/2 or to
relabel the summation indices with

∑n
i=1

∑n
j=1 → ∑

i>j. The theorem that we used in the main text is
thus a special case of Theorem 1.

Proof. To prove that d1 is a metric, we need to prove four properties: non-negativity, identity of
indiscernibles, symmetry and the triangle inequality. The first three properties are satisfied trivially:

(1) Non-negativity: By construction,
∑n

i=1

∑n
j=1 AijBij ≤ E, so d1(A, B) ≥ 0.

(2) Identity of indiscernibles: d1(A, B) = 0 ⇔ ∑n
i=1

∑n
j=1 AijBij = E. However, by definition, the

matrices are binary and have E entries with the value 1, so
∑n

i=1

∑n
j=1 AijBij = E ⇔ A = B.

(3) Symmetry: This arises trivially from the commutative property of the scalar product: AijBij = BijAij.

To prove the fourth property (the triangle inequality), we need to show that

for all A, B, C ∈ Sn(E) , d1(A, B) + d1(B, C) ≥ d1(A, C) . (A.2)

This part is more subtle, and we need to break the proof into a few steps. We start by defining a matrix
δ-perturbation.

Definition 1 (Matrix δ-perturbation). Let A ∈ Sn(E), and let δ be a positive integer such that
0 < δ < E. The matrix Ã(δ) is a δ-perturbation of A if Ã(δ) is constructed by taking A and changing the
position of δ of the 1 entries.

To illustrate this definition, we show an example of a matrix and a 1-perturbation of that matrix in
S3(3):

Z =
⎡
⎣1 0 0

1 0 0
0 1 0

⎤
⎦, Z̃(1) =

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦. (A.3)

It is clearly the case that Ã(δ) ∈ Sn(E). It is also true that

n∑
i=1

n∑
j=1

AijÃ
(δ)

ij = E − δ ⇒ d1(Ã(δ), A) = δ/E .

Starting from an arbitrary element of Sn(E), one can reach any other element by applying an appropriate
δ-perturbation. Therefore, equipped with the δ-perturbation, Sn(E) is a unary system. This property is
important for guaranteeing completeness.

To prove Eq. (A.2), it is equivalent to prove that

for all A, B, C ∈ Sn(E) , X :=
n∑

i=1

n∑
j=1

(AijBij + BijCij − AijCij) ≤ E .
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We are ready to prove this latter inequality. We start with a degenerate case. Consider an arbitrary
A ∈ Sn(E) and set A = B = C; in this case, X = ∑n

i=1

∑n
j=1 AijAij = E ≤ E.

To generate all possible triples {A, B, C}, without loss of generality, we now consider an arbitrary
(but fixed) A ∈ Sn(E); and we use δ-perturbations to generate all instances of B and C. That is,

B := Ã(δb) , C := Ã(δc) , with δb, δc ≥ 0 .

All possible triples can be expressed in this form.
Let’s evaluate X . The first term is

n∑
i=1

n∑
j=1

AijBij =
n∑

i=1

n∑
j=1

AijÃ
(δb)

ij = E − δb ;

the second term is

n∑
i=1

n∑
j=1

BijCij =
n∑

i=1

n∑
j=1

Ã(δb)

ij Ã(δc)

ij ;

and the third term is

n∑
i=1

n∑
j=1

AijCij =
n∑

i=1

n∑
j=1

AijÃ
(δc)

ij = E − δc .

We need to separately consider the cases in which two matrices experience the same perturbation or
different perturbations. In the usual case, δb �= δc (i.e., the perturbations are different), so there is at least
an offset of |δb − δc|. Consequently,

n∑
i=1

n∑
j=1

Ã(δb)

ij Ã(δc)

ij ≤ E − |δb − δc| . (A.4)

If, however, δb = δc (i.e., both δ-perturbations are the same), the right-hand side of Eq. (A.4) is instead
given by E.

Altogether, this yields the following bound:

X ≤ E − δb + E − |δb − δc| − E + δc = E + (δc − δb) − |δb − δc| .

Three possibilities emerge:

(1) If δb = δc, then X ≤ E.

(2) If δb < δc, then |δb − δc| = δc − δb, so X ≤ E.

(3) If δb > δc, then |δb − δc| = δb − δc, so X ≤ E + 2(δc − δb) < E.

This concludes the proof. �
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B. Appendix: An urn-type null model

We now examine an urn-type null model to assess the statistical significance of some of our calculations.
In Section 4.3, we discussed the notion of purity and used it to quantify the clustering quality in three
dendrograms. Our data set is small, so we cannot rule out the possibility that the observed clustering may
be contaminated by statistical artefacts or finite-size effects. We thus construct an urn-type null model
to assess the likelihood that the observed amount of clustering arises from chance, and we apply it to
examine the results of the ‘controls versus patients under Aripiprazole’ dendrogram (which we labelled
as case A in Fig. 8 of Section 4.3). Cutting the dendrogram at the level at which purity peaks yields
two communities (each with 10 subjects) and a purity of 19/20. To compute the probability P that this
occurred by chance, we first enumerate all possible partitions. The number Z of different configurations
for partitioning the 11 controls and 9 patients into two groups of 10 individuals is

Z = 2
4∑

k=0

(
11

10 − k

)(
9

k

)
= 184756 .

There are five possible events:

• Event (E1): There are 10 controls in one urn, and the other urn has 1 control and 9 patients. (This
corresponds to case A of controls versus patients under Aripiprazole.) The purity in this case is 19/20,
and the probability that this event occurs by chance is

PE1 = 2

Z

(
11

10

)
= 1

8398
≈ 10−4 .

That is, this event would occur randomly with a probability 0.0001, a seemingly very unlikely event.
For completeness, we also give the estimated probabilities of the other events. We write κC + λP to
denote a set with κ controls and λ patients. The probabilities are as follows:

• Event (E2): 9C + 1P is in one urn, and 2C + 8P is in the other (purity 17/20), so

PE2 = 2

Z

(
11

9

)(
9

1

)
= 45

8398
≈ 0.0053 .

• Event (E3): 8C + 2P is in one urn, and 3C + 7P is in the other (purity 15/20), so

PE3 = 2

Z

(
11

8

)(
9

2

)
= 270

4199
≈ 0.064 .

• Event (E4): 7C + 3P is in one urn, and 4C + 6P is in the other (purity 13/20), so

PE4 = 2

Z

(
11

7

)(
9

3

)
= 1260

4199
≈ 0.3 .

• Event (E5): 6C + 4P is in one urn, and 5C + 5P is in the other (purity 11/20), so

PE5 = 2

Z

(
11

6

)(
9

4

)
= 2646

4199
≈ 0.63 .
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C. Appendix: Network component sizes

As we discussed in Section 3.2, half of our networks (30 of 60) consist of two or more components after
thresholding. However, even in these cases, the LCC of each network includes almost the entire network.
In Table C1, we show the number of components and component sizes for each of the 60 networks.

Table C1 Number of components and component sizes of each of the 60 networks. (We denote treatment
under Aripiprazole by ‘A’, treatment under Sulpiride by ‘S’ and treatment under placebo by ‘P’.)

Subject Number of components Component sizes

Control 1 (A) 6 {293,1,1,1,1,1}
Control 3 (A) 4 {295,1,1,1}
Control 4 (A) 5 {293,2,1,1,1}
Control 5 (A) 20 {268,6,5,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
Control 6 (A) 2 {297,1}
Control 7 (A) 3 {296,1,1}
Control 9 (A) 4 {295,1,1,1}
Control 11 (A) 2 {297,1}
Control 12 (A) 6 {292,2,1,1,1,1}
Control 13 (A) 6 {292,2,1,1,1,1}
Control 15 (A) 2 {297,1}
Control 1 (P) 1 298
Control 3 (P) 2 {297,1}
Control 4 (P) 1 298
Control 5 (P) 2 {297,1}
Control 6 (P) 5 {289,3,3,2,1}
Control 7 (P) 4 {295,1,1,1}
Control 9 (P) 2 {297,1}
Control 11 (P) 1 298
Control 12 (P) 4 {294,2,1,1}
Control 13 (P) 4 {295,1,1,1}
Control 15 (P) 1 298
Control 1 (S) 1 298
Control 3 (S) 2 {297,1}
Control 4 (S) 1 298
Control 5 (S) 1 298
Control 6 (S) 3 {296,1,1}
Control 7 (S) 1 298
Control 9 (S) 1 298
Control 11 (S) 2 {297,1}
Control 12 (S) 1 298
Control 13 (S) 3 {296,1,1}
Control 15 (S) 1 298
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Table C1 Continued

Subject Number of components Component sizes

Patient 1 (A) 2 {297,1}
Patient 2 (A) 1 298
Patient 4 (A) 1 298
Patient 6 (A) 1 298
Patient 7 (A) 2 {297,1}
Patient 8 (A) 7 {291,2,1,1,1,1,1}
Patient 9 (A) 1 298
Patient 10 (A) 1 298
Patient 12 (A) 1 298
Patient 1 (P) 1 298
Patient 2 (P) 1 298
Patient 4 (P) 1 298
Patient 6 (P) 1 298
Patient 7 (P) 2 {297,1}
Patient 8 (P) 7 {292,1,1,1,1,1,1}
Patient 9 (P) 1 298
Patient 10 (P) 3 {296,1,1}
Patient 12 (P) 1 298
Patient 1 (S) 1 298
Patient 2 (S) 2 {297,1}
Patient 4 (S) 1 298
Patient 6 (S) 1 298
Patient 7 (S) 1 298
Patient 8 (S) 5 {294,1,1,1,1}
Patient 9 (S) 1 298
Patient 10 (S) 1 298
Patient 12 (S) 1 298
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