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We use techniques from network science to study correlations in the foreign exchange (FX)
market during the period 1991-2008. We consider an FX market network in which each node
represents an exchange rate and each weighted edge represents a time-dependent correlation
between the rates. To provide insights into the clustering of the exchange-rate time series, we
investigate dynamic communities in the network. We show that there is a relationship between
an exchange rate’s functional role within the market and its position within its community and
use a node-centric community analysis to track the temporal dynamics of such roles. This
reveals which exchange rates dominate the market at particular times and also identifies
exchange rates that experienced significant changes in market role. We also use the community
dynamics to uncover major structural changes that occurred in the FX market. Our techniques
are general and will be similarly useful for investigating correlations in other markets.
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1. Introduction

Complex systems are composed of many interacting
elements and can exhibit numerous forms of ‘emergent’
collective dynamics without the need for any external
organizing principle (Boccara 2003). Such dynamics
typically cannot be explained by studying the constituent
parts in isolation, so a complex system must be analysed
as a whole. Networks provide a tractable framework for
the quantitative analysis of many complex systems by

*Corresponding author. Email: dan.fenn@hsbcib.com

distilling them to their key elements (Albert and Barabasi
2002, Newman 2003, Amaral and Ottino 2004, Caldarelli
2007). In such a representation, the elements of a system
are represented as the network’s nodes and the important
interactions between them are represented as links that
connect the nodes. (In this paper, we use the terms ‘links’
and ‘edges’ interchangeably.)

Financial markets exhibit many of the key properties
that characterize complex systems: they are composed of
many heterogeneous components that interact with each
other and their environment nonlinearly in the presence of
feedback (Mantegna and Stanley 2000, Amaral and
Ottino 2004). An investigation of a financial market can
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be formulated as a network problem. Indeed, a wide
range of financial assets have been investigated using
network techniques, including equities (Mantegna 1999,
Mantegna and Stanley 2000, Onnela et al. 2003), curren-
cies (McDonald et al. 2005, 2008), commodities
(Sieczka and Holyst 2009), bonds (Bernaschi er al.
2002), and interest rates (Matteo et al. 2004). Network
analyses have the potential to provide new insights into
financial data and the structure of markets, which may in
turn lead to the development of better market models.

In the most common network description of a market,
each node represents an asset, and each weighted link is a
function (the same function for all links) of the pairwise
temporal correlations between the two assets that it
connects (Mantegna and Stanley 2000). In a typical
financial network containing n assets, one can calculate a
correlation coefficient between each pair of assets, so the
network contains n(n—1)/2 links. Thorough, simulta-
neous investigation of the interactions is therefore diffi-
cult for even moderate values of n, so attaining an
understanding of the market system necessitates some
form of simplification.

The most prevalent method for reducing the complexity
of a financial network is to construct a minimum
spanning tree (MST) (Mantegna 1999, Mantegna and
Stanley 2000, Bouchaud and Potters 2003, Onnela et al.
2003, 2004). An MST is generated using a hierarchical
clustering algorithm (Duda et al. 2001), and it reduces a
network to n—1 of its most important microscopic
interactions. This approach has resulted in many useful
financial applications, including the construction of a
visualization tool for portfolio optimization (Onnela et al.
2003) and a means for identifying the effect of news and
major events on market structure (McDonald ez al. 2008).
Nevertheless, an MST approach has several limitations,
which we discuss in section 6.

An alternative simplification method is to coarse-grain
a network and consider it at various mesoscopic scales.
The properties of a market can then be understood by
considering the dynamics of small groups of similar
nodes. A widely-studied form of mesoscopic structure,
known as a ‘community’ (Newman 2004a, Newman and
Girvan 2004, Danon et al. 2005, Newman 2006a,
Reichardt and Bornholdt 2006, Fortunato and
Barthelemy 2007, Arenas et al. 2008, Porter et al. 2009,
Fortunato 2010) is constructed from subsets of nodes that
are more strongly connected to each other than they are
to the rest of a network. Communities are of considerable
interest to network scientists because they can correspond
to behavioural or functional units (Guimera and Amaral
2005, Porter et al. 2005, Adamcsek et al. 2006, Traud
et al. 2011), so their identification can lead to a better
understanding of dynamical processes (such as the spread
of opinions and diseases) that operate on networks
(Danon et al. 2005, Porter et al. 2009, Fortunato 2010).
From a financial perspective, communities correspond to
groups of closely-related assets, so community detection
has the potential to suggest possible formulations for
coarse-grained stochastic models of markets.

During the last decade, there has been an explosion of
papers on networks with static connections between
nodes, and research on dynamical systems on such
networks has now also become ubiquitous (Newman
2003, Caldarelli 2007, Barrat et al. 2008). However, there
has been much less research on networks that are
themselves time-dependent (Onnela et al. 2007, Palla
et al. 2007, Mucha et al. 2010), and a characterization of
such networks is essential for a full understanding of
dynamical processes on networks. One of the main
reasons for the limited analysis of time-dependent net-
works is the difficulty of acquiring time-dependent data.
Fortunately, financial markets are one of the most data-
rich complex systems, providing a valuable source of
accurate, high-frequency, time-series data. Financial data
are therefore an important resource for developing tools
and theories for describing time-dependent networks.

In the present work, we investigate community dynam-
ics in a time-dependent foreign exchange (FX) market
network. The FX network possesses a fixed number of
nodes and evolving link weights that are determined by
time-varying pairwise correlations between time series
associated with each node. Therefore, in contrast to some
other studies of financial networks, we analyse a fully-
connected network and do not remove links below some
threshold (Farkas et al. 2007). Community detection in
networks of this kind is closely related to the problem of
clustering multivariate time series (Liao 2005). We also
track communities from the perspective of individual
nodes, which removes the undesirable requirement of
determining which community at each time step repre-
sents the descendant of a community at the previous time
step. Previous dynamic community studies have
attempted to track entire communities (Hopcroft ez al.
2004, Palla et al. 2007) but (as discussed in section 7.2)
some of these approaches can lead to equivocal mappings
following community splits and mergers.

We demonstrate that exchange-rate community
dynamics provides insight into correlation structures
within the FX market and wuncovers important
exchange-rate interactions. We also show that large
community reorganizations often accompany significant
market events and that the details of such community
adjustments can reveal trading behaviour that leads to
these changes. We find that there is a relationship between
an exchange rate’s functional role within the market and
its position within its community, and we identify
exchange rates that experience significant changes in
market role. Although we focus on the FX market, the
techniques that we present are general and will be
similarly insightful for other asset classes.

This paper builds on the results described in Fenn et al.
(2009), which focused on the period 2005-2008 when the
recent credit and liquidity crisis began. In the present
work, we extend our earlier investigation to two addi-
tional time periods: 1991-1998 (before the introduction of
the euro) and 1999-2003 (following the introduction of
the euro). For each time interval, we identify communities
of exchange rates, and we then compare the structure of
the communities across the different periods. In addition,
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we provide further examples of the effects of major
market events on the dynamics of individual communities
by considering community changes during the 1994
Mexican peso crisis and the 1997-1998 Asian currency
crisis. The present work also extends Fenn ez al. (2009) by
comparing the results obtained using community detec-
tion with those produced by traditional clustering tech-
niques. In particular, we demonstrate that the
communities that we uncover are consistent with the
clusters identified using linkage-clustering algorithms
(Duda et al. 2001). Finally, in appendix A, we provide a
detailed analysis of the sensitivity of our results to the
choice of computational heuristic used to identify com-
munities. We obtain the same aggregate conclusions,
although there are differences in the communities identi-
fied using different heuristics.

The remainder of this paper is organized as follows.
In section 2, we discuss the nature of the FX data and use
it to derive a time-dependent network. We detect
communities in the network in section 3 and discuss
robust communities in section 4. We examine the prop-
erties of the communities in section 5, compare the
detected communities to minimum spanning trees in
section 6, and derive the roles of exchange rates within
communities in section 7. We relate the major changes in
community structure over time to significant changes in
the FX market in section 8 and investigate the changes in
the community roles of exchange rates in section 9. In
section 10, we offer some conclusions. In appendix A, we
discuss the effects of using different heuristics to identify
optimal partitions of the FX networks into communities.

2. Data

The FX networks that we construct have n =110 nodes,
each of which represents an exchange rate of the form
XXX/YYY (with XXX#YYY), where XXX,
YYY € {AUD, CAD, CHF, GBP, DEM, JPY, NOK,
NZD, SEK, USD, XAU}f and we note that
DEM — EUR after 1998. An exchange rate XXX/YYY
indicates the amount of currency YYY that can be
received in exchange for one unit of XXX.{ Other authors
have recently studied the FX market by constructing
networks in which all nodes represent exchange rates with
the same base currency, implying that each node can then
be considered to represent a single currency (Gorski et al.
2008). Exchange-rate networks formed with reference to a
single base currency are somewhat akin to ego-centred
networks studied in the social networks literature
(Wasserman and Faust 1994). Ego-centred networks
include links between nodes that all have ties to an ego,

which is the focal node of the network. However, this
approach has two major problems for FX networks.
First, it neglects a large number of exchange rates that can
be formed from the set of currencies studied and
consequently also ignores the interactions between these
rates. Second, the network properties depend strongly on
the choice of base currency, and this currency is, in effect,
excluded from the analysis. We therefore construct
networks that include all exchange rates that can be
formed from the studied set of currencies.

The return of an exchange rate with price pf7) at
discrete time ¢ is defined by

pi(t)
pi(t —1)

We take the price p,(¢) as the mid-price of the bid and ask
prices:

Ri(t) =1n (1)

i =200, 0

We use the last posted price within an hour to represent
the price for the following hour. To calculate a return at
time ¢, one needs to know the price at both  and 1 — 1. To
minimize the possibility of a price not being posted in a
given hour, we focus on the FX market’s most liquid
period: 07:00-18:00 UK time. Nevertheless, there are still
hours for which we do not have price data. (This usually
occurs as a result of problems with the data feed.) One can
calculate a return for hours with missing price data by
assuming the last posted price or interpolating between
prices at the previous and next time step (Dacorogna ez al.
2001). However, to ensure that all time steps included in
the study are ones at which a trade can actually be made,
we take the stricter approach of omitting all returns for
which one of the prices is not known. In order to ensure
that the time series of exchange rates are directly
comparable, we consequently remove a return from all
exchange rates if it is missing from any rate.

For the period 1991-2003, we derive each exchange rate
XXX/YYY with XXX, YYY #USD from two USD
rates. For example, we find the CAD/CHF price at each
time step by dividing the USD/CHF price by the USD/
CAD price. For the period 2005-2008, we derive each
exchange rate not included in the set {AUD/USD, EUR/
NOK, EUR/SEK, EUR/USD, GBP/USD, NZD/USD,
USD/CAD, USD/CHF, USD/JPY, USD/XAU} from
pairs of exchange rates in this set. For example, we find
the USD/NOK price at each time step by dividing the
EUR/NOK price by the EUR/USD price. Although this
approach appears somewhat artificial, it matches the way
in which many exchange rates are calculated in the actual
FX market. For example, a bank customer wishing to

TThese symbols represent: AUD, Australian dollar; CAD, Canadian dollar; CHF, Swiss franc; EUR, euro; GBP, pounds sterling;
JPY, Japanese yen; NOK, Norwegian krone; NZD, New Zealand dollar; SEK, Swedish krona; USD, US dollar; XAU, gold. We
include gold in the study because it has many similarities with a currency (McDonald et al. 2005).

iFor each exchange rate, market participants can quote both bid and ask prices. Bid/ask prices give the different prices at which one
can buy/sell currency, and the ask price tends to be larger than the bid price. For example, suppose that the exchange rate between
EUR and USD is quoted as 1.4085/1.4086. A trader then looking to convert USD into EUR has to pay 1.4086 USD for each EUR,
whereas a trader looking to convert EUR to USD receives only 1.4085 USD per EUR.
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Figure 1. Standard deviation of the edge weights 4; as a function of time for the period 1991-1998. For all panels, Ar=20
(approximately two days). We show this calculation for (a) 7= 100 hours, (b) 7'=200 hours, (¢) T=400 hours, and (d) 7=1200
hours (corresponding to approximately 0.5, 1, 2, and 6 months, respectively).

convert CAD to NZD (or vice versa) will need to be
quoted the CAD/NZD prices. Because this is not a
standard conversion, the bank will not be able to quote a
direct market price but will instead calculate a price using
the more widely traded USD/NZD and USD/CAD
exchange rates. Calculating the exchange rates in this
way implies that there is some intrinsic structure inherent
in the FX market. However, as shown in McDonald et al.
(2005) and demonstrated further in sections 5.2 and 5.3 of
this paper, this ‘triangle effect’” does not dominate the
results.

We determine the weights of the edges connecting pairs
of nodes in the FX networks using a function of the linear
correlation coefficient p between the return time series for
the corresponding exchange rates. The correlation
between the exchange-rate returns R; and R; in a time
window of 7 returns is given by

(RiRj) — (R;)(R;)

p(i,j) = =,
0i0j

3)

where (-) indicates a time average over 7 returns and o; is
the standard deviation of R; over 7. We use the linear
coefficient p(i, j) to measure the correlation between pairs
of exchange rates because of its simplicity, but one could
use alternative measures that are capable of detecting
more general dependencies (Schelter er al. 2006). Our
methods can be applied using any choice for p(i, j). The
weighted adjacency matrix A representing the network
has components

1
Ay = 51p(0)) + 1] = 85 @

where the Kronecker delta §; removes self-edges. The
matrix elements A; € [0, 1] quantify the similarity of each

pair of exchange rates i and j. For example, two exchange
rates i and j whose return time series are perfectly
correlated will be connected by a link of weight 1.

We exclude self-edges in order to deal with simple
graphs. This approach was also taken in a previous study
of an equities network derived from a correlation matrix
(Heimo et al. 2008). If we include self-edges, the node
compositions of the identified communities are identical if
one makes a small parameter change in the community-
detection algorithm. We discuss the community-detection
algorithm and the effect of including self-edges in sections
3 and 5.

We create a longitudinal sequence of networks by
displacing time windows by Az =20 hours (approximately
two trading days) and fix 7=200 hours (approximately
one month of data). This choice of 7, motivated in part
by the example data in figure 1, represents a trade-off
between over-smoothing for long time windows and
overly-noisy correlation coefficients for small 7" (Onnela
et al. 2003). Figure 2 demonstrates that the choice of Atf
has a similar, but less pronounced, effect on the standard
deviation of the edge weights, and we again select a
compromise value. The time windows we use to construct
the networks overlap, so the single-time networks are not
independent but rather form an evolving sequence
through time.

3. Community detection

Communities consist of cohesive groups of nodes that
are more strongly connected to each other than they
are to the rest of a network. They can represent
functionally-important  subnetworks  (Girvan  and
Newman 2002, Danon et al. 2005, Guimera and
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Figure 2. Standard deviation of the edge weights 4;; as a function of time for the period 1991-1998. For all panels, 7=200 hours.
We show this calculation for (a) Az=10, (b) At=20, (c) At=50, and (d) Az=200 (corresponding to approximately 1 day, 2 days, 5

days, and 2 weeks, respectively).

Amaral 2005, Porter er al. 2005, Adamcsek et al. 2006,
Porter et al. 2009, Fortunato 2010, Traud et al. 2011).
Most prior studies of financial networks have found
groups of closely-related assets using traditional hierar-
chical clustering techniques (Mantegna and Stanley 2000,
Onnela et al. 2003, McDonald et al. 2005) or by
thresholding to create a binary network (Farkas et al.
2007). In this paper, we identify communities in high-
frequency, time-evolving, weighted networks using a
technique based on the maximization of a quality
function known as modularity (Newman and Girvan
2004). To our knowledge, other papers with similar
approaches have not examined longitudinal networks or
have considered networks of equities rather than
exchange rates (Heimo et al. 2008). Dynamic communities
have been investigated in biophysical data using methods
based on modularity maximization (Shalizi et al. 2007).
However, Shalizi et al. 2007 were concerned with the
dynamics of functional communities that arise from
coordinated behaviours taking place on a network
rather than the community dynamics of the underlying
network. (In section 7.2, we briefly discuss additional
investigations of community dynamics in non-financial
data using other community-detection techniques.)

The identification of communities using graph modu-
larity is based on the idea that random networks are not
expected to demonstrate community structure beyond
fluctuations. Modularity therefore identifies communities
by finding subsets of nodes that are more strongly
connected to each other than one would expect for
some null model. Let C be a partition of the n nodes in A
into disjoint communities. The modularity Q of the
partition C is given by

I
Q(C) =5 (Ajj = Py)b(ci.;). ©)
ij

where ¢; is the community containing node i and Pj
denotes the expected weight of the link with which nodes i
and j are connected in a null model. The quantity m
represents the total edge weight in the network and is
given by m=1%"k;, where k;=)"; A is the strength
(weighted degree) of node i. We identify communities by
finding the partition C that maximizes Q. The most
popular choice of null model is the Newman—Girvan
(NG) model (Newman and Girvan 2004)

_ kik;

Py 2m

, (6)
which preserves the expected strength distribution of the
network and is closely related to the configuration model
(Bollobas 2001). An alternative null model is a uniform
model in which a fixed mean edge weight occurs between
each pair of nodes (Porter et al. 2009).

We construct FX networks by calculating a correlation
coefficient between every pair of exchange rates. This
results in a weighted, fully-connected network. We
include each exchange rate XXX/YYY and its inverse
rate YYY/XXX in the network, because one cannot infer
a priori whether a rate XXX/YY'Y will form a community
with a rate WWW/ZZZ or its inverse ZZZ/WWW.
However, the return of an exchange rate XXX/YYY is
related to the return of its inverse YYY /XXX by

Ruxx = —Ryyy

YYY poval

This implies that the correlation coefficients between
these rates and a rate WWW/ZZZ are related by

XXX WWW\  (YYY WW
P\yyy zzz )~ \xxx> 7zzz )
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Consequently, every node has the same strength
ki = A ! 2
5—2/: g/—i(n— ), (7

so the probability of connection in the NG null model
Pjj=kik;/2m is also constant and is given by

Py = (8)

2n

In the case of our FX network, the NG model and the
uniform null model are thus equivalent. However, the
methods we present are general and can be applied to
networks with non-uniform strength distributions.
Additionally, every community has an equivalent inverse
community. For example, if there is a community
consisting of the three exchange rates XXX/YYY,
XXX/WWW, and ZZZ/WWW in one half of the
network, there must be an equivalent community
formed of YYY/XXX, WWW/XXX, and WWW/ZZZ
in the other half. The existence of an equivalent inverse
community for each community implies that the FX
network is composed of two equivalent halves at each
time step. However, the exchange rates residing in each
half change in time as the correlations evolve.

An important issue with using modularity as a quality
function to identify communities is that modularity
optimization can fail to find communities that are smaller
than a scale that depends on the total size of a network
and on the extent of interconnectedness between network
communities (Fortunato and Barthelemy 2007). However,
many modularity-optimization techniques can easily be
adapted to other quality functions, and several alterna-
tives have been proposed that avoid this resolution limit
by uncovering communities at multiple scales (Reichardt
and Bornholdt 2006, Arenas et al. 2008, Lancichinetti
et al. 2009).

Reichardt and Bornholdt (2006) proposed a multi-
resolution method in which a network A is represented as
an infinite-range, n-state Potts spin glass in which each
node is a spin, each edge is a pairwise interaction between
spins, and each community is a spin state. The
Hamiltonian of this system is given by

H(y) == _Jydlci ), ©)
ij

where ¢; is the state of spin i and Jj; is the interaction
energy between spins 7 and j. The coupling strength J; is
given by J;=A;—yP; where P; again denotes the
expected weight of the link with which nodes i and j

are connected in a null model and y is a resolution
parameter. One can find communities by assigning each
spin to a state and minimizing the interaction energy in
equation (9). Within this framework, community identi-
fication is equivalent to finding the ground-state config-
uration of a spin glass.

Tuning y allows one to find communities at different
resolutions. As y becomes larger, there is a greater
incentive for nodes to belong to smaller communities.
The Potts method therefore allows the investigation of
communities below the resolution limit of modularity.
One can write a scaled energy Q, in terms of the
Hamiltonian in equation (9) as

0, = 1) (10)

2m

The modularity is then the scaled energy with y=1.
Community detection using modularity optimization is
therefore a special case of the Potts method.

Recently, an alternative version of the Potts method has
been proposed that is able to deal with both positive and
negative links (Traag and Bruggeman 2009). One can apply
this technique to FX data using the correlation matrix p as
the network adjacency matrix. Using this approach and a
uniform null model, we found the same robust communi-
ties (see section 4 for a discussion of robust communities) as
we identified using the Potts method and the adjacency
matrix in equation (4). However, the Potts method for
signed adjacency matrices did not identify the same robust
communities when we employed the signed null model of
Traag and Bruggeman (2009).

In this paper, we use the Potts method to detect
communities of exchange rates in FX networks with
adjacency matrices given by equation (4), and we employ
the NG model of random link assignment P;= k;k;/(2m)
as a null model.f The number of possible community
partitions grows at least exponentially with the number of
nodes (Newman 2004b), so it is typically impossible
computationally to sample the energy space by exhaus-
tively enumerating all partitions (Brandes er al. 2008).
Several different heuristic procedures have been proposed
to balance the quality of the identified optimal partition
with computational cost (Danon et al. 2005, Porter et al.
2009, Fortunato 2010). We minimize equation (9) at each
resolution using the locally greedy Louvain algorithm
(Blondel er al. 2008). We discuss the effect on our results
of using different optimization heuristics in appendix A.
We find the same aggregate conclusions, although there
are some differences in the communities identified using
different heuristics. We identify the same changes taking
place in the FX market for each of the different
algorithms that we use to minimize energy.

FIf we include self-edges in the network, the strength of each node increases by 1. This, in turn, leads to a constant increase in the
expected edge weights in the null model. For a network with self-edges, the expected edge weight between nodes i and j is given by
P} = n/[2(n + 2)]. This constitutes a shift by a constant value of Pj; — Py = 2/[n(n + 2)] ~ 1.62 x 10~ relative to a network in which
self-edges are excluded. Self-edges always occur within a community, so they will always contribute to the summation in equation (9)
irrespective of exactly how the nodes are partitioned into communities. This implies that self-edges play no role when determining an
FX-network partition that minimizes the interaction energy at a particular resolution.
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4. Robust community partitions

In some networks, similar community structure persists
across a range of resolutions (Reichardt and Bornholdt
2006, Arenas et al. 2008, Fortunato 2010). As one
increases the resolution parameter in the Potts method,
there is an increased energy incentive for nodes to
belong to smaller clusters. Network partitions that are
robust across a range of resolutions are therefore
significant because the communities do not break up
despite an increasing incentive to do so. Communities
in robust partitions have been found to correspond to
communities imposed by construction in simulated
networks and to known groupings in real-world
networks (Arenas er al. 2008, Fortunato 2010). This
suggests that communities that persist over a large
range of resolutions potentially represent important
structures.

We compare network partitions using the normalized
variation of information ¥ (Meila 2007, see also Traud
et al. 2011). The entropy of a partition C of the n nodes in

A into K communities ¢* (ke {1,...,K}) is
K
S(C) == p(k)log p(k). (11)
k=1

where p(k)=|c*|/n is the probability that a randomly-
selected node belongs to community k and |¢*] is the size
(set cardinality) of the kth community.f For a partition C,
the entropy therefore indicates the uncertainty in the
community membership of a randomly-chosen node.
Given a second partition C' of the n nodes into K’
communities, the mutual information /(C, (') is given by

K K
IC,C) = ZZp(k Ky log LK)

12
22 sopiy

where p(k,k’) = | N ¢¥'|/n. The mutual information is
the amount (averaged over all nodes) by which knowledge
of a node’s community in C reduces the uncertainty about
its community membership in C’. The normalized varia-
tion of information ¥ between C and C’ is then given by

S(CO)+ S(C) = 21(C, C’)
logn

(C,C) = (13)

The factor log n normalizes V(C, C") to the interval
[0,1], with 0 indicating identical partitions and 1
indicating that all nodes are in individual communities
in one partition and in a single community in the
other. We will use equation (13) to compare partitions
in networks with the same number of nodes and

remark that one should not normalize by logn when
comparing the variation of information in data sets
with different sizes (Meila 2007).

Variation of information is a desirable measure for
quantifying the difference between partitions of a network
because it is a metric on the space of community
assignments and it thus satisfies the triangle inequality.
Therefore, if two partitions are close to a third partition,
they cannot differ too much from each other. It is also a
local measure, so the contribution to I>(C, C') from
changes in a single community does not depend on how
the rest of the nodes are clustered (Meila 2007, Karrer
et al. 2008).

One can identify robust communities by detecting
communities at multiple resolutions and calculating
V(C, (") between the network partitions for consecutive
resolutions. Robust communities are revealed by inter-
vals in which there are few spikes in V(C, C"). In figure
3(a), we show I7(C, C’') between network partitions
computed at 100 resolutions in the interval y €[0.6,2.1]
separated by Ay=0.015. We focus on this interval in
this example because all of the nodes are assigned to
the same community at y=0.6 and all of the nodes
are assigned to singleton communities at y=2.1. One
can also identify robust communities by examining
summary statistics that describe community structure
as a function of the resolution parameter. We consider
the number of communities N,., the optimized modu-
larity Q; (see equation 10), the entropy S (see equation
11), and the rate of change of the energy with
resolution dH/dy (see equation 9 for the definition of
‘H). Robust communities correspond to plateaus (con-
stant values) in curves of any of these quantities as a
function of the resolution parameter. In figure 3(a), we
plot curves for each of the summary statistics as a
function of y.

Figure 3(a) contains four principle plateaus, corre-
sponding to partitions of the FX network into N.=1, 2,
20, and 110 communities. The first and last plateaus,
respectively, represent all nodes in one community and all
nodes in singleton communities. The second plateau
represents one community of exchange rates and a
corresponding community of inverse rates. The N.=20
plateau occurs over the interval y €[1.34,1.57], in which
there is a single plateau in the N, plot and a few smaller
plateaus in each of the other plots. In contrast to the other
plateaus, this one was not expected, so the robust
communities over this interval can potentially provide
new insights into the correlation structure of the FX
market. Although the community configuration over this
interval does not have maximal Q (i.e., it is not the
community configuration corresponding to the maximum
value of the traditional modularity, which is the scaled
energy with y=1), it provides an appropriate resolution

+Note that the quantity ¢* represents the kth community but that ¢; is the set of nodes in the same community as node i.
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Figure 3. (a) The quantities N, S, Q,, and dH/dy (defined in the text), normalized by their maximum values, versus the resolution
parameter y for a single time window beginning on 17 March 1992. The lightly shaded rectangle highlights the main plateau. The
bottom curve gives the normalized variation of information V between partitions at resolutions separated by Ay =0.015.
(b) Position of the main plateau at each time step for the full period 1991-2008. Main plateaus (blue) containing the fixed resolution
(set to y=1.41 for 1991-2003 and to y =1.45 for 2005-2008) and (red) not containing the fixed resolution. The solid black line
separates the pre- and post-euro periods. Panel (b) is separated into two sections because we do not possess data for 2004.
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Figure 4. (a) Observed fraction of time steps that the resolution y lies on the main plateau. The vertical lines indicate y = 1.41, which
lies in the highest number of main plateaus for the period 1991-2003, and y = 1.45, which lies in the highest number of main plateaus
for 2005-2008. These are the resolutions at which we investigate community dynamics over the two periods. For the full period
1991-2008, we show in panel (b) the normalized sampled distribution of the main plateau width (blue) and the normalized sampled
distribution of the y-distance between the main plateau and the fixed resolution (red). We label the x-axis in panel (b) as ‘y-interval’
for both the main plateau width and the y-distance between the main plateau and the fixed resolution value. The distance is exactly 0
for 53% of the time steps. Again for 1991-2008, we show in panel (c) the distribution of the normalized variation of information
between the community structure detected at the fixed resolution and the community structure corresponding to the main plateau
(blue) and the distribution of the normalized variation of information between consecutive time steps (red). The value of V'is exactly
0 for 64% of the time steps. The vertical lines give the mean V" when (left to right) 1, 2, 5, 10, 20, and 50 nodes are assigned uniformly
at random to different communities (averaged over 100 reassignments for each time step).
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at which to investigate community dynamics due to its
robustness and the financially-interesting features of the
detected communities. For the remainder of this paper,
we will refer to this plateau as the ‘main’ plateau.

5. Dynamic community detection

5.1. Choosing a resolution

To investigate community dynamics, we first choose a
resolution parameter at which to detect communities at
each time step. One approach is always selecting a
resolution y in the main plateau. As shown in figures
3(b) and 4(a), this plateau occurs over different y-
intervals at different time steps and has different widths.
These intervals need not share common resolution values,
so this method seems inappropriate because one would
then be comparing communities obtained from many
different resolutions. Therefore, we fix the resolution at
the value that occurs within the largest number of main
plateaus. As shown in figure 4(a), this corresponds to
y=1.41 for the period 1991-2003 and to y =1.45 for the
period 2005-2008.F

In order to demonstrate the validity of this technique,
we show in figure 4(b) the distribution of the y-distance
from the fixed resolution to the main plateau, and we
show in figure 4(c) the distribution of the normalized
variation of information between the community config-
uration obtained at the fixed resolution and that corre-
sponding to the main plateau. Both distributions are
strongly peaked at 0. The fixed resolution is a y-distance
of less than 0.05 from the main plateau 91% of the time
for the period 1991-1998, 93% of the time for 1999-2003,
and 88% of the time for 2005-2008. The community
configurations of the main plateau and the fixed resolu-
tion differ in the community assignments of fewer than 5
nodes in 78% of time steps for the period 1991-1998, in
83% of time steps for 1999-2003, and in 88% of time
steps for 2005-2008. For the majority of time steps, the
community configuration at the fixed resolution is hence
identical or very similar to the configuration correspond-
ing to the main plateau. This supports our proposed
method of investigating community dynamics at a fixed y
for each period.

5.2. Testing community significance

The scaled energy (see equation 10) measures the strength
of communities compared with some null model, so large
scaled energies indicate more significant communities. To
ensure that the identified communities are meaningful, we
perform a permutation test (Good 2005) and compare the
scaled energies of the observed network partitions with

the scaled energies for network partitions obtained using
shuffled data. For the period 1991-2003, we generate
shuffled data for each of the USD exchange rates by
randomly reordering the returns of the corresponding
time series. We create shuffled data for each of the non-
USD exchange rates using the shuffled USD time series
and the triangle relations described in section 2. We then
calculate new correlation matrices for these shuffled time
series, form new adjacency matrices, and find the com-
munities and scaled energies for each of the new
networks. Similarly, for the period 2005-2008, we shuffle
the returns for each of the exchange rates in the set
{AUD/USD, EUR/NOK, EUR/SEK, EUR/USD, GBP/
USD, NZD/USD, USD/CAD, USD/CHF, USD/JPY,
USD/XAU} and calculate the return time series for each
of the rates not in this set by applying the triangle
relations to these shuffled time series. This procedure
conserves the return distribution for each of the original
USD exchange rates for the period 1991-2003 and for
each of the rates in the above set for 2005-2008. The
shuffling, however, destroys the temporal correlations.
Any structure in the shuffled data therefore emerges as a
result of the triangle relationships. The shuffled data
therefore provides some insights into the effects of the
triangle relations on the properties of the actual data.
Figure 5(a) shows that the communities identified for
the actual data are significantly stronger than those
generated using shuffled data. The sample mean scaled
energy for the actual data is 0.011 (with a standard
deviation of 0.0061); for the shuffled data, the sample
mean is 0.0039 (with a standard deviation of 0.0013). The
communities that we observe for the actual data are
therefore significantly stronger than the communities for
randomized data in which the structure results from
the triangle effect. This provides strong evidence that the
communities represent meaningful structures within the
FX market, so these communities can provide insights
into the correlation structure of the market. We now
consider properties of these communities in detail.

5.3. Community properties

Figure 5(b) shows that the number of communities into
which the FX network is partitioned exhibits only small
fluctuations during the period 1991-2008. Nevertheless, as
shown in figure 4(c), there is a considerable variation in the
extent of community reorganization between consecutive
time steps. No nodes change community assignment
between some steps, whereas more than twenty nodes
change community assignments between others.
Figure 5(c) shows that the community size distribution is
bimodal for all three periods, and its tail extends to large
community sizes. There is therefore a large variation in the

TIn order to find equivalent communities in the network in which self-edges are included, it is necessary to decrease the resolution
parameter to compensate for the increase in the constant expected edge weight in the null model. If we identify communities in the
network in which self-edges are excluded using the resolution parameter y, then we find identical communities in the corresponding
network with self-edges using a resolution parameter y* = yp;/p;; = y(n+ 2)(n — 2)/n*, where pj; denotes the null model when self-
edges are included. For example, if we identify communities in the network without self-edges using a resolution of ¥ = 1.4500, then
we identify equivalent communities in the network with self-edges using a resolution parameter of y,=1.4495.
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Figure 5. (a) Comparison of the distribution of the scaled energy for 1991-2003 for market data (blue) and 100 realizations of
shuffled data (grey). (b) Fraction of time steps at which N, communities are observed for 1991-1998 (blue), 1999-2003 (red), and
2005-2008 (black). (c) Fraction of time steps at which a community of a given size is observed for 1991-1998 (blue), 1999-2003
(red), 2005-2008 (black), and shuffled data (grey). The shuffled data distribution combines the results for the periods 1991-2003 and
2005-2008. The distributions are almost identical for the two periods.

sizes of the communities observed at each time step for all
three periods. However, the minimum between the two
peaks is not as deep for the period 2005-2008, and it has
shifted from a community size of six nodes to a size of eight.

The peak in the size distribution for communities with
10 members occurs as a result of the number of currencies
in the network. For each of the eleven currencies
XXX e{AUD, CAD, CHF, GBP, DEM, JPY, NOK,
NZD, SEK, USD, XAU}, there are 10 exchange rates
XXX/YYY with XXX as the base currency (and 10 equiv-
alent inverse rates YYY/XXX). We derive most of the
exchange rates in a set of rates with the same base
currency by applying the triangle relation (see section 2)
to pairs of exchange-rate time series; one of the rates is
common across all of the exchange rates in the base-
currency set, and the other rate is different for each rate in
the set. For example, for the period 1991-2003, we derive
the CAD/DEM exchange rate from the USD/CAD and
USD/DEM rates, whereas we derive the CAD/GBP rate
from the USD/CAD and USD/GBP rates. Exchange
rates with the same base currency are, therefore, often
correlated, and they consequently have a tendency to
form communities with 10 members. However, it is not
possible for all currencies to form a 10-member base-
currency community at each time step. If there is no
additional structure beyond these base-currency correla-
tions that emerge as a result of the triangle relation, then
one would expect to observe communities with 1,2,...,10
members at each time step (and equivalent communities
of inverse rates). Figure 5(c) shows that this size distri-
bution is indeed observed for shuffled data. However,
figure 5(c) also shows that the community-size

distribution for market data is significantly different, so
the community-detection techniques are uncovering addi-
tional FX market correlations. This again demonstrates
that the triangle effect is not dominating the results.

The frequently-observed communities shown in table 1
demonstrate the variation in community size. Some of the
most common communities are single exchange rates,
such as USD/CAD, which are formed of two closely-
related currencies. Table 1 also highlights that communi-
ties often consist of exchange rates with the same base
currency. McDonald et al. (2008) used the relative
clustering strengths of groups of exchange rates with the
same base currency to provide insights into the effects of
important news and events on individual currencies. The
relative sizes of different base-currency communities can
provide similar information. For example, if we observe a
community of ten CHF/YYY exchange rates and a
community of three DEM/YYY rates, then the larger size
of the CHF/YYY community suggests that CHF is more
important than DEM in the market at this time.

It is also worth noting that the most frequently
observed community of 10 exchange rates with the same
base currency is the gold (XAU) community. We include
gold in our study because there are many similarities
between it and a currency. However, gold also tends to be
more volatile than most currencies, so it is unsurprising
that the gold rates often form their own community.
Consequently, the absence of a large gold community at a
given time is an indication that another currency is
particularly influential.

Importantly, the identified communities do not always
contain exchange rates with the same base currency,
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Table 1. Examples of frequently-observed communities for the pre-euro period 1991-1998 and for the two post-euro periods
(19992003 and 2005-2008). The quantity Fr denotes the fraction of time steps at which each community is observed.

Period Community IFi7
1991-1998 USD/CAD 0.62
DEM/CHF 0.45
NZD/{CAD, USD} 0.33
AUD/{CAD, NZD, USD} 0.32
XAU/{AUD, CAD, CHF, DEM, GBP, JPY, NOK, NZD, SEK, USD} 0.28
SEK/{AUD, CAD, CHF, DEM, GBP, JPY, NOK, NZD, USD, XAU} 0.17
DEM/NOK 0.16
AUD/{CAD, NZD, USD, XAU} 0.14
GBP/{CHF, DEM, NOK} 0.12
1999-2003 EUR/CHF 0.88
USD/CAD 0.67
XAU/{AUD, CAD, CHF, EUR, GBP, JPY, NOK, NZD, SEK, USD} 0.64
NOK/{CHF, EUR} 0.59
SEK/{CHF, EUR, NOK} 0.51
GBP/{CAD, USD} 0.24
NZD/{AUD, CAD, CHF, EUR, GBP, JPY, NOK, SEK, USD} 0.21
JPY/{CAD, GBP, USD} 0.17
AUD/{CAD, CHF, EUR, GBP, JPY,NOK, SEK, USD} 0.14
2005-2008 XAU/{AUD, CAD, CHF, EUR, GBP, JPY, NOK, NZD, SEK, USD} 0.91
EUR/CHF 0.65
AUD/NZD 0.39
CAD/{AUD, CHF, EUR, GBP, JPY, NOK, NZD, SEK, USD} 0.39
GBP/{CHF, EUR} 0.35
SEK/{CHF, EUR} 0.33
NZD/{AUD, CAD, CHF, EUR, GBP, JPY, NOK, SEK, USD} 0.26
NOK/{CHF, EUR, SEK} 0.21
GBP/{CHF, EUR, NOK, SEK} 0.20

which provides insights into changes in the inherent
values of different currencies. For example, consider a
community containing several exchange rates with CHF
as the base currency and several rates with DEM as the
base currency. The fact that the exchange rates are in the
same community suggests that they are correlated. The
structure of this community also provides information
about the inherent values of CHF and DEM. Exchange
rates of the form XXX/YYY quote the value of one
currency in terms of another currency, so if the price of
XXX/YYY increases, it is not clear whether this is
because XXX has become more valuable or because YYY
has become less valuable. However, if one observes that
the price of XXX increases with respect to several
different YYY over the same period, then one expects
that the value of XXX has increased. Therefore, returning
to our example, if one observes a community of several
CHF/YYY and DEM/YYY exchange rates for many
different YYY, then one expects that these rates are
positively correlated. Because the values of CHF and
DEM have increased versus several other currencies, we
expect that the inherent values of both CHF and DEM
have increased.

6. Comparison with linkage clustering

Perhaps the best-known approach for studying a network
of financial assets is to consider the minimum spanning

tree (MST) of the network. This is closely related to a
dendrogram (i.e., a hierarchical tree). MSTs have been
used regularly in studies of equity markets to identify
clusters of stocks that belong to the same market sector
(Mantegna 1999, Bouchaud and Potters 2003, Onnela
et al. 2003, 2004). In this section, we briefly consider the
limitations of this approach for community detection and
describe the additional information that the Potts method
can provide.

MSTs are constructed using the agglomerative hierar-
chical clustering technique known as single-linkage clus-
tering (Duda et al. 2001, Porter et al. 2009).
Agglomerative methods start with n singleton clusters
and create a hierarchy by sequentially linking clusters
based on their similarity. The similarity of clusters ¢ and ¢’
is usually expressed as a distance D(c¢, ¢’), which is
determined by considering the distance d; between each
node i € ¢ and each node j € ¢'. In single-linkage clustering,
the distance between clusters is given by

Dlc.c) = min d; (14)

jed
It thus represents an extreme because it joins clusters
based on the minimum distance between nodes in each

cluster. An alternative is average-linkage clustering, for
which

D(c,d) =

1
|C||C/|szij. (15)

iec jec
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Figure 6. A minimum spanning tree for the FX network formed from a time window of returns beginning on 18 September 1991.
The tree is split into two identical halves (indicated by O and [J), which are connected via the edge (shown in red) between the
XAU/USD and USD/AUD exchange rates. For each community of exchange rates, there is an equivalent community of inverse
rates in the other half of the tree. We colour each node according to its community membership determined using the Potts method
with y =1.41, and we show each community of exchange rates in the same colour as the corresponding community of inverse rates.

For financial networks, the standard measure used for d;
is a particular nonlinear transformation of the correlation
coefficient p(i, j). The distance elements are given by
(Mantegna 1999, Mantegna and Stanley 2000) the
formula

dy = /2T = p(i. ). (16)

The distance d; takes values in the interval [0,2], and
similar nodes have small values of dj;. An MST possesses
n—1 links and is appealing because it is much simpler to
analyse than the full network with n(n—1)/2 links. A
dendrogram provides an alternative representation of the
output of a linkage-clustering algorithm that shows the
full hierarchical structure (Duda et al. 2001, Porter et al.
2009). At the first level of a dendrogram, there are n
singleton clusters. As one climbs the vertical distance scale
of a dendrogram, clusters are combined until all nodes are
contained in a single community at the top of the
dendrogram.

In earlier studies of equity markets, clusters of closely-
related assets were identified based on their proximity on
the branches of an MST (Mantegna 1999, Onnela et al.
2003, 2004) and by finding the disconnected groups of
assets that remained when all tree links weaker than some
threshold were removed (Bouchaud and Potters 2003).
Similar computations have found clusters of assets by
considering an entire network and removing edges below
some threshold or alternatively by starting with a network
with no links and iteratively adding links above an
increasing threshold (Onnela et al. 2004, Garas et al.

2008). In figure 6, we show an example of an MST of
exchange rates. We colour the nodes in this tree according
to their community membership as determined using the
Potts method. The MST is partitioned into two halves,
with communities of exchange rates in one half and
equivalent communities of inverse exchange rates in the
other. In this example, nodes belonging to the same
community are always grouped contiguously in the MST,
but this is not always the case.

The main problem with single-linkage clustering (and,
as a consequence, with MSTs) is that clusters can be
joined as a result of single pairs of elements being close to
each other even though many of the elements in the two
clusters are rather dissimilar. An MST then contains weak
links that might be misinterpreted as being more finan-
cially meaningful than they actually are (Onnela et al.
2004). It is also difficult to determine where the commu-
nity boundaries lie on an MST. For example, a branch of
an MST might include nodes belonging to a single
community or the nodes might belong to several commu-
nities. As an example of this phenomenon, and of the
additional clustering information provided by the Potts
method, consider the branch at the far right of the tree
shown in figure 6. By simply considering this MST, one
might have inferred the existence of a cluster that includes
all of the NOK/YYY rates and USD/CAD. However, the
Potts method highlights the fact that USD/CAD forms a
singleton community and that NOK/XAU belongs to a
community with the XXX/XAU rates. This observation
might provide information as to the relative importances
of NOK and XAU in the market over this period.
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Figure 7. Dendrograms showing hierarchical clustering of exchange rates for one half of the FX network for a time window of
returns beginning on 18 September 1991. We colour each exchange rate according to its community membership determined using
the Potts method with y = 1.41. We generated the dendrograms using (a) single-linkage clustering and (b) average-linkage clustering.
The dashed grey lines in panel (b) highlight the range over which the communities correspond to the communities of the main

plateau identified using the Potts method.

In figure 7(a), we show a dendrogram generated using
the same single-linkage clustering algorithm used to
produce the MST in figure 6. If the distances between
different dendrogram levels are reasonably uniform, then
no clustering appears more ‘natural’ than any other
(Duda et al. 2001). However, large distances between
levels (i.e., the same clusters persist over a large range of
distances) might indicate the most appropriate level at
which to view the clusters. This is analogous to investi-
gating communities that are robust over a range of
resolutions. The clusterings observed at some levels of
figure 7(a) correspond closely with the communities
identified using the Potts method, but there is no level
at which they correspond exactly. The levels are also
reasonably evenly distributed along the distance axis.
In the dendrogram in figure 7(b), which we generated

using average-linkage clustering, there is a range of
distances over which the clustering does not change.
The clustering observed over this interval is identical to
the community configuration corresponding to the main
plateau found using the Potts method. Therefore, in this
case, average-linkage clustering and the Potts method
identify the same robust communities.

7. Exchange-rate centralities and community
persistence

Thus far, we have considered the properties of entire
communities. We now investigate the roles of nodes
within communities.
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7.1. Centrality measures

We describe relationships between a node and its
community using various centrality measures. In the
social networks literature, such measures are used to
measure the roles of nodes within networks and to
identify which nodes are the most important or most
prominent (Wasserman and Faust 1994). Because there
are multiple notions of importance, many different
centrality measures have been proposed (Valente et al.
2008). In the present context, we use centrality measures
to identify exchange rates that occupy important posi-
tions in the FX market.

The betweenness centrality of nodes is defined using the
number of geodesic paths between pairs of vertices in a
network (Freeman 1977, Newman 2003). We calculate
node betweenness by taking the distance between nodes i
and j as

di/:{O ifi=jord;=1, a7
1/A4;

The betweenness centrality b; of node i is then given by

otherwise.

i

where G, is the total number of shortest paths from node
s to node 7 and g, is the number of shortest paths from s
to ¢ passing through i. Betweenness centrality is used
widely in social network analysis to quantify the extent to
which people lie on paths that connect others. Nodes with
high betweenness can be construed to be important for
facilitating communication between others in a network,
so betweenness is used to help measure the importance of
nodes for the spread of information around a network
(Valente et al. 2008).

We also consider the community centrality of each
node (Newman 2006a). We employ the scaled energy
matrix J, with components J;= A4, — yP;, where we again
set P;;=k;k;/(2m)=(n — 2)/(2n). Following the notation in
Newman (2006a), the energy matrix can be expressed as
J=UDU", where U= (u|u,|--) is the matrix of eigen-
vectors of J, and D is the diagonal matrix of eigenvalues
B.. If D has ¢ positive eigenvalues, then one can define a
set of node vectors {x;} of dimension ¢ by

for s,t #iand s # t, (18)

[x], = VBUs jell.2,....q). (19)

where [x;]; indicates the jth element of the node vector of
node i. The magnitude |x;| is the community centrality.
Nodes with high community centrality play an important
role in their local neighbourhood, irrespective of commu-
nity boundaries.

One can also define a community vector

W=D X (20)

ieck

for each community ¢*. Nodes with high community
centrality are strongly attached to their community if

their node vector is also aligned with their community
vector. One defines projected community centrality y; by
(Newman 2006a)

Vi = X; - Wi = |X;| cos Oy, (21)

and we refer to the quantity cos6; as the community
alignment. The community alignment is near 1 when a
node is at the centre of its community, and it is near 0
when it is on the periphery. Nodes with high community
alignment are located near the centre of their community
and have a high projected community centrality, so they
are strongly attached to their community and can be
construed to be highly influential within it. The number of
positive eigenvalues of J can vary between time steps, so
we normalize |x;| and y; by their maximum value at each
time step.

7.2. Community tracking

A node’s identity is known at all times and its community
is known at any given time. We can thus track community
evolution from the perspective of individual nodes. We
investigate the persistence through time of nodes’ com-
munities by defining a community autocorrelation. For a
node i with community ¢,(¢) at time ¢, the autocorrelation
dal(7) of its community after ¢ time steps is defined by

| ci()Neit+7) |
le(@VUet+o)|
This is a node-centric version of a quantity considered in
Palla et al. (2007) that, importantly, does not require one to
determine which community at each time step represents
the descendant of a community at the previous time step.
Palla et al. (2007) detected communities using a method
known as k-clique percolation. They tracked communities
by defining the descendant of community « at time step ¢ as
the community at ¢+ 1 that had the maximum edge
overlap with a. Several other approaches have been
proposed for identifying community descendants using
different measures to quantify the node overlap rather than
the edge overlap between communities at different time
steps. See, for example, Toyoda and Kitsuregawa (2003),
Berger-Wolf and Saia (2006), Falkowski et al. (2006), and
Asur et al. (2007). Methods that identify descendent
communities based on maximum node or edge overlap
can, however, lead to equivocal mappings following splits
and mergers. For example, consider a community ¢/(¢) that
splits into two communities, ¢*(¢+ 1) and ¢"(r+ 1), at the
following time step. If the extent of overlap between ¢/(7)
and ¢%(t+ 1) is identical to that between ¢/(¢) and ¢"(1 + 1),
then one will need to make an arbitrary choice as to which
community represents the descendant of /(). See section
4.4.6 of Fenn (2011) for a more detailed discussion of this
point and a review of the community dynamics literature.
In order to avoid this ambiguity, we identify communities
from the perspective of individual nodes instead of
tracking whole communities.

d!(1) = (22)



Downloaded by [the Bodleian Libraries of the University of Oxford] at 10:58 08 October 2012

Dynamical clustering of exchange rates 1507

() 1 : : : : : : © 1

0.9}
0.9r

IX|

0.8f

0 b 10 15 20 25 30
community size

(b) 0.92f
0.9¢
0.88f
0.86f
0.84f

0.82f
0 2‘0 4‘0 6.0 b 8‘O 160 1é0 140

cos 0

Figure 8. (a) Mean community centrality versus community size. (b) Mean community alignment versus node betweenness
centrality. (c) Mean community autocorrelation versus projected community centrality. All error bars indicate the standard error
(Berry and Lindgren 1990).

Table 2. The 10 exchange rates with the highest values of betweenness centrality, community centrality, and projected community

centrality for each of the three periods. We rank the exchange rates for each centrality according to their mean rank over all time

steps. For each exchange rate XXX/YYY, the corresponding inverse rate YYY/XXX has the same betweenness centrality,
community centrality, and projected community centrality.

1991-1998 1999-2003 2005-2008

Rank b x| ¥ b x| y b ] y

NZD/CAD NOK/AUD USD/AUD GBP/JPY

SOOI W B LW —

—_—

NOK/SEK CHF/AUD USD/DEM AUD/NZD SEK/XAU USD/XAU USD/CAD JPY/XAU EUR/XAU
AUD/XAU CHF/NZD USD/CHF NZD/CAD CHF/CAD EUR/USD AUD/NZD USD/XAU GBP/XAU
AUD/NZD CHF/XAU USD/XAU AUD/CAD EUR/XAU EUR/XAU AUD/CAD NZD/XAU CHF/XAU
AUD/CAD CHF/CAD CHF/CAD JPY/CAD NOK/XAU GBP/XAU NOK/SEK CAD/XAU EUR/CAD
CHF/SEK DEM/AUD CHF/AUD NOK/SEK CHF/NZD EUR/CAD USD/GBP GBP/XAU SEK/XAU
NZD/XAU SEK/AUD CHF/NZD USD/AUD CHF/XAU USD/CHF NZD/CAD SEK/XAU USD/XAU
CAD/XAU DEM/XAU DEM/CAD USD/NZD EUR/CAD CHF/XAU USD/JPY CHF/XAU EUR/NZD
DEM/SEK SEK/XAU DEM/AUD USD/JPY EUR/NZD NOK/XAU USD/AUD NOK/XAU JPY/XAU
SEK/NZD EUR/NZD CHF/NOK CHF/NZD AUD/XAU
DEM/NOK DEM/NZD DEM/NZD CHF/SEK NOK/NZD CHF/NZD GBP/AUD AUD/XAU NOK/XAU

7.3. Exchange-rate roles

In figure 8(a), we show the mean normalized community
centrality of exchange rates as a function of community
size. (For each community size, we calculated the mean
value of |x;] over all nodes that were members of a
community of that size.) The community centrality
increases with community size up to sizes of about 10
members. For larger communities, |X;| remains approxi-
mately constant. Nodes with high |x,| therefore tend to
belong to large communities, so exchange rates with high
community centrality tend to be closely linked with many

other rates. Table 2 shows the 10 exchange rates that tend
to have the highest values of betweenness centrality,
community centrality, and projected community central-
ity. For all three periods, CHF/NZD, CHF/XAU, and
SEK/XAU have one of the 10 highest community central-
ities, so they are closely tied to many other rates. For 1991—
2003, exchange rates formed from one of the major
European currencies—DEM (and then EUR, after its
introduction) or CHF—and one of the commodity cur-
renciest also tend to have high community centrality. For
2005-2008, however, XAU rates encompass nearly all of
the exchange rates with the highest values of |x,|.

TA country is said to have a ‘commodity currency’ if its export income depends heavily on a commodity. For example, AUD, NZD,

and CAD are all considered to be commodity currencies.
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Figure 9. (a) Normalized distribution of the link weights at each time step. (b) Scaled energy Q, and standard deviation of the
link weights A4;. (c) Normalized variation of information V" between the community configurations at consecutive time steps. The
dashed horizontal lines show (from bottom to top) the mean of V" and 1, 2, 3, 4, 5, and 6 standard deviations above the mean V. The
solid (magenta) vertical lines in panels (b) and (c) separate the pre- and post-euro periods. The red vertical lines show the time steps
when 22 December 1994, 7 February 1997, and 15 August 2007 enter the rolling time window. These dates correspond, respectively,
to the devaluation of the Thai baht during the Asian currency crisis, the flotation of the Mexican peso following its sudden
devaluation during the tequila crisis, and significant unwinding of the carry trade during the 2007-2008 credit crisis. Each panel is

separated into two sections because we do not possess data for

Figure 8(b) shows the mean betweenness centrality
versus the community alignment. We calculate the mean
community position by splitting the range of » into 10
bins containing equal numbers of data points and then
averaging over all community positions falling within
these bins. (The observed relationships are robust for
reasonable variations in the number of bins.) Nodes with
high betweenness centralities tend to have small values for
their community position, implying that nodes that are
important for information transfer are usually located on
the edges of communities. Table 2 shows that for all three
periods, NOK/SEK, AUD/NZD, and AUD/CAD all
tend to have high values of betweenness centrality on
average. They are therefore located on the edges of
communities and are important for information transfer.
Interestingly, for the post-euro period (1999-2008), sev-
eral USD exchange rates also seem to be important for
information transfer, but no USD rates regularly have
high betweenness values for the pre-euro period. In
contrast, XAU exchange rates are important for infor-
mation transfer for the pre-euro period but not after the
euro was introduced.

In figure 8(c), we show the mean community autocor-
relation versus the projected community centrality. We
calculate the mean autocorrelation by splitting the range
of the projected community centrality into 20 bins
containing equal numbers of data points and then
averaging over all autocorrelations falling within each
bin. (Again, the observed relationships are robust for
reasonable variations in the number of bins.) As one

2004.

would expect, the community autocorrelation for the
projected community centrality of a given node is smaller
for larger . More interesting, we find for all values of t that
the mean community autocorrelation increases with
projected community centrality. This suggests that nodes
that are strongly connected to their community are persis-
tently likely to share that community membership with the
same subset of nodes. In contrast, exchange rates with low
values of projected community centrality experience regu-
lar changes in the set of rates with which they are clustered.

Table 2 shows the exchange rates with the highest
projected community centralities, which in turn reveals
the most persistent communities. For 1991-2003,
approximately half of the 10 exchange rates with the
highest projected community centralities also appear in
the list of the 10 rates with the highest community
centralities. For 2005-2008, however, the lists of
exchange rates with the highest community centralities
and projected community centralities are dominated by
the same set of XAU exchange rates (though the
rankings differ). For 1991-2003, the exchange rates with
the highest projected community centralities again
include rates formed of DEM (and EUR) or CHF
and one of the commodity currencies. However, there
are also several USD exchange rates with high values of
projected community centrality that don’t have high
values of community centrality. This suggests that these
USD rates do not have strong links with a large number
of other exchange rates, but that they strongly influence
the rates within their own communities.
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Figure 10. Schematic representation of changes in community structure in one half of the FX market network for several events. (a)
The Mexican tequila crisis: the depicted reorganization followed 22 December 1994, when the Mexican peso was allowed to float
after a sudden devaluation. (b) The Asian currency crisis: the depicted reorganization followed 2 July 1997, when Thailand devalued
the baht. (c) Carry-trade unwinding: the depicted reorganization followed 15 August 2007, when there was significant unwinding of
the carry trade during the 2007-2008 credit and liquidity crisis. The node colours after the community reorganization correspond to
the communities before the changes. If the parent community of a community after the reorganization is obvious, we draw it using
the same colour as its parent. The nodes drawn as triangles resided in the opposite half of the network before the reorganization of

community structure.

8. Major community changes

We now investigate the insights that short-term commu-
nity dynamics can provide into changes in the FX market.
Figure 9(a) shows a contour plot of the normalized
distribution of the link weights at each time step. The
mean link strength remains constant through time because

of the inclusion in the network of each exchange rate and its
inverse, but [as one can see in figures 9(a,b)] there is a large
variation in the standard deviation of the link strengths.
The scaled energy and standard deviation of link weights
are closely related. This is expected because the standard
deviation increases as a result of the strengthening of
strong ties and the weakening of weak ones.
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(a) Carry-trade index Y. The vertical line again shows 15 August 2007 and the shaded blocks (from left to right) show Q3

2007, Q4 2007, Q1 2008, and Q4 2008. (b) Normalized variation of information between community configurations at consecutive
time steps for 2005-2008. The horizontal lines show (from bottom to top) the mean of V" and 1, 2, 3, and 4 standard deviations above
the mean. The red vertical line in (b) shows 15 August 2007, when there was a marked increase in unwinding of the carry trade.

In figure 9(c), we also show the normalized variation of
information V between the community configurations at
consecutive time steps. Large spikes in V" indicate signif-
icant changes in community structure during a single time
step and potentially also indicate important market
changes. The correlation coefficient between 7 and the
absolute change in Qg between consecutive time steps is
0.39 over the period 1991-2003 and 0.47 over the period
2005-2008. (The absolute change in a quantity n from
time ¢ to time ¢+ Az is defined as |n(z + Af) — n(¢)|.) The
correlation between V and the absolute change in o(4;) is
0.28 over the period 1991-2003 and 0.27 for 2005-2008.
Changes in Q, are thus a better indicator than changes in
o(A4;) that there has been a change in the community
configuration of the FX network.

In figure 10, we show three example community-
structure reorganizations—two in which V' is more than
four standard deviations larger than its mean and a third
in which it is more than two standard deviations above
its mean.

8.1. Mexican peso crisis

Figure 10(a) shows the reorganization on 22 December
1994, when the Mexican peso was floated following its
sudden devaluation.f This change is accompanied by an
increase in the scaled energy Q,. Although we do not
include the Mexican peso in the set of investigated
exchange rates, it appears that its devaluation was a
sufficiently serious event that it led to major changes in
the community relationships of the studied rates. Before
22 December 1994, the largest community consisted of a

group of exchange rates of the form {AUD, CAD, NZD,
USD, XAU}/{CHF, DEM, GBP, JPY, NOK}. After the
flotation, the largest community consisted of a set of
exchange rates formed from the major European curren-
cies (CHF, DEM, and GBP). It is also noteworthy that
there is only a small gold (XAU) community during this
period, which—as noted previously—often indicates that
another currency is particularly important in the market.

8.2. Asian currency crisis

Figure 10(b) shows the community changes following 2
July 1997, when the Thai baht was devalued during the
Asian currency crisis. As with the peso, although we did not
include the baht in the set of studied rates, its devaluation
appears to have had a significant effect on the FX market.
There is a large stable gold cluster during the whole period.
Before 2 July 1997, there is also a large AUD cluster. After
the devaluation, however, this cluster breaks up and the
previously-small GBP cluster increases in size. This sug-
gests that GBP is playing a more prominent market role
after the devaluation. Although the reasons for the changes
in the sizes of the AUD and GBP communities are not
obvious, both adjustments suggest a sharp and significant
change in the correlation structure of the market.

8.3. Credit crisis

The final example, which we show in figure 10(c),
reveals significant community reorganization following
15 August 2007, and it illustrates one of the major effects
on the FX network of the recent credit and liquidity crisis.

TFor a floating exchange rate, the value of the currency is allowed to fluctuate according to the FX market. Prior to its flotation, the

peso had been pegged to the US dollar.
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This example also demonstrates changes in community
structure that occurred as a result of a trading change that
directly affected the studied rates.

The most important effect of the credit crisis on the FX
market during the period 2005-2008 was its impact on the
carry trade. The carry trade consists of selling low interest
rate ‘funding currencies’ such as JPY and CHF and
investing in high interest rate ‘investment currencies’ such
as AUD and NZD. It yields a profit if interest-rate
differentials between funding and investment currencies
are not offset by commensurate depreciation of invest-
ment currencies (Brunnermeier et al. 2008). The carry
trade is one of the most commonly used FX trading
strategies and requires a strong appetite for risk, so the
trade tends to ‘unwind’ during periods in which there is a
decrease in available credit. A trader unwinds a carry-
trade position by selling his/her holdings in investment
currencies and buying funding currencies.

One approach to quantifying carry-trade activity is to
consider the returns that can be achieved using a carry-
trade strategy. In figure 11(a), we show the cumulative
return index Y from trading using a common carry-trade
strategy. We consider a strategy in which one buys equal
weights of the three major currencies with the highest
interest rates and sells equal weights of the three major
currencies with the lowest interest rates. This is a dynamic
trading strategy because the relative interest rates of
currencies change over time. For example, consider the
situation in which the interest rate of currency 4 (which
initially has the third highest interest rate) decreases below
the rate of currency B (which initially has the fourth
highest interest rate). In order to maintain the strategy of
only holding the three currencies with the highest interest
rates at any time, one would re-balance the carry portfolio
by selling the holding of currency 4 and buying currency
B. The frequency at which such re-balances occur depends
on the frequency at which the relative interest rates
change. The returns from a carry strategy like this are
widely construed by market participants to provide a
good gauge of carry-trade activity. Large negative returns
result in large decreases in Y, which are therefore likely to
indicate significant unwinding of the carry trade.

In figure 11(b), we focus on the period 2005-2008 from
figure 9(c). Again, large spikes indicate significant
changes in the community configuration over a single
time step. Figure 11(b) shows that a significant reorga-
nization of community structure occurred on 15 August
2007. (In figure 10(c), we showed the observed commu-
nities before and after this date.) This community
reorganization is a result of massive unwinding of the
carry trade. Figure 11(a) shows that, leading up to 15
August 2007, there was some unwinding of the carry
trade, so the initial configuration includes a community
containing exchange rates of the form AUD/YYY, NZD/
YYY, and XXX/JPY (which all involve one of the key
carry-trade currencies). In figure 11(a), it is also clear that
there is a sharp increase in carry-trade unwinding

following this date. The right network partition in figure
10(c) highlights this increase as the carry-trade commu-
nity increases in size by incorporating other XXX/JPY
rates as well as some XXX/CHF and XXX/USD rates.
The presence of a large number of exchange rates
involving one of the key carry-trade currencies in a
single community demonstrates the significance of the
trade over this period. Importantly, some of the exchange
rates included in the carry-trade community are also
somewhat surprising and provide insights into the range
of currencies used in the carry trade over this period.
The above discussion illustrates that one can identify
major changes in the correlation structure of the FX
market by finding large values of V' between time steps.
Having identified significant changes, one can then gain a
better understanding of the nature of such changes and
potentially also gain insights into trading changes taking
place in the market by investigating the adjustments in
specific communities. We have discussed three examples
in which the observed changes are obviously attributable
to a major FX market event. However, there are also
several time steps in which significant community reor-
ganizations occur for which the cause is much less
obvious, and the investigation of dynamic communities
might help shed light on concomitant market changes.

9. Visualizing changes in exchange-rate roles

In this final section, we investigate changes in the relation-
ships between specific exchange rates and their commu-
nities. We begin by defining within-community z-scores,
which directly compare the relative importances of
different nodes to their community (Guimera and
Amaral 2005). We describe the roles of individual nodes
at each time step using the within-community projected
community centrality z-score z¥ and the within-commu-
nity betweenness centrality z-score z”.F If a node i belongs
to community ¢; and has projected community centrality
y;, then

7 _yi_)_)(‘i
=220, (23)

i

where y,, is the mean of y; over all nodes in ¢; and o7, is the
standard deviation of y; in ¢;. The quantity z, measures
how strongly connected node i is to its community
compared with other nodes in the same community.
Similarly, if node i has betweenness centrality b,, then

b:bi_b_ci

i

) 24

z
where l;c,- is the average of b; over all nodes in ¢; and of,’[ is
the standard deviation of b; in ¢;. The quantity zf’ indicates
the importance of node i to the spread of information
compared with other nodes in its community. The
positions of nodes in the (z°, z”) plane thereby illuminate
the roles of the associated exchange rates in the FX market

fTFor a within-community z-score to be well defined, a node must belong to a community containing two or more nodes.
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Figure 12. Node positions in the (z°, z") plane averaged over all time steps for the periods (a) 1991-1998, (b) 1999-2003, and
(c) 2005-2008. The radii of each elliptical marker equal the standard deviations in the z-scores for the corresponding node, and they
are scaled by a factor of 1/15 for visual clarity.
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Figure 13. Annual node-role evolutions in the (*, 2) plane for the full period (1991-2008).

and provide information that cannot be gained by simply
considering individual exchange-rate time series.

We remark that our methods are robust with respect to
the choice of measures used to construct the parameter
plane: we obtain similar results using other notions, such
as dynamical importance (Restrepo et al. 2006) instead of
betweenness centrality and the within-community
strength z-score (Guimera and Amaral 2005) instead of
projected community centrality. Obviously, one can also
do analogous computations using other nodes properties.

9.1. Mean roles

In figure 12, we show the mean position of each
exchange rate over the three periods and highlight
some rates that play particularly prominent roles. For
example, USD/DEM (and then EUR/USD after the
introduction of the euro) regularly had the strongest
connection to its community for 1991-2003, but EUR/
XAU was more strongly connected to its community for
2005-2008. The importance of USD/DEM and EUR/
USD is unsurprising, given that these rates had the
highest daily trading volume (Galati er al. 2002). This
provides a reality check that our methods uncover useful
information about the roles of minor exchange rates.
Other exchange rates, such as NOK/SEK and AUD/
NZD, were less influential within their communities but
were very important for the transfer of information
around the FX network.

The (z”, 2¥) plots also highlight exchange rates that play
similar roles in the FX market. For example, exchange
rates formed from one of the major European curren-
cies—DEM or CHF—and one of the commodity curren-
cies—AUD, CAD, or NZD (or the commodity XAU)—
are located close together in the upper left quadrant of the
(z", 2¥) plane for 1991-2003. This prominent similarity is
not present for 2005-2008.

9.2. Annual roles

We can also gain insights into the temporal dynamics of
exchange-rate roles by examining changes in the positions
of the rates in the (z°, z*) plane over different time
periods. Changes in a node’s position in the (z°, z*) plane
reflect changes in the membership of a node’s community
as well as changes in b and y. In figure 13, we show six
example annual role evolutions. We determine the annual
roles by averaging z* and z” over all time steps in each
year. We see, for example, that the NZD/JPY exchange
rate maintained a consistently influential role within its
community over the full period. Similarly, the EUR/USD
rate maintained the same influential role played by the
USD/DEM rate before the introduction of the ecuro.

Other rates changed roles during the studied period.
The GBP/USD and GBP/CHF exchange rates evolved in
a similar manner, as they changed from being strongly
influential within their communities before 1994 to being
less influential within their communities but more impor-
tant for information transfer after 1994. The role of both
GBP/AUD and USD/JPY varied significantly over the
period 1991-2008. From 2001 onwards, GBP/AUD
became less influential within its community but more
important for information transfer. Interestingly, the
USD/JPY rate had its highest within-community influ-
ence in the late 1990s during a period of Japanese
economic turmoil. One can construct similar plots to
study role changes of other exchange rates. These role
plots provide a useful tool for visualizing changes in
exchange-rate correlations.

9.3. Quarterly roles

We also investigate higher-frequency changes in exchange-
rate market roles using shorter time intervals. In figure 14,
we show quarterly role changes over the period
1995-1998 for six exchange rates—including USD/DEM
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and GBP/USD, for which we also show the annual
changes in figure 13. USD/DEM plays a relatively
influential role within its community with both quarterly
and annual time aggregations, whereas there is signifi-
cant variation in the role of GBP/USD with both
quarterly and annual time aggregations. We also show
other examples for which we did not show annual
changes. The role of DEM/JPY varied considerably over
the period 1995-1998: in particular, it was an important
information carrier for the last two quarters in 1996,
whereas it was influential within its community through-
out 1998. In contrast, AUD/JPY moves from being
unimportant for information transfer to being an infor-
mation carrier during 1998. Additionally, AUD/NZD

and AUD/XAU were both always information carriers,
and AUD/NZD was particularly important for infor-
mation transfer during 1998.

Finally, we consider some examples of quarterly role
evolutions for the period 2005-2008, which we discussed
in our recent short paper (Fenn et al. 2009). Figure 15
shows quarterly role changes for four exchange rates
during the period 2005-2008. The USD/XAU rate pro-
vides an interesting example due to the persistence of its
community over this period. For 2005-2008, the USD/
XAU node shifted from being an important information
carrier within the XAU community to being more
influential in this community. This period of higher
influence coincides closely with the period of financial
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turmoil during 2007-2008. CHF is widely regarded as a
‘safe haven’ currency (Ranaldo and Séderlind 2010), so
one might expect USD/CHF to behave in a similar
manner to USD/XAU. However, CHF is also a key
carry-trade currency. Because CHF is used both as a safe
haven and as a carry-trade currency, the USD/CHF node
does not move in the same direction as USD/XAU in the
(2%, 2¥) plane. Instead, the USD/CHF exchange rate is an
important information carrier during the 2007-2008
credit crisis. Over the same period, the AUD/JPY and
NZD/JPY exchange rates change from being important
for information transfer to being influential within their
communities. The AUD/JPY and NZD/JPY rates were
most influential within their respective communities
during Q3 and Q4 2007 and during Q1 and Q4 2008.
Figure 11(b) shows that there was significant carry-trade
activity in all of these periods, so it is unsurprising that
two exchange rates that are widely used for this trade
should increase in importance. This provides a further
demonstration that the positions of exchange rates in the
(%, ) parameter plane can provide important insights
into the roles of exchange rates in the FX market.

10. Conclusions

To conclude, we have demonstrated that a network
analysis of the FX market is useful for visualizing and
providing insights into the correlation structure of the
market. In particular, we investigated community struc-
ture at different times to provide insights into the
clustering dynamics of exchange-rate time series. We
focused on a node-centric community analysis that allows
one to follow the temporal dynamics of functional roles of
exchange rates within the market. We thereby demon-
strate that there is a relationship between an exchange
rate’s functional role and its position within its commu-
nity. We indicated that exchange rates that are located on
the edges of communities are important for information
transfer in the FX market, whereas exchange rates that
are located in the centre of a community have a strong
influence on other rates within that community. We also
demonstrated that the community structure of the FX
market can be used to determine which exchange rates
dominate the market at each time and identified exchange
rates that experienced significant changes in market role.
Our analysis successfully uncovered significant struc-
tural changes that occurred in the FX market, including
ones that resulted from major market events that did not
impact the studied exchange rates directly. We also
demonstrated that community-structure reorganizations
at specific times can provide insights into changes in
trading behaviour and highlighted the prevalence of the
carry trade during the 2007-2008 credit and liquidity
crisis. Although we focused on networks of exchange
rates, our methodology should be similarly insightful for
multivariate time series of other asset classes.
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Appendix A: Robustness of results—alternative
computational heuristics

In the main text, we detected all communities using the
Louvain locally greedy algorithm (Blondel er al. 2008).
However, as we noted in section 3, several alternative
heuristics exist. We now investigate whether the choice of
heuristic has any effect on the results described in this
paper.

Good et al. (2010) demonstrated that there are extreme
near-degeneracies in the energy function, as the number

0.2 : :

of low-energy solutions can scale exponentially or faster
with the number of nodes. Given this, it is unsurprising
that different energy-optimization heuristics can yield
very different partitions for the same network. Good et al.
suggested that the reason for such behaviour is that
different heuristics sample different regions of the energy
landscape. Because of the potential sensitivity of results to
the choice of heuristic, one should treat individual
partitions output by particular heuristics with caution.
However, one can have more confidence in the validity of
partitions if different heuristics produce similar results.

In this section, we compare the results for the Louvain
algorithm (Blondel et al. 2008) with those for a spectral
algorithm (Newman 2006b) and simulated annealing
(Guimera et al. 2004) for the 563 networks that we
constructed for the period 2005-2008.

A.1. Comparison of partition energies

We begin by comparing the energy H of the optimal
partitions at the resolution y=1.45. Figure Al shows
the distribution of energies for the different algorithms
and demonstrates that the Louvain algorithm and
simulated annealing find lower-energy partitions than
the spectral algorithm. For the remainder of this section,
we will only compare the Louvain and simulated-
annealing algorithms because of the higher energy of
the spectral partitions.

A.2. Temporal changes in communities

First, we compare the network partitions identified by the
two heuristics for each network. In figure A2, we show the
distribution of the normalized variation of information
between the community partitions identified using the
Louvain and simulated-annealing algorithms. The two
methods identify identical partitions for 19% of the
networks; for 83% of the networks, the partitions differ in
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B Louvain locally greedy
=== simulated annealing
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Figure Al. Distribution of the energy H of the optimal partition for networks over the period 2005-2008 computed using different

optimization algorithms.
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Figure A2. Distribution of the normalized variation of information between network partitions identified using the Louvain
algorithm and simulated annealing for networks during the period 2005-2008.

their assignment of nodes to communities by fewer than
10 nodes. There is therefore strong agreement between the
partitions obtained by the two heuristics, but there are
also differences that warrant further investigation.

In section 8, we identified significant changes in
community structure by comparing changes in the
scaled energy Q; (see equation 10) between consecutive
time steps and by calculating the normalized variation of
information between community partitions at consecutive
time steps (see figure 9). The correlation between the
scaled energy Q, of the partitions obtained using the two
optimization heuristics is 0.99, and the correlation
between the changes in Qg between consecutive time
steps for the two heuristics is 0.93. The correlation
between the normalized variation of information between
partitions at consecutive time steps is 0.36. The scaled
energy correlations are clearly extremely high. However,
there are differences in the timings of some major
reorganizations identified by the normalized variation of
information. To compare the timings of major events, we
identify time steps at which the normalized variation of
information between consecutive partitions is more than a
certain number of standard deviations larger than the
mean normalized variation of information between con-
secutive partitions. We find that the algorithms identify
40% of 1-standard-deviation events at the same time steps
and 33% of 2.5-standard-deviation events at the same
time steps. The methods therefore agree reasonably well.
However, the differences also suggest that one should be
cautious when using normalized variation of information
to identify major reorganizations in community structure.

A.3. Example community comparison

One time step at which both heuristics identify a large
change in community structure is 15 August 2007 which,
as described in section 8.3, was a day when there was a
significant increase in carry-trade unwinding. It is worth
considering the communities at this time step in detail to
help assess the similarity of the results for the two

heuristics. In figure A3(a), we show the communities
that we identified using the Louvain algorithm (Blondel
et al. 2008) immediately before and after 15 August
2007; in figure A3(b), we show communities that we
identified using simulated annealing (Guimera et al.
2004) for the same time steps. Figure A3(a) shows that,
leading up to 15 August 2007, there was some unwinding
of the carry trade, so the initial configuration includes a
community containing exchange rates of the form AUD/
YYY, NZD/YYY, and XXX/JPY (which all involve one
of the key carry-trade currencies). After 15 August 2007,
as the volume of carry-trade unwinding increases, this
community incorporates other XXX/JPY rates as well as
some XXX/CHF and XXX/USD rates. Although the
communities in figure A3(b) for the simulated-annealing
algorithm are not identical to those in figure A3(a), they
are very similar. The main difference is that, for the
simulated-annealing algorithm, there are two carry-trade
communities before 15 August 2007: one community
containing exchange rates of the form AUD/YYY and
NZD/YYY (where we note that AUD and NZD are
both carry-trade investment currencies) and another
community containing exchange rates of the form
XXX/CHF and XXX/JPY (where we note that CHF
and JPY are both carry-trade funding currencies). After
15 August 2007, as carry-trade unwinding increases,
these two communities combine and two other exchange
rates also join the community. The resulting merged
community is very similar to the largest community
identified at the same time step using the Louvain
algorithm.

Figure A3 therefore illustrates that there are only small
differences in the community structures obtained from the
two heuristics. In fact, as figure A2 demonstrates, the two
algorithms agree in the assignment of all but about 10
nodes approximately 80% of the time. Importantly, figure
A3 highlights that the two heuristics reveal similar
changes in the FX market even when there are differences
in the precise community configurations that they
identify.
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Figure A3. Comparison of changes in community structure in one half of the FX market network over the same period for
different optimization heuristics. We show a schematic of the communities for the period following 15 August 2007, when there was
significant unwinding of the carry trade during the 2007-2008 credit and liquidity crisis. We identified communities using (a) the
Louvain locally greedy algorithm (Blondel ez al. 2008) and (b) a simulated-annealing algorithm (Guimera et al. 2004). The node
colours after the community reorganization correspond to the communities before the change. If the parent community of a
community after the reorganization is obvious, we draw it using the same colour as its parent. The nodes drawn as triangles resided
in the opposite half of the network before the community-structure reorganization.

A.4. Node-role comparison

As an additional comparison, we investigate the effect of
different computational heuristics on exchange-rate roles
(see section 9). In figure A4, we compare quarterly role
evolutions over the period 2005-2008 for the exchanges
rates shown in figure 15. Although there are slight
differences in the positions of the exchange rates in the
(z", z¥) plane for some periods, we obtain the same
aggregate conclusions. For example, for both heuristics,
AUD/JPY is most influential within its community (high
z%) during Q3 and Q4 2007 and during Q1 and Q4 2008,
and it is less influential (but more important for
information transfer) during 2005 and 2006.

The positions in the (z°, z¥) plane are similarly close
for all of the other exchange rates. We quantify the
differences in the positions for the two heuristics by
calculating the mean and standard deviation of the
change in position over all exchange rates and over all
time periods. More precisely, we average the change in
position of every node in the (z%,z”) plane over every
quarter. The mean change in position in both the z* and
2 directions is less than 10~% the standard deviations
are 0.15 and 0.17, respectively. However, because the

changes in position are likely to cancel out (i.e., an
increase in z” for one exchange rate is likely to be offset
by a decrease in z” for another exchange rate), it is more
informative to calculate the mean and standard devia-
tion of the absolute changes in position in the z” and z”
directions. In the z” direction, the mean absolute change
in position is 0.08, and the standard deviation is 0.13; in
the z¥ direction, the mean absolute change is 0.09, and
the standard deviation is 0.15. The mean differences in
positions in the (z°, z*) plane are therefore very small for
the two heuristics and, as figure A4 demonstrates, both
algorithms uncover the same role changes in the FX
market for the different exchange rates.

Finally, we also checked the relationships shown in
figure 8 for community centrality versus community size,
community alignment versus betweenness centrality,
and community autocorrelation versus projected commu-
nity centrality. Using simulated annealing, we find the
same trends that we uncovered with the Louvain
algorithm.

The results of this section demonstrate that, although
there are differences in the communities identified using
different optimization heuristics, the aggregate conclu-
sions are the same. We identify the same changes taking
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Figure A4. Comparison of the quarterly node-role evolutions in the (z°, z*) plane for the period 2005-2008 for communities
identified using the locally greedy Louvain algorithm (Blondel ez al. 2008) and simulated annealing (Guimera et al. 2004). The plots
with white and blue shading show results for the Louvain algorithm and the plots with pink shading show results for simulated

annealing.

place in the FX market whether we use the Louvain
algorithm or simulated annealing to minimize energy.
The fact that we obtain very similar results using different
optimization techniques, despite these techniques sam-
pling different regions of the energy landscape, gives
confidence that the effects that we uncover are genuine
and that our results are robust. In practice, the Louvain

algorithm is preferable to simulated annealing because of
the computational cost of the latter. For example, on the
machine that we used to perform the computations, the
Louvain algorithm converged on an optimal community
partition for all 563 networks over the period 2005-2008
in 5 minutes and 24 seconds. For the same networks, the
simulated-annealing algorithm took about 36 hours.



