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We study the cluster dynamics of multichannel (multivariate) time series by representing their
correlations as time-dependent networks and investigating the evolution of network communities.
We employ a node-centric approach that allows us to track the effects of the community evolution
on the functional roles of individual nodes without having to track entire communities. As an
example, we consider a foreign exchange market network in which each node represents an ex-
change rate and each edge represents a time-dependent correlation between the rates. We study the
period 2005-2008, which includes the recent credit and liquidity crisis. Using community detection,
we find that exchange rates that are strongly attached to their community are persistently grouped
with the same set of rates, whereas exchange rates that are important for the transfer of information
tend to be positioned on the edges of communities. Our analysis successfully uncovers major
trading changes that occurred in the market during the credit crisis. © 2009 American Institute of
Physics. [DOI: 10.1063/1.3184538]

The past decade has seen an explosion of research on
static networks and on detecting cohesive subnetworks

I. INTRODUCTION

known as communities. However, despite all of this atten-
tion, very little research has considered the problem of
investigating communities in time-evolving networks;
these occur across disciplines, from economics to biology.
In this paper, we examine communities in an evolving,
weighted, fully connected network that we obtained from
high-frequency time series of currency exchange rates.
Community detection in time-dependent weighted net-
works provides a new approach to the problem of clus-
tering multivariate time series. In contrast to previous
studies of dynamic communities in networks, we employ
a node-centric approach that allows us to track the ef-
fects of the community evolution on the functional roles
of nodes without having to track entire communities. To
illustrate the power of our approach, we consider a for-
eign exchange (FX) market network during the recent
credit crisis. Our analysis uncovers notable structural
changes that occurred in the FX market during the crisis
and identifies exchange rates that experienced significant,
striking changes in market role.
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During the past ten years, there has been an explosion of
research on networks (i.e., graphs) with static connections
between nodes.'™ This has involved a remarkable interdisci-
plinary effort—with physicists, mathematicians, computer
scientists, sociologists, and others all playing major roles.
Among the most important ideas in network science is the
investigation of mesoscopic network structures known as
“communities,”*™"? which are constructed from subsets of
nodes that are more strongly connected to each other than
they are to the rest of the network. The analysis of commu-
nities has provided striking insights into functional modules
in several networks.®!'™!8

However, despite this wealth of attention, there has been
much less research that considers communities in the more
general class of networks that have time-evolving weighted
links." Here, we examine the community dynamics in an
evolving, fully connected FX market network over the period
2005-2008 (which includes the recent credit crisis). The net-
work possesses a fixed number of nodes and evolving link
weights that are determined using time-varying pairwise cor-
relations between time series associated with each node.
Community detection in networks of this kind is equivalent
to the problem of clustering multivariate time series. Time
series clustering has a range of applications, including find-
ing groups of genes with similar expression patterns in mi-
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croarray experiments and grouping functional MRI time se-
ries to identify regions of the brain with similar activation
patterns.20 Again, however, there has been little focus on the
dynamics of clusters.

In this paper, we present a methodology for investigating
cluster/community dynamics. Recently, scientists have begun
to develop techniques to examine the dynamics of commu-
nities by tracking entire communities through time.'?!2?
This requires a method for determining which community at
each time step represents the descendant of a community at
the previous time step, which can lead to equivocal map-
pings following splits and mergers. As an alternative, we
investigate community dynamics from a node-centric per-
spective and demonstrate how the dynamics can affect the
functional roles of individual nodes. Our analysis uncovers
major changes that occurred in the FX market during the
credit crisis. Among other things, we identify individual ex-
change rates that experienced significant changes in market
role. Our approach can potentially provide similarly useful
insights into other multivariate data sets from commerce to
medicine.

Il. DATA

We construct networks with n=110 nodes, where each
node represents an exchange rate of the form XXX/YYY
(with XXX #YYY), and XXX, YYY e{AUD, CAD, CHF,
GBP, DEM, JPY, NOK, NZD, SEK, USD, XAU}. The cur-
rency symbols are defined as follows: AUD, Australian dol-
lar; CAD, Canadian dollar; CHF, Swiss franc; EUR, euro;
GBP, pounds sterling; JPY, Japanese yen; NOK, Norwegian
krone; NZD, New Zealand dollar; SEK, Swedish krona;
USD, US dollar; XAU, gold. An exchange rate XXX/YYY
indicates the amount of currency YYY one can receive in
exchange for one unit of XXX. We include gold (XAU) in
the study because it behaves like a volatile currency.23

We define the weight of the link connecting nodes i and
J using the time series of hourly exchange rate returns R,(¢)
(i=1,2,...,n) from the hours 07:00-18:00 UK time over the
period 2005-2008. The return of an exchange rate with price
p(t) at discrete time 7 is defined by R;(r)=In(p,(1)/p;(t—1)).
We represent the resulting fully connected, weighted network
by an adjacency matrix A with components

Aij:%(pij"'l)_gi', (1)

where p;;=((R;R;)—(R;}R))/(0,07) is the correlation coeffi-
cient between exchange rates i and j over a window of T
returns, the Kronecker delta &;; removes self-edges, (-) indi-
cates a time-average over 7, and o; is the standard deviation
of R; over T. The matrix elements A;; €[0,1] quantify the
similarity of two exchange rates. We use the linear correla-
tion coefficient p;; to measure the correlation between pairs
of exchange rates because of its simplicity, but our methods
are independent of this choice and can be employed using
alternative measures capable of detecting more general de-
pendencies.

We exclude self-edges in order to deal with simple
graphs. This approach was also taken in a previous study of
a financial network derived from a correlation matrix.”*
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However, we note that if we include self-edges, the node
compositions of the identified communities are identical if
we make a small parameter change in the community detec-
tion algorithm. We discuss the community detection algo-
rithm and the effect of including self-edges in Sec. III and in
endnotes 25 and 26.

We create a longitudinal sequence of networks by con-
secutively displacing the time windows by Ar=20 h (ap-
proximately two trading days) and fix 7=200 h (approxi-
mately 1 month of data) as a compromise between
oversmoothing and overly noisy correlation coefficients.?’

In contrast to most prior studies of financial networks,
we use recent community detection techniquesn’13 rather
than traditional hierarchical cluste:ring23’27’28 and consider
weighted links rather than thresholding them to create a bi-
nary network.” In Ref. 24, the authors also departed from
such typical assumptions in a study of communities in a
network of equities. However, they did not examine longitu-
dinal networks. Dynamic communities have been investi-
gated in biophysical data using recent methods,*® but our
work differs by focusing on quantifying and tracking the
changes in community composition.

lll. COMMUNITY DETECTION

We represent each network A as an infinite-range,
n-state Potts spin glass so that each node is a spin, each edge
is a pairwise interaction between spins, and each community
is a spin state. We then find communities by assigning each
spin to one state and minimizing the interaction energy of
these states, which is given by the Hamiltonian®

HZ—ZJI‘_I'g(C,‘,Cj)’ (2)

i

where c; is the state of spin i. The interaction energy between
spins i and j is J;j=A;;— yp;j, where 7 is a resolution param-
eter and p;; denotes the expected edge weight with which
nodes i and j are connected in a null model of random link
assignment. The Kronecker delta &(c;,c;) ensures that the
sum is only taken over nodes belonging to the same commu-
nity. We employ the standard Newman—Girvan null model
(or prior) so that p;=kk;/(2m), where k;=%A; is the
strength (weighted degree) of node i and mzéEi,jAU is the
total edge weight in the network.” For the particular example
network considered here, each of the nodes has the same
strength k;=(n—2)/2 and the expected edge weight in the
null model is given by

n-2
2n

pPij= > (3)
so the null model is equivalent to the uniform case (with
constant p;;). However, the methods we present are general
and can also be applied to networks with nonuniform
strength distributions.”

By tuning vy, we probe the community structure at dif-
ferent resolutions, with larger 7y values corresponding to
more fragmented communities.*** At each resolution, we use
a greedy algorithm®' to minimize Eq. (2).%°
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FIG. 1. (Color online) (a) The quantities N,, S, Q, and dH/dy (normalized by their maximum values) as a function of the resolution parameter vy for a single
time window beginning on 10 March 2005. The shaded gray area highlights the main plateau. The bottom curve gives the normalized variation of information
between partitions at resolutions separated by Ay=0.013. (b) The position of the main plateau at each time step, showing the main plateaus (i) containing

y=1.45 and (ii) not containing y=1.45.

The community structure of many networks is robust
across a range of resolutions.®”'"'? Robust communities ob-
tained using the Potts method are significant because they
persist even though there is a larger incentive for nodes to
belong to smaller clusters as vy increases. We detect commu-
nities at 100 resolutions in the interval ye[0.8,2.1]. At
v=0.8 all of the nodes are assigned to the same community,
and at y=2.1 they are all assigned to singleton communities.
We compare the community compositions at consecutive
values of 7y using the normalized variation of information

V1332 The entropy of a partition C of the n nodes in A into

K communities ¢ (ke {l,...,K}) is
K
S(C) == 2, P(k)log P(k), (4)

k=1

where P(k)=|ck|/n is the probability that a randomly selected
node belongs to community k and |c¥| is the size (set cardi-
nality) of communities. (The quantity c* is, therefore, the set
of nodes labeled by k, while c; is the set of nodes in the same
community as node i.) Given a second partition C' of the n
nodes into K’ communities, we define

S(C)+s(c")=21(c,cC)

vie.ch= log n

(5)
The quantity /(C,C"), the mutual information between C and
C', is given by

K K’

1(C,C") =, > P(k.k')log

k=1 p'=1

P(K)
— (6)
P(k)P(k")

where P(k,k')=|c*Nc¥'|/n. The factor logn normalizes
V(C,C") to the interval [0,1], with O indicating identical par-
titions and 1 indicating that all nodes are in individual com-
munities in one partition and in a single community in the
other.

One can find robust communities by examining sum-
mary statistics that describe community configurations as a
function of the resolution parameter. Figure 1(a) shows, as a
function of vy, the number of communities N, the rate of
change in the energy with resolution dH/dy, the modularity
0. and the entropy S of each partition. One can write a
scaled energy Q, in terms of the Hamiltonian in Eq. (2) as
Q,=—H/2m. The modularity Q is the scaled energy with
y=1.
There are four principle plateaus in Fig. 1(a), corre-
sponding to partitions of the network into N.=1, 2, 20, and
110 communities. The first and last plateaus, respectively,
represent all nodes in a single community and all nodes in
individual communities. The second plateau represents one
community of exchange rates and a corresponding commu-
nity of inverse rates. We include inverse exchange rates, be-
cause one cannot infer a priori whether a rate XXX/YYY
will form a community with a rate WWW/ZZZ or its inverse
777/WWW. The existence of an equivalent inverse commu-
nity for each community means that at each time step the
network is composed of two identical halves. However, the
exchange rates residing in each half change with time as the
correlations evolve. For the example in Fig. 1(a), the other
plateau occurs in the interval ye[1.41,1.60]. Although the
community configuration over this interval does not have
maximal Q, it provides an appropriate resolution at which to
investigate community dynamics due to its resolution robust-
ness with y and the financially interesting features of the
detected communities. For the remainder of this paper, we
will refer to this plateau as the “main” plateau.

IV. COMMUNITY PROPERTIES

One way to investigate the community dynamics is to
select a resolution vy in the main plateau at each time step. As
shown in Fig. 1(b), this plateau occurs over different vy inter-
vals at different time steps and has different widths. These
intervals need not share common resolution values, so this
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FIG. 2. (Color online) (a) Observed fraction of time steps that the resolution 7 lies in the main plateau. The vertical line indicates the value y=1.45, which
lies in the largest number of main plateaus and is the resolution at which we investigate the community dynamics. (b) (i) Normalized sampled distribution of
the main plateau width and (ii) normalized sampled distribution of the y-distance between the main plateau and y=1.45. (c) (i) Distribution of normalized
variation of information between the community configuration at y=1.45 and the configuration corresponding to the main plateau and (ii) distribution of

normalized variation of information between consecutive time steps. The vertical lines give the mean V when (left to right) 1, 2, 5, 10, and 20 nodes are
randomly reassigned to different communities (averaged over 100 reassignments for each time step). (d) The fraction of time steps at which N, communities
are observed. (e) The fraction of time steps at which a community of a given size is observed. (f) Comparison of the distribution of the scaled energy for (i)

market data and (ii) 100 realizations of shuffled data.

method seems inappropriate because one would then be
comparing communities obtained at different resolutions. We
therefore fix y=1.45, which, as shown in Fig. 2(a), is the
value that occurs in the largest number of main plateaus. In
order to demonstrate the validity of this choice, we show in
Fig. 2(b) the distribution of the y-distance between the fixed
resolution y=1.45 and the main plateau, and in Fig. 2(c) the

distribution of V between the community configuration ob-
tained using y=1.45 and that corresponding to the main pla-
teau. The fixed resolution is in a y-interval of less than 0.05
from the main plateau 88% of the time, and the community
configurations of the main plateau and y=1.45 differ in the
community assignments by fewer than two nodes 88% of the
time. These results support our proposed method of investi-
gating the community dynamics at a fixed 7.

Figure 2(d) shows that there are only small fluctuations
in the number of communities into which the network is
partitioned. Nevertheless, as shown in Fig. 2(c), there is a
considerable variation in the extent of community reorgani-
zation between consecutive time steps. There are no changes
between some steps, but more than 20 nodes change com-
munities between others. Figure 2(e) shows that the observed
community size distribution is bimodal and has a long tail
extending to large community sizes. There is a large varia-
tion in the sizes of the communities observed at each time
step.

To ensure that the identified communities are meaning-
ful, we compare the scaled energies of the observed commu-
nity partitions with those from shuffled data. We generate
shuffled data by randomly reordering the elements of each of
the real time series. By inspection, Fig. 2(f) shows that the

communities identified for the actual data are significantly
stronger than those generated using the shuffled data. The
sample mean scaled energy for the actual data is 0.0056
(with a standard deviation of 0.0036) and for shuffled data
the sample mean is 0.0022 (with a standard deviation of
0.0010).

V. NODE ROLES IN COMMUNITIES

Having considered the properties of entire communities,
we now investigate the roles of nodes within communities. A
node’s identity is known at all times and its community is
known at any one time. We can thus track community evo-
lution from the perspective of individual nodes. We describe
the relationship between a node and its community using
various centrality measures. The betweenness centrality of a
node i is computed by calculating, for every pair of vertices
s and ¢, the fraction of geodesic paths between s and ¢ that
pass through i and then summing this fraction over all s and
" We take the distance between nodes i and J as d;
=1/A;; for i#j and O for i=j. In some sense, betweenness
centrality measures the importance of each node for the
spread of information around the network.

We also consider the community centrality of each
node.” We define a scaled energy matrix J by J;;=A;i—yp;;,
where we again set p;;=k;k;/(2m). Following the notation in
Ref. 7, this matrix can be expressed as J =UDU7’, where
U=(u,|u,|---) is the matrix of eigenvectors of J and D is the
diagonal matrix of eigenvalues B;. If D has g positive eigen-
values, one can define a set of node vectors x; by

[Xi]j= \“”ﬁjUiﬁ je {1,2, ,q}.

(7)
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FIG. 3. (Color online) (a) Mean community centrality vs the size of the
community to which a node belongs. (b) Mean community alignment vs the
betweenness centrality of nodes. (c¢) Mean community autocorrelation vs the
projected community centrality. [All error bars indicate the standard error
(Ref. 34).]

The magnitude |x;| is the community centrality. A node with

high community centrality plays an important role in its local

neighborhood irrespective of the community boundaries.
One can also define a community vector

W= X (8)

ieck
for each community k with members c*. Nodes with high
community centrality are strongly attached to their commu-
nity if their node vector is also aligned with their community
vector. We then define a projected community centrality y; by

yi=X; - W =|x;[cos 0y, 9)

where W, is the unit vector in the direction of w;. We refer to
the quantity cos 6;, as the community alignment. The com-
munity alignment is near 1 when a node is at the center of its
community and near 0 when it is on the periphery. A node
with a high community centrality that is located in the center
of its community has a high projected community centrality
and hence is attached strongly to its community (and can be
considered to be very influential within it). We normalize |x;|
and y; by the maximum value at each time step.

We investigate the persistence through time of nodes’
communities by defining a community autocorrelation. For a
node i with community c;(r) at time ¢, the autocorrelation
al(7) of its community after 7 time steps is defined by

|Ci(t) N Ci(t+ T)|

A Uit o) (10

ai(n) =
This is a node-centric version of a quantity considered in
Ref. 19. Importantly, this measure does not require one to
determine which community at each time step represents the
descendant of a community at the previous time step. In-
stead, the communities are identified from the perspective of
individual nodes.

In Fig. 3(a), we show the mean normalized community
centrality as a function of community size (averaging over
all nodes belonging to communities of the same size). The
community centrality increases with community size up to
sizes of about ten members. For larger communities, |x;| re-
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mains approximately constant. Nodes with high |x,| therefore
tend to belong to large communities, so exchange rates with
high community centrality tend to be closely linked with
many other rates. Figure 3(b) shows the mean betweenness
centrality versus the community alignment (averaging the
community alignment over all nodes with the same between-
ness). As the betweenness centrality of a node increases, its
community alignment tends to decrease, implying that nodes
that are important for the transfer of information are usually
located away from the centers of communities. (The standard
errors for nodes with very high betweenness are large be-
cause there are only a few nodes with such values.)

In Fig. 3(c), we show the mean community autocorrela-
tion versus the projected community centrality. We calculate
the mean autocorrelation by splitting the range of y into 15
equally-spaced bins and then averaging over all autocorrela-
tions falling within these bins. (The observed relationships
are robust for reasonable variations in the number of bins.)
As one would expect, the community autocorrelation for the
same projected community centrality is smaller for larger 7.
For all values of 7, the mean community autocorrelation in-
creases with y. This suggests that nodes that are strongly
connected to their community are likely to persistently share
that community membership with the same subset of nodes.
In contrast, exchange rates with a low y experience regular
changes in the set of rates with which they are clustered.

VI. EFFECTS OF THE CREDIT CRISIS ON NETWORK
STRUCTURE

Thus far, we have considered the community properties
aggregated over all time steps. We now investigate the com-
munity dynamics in specific time intervals. In particular, we
focus on the insights that such shorter-term dynamics can
provide into the changes that occurred in the FX market dur-
ing the recent credit crisis. Figure 4(a) shows a contour plot
of the normalized distribution of link weights at each time
step. The mean link strength remains constant through time
because of the inclusion in the network of each exchange rate
and its inverse, but [as one can see in Figs. 4(a) and 4(b)]
there is a large variation in the standard deviation of the link
strengths. Figure 4(b) shows that the scaled energy is closely
related to the standard deviation of the link weights. This is
expected because the standard deviation increases as a result
of the strengthening of strong ties and the weakening of
weak ties.

In Fig. 4(c), we show the normalized variation of infor-

mation V between the community configurations at consecu-
tive time steps. Significant changes in configuration are indi-

cated by large spikes in V. The correlation coefficient
between V and the absolute change in Q, between consecu-

tive time steps is 0.47, and that between V and the absolute
change in o(A;) is 0.27. Changes in o(A;;) are therefore not
always a good indication that there has been a significant
change in the community configuration of the network.

The seriousness of the credit crisis first became widely
recognized when on 19 July 2007, Federal Reserve chairman
Ben Bernanke warned in testimony to the U.S. Congress that
the crisis in the U.S. subprime lending market could cost up
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FIG. 4. (Color online) (a) Normalized
distribution of link weights at each
time step. (b) Scaled energy Q, and
standard deviation of the link weights.
(c) Normalized variation of informa-
tion between the community configu-

rations at consecutive time steps. The
horizontal lines show (from bottom to
top) the mean of V and 1,2, 3, and 4
standard deviations above the mean.
The vertical lines in (b) and (¢) show

the time steps when the following
dates enter the rolling time window: 20
July 2007, 15 August 2007, and 16 De-
cember 2008 (two large reorganiza-
tions at consecutive time steps are

marked by circles following this date).
(d) Carry trade index Y. The vertical
line shows 15 August 2007 and the
shaded blocks (from left to right) indi-
cate Q3 2007, Q4 2007, Q1 2008, and
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to $100 billion. This announcement marks the start of a pro-
longed increase in Q; beginning as 20 July 2007 enters the
rolling time window. There is no significant community re-
organization at this time step.

The most important effect of the credit crisis on the FX
market was its impact on the carry trade. The first significant
community reorganization of the crisis occurred on 15 Au-
gust 2007 as a result of massive “unwinding” of the carry
trade. This change accompanied a large increase in Q. The
carry trade consists of selling low interest rate “funding cur-
rencies” such as the JPY and CHF and investing in high
interest rate “investment currencies” such as the AUD and
NZD. It yields a profit if the interest rate differential between
the funding and investment currencies is not offset by a com-
mensurate depreciation of the investment currency.35 The
carry trade requires a strong appetite for risk, so unwinding
of the trade tends to occur during periods in which there is a
decrease in the available credit. A trader unwinds a carry
trade position by selling his/her holdings in investment cur-
rencies and buying funding currencies.

One approach to quantifying carry trade activity is to
consider the returns that could have been achieved using a
carry trading strategy. The total return for a currency trading
strategy can be split into two parts: a return resulting from
the price changes and a return resulting from the interest rate
differentials between the currencies. We can estimate the re-
turn that could have been achieved for a particular carry
trade strategy using historical price and interest rate time
series. We consider a common strategy in which one buys
equal proportions of the three major currencies with the
highest interest rates and sells equal proportions of the three
currencies with the lowest interest rates. In Fig. 4(d), we
show the cumulative return index Y for this trading strategy.
Large negative returns result in large decreases in Y, which
are therefore likely to indicate significant unwinding of the
carry trade.

In Fig. 5(a), we show the observed communities before
and after 15 August 2007. Figure 4(d) shows that leading up

Q4 2008.

to 15 August 2007, there has been some unwinding of the
carry trade, so the initial configuration includes a community
containing exchange rates of the forms AUD/YYY, NZD/
YYY, and XXX/JPY (which all involve one of the key carry
trade currencies). During 15 August 2007-17 August 2007,
there is a sharp increase in carry trade unwinding, which
results in this community increasing in size as it incorporates
other XXX/JPY rates as well as some XXX/CHF and XXX/
USD rates. The presence of many exchange rates involving
one of the key carry trade currencies in a single community
clearly demonstrates the significance of the trade over this
period. Some of the exchange rates included in the commu-
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FIG. 5. (Color online) Schematic representation of the change in the com-
munity configuration in one half of the FX market network following: (a) 15
August 2007, when there was significant unwinding of the carry trade and
(b) 16 December 2008, when the U.S. Federal Reserve cut the funding
interest rate from 1% to 0%—0.25%. The node colors after the community
reorganization correspond to the community assignments before the change.
If the parent community of a post-reorganization community is obvious, it is
drawn in the same color as its parent. The nodes represented as triangles
resided in the opposite half of the network before the community
reorganization.

Downloaded 19 Aug 2009 to 129.67.66.145. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



033119-7 Dynamic communities in multichannel data
nity are also somewhat surprising and provide insights into
the range of currencies used in the carry trade.

In Fig. 5(b), we show an example of a significant com-
munity reorganization that accompanied a decrease in Q.
This reorganization occurred following 16 December 2008
when the U.S. Federal Reserve cut the federal funds interest
rate from 1% to 0%—0.25%—the lowest rate ever recorded.

We have considered three examples in which large com-
munity reorganizations are clearly attributable to particular
market events, demonstrating the effectiveness of our meth-
ods. However, there are several other large community
changes that are not easily associated with specific events.
Investigating these community changes might provide in-
sights into market changes that are not otherwise obvious.

Finally, we consider the changes in the relationships be-
tween specific nodes and their communities during the crisis
period. We begin by defining within-community z-scores,
which directly compare the relative importances of different
nodes to their cornmunity.l6 We describe the roles of indi-
vidual nodes at each time step using the within-community
projected community centrality z-score z' and within-
community betweenness centrality z-score z”. If a node i
belongs to community ¢; and has projected community cen-
trality y;, then z;=(y;=y.)/ o7, where y, is the average of y
over all nodes in ¢; and o is the standard deviation of yin
¢;. The quantity z) measures how strongly node i is con-
nected to its community. Similarly, if the same node has
betweenness centrality b;, then z7=(b,~b, )/aj’ where b,
the average of b over all nodes in c and o"7 is the standard
deviation of b in c¢;. The quantity z,» indicates the importance
of node i to the spread of information compared to other
nodes in the same community. The positions of nodes in the
(z%,7”) plane thereby illuminate the roles of the associated
exchange rates in the FX market.

We investigate the time dynamics of exchange rate roles
by examining quarterly changes in their positions in the
(z%,7”) plane. The quarterly roles are determined by averag-
ing z¥ and z” over all time steps in each quarter. Changes in
a node’s position in the (z”,z”) plane reflect changes in its
community assignment as well as changes in b and y.

We show four example role evolutions in Fig. 6. The
USD/XAU rate provides an interesting example due to the
persistence of its community. From 2005-2008, the USD/
XAU node has shifted from being an important information
carrier within the XAU community to being more central to
this community. This period of higher influence coincides
closely with the period of financial turmoil. The CHF is
widely regarded as a “safe haven” currency,36 so one might
expect USD/CHF to behave in a manner similar to USD/
XAU. However, the CHF is also a key carry trade currency.
The use of the CHF as both a safe haven and a carry trade
currency means that USD/CHF does not move in the same
direction as USD/XAU in the (z*,z”) plane. Instead the USD/
CHF exchange rate is an important information carrier dur-
ing the credit crisis. The AUD/JPY and NZD/JPY exchange
rates change from being important for information transfer to
being influential within their communities. These exchange
rates are the ones that are most widely used for the carry
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FIG. 6. (Color online) Quarterly node role evolutions in the (z*,z”) plane.

trade, so their increased importance is unsurprising. In fact,
both rates were very influential during the third and fourth
quarters in 2007, the first quarter in 2008, and the fourth
quarter of 2008, when there was significant carry trade ac-
tivity [see Fig. 4(d)].

VIl. CONCLUSIONS

In summary, we have analyzed evolving community
structure in time-dependent networks to provide new insights
into the clustering dynamics of multichannel/multivariate
time series. We focused, in particular, on a node-centric com-
munity analysis that allows one to follow the time dynamics
of the functional roles of individual nodes within networks.
As an illustration of our approach, we examined the FX mar-
ket network during a period that included the 2007-2008
credit crisis. We demonstrated that the FX market has a ro-
bust community structure over a range of resolutions and
showed that there is a relationship between an exchange
rate’s functional role and its position within its community.
Our analysis of the community dynamics successfully un-
covered important structural changes that occurred in the FX
market during the credit crisis and identified exchange rates
that experienced significant changes in market role. Our
methodology should be similarly insightful for other multi-
variate data sets.
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