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Abstract. A crucial step in the analysis of persistent homology is the transformation of data into
an appropriate topological object (which, in our case, is a simplicial complex). Software
packages for computing persistent homology typically construct Vietoris--Rips or other
distance-based simplicial complexes on point clouds because they are relatively easy to
compute. We investigate alternative methods of constructing simplicial complexes and the
effects of making associated choices during simplicial-complex construction on the output
of persistent-homology algorithms. We present two new methods for constructing sim-
plicial complexes from two-dimensional geospatial data (such as maps). We apply these
methods to a California precinct-level voting data set, and we thereby demonstrate that
our new constructions can capture geometric characteristics that are missed by distance-
based constructions. Our new constructions can thus yield more interpretable persistence
modules and barcodes for geospatial data. In particular, they are able to distinguish
short-persistence features that occur only for a narrow range of distance scales (e.g., vot-
ing patterns in densely populated cities) from short-persistence noise by incorporating
information about other spatial relationships between regions.
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1. Introduction. Historically, the study of algebraic topology has been concerned
with classifying topological spaces using algebraic invariants that describe their global
properties [12, 23]. More recently, however, ideas from algebraic topology have also
been applied to data sets as a way of examining the ``shape"" of data [12, 16, 19, 36].
One way to classify topological spaces is to distinguish them based on their number
and types of holes. For example, a circle is distinct from a disk; we distinguish them
based on the hole in the center of the circle. For two-dimensional (2D) geospatial1

data, we can interpret holes as concrete geographical features like lakes or deserts.
Previous applications of topological data analysis (TDA) in which space plays an
important role include studies of the geography of country development [4], the spread
of social [48] and biological [30] contagions, communication patterns in cities [3],
voting in the ``Brexit referendum"" [46], continuum disk percolation [45], granular
materials [37], flow networks in biological transport [40], and migration networks [25].

To identify holes in a data set, we need to assign a topological structure to the data
and compute its homology groups. The homology of a topological space X is a set of

1Following the conventions of the demography community, we use the term ``geospatial data""
to refer to information about entities on or near Earth's surface that one can locate using some
coordinate system (in our case, using latitude and longitude). In this paper, we use the term
``geospatial"" interchangeably with ``geographical"" (or ``geographic""), in contrast to more general
spatial data, which need not be based on geographical location. Additionally, it is common for 2D
geospatial data to represent geographical objects (such as rivers) that are not inherently 2D. We are
concerned with the dimension of the data itself, rather than with the dimensions of the underlying
geographical features.
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PERSISTENT HOMOLOGY OF GEOSPATIAL DATA 69

topological invariants that are represented by homology groups \{ Hk(X)\} k\in \BbbN , where
Hk(X) describes k-dimensional holes in X. If X is a network, the dimension of H0(X)
records the number of connected components and the dimension of H1(X) records the
number of cycles. Because of the 2D nature of our focal data, we mostly restrict our-
selves to computing these homology groups. Homology groups are particularly useful
as topological invariants because of the existence of efficient combinatorial algorithms
for computing the homology groups of simplicial and cellular complexes [36], as other
topological invariants (such as homotopy) are less computationally tractable.

Persistent homology (PH) is the most common method of TDA for computing
holes in data. Point clouds have an inherent 0-dimensional (0D) structure, and they
thus have few interesting topological properties when considered simply as a finite
collection of points. However, by turning a point cloud into a higher-dimensional
simplicial complex, we can gain more information about its ``shape."" In PH, we take
a point cloud and turn it into a series of simplicial complexes at different scales; we
then compute the homology of each of these complexes and track homological fea-
tures across scales. Intuitively, consider looking at a point cloud and filling in the
areas between points that are close to each other to obtain a manifold. Changing our
notion of what it means to be ``close to each other"" results in a collection of different
manifolds, each of which approximates our original point cloud. Most simply, we can
take ``close"" to mean within some Euclidean distance, and we can then progressively
increase this distance. Imagine squinting at a point cloud until it blurs and takes on
some shape; the harder you squint, the more the edges of the shape blur and expand.
This approach is particularly useful because of its ability to encode geometric infor-
mation using a scaling parameter. Although topological invariants are useful because
of their mathematically rigorous meaning, our intuition about what it means for a
data set to have a certain shape includes many concepts that cannot be captured up
to homeomorphism. Consider the classical example of a coffee cup and a donut: their
homology groups are indistinguishable, yet we may still be interested in identifying
differences between them.

Persistent homology has been used in a large variety of problems in numerous
disciplines [36]. Applications of PH have included studies in protein compressibility
[50, 51], DNA structure [18], computer vision [13], granular and particulate systems
[28, 37], a wealth of different topics in neuroscience [14, 22], and more. One aspect of
PH that makes it very appealing is its robustness to noise: because one examines data
at multiple scales simultaneously, conventional wisdom suggests that features that
persist over a variety of scales should be the result of a signal (rather than of noise).
However, in some data sets (as in the case of geographical data sets), several distance
scales are represented in a single point cloud, making it difficult to find persistent
features. More generally, for both spatial and nonspatial data, features with short
persistence can convey important signals, as illustrated in [47] in an application to
neuroscience. In these situations, it can be difficult to distinguish between (1) features
that are real but appear only at specific scales and (2) noise.

Data sets that have interesting features at multiple scales are a particularly poor
fit for constructions that use distances to turn point clouds into complexes. However,
distance-based constructions---especially the Vietoris--Rips (VR) construction---are
the most common choice for constructing simplicial complexes from point clouds be-
cause of their relatively fast computation times [36, 53]. Much of the recent literature
on methods for constructing simplicial complexes has focused either on finding faster
ways to build VR complexes or on building approximations to a VR complex using
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less data and thereby reducing computation time [36]. Computing VR complexes or
other distance-based complexes has been very effective for many applications [36], but
distance-based complexes can sometimes lead to considerable difficulty in interpret-
ing results, especially in applications where scaling is a major factor. To mitigate the
effect of scaling, we propose the construction of simplicial complexes that are based
on the network or contiguity properties (when they are available) of a data set, as
this allows an interpretation of persistence that does not rely on a distance scale and
which is thus easier to interpret for geographical data.

Our paper proceeds as follows. In section 2, we discuss our data set of votes in the
2016 presential election and give background information about the methods of PH.
In section 3, we discuss several methods for the construction of simplicial complexes,
including traditional distance-based constructions (VR and alpha complexes) and
two new constructions that are based on the contiguity of geographical data. We
also discuss the geometric differences between these methods and our intuition about
how those differences affect our analysis. In section 4, we give some computational
results that support our intuition and provide guidelines for when each construction
is appropriate. In section 5, we discuss future directions for the computation of PH
on 2D data. In the appendices, we give further background on simplicial homology
and additional details about some of our computations and results.

2. Background.

2.1. Voting Data. Throughout our paper, we use data from the LA Times Cal-
ifornia 2016 Election Precinct Maps project [44]. This data set, which was compiled
by the Los Angeles Times Data Visualization Team after the November 2016 elec-
tions, has precinct-level results for every statewide race in California. Specifically,
it encompasses results for the presidential race, California's senatorial race, and 17
statewide propositions. The data covers all of California's 24626 precincts (which are
organized into 58 counties); for each one, it includes the number of votes for each
choice in each race, along with an associated shapefile and other metadata. While
processing the raw data, QGIS [38] encountered an error with four counties---Butte,
Santa Clara, Siskiyou, and Ventura---so we examine only the other 54 counties. We
generate precinct maps for each county and classify precincts in the presidential race
based on the margin of victory for each candidate. Precinct boundaries are very com-
plicated, vary across elections, and may be ``split"" across political districts during
redistricting. We aggregate precincts at the county level, as precincts are organized
neatly at the county level and federal election results are tabulated at the precinct
level. We show voting maps of two California counties in Figure 1. These voting maps
include all of the precincts of a county, regardless of which candidate they favored,
but our PH computations use voting maps that include only precincts that voted for
the same candidate.

We are especially interested in examining the phenomenon in which a region (e.g.,
one precinct) votes differently from the areas that surround it (e.g., ``an island of red
voters in a sea of blue,"" or vice versa). We refer to these regions as voting ``islands.""
Understanding this phenomenon gives one way of quantifying the voting patterns of
counties: some counties have rather uniform voting patterns, whereas others may
have clusters of communities that vote differently from their neighbors, potentially
signaling the presence of urban areas, demographically distinct neighborhoods, or
gerrymandering.

This application is particularly appropriate for analysis using PH because we can
interpret regions with outlying voting preferences as holes. Additionally, computing
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Fig. 1 Voting maps of (left) Alameda County and (right) Tulare County. Red precincts voted
predominantly for Donald Trump, and blue ones voted predominantly for Hillary Clinton.
Darker shading in a precinct indicates a stronger majority for the winning candidate, so
Trump won dark red precincts by a large margin and Clinton won dark blue precincts by a
large margin. We use the color white for precincts with an equal number of votes for the two
candidates.

the homologies of these counties allows us to classify them based on their topological
features. We can consider a county as a point cloud, where each precinct is a point
with some additional data that is assigned to it (specifically, voting preferences and
the geographical space that it occupies). For the remainder of this paper, we consider
only votes for the candidates Hillary Clinton and Donald Trump in the presidential
election. We use ``red"" to indicate a voting preference for Trump and ``blue"" to indi-
cate a preference for Clinton, with darker colors signifying stronger voting preferences.
We consider the voting preferences of each precinct.

2.2. Persistent Homology. We now give a more rigorous discussion of some of
the intuitive descriptions of PH from section 1. Suppose that we have experimental
data Xobserved, from which we construct a sequence X0 \subseteq X1 \subseteq \cdot \cdot \cdot \subseteq Xl of simplicial
complexes of dimension d. In section 3, we will discuss several methods to construct
such a sequence. We require that the sequence \{ Xi\} is increasing, such that it forms
a filtered simplicial complex (which we sometimes call simply a ``filtration""), and we
call each Xi a subcomplex. The filtered simplicial complex, along with inclusion maps
between subcomplexes and chain and boundary maps of each subcomplex, is called a
``persistence complex."" We examine the homology of each subcomplex, and we note
that the inclusion map Xi \lhook \rightarrow Xj induces a map fi,j : Hm(Xi) \rightarrow Hm(Xj) and that,
by functoriality,

(2.1) fk,j \circ fi,k = fi,j .

Definition 2.1. Let X0 \subseteq X1 \subseteq \cdot \cdot \cdot \subseteq Xl = X be a filtered simplicial complex.
The mth persistent homology of X is the pair\Bigl( 

\{ Hm(Xi)\} 0\leq i\leq l , \{ fi,j\} 0\leq i\leq j\leq l

\Bigr) 
,

where fi,j : Hm(Xi) \rightarrow Hm(Xj) for all i \leq j and m smaller than the dimension2 of X
are the maps that are induced by the action of the homology functor on the inclusion
maps Xi \lhook \rightarrow Xj. We refer to the collection of all mth persistent homologies as the
persistent homology (PH) of X.

The PH of a filtered simplicial complex encodes information about the maps
between each subcomplex, thereby giving more information than the homologies of

2Note that m is not necessarily smaller than the dimension of X, as shown in [1], but this is a
convenient simplification for many applications (including ours).
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the individual subcomplexes. Each homology group with field coefficients Hm(Xi) is
a vector space whose generators correspond to holes in Xi, and the maps fi,j allow
us to track these generators from Hm(Xi) to Hm(Xj). By picking a convenient basis
for Hm(Xi), which we are able to do by the Fundamental Theorem of Persistent
Homology [54], we can construct a well-defined and unique collection of disjoint half-
open intervals such that each generator x \in Hp(Xi) corresponds to an interval [bx, dx),
with Xbx denoting the subcomplex in which the generator (and its associated hole)
first appears and Xdx

denoting the subcomplex in which the generator dies. More
precisely, we say that x \in Hp(Xbx), with x \not = 0, is born in Xbx if it is not in the image
of fbx - 1,bx ; it dies in Hp(Xdx) if dx > bx is the smallest index for which fbx,dx(x) = 0.
If fbx,j(x) \not = 0 for all j \in \{ bx + 1, . . . , l\} , then x lives forever and we associate the
interval [bx,\infty ) to it. For a more in-depth discussion of PH and other homological
concepts, see Appendix A; for further material, see [19, 23, 36, 54].

The collection of half-open intervals is known as the ``barcode"" [19] of X, and we
use it to visualize the mth PH. Generators with longer associated half-open intervals
are more persistent. In general, one uses the persistence of features to distinguish
signal from noise, but recent work indicates that persistence is not always readily in-
terpretable in a meaningful way [10, 24, 47]. In our computations, we find that using
traditional distance-based constructions on the LA Times voting data yields ambigu-
ous results about the persistence of features. However, by constructing a persistence
complex in an appropriate way (see sections 3.2 and 3.3), we obtain barcodes for each
county in which persistence is a useful property for separating genuine features from
noise.

We also draw attention to the distinction between the dimension of an embedding
and the dimension of a topological object that we are studying, as we will be referenc-
ing both in the remainder of this paper. When we refer to the dimension of a simplicial
complex, we mean the dimension of the highest-dimensional simplex in the simplicial
complex. Similarly, the dimension of a homological feature refers to the dimension of
the homology group in which it lives; that is, a feature in themth PH has dimensionm.
By contrast, when we refer to 2D data sets, we mean that the data is embedded in a 2D
ambient space. Therefore, a point set in 2D is a 0D object that lives in a 2D space. A
feature in H0 is a 0D object that we can visualize as a point that lives in a 2D space. A
feature inH1 is a one-dimensional (1D) object that we can visualize as a loop that lives
in a 2D space. A precinct is a 2D object that is embedded in a 2D space using its lati-
tude and longitude. We refer to data sets and geographical maps based on the dimen-
sions of the spaces in which they live, and we refer to simplicial complexes, homology
groups, and homological features based on the dimensions of the objects themselves.

3. Methods for Constructing Filtered Simplicial Complexes. In this section,
we describe the various methods that we use for constructing simplicial complexes
from the voting data. The geographical data comes in the form of shapefiles; it is
a collection of polygons, rather than a point cloud. Although we do include compu-
tations based on existing constructions, which use point-cloud data, we also leverage
the additional information inherent in the polygon form of geographical maps to sug-
gest two new constructions that are better suited to our application.3 In section 3.4,
we explain why one should expect these new approaches to yield better results for

3In our work, we are concerned with space in a way that is conceptually different from the
concerns of geographers. Our primary concern is the existence of holes and how they develop across
a filtration. We do not track their precise locations and boundaries. It would be necessary to go
beyond our topological notion of shape to do so.
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geospatial data. We perform computations using both these new constructions and
two traditional ones, and we compare their performance in section 4.

3.1. Distance-Based Constructions. We begin by reviewing common methods
for constructing filtered simplicial complexes from point clouds. One of the most
prevalent constructions is the Vietoris--Rips (VR) complex, which one constructs using
the pairwise distances4 between points in a point cloud [16, 49].

Let X be a data set5 in the form of a point cloud. Given a real number \epsilon \geq 0, we
define the VR complex VR\epsilon (X) as follows:

VR\epsilon (X) = \{ \sigma \subseteq X : \forall x, y \in \sigma , d(x, y) \leq \epsilon \} .
In this construction, we produce a ``thickening"" of a point cloud by replacing its points
with balls of radius \epsilon . If there are n points in X, the maximal possible VR complex is
the (n - 1)-simplex that consists of all points in X along with all of its subsimplices.
By taking a collection \{ \epsilon i\} , with 0 = \epsilon 0 < \epsilon 1 < \epsilon 2 < \cdot \cdot \cdot < \epsilon l, and considering

X = VR\epsilon 0(X) \subseteq VR\epsilon 1(X) \subseteq \cdot \cdot \cdot \subseteq VR\epsilon l(X) ,

we obtain a filtered simplicial complex whose PH we can compute. It is straightfor-
ward to construct a VR complex because we only need to compute pairwise distances.
Additionally, there are various fast algorithms for constructing it [53]. Unfortunately,
for large point clouds, the worst-case VR complex has 2n - 1 simplices and dimension
n  - 1. The largest county in our data set is Los Angeles County, which has almost
5000 precincts, resulting in a worst-case VR complex with about 25000  - 1 simplices.
This is very problematic.

The large number of precincts in several counties makes it intractable to compute
VR complexes for these counties. For county--candidate combinations6 with at least
151 precincts, we instead compute alpha complexes. The alpha complex [17], which
we denote by A\epsilon (X), also relies on a distance parameter and is defined as follows.
Let \epsilon > 0, and let X\epsilon =

\bigcup 
x\in X B(x, \epsilon ). Additionally, let (Vx)x\in X be the Voronoi

diagram of X. Consider the intersection Vx \cap B(x, \epsilon ) for each x \in X, and note that
the collection of these sets covers X\epsilon . The alpha complex is

A\epsilon (X) =

\Biggl\{ 
\sigma \subseteq X : \forall xi \in \sigma ,

\bigcap 
i

(Vxi
\cap B(xi, \epsilon )) \not = \emptyset 

\Biggr\} 
.

Because of the restriction of the \epsilon -balls to the Voronoi diagram, the alpha complex
restricts the dimension of the space in which X is embedded. In our case, because our
data is embedded in \BbbR 2, the alpha complex of a county has 2D simplices (i.e., faces)
as its highest-dimensional simplices.

The two constructions above both require the input data to be in the form of a
point cloud. Each precinct has an associated centroid, which we calculate according
to (latitude, longitude) coordinates using a built-in feature of QGIS [38]. We di-

4In this paper, our measures of distance are metrics in the mathematical sense.
5In TDA, it is common to overload notation by denoting a data set by X, which one also uses

to denote a simplicial complex. One can alternatively denote a data set by Xobserved, as we did in
section 2.2.

6When we construct a simplicial complex for a county, we use only the precincts in it in which
the majority voted for a specified candidate (either Hillary Clinton or Donald Trump). We consider
one candidate at a time so that precincts with a majority that voted for the other candidate never
enter the simplicial complex. This allows us to detect regions as topological features for all of our
choices of filtration parameter (which is \epsilon for a VR complex).
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(a) (b) (c) (d) (e)

Fig. 2 Illustration of a VR complex on the LA Times voting data. (a) The red precincts (in which
more people voted for Donald Trump than for Hillary Clinton) of Imperial County in 2016. In
panels (b)--(e), we show the VR complex that approximates the county, with each successive
image showing the VR complex as we increase \epsilon . Observe that the contiguous region in
the east of the county is not captured by this complex and that the western region includes a
large number of 1-simplices and 2-simplices (see Appendix A for the definition of k-simplex),
despite the fact that the county has relatively few precincts. Both phenomena occur because
the eastern precincts are much larger, so their centroids are much farther apart than the
small (but not necessarily contiguous) precincts in the west.

(a) (b) (c) (d) (e)

Fig. 3 Illustration of an alpha complex on the LA Times voting data. (a) The red precincts (in which
more people voted for Donald Trump than for Hillary Clinton) of Imperial County in 2016. In
panels (b)--(e), we show the alpha complex that approximates the county, with each successive
image showing the complex as we increase \epsilon . Observe that the filtered simplicial complex has
much larger 2-simplices than those that we obtain for a VR complex (see Figure 2) and that
(unlike in Figure 2) once the western region is covered by 2-simplices (which, as one can see
in panel (c), occurs fairly early in the filtration), new 2-simplices do not arise as we increase
\epsilon . However, similar to what we observed in the VR complex, the resulting simplicial complex
yields a simply-connected region in the west; this does not accurately reflect the underlying
geographical map.

rectly compute the Euclidean distance between the (latitude, longitude) coordinates
of precinct centroids. Therefore, we do not make a choice of map projection.

It is common to employ VR complexes because it is relatively easy to construct
them, they are intuitively appealing, they have important theoretical guarantees from
the Nerve Theorem [27], and (perhaps most importantly) they have been implemented
widely in existing software packages for computing PH. In general, \epsilon -ball thickenings
are a natural way to approach the problem of approximating a space from which one
has only a sample of points. Points that are close to each other should be much
more likely to be connected in the space than points that are far apart from each
other, and thickenings also capture the intuition of blurring an image by squinting at
it until the points start to merge. However, for our purposes, the point clouds that
we construct do not bear a strong visual resemblance to the geographical maps from
which we construct them, and the locations of holes in these maps are independent
of distance. In Figures 2 and 3, we show visualizations of VR and alpha complexes
for Imperial County. Note that we consider only the red precincts (or, alternatively,
only the blue precincts); we make this simplification both to decrease computational
complexity and to preserve an intuitive notion of closeness in voting patterns. In
these visualizations, observe that the simplicial complexes do not visually resemble
the underlying geographical maps and that they also appear to have rather different
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PERSISTENT HOMOLOGY OF GEOSPATIAL DATA 75

topological properties. To address these issues, we propose two novel constructions of
filtered simplicial complexes in the next two subsections.

3.2. Adjacency Complexes. Our first new type of construction of a filtered sim-
plicial complex is based on the notion of a network adjacency. Consider a network
whose vertices are precincts and whose edges are determined by ``queen adjacency.""
We use the definition of queen adjacency from Geographic Information Systems (GIS);
two precincts are queen adjacent if they touch at any two points, including corners.
(This is reminiscent of the movement of queens in chess, but it is not quite the same.)
This is distinct from ``rook adjacency,"" in which two precincts are adjacent if they
share a boundary. Intuitively, we can view such a network as one in which any path
in it corresponds to an ability to physically walk from one precinct to another in a
contiguous fashion. Some precincts are not simply connected or may even have mul-
tiple connected components. In section 4, we discuss the effects of such features on
our results.

By considering different levels of voting preferences for Donald Trump or Hillary
Clinton, we construct a nested sequence of networks. We define a value

(3.1) \delta b,r(p) =
| Vb(p) - Vr(p)| 
| Vb(p) + Vr(p)| 

,

where Vb(p) is the number of blue (i.e., Clinton) votes in a precinct p and Vr(p) is the
number of red (i.e., Trump) votes in that precinct. For example, for a given county,
consider all of its precincts that have a majority who voted for Hillary Clinton in 2016.
For our first network, we consider only those precincts for which \delta b,r(p) \geq .95. For the
next network in the sequence, we take all precincts with \delta b,r(p) \geq .90. We continue
decreasing the strength of voting preference until we consider all precincts in which
Clinton won, along with all of their adjacencies. At this stage, we stop and construct
a filtered simplicial complex of 1D simplicial complexes. To incorporate faces, we add
a 2-simplex between any three vertices that are all pairwise adjacent. This gives a 2D
filtered simplicial complex, on which we can perform PH computations.

Using network adjacencies allows us to retain spatial information about our
precincts that we lose when we consider only a point cloud of precinct centroids.
In our application to voting data, our adjacency construction captures a notion of
contiguity that is missing from the existing distance-based constructions. In Figure 4,
we show an example of a filtered simplicial complex, which we construct using adja-
cencies, that approximates Imperial County. It has better contiguity properties than
the VR and alpha complexes that we showed in Figures 2 and 3. However, this adja-
cency approach still requires us to associate a single point to each precinct polygon,
rather than considering the entire area that it covers. This suggests another possible
construction (based on level sets) of filtered simplicial complexes. We describe it in
section 3.3.

Although we have framed our discussion of adjacency complexes in terms of map
adjacencies and voting preferences, we can use any type of network adjacency to build
such a complex. To construct an adjacency complex, we require some type of network
(i.e., some type of relationship that gives adjacencies) and some function from the
network to \BbbR . In the present paper, we use voting preference to give us a function
from the vertices of a network to \BbbR . One can also consider functions from the edges of
a network to \BbbR , and one can then construct a filtration by adding edges (rather than
vertices) at each step. Related constructions that explicitly build filtrations based on
function values were explored in [7, 11, 26, 40, 41].
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76 MICHELLE FENG AND MASON A. PORTER

(a) (b) (c) (d) (e)

Fig. 4 Illustration of an adjacency complex on the LA Times voting data. (a) The red precincts
(in which more people voted for Donald Trump than for Hillary Clinton) of Imperial County
in 2016. In panels (b)--(e), we show an associated adjacency complex that approximates
the county; we order the panels based on decreasing strength of preference for Trump. In
panel (b), we show the precincts with the strongest preference for Trump along with the
adjacencies between them. As we move across the panels from left to right, we add more
0-simplices as we incorporate precincts with progressively weaker preferences for Trump. We
color the simplices based on their strength of preference, with the darkest simplices having
the strongest preference and the lightest ones having the weakest. For visual clarity, we
scale panels (b)--(e) to use an entire rectangle. In panel (e), we observe that the eastern
region is simply connected and that the western region has many 1-simplices. However, the
western region is not covered by 2-simplices, so it is not simply connected. Although the
depicted filtered simplicial complex does not seem to visually resemble the geographical map
in Figure 4(a), its topological properties do appear to be similar.

3.3. Level-Set Complexes. The second new method that we introduce is one
that leverages the manifold nature of our data. For the previous methods (namely,
the VR, alpha, and adjacency complexes), we were forced to make choices in how to
assign precincts to points. For the VR and alpha constructions (i.e., the distance-
based methods), we also had to make a choice of embedding into Euclidean space.
We now introduce a complex that is based on level sets. To construct a level-set
complex, we use polygon shapefiles as input and evolve them using the level-set
method for the motion of interfaces. In this section, we give an overview of the
filtered simplicial complex that we generate using the level-set method. The level-set
method was introduced in [35]; we give an intuitive explanation of it in this section,
and further details are available in [34].

Let M denote the 2D manifold that consists of the collection of all of a county's
precincts that voted for the same candidate (regardless of the strength of the major-
ity). We construct a sequence

M = M0 \subseteq M1 \subseteq \cdot \cdot \cdot \subseteq Ml

of manifolds by considering the boundary \Gamma of M and performing front propagation
on it so that the boundary expands outward, resulting in a larger manifold. We use
the level-set method to efficiently solve the front-propagation problem. To do this,
we evolve a function \phi (\vec{}x, t) : \BbbR 2 \times \BbbR \rightarrow \BbbR according to the level-set equation

(3.2)
\partial \phi 

\partial t
= v | \nabla \phi | ,

where v is velocity.
By assigning the initial condition \phi (\vec{}x, 0) to be the signed distance function from

\vec{}x to \Gamma , we see that the 0-level set of \phi (\vec{}x, 0) is precisely the set of points that lie on \Gamma .
When we evolve \phi according to (3.2) up to time T , the resulting 0-level set of \phi (\vec{}x, T )
gives \Gamma T , the expansion of \Gamma that results from movement normal to the boundary at
velocity v. In this paper, we use v = 1.
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(a) T = 0 (b) T = 4 (c) T = 10

Fig. 5 Evolution of (top row) a level set on red precincts (in which more people voted for Donald
Trump than for Hillary Clinton) in San Mateo County, with corresponding (bottom row)
contour plots of \phi , which satisfies the level-set equation (3.2). As the time T increases, the
graph of \phi translates upward, so the 0-superlevel set expands. (The clipping of minimum
and maximum values, which we do for computational efficiency, leads to flat areas at the
minimum and maximum values of \phi .)

Fig. 6 Contour plots of \phi for the evolution of a level set on blue precincts (in which more people
voted for Hillary Clinton than for Donald Trump) in San Mateo County.

Intuitively, in terms of our geographical map, we can visualize the graph of \phi (\vec{}x, 0)
as a mountain (or multiple mountains, if there is more than one connected compo-
nent), with the boundary of the map at sea level, the interior of the map above sea
level, and the complement of the map below sea level. The set M0 is the set of points
\vec{}x that are at or above sea level. As we evolve \phi , we move the entire mountain upward,
which increases the amount of land that is above sea level. The new region that is at
or above sea level is our expanded manifold MT . In Figure 5, we show the evolution
of the 0-superlevel set (i.e., all points \vec{}x such that \phi (\vec{}x, t) \geq 0) as T increases. We
also show the graph of \phi to help visualize the corresponding evolution of the level-set
equation (3.2).

In Figure 6, we show a sequence of manifolds that we obtain by evolving a level
set on blue precincts in San Mateo County. The original geographical map has holes
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of various sizes, and the amount of time that it takes for a given hole to disappear is
longer for larger holes.

To turn this sequence into a filtered simplicial complex, we choose a triangulation
of the plane and impose each MT over this triangulation in the following manner. In
our triangulation, (1) every fifth pixel is a vertex and (2) each vertex is connected to
its four neighbors in the cardinal directions, as well as to its northwest and southeast
neighbors. Other triangulation choices are also viable, but ours is computationally
convenient (because it limits the number of vertices) and is easy to visualize. If all
vertices of a 2-simplex lie withinMT , we add that simplex and all of its subsimplices to
the corresponding simplicial complex XT . This yields the filtered simplicial complex

X0 \subseteq X1 \subseteq \cdot \cdot \cdot \subseteq Xl .

We evolve until a time T that is sufficiently large for all holes to close. (The geo-
graphical maps are in a bounded subset of \BbbR 2, so such a time is guaranteed to exist.)
For more implementation details, see Appendix B.2.

The greatest strength of our level-set approach to constructing a filtered simplicial
complex is that it gives an explicit triangulation of a geographical map that does not
depend on how we assign precincts to points. The simplicial complexes that we
build using the level-set method thus embed nicely into the plane, and they more
closely resemble the underlying geographical maps from which we start than the
complexes from the other methods that we examined. Moreover, persistence is nicely
interpretable for the level-set approach. Any hole that exists in the geographical
map also exists in the initial simplicial complex (as long as the hole is not finer than
one's triangulation of \BbbR 2), so every hole is a feature that is born at time 0. The
persistence of the feature indicates the distance scales on which it exists. We can
thereby distinguish between genuine short-persistence features and short-persistence
noise from the evolution, because short-persistence noise does not appear until later
times in the level-set evolution. (An example of this occurs in Figure 6, where a bay
on the eastern side of the map is not a closed loop in the leftmost image, but it is
closed in the next image because the opening of the bay is smaller than the bay itself.)
Furthermore, although the level-set complex still suffers from the sensitivity to scale
of other distance-based constructions, it does not require us to make a scaling choice,
as is necessary for existing distance-based constructions. Both very large and very
small holes are captured immediately, because the connectedness of a simplex does
not rely on the distance between precinct centroids. In Figure 7, we show a level-set
simplicial complex for the voting map of red precincts of Imperial County.

3.4. Comparing the Simplicial-Complex Constructions. In the previous sub-
sections, we briefly discussed some of the ideas that we intend to capture with the
different constructions of filtered simplicial complexes. We now give more detail about
why these ideas are particularly useful for applications to geospatial data. PH on
point clouds is based largely on the idea that the distance between points indicates
something meaningful about the similarity or connectness of their associated regions.
Under this assumption, points that are close together have a fundamentally different
relationship to each other than points that are far apart. Consequently, features that
occur at small distance scales should not represent the same patterns as features that
occur at large scales. However, in our case (and in other applications to geospatial
data), we observe two problems: (1) voting islands occur at a variety of distance
scales; and (2) physical distance does not correspond to geographical connectedness.
More generally, spatial applications for which the information of interest is not en-
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(a) (b) (c) (d) (e)

Fig. 7 Illustration of a level-set complex on the LA Times voting data. (a) The red precincts of
Imperial County in 2016. In panels (b)--(e), we show the level-set complex that is associated
with the voting map of red precincts of Imperial County. We order it according to the number
of time steps in the level-set evolution. Observe in panel (b) that the complex immediately
resembles the original voting map and that small holes fill in faster than large ones. Given
enough time steps, the level set will evolve to cover the entire bounding box that we show in
the figure.

coded in distances may suffer from both issues. We refer to the first issue as ``scaling""
and to the second issue as ``contiguity.""

In sections 3.4.1 and 3.4.2, we discuss why existing PH constructions struggle
with scaling and contiguity, which of our methods address them, and how they do
so. In Table 1, we summarize the methods and their performance. One potential
solution to the problem of physical distance being unrepresentative of geographical
connectedness is to replace it with some other distance and to perform PH using the
new distance as the filtration parameter. Unfortunately, this is an undesirable solution
for many applications to spatial data. Although the Euclidean distance between points
in a data set may not encode the features of interest, the embeddedness of the data
into space is often relevant. Changing the notion of distance may remove important
information from an embedding, or it may force one to make a choice about how to
combine multiple notions of distance. By contrast, our new methods for PH allow us
to incorporate the spatial embedding of data without reducing that embedding to a
set of pairwise distances between points, while also potentially avoiding the scaling
and contiguity issues that arise from distance-based constructions.

Table 1 Comparison of various methods of constructing filtered simplicial complexes based on
whether they address scaling and contiguity problems.

Issue VR Alpha Adjacency Level-set

Scaling \ding{55} \ding{55} \checkmark \ding{55}
Contiguity \ding{55} \ding{55} \checkmark \checkmark 

3.4.1. Scaling. When associating precincts to point clouds, the physical distance
between precincts is based mostly on the extent to which the area is urban or rural.
Accordingly, distance constructions result in very few persistent features. In rural
areas, the sparse connections between adjacent precincts can cause one to miss voting
islands because of missing edges. Additionally, the dense connectivity of urban areas
at large scales can cause one to miss small voting islands because 2-simplices are au-
tomatically filled in. We thus see that many meaningful features (e.g., a single red
island in an urban community) are not persistent. Even worse, the most persistent
features give information about whether there are densely populated areas that sur-
round relatively sparsely populated ones, but they give little meaningful information
about the underlying political inclinations of the populations in those regions. These
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80 MICHELLE FENG AND MASON A. PORTER

results counter the conventional wisdom about PH that the strongest signals should
come from the most persistent features and that short-persistence features are likely
to be the result of noise.

This leaves us with two possibilities: either (1) we evaluate the features that result
from PH using criteria that do not depend solely on examining the most persistent
features; or (2) we must find other ways of constructing filtered simplicial complexes,
such that persistence becomes a meaningful quantity to compute for the problem of
interest. There exists work on the former approach [2, 8, 9, 29, 39, 52], and our work
complements this prior research by adopting the latter approach. In our adjacency
construction, by letting the filtration parameter be the strength of voting preference
rather than distance, we are able to interpret persistence as a measure of the difference
between the preferences of the population in a ``hole"" and the preferences of the
populations in the areas that surround it. That is, more persistent features represent
holes with voting results that are very different from those of their neighboring regions.
Consequently, the most persistent features are exactly the most meaningful ones, as
they indicate which regions are the most extreme political islands (i.e., with voting
preferences that are most different from the areas that surround them).

3.4.2. Contiguity. For our PH computations to be meaningful, we want the sim-
plicial complexes that we build to approximate our data as closely as possible. For the
VR and alpha constructions, we assumed that precincts (i.e., points) are connected
to each other as long as their centroids are close enough. In practice, whether or not
two precincts are adjacent has little to do with the distance between them. In urban
areas, precincts that are very close to each other may have other precincts sandwiched
between them, such that they are not connected. In rural areas, by contrast, precincts
whose centroids are very far apart from each other may in fact be contiguous. Both
the adjacency and level-set constructions address this issue.

In our adjacency construction, we define the adjacency matrix of a network based
on whether or not two precincts share a border. As a result, all of the 1-simplices in
our filtered simplicial complex come directly from physical contiguity. In the level-
set construction, because our input data comes in the form of a manifold, both the
1-simplices and the 2-simplices reflect the physical contiguity of the original geo-
graphical maps. Both constructions allow us to build simplicial complexes that seem
to approximate the data better than traditional distance-based constructions. See our
illustration in Figure 8. It may be possible to improve a distance-based construction
by using the minimum distance between points in a precinct, rather than the distance
between centroids (or between other representative points). However, the computa-
tion of these minimum distances takes sufficiently long that we do not expect it to be
a practical solution.

4. Computational Results. In this section, we summarize our computational
results. For the construction of the VR and alpha complexes, we use the Python
package Gudhi [21, 32, 42, 43]. For the computation of the PHs and their generators,
we modify Phat [6], which is a C++ package for the fast computation of barcodes. We
implement the adjacency and level-set constructions by adapting the fast incremental
VR algorithm of [53]. For details about our implementation and links to code, see
Appendix B.

4.1. Sizes and Computation Times. The construction of simplicial complexes
can be very slow, as one must check all possible simplices to determine whether they
are present. The number of simplices grows as nd, where n is the number of vertices
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(a) Vietoris--Rips complex (b) Adjacency complex

Fig. 8 Napa County, with the generators of features in H1 marked as cycles in dark blue. We
refer to this type of visualization, which we discuss in section 4.2, as a ``feature map."" In
(a), the VR complex has at least one ``loop"" in the eastern part of Napa County that is not
contiguous, because it is composed of several small precincts whose union is not connected.
In (b), the adjacency construction captures several loops, each of which has generators whose
union forms a contiguous region.

and d is the maximum simplex dimension that one is considering. Consequently,
methods that build smaller simplicial complexes tend to be faster. In Table 2, we
compare the number of simplices in the simplicial complexes that we construct using
the various methods. To keep computation times tractable, we compute VR complexes
only for counties with at most 150 precincts that voted for a certain candidate. If 151
or more precincts voted for the same candidate, we instead compute alpha complexes.

From Table 2, we see that the adjacency and level-set complexes do not scale in
size as rapidly as the VR complexes. This arises from how we construct these com-
plexes. In adjacency complexes, the number of neighbors tends to be almost constant
for any number of precincts, as there are practical bounds on the number of precincts
that can border another precinct. The beneficent scaling of the level-set complexes
with respect to the number of precincts arises from our specific choices of how we
construct them. Because we take each vertex of a simplicial complex to be a point on
a triangular grid, it has at most six neighboring vertices (one for each of its cardinal
directions, as well as one to its upper left and one to its lower right), and it can thus
be a member of at most six 2-simplices. One can make different choices of triangular
grids---in our case, we simply added a northwest/southeast diagonal to each square in
a square grid---and the number of neighbors is O(1), as long as the grid is composed
of triangles that have roughly the same size and shape (as is true for many grids).
However, even when the number of precincts is rather small, a level-set complex can
still be rather large. Even when there are relatively few precincts, if those precincts
constitute a large enough portion of a voting map, they will include many grid points
and hence many vertices. In practice, we obtain a relatively large number of the
possible 2-simplices in our level-set complexes because our voting maps have large
contiguous regions.

In Table 3, we compare the computation times for the construction of simplicial
complexes and computation of PH for several counties. We include a range of counties
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Table 2 Sizes (i.e., number of simplices) of the filtered simplicial complexes. We first partition
each county into precincts that voted for Clinton (C) and precincts that voted for Trump
(T). We do not consider precincts that did not favor one of the two candidates. We
then compute VR (or alpha), adjacency, and level-set complexes for each of these sets of
precincts. (We compute VR complexes for counties with at most 150 precincts that voted
for a given candidate and alpha complexes for counties with 151 or more such precincts.)

County
\# Precincts VR Alpha Adjacency Level-set

C T C T C T C T

Alameda 1156 -- 1967 5843 -- 5755 70 3327 3578
Alpine 5 2 1 -- -- 11 1 11962 1505
Amador 30 3 884 -- -- 2 168 46 3979
Calaveras 29 8 641 -- -- 6 92 1897 5195
Colusa 17 19 74 -- -- 10 46 1665 5329
Contra Costa 711 -- 3551 3561 -- 3240 126 4135 3215
Del Norte 18 5 204 -- -- 4 61 3584 6385
El Dorado 196 2397 89301 -- -- 136 1123 782 4965
Fresno 592 -- -- 1825 1431 1540 1192 2031 4788
Glenn 34 8 1152 -- -- 4 156 329 5247
Humboldt 127 45998 680 -- -- 504 119 15211 7323
Imperial 179 32496 6320 -- -- 313 129 4375 6223
Inyo 25 33 216 -- -- 14 51 4169 2242
Kern 642 -- -- 1125 2119 928 2083 1429 5033
Kings 183 6305 69786 -- -- 155 599 4849 7338
Lake 70 2279 779 -- -- 99 73 4468 11275
Lassen 51 1 5920 -- -- 1 250 193 11439
Los Angeles 4988 -- -- 26551 1747 27705 1067 8587 6686
Madera 67 927 1947 -- -- 103 132 925 5139
Marin 182 -- 3 1037 -- 1074 3 7893 621
Mariposa 25 5 401 -- -- 7 91 2241 4485
Mendocino 250 -- 692 1115 -- 946 51 11901 1400
Merced 268 139832 54664 -- -- 546 435 2213 6999
Modoc 21 0 399 -- -- 0 94 0 7995
Mono 12 41 5 -- -- 35 4 2499 3452
Monterey 467 -- 13887 2297 -- 1059 135 3597 4370
Napa 170 170093 56 -- -- 858 15 10414 4968
Nevada 82 2569 2242 -- -- 230 201 2946 2495
Orange 1668 -- -- 5391 3811 4373 2632 5719 6513
Placer 363 5085 -- -- 1685 141 1902 1210 3354
Plumas 30 8 618 -- -- 6 102 723 6609
Riverside 1126 -- -- 2291 2833 1602 2081 2231 2617
Sacramento 1267 -- -- 2935 1275 15893 3459 4263 6748
San Benito 54 1804 276 -- -- 152 67 699 6357
San Bernardino 2654 -- -- 6206 4953 3658 2465 1700 6487
San Diego 2111 -- -- 8007 3329 7480 2977 4680 7447
San Francisco 599 -- 0 3499 -- 3728 0 6826 0
San Joaquin 500 -- -- 1659 1091 1490 902 7115 13419
San Luis Obispo 161 24600 14301 -- -- 307 351 1319 4321
San Mateo 467 -- 8 2573 -- 2457 4 13865 782
Santa Barbara 250 -- 11950 971 -- 835 287 3488 6542
Santa Cruz 267 -- 28 1307 -- 1301 7 4737 295
Shasta 121 3 75177 -- -- 2 745 941 5973
Sierra 22 3 233 -- -- 2 57 417 3677
Solano 258 125438 13096 -- -- 727 338 4589 5891
Sonoma 491 -- 886 2355 -- 2204 32 6031 899
Stanislaus 218 45984 51289 -- -- 420 493 2536 6219
Sutter 52 62 3558 -- -- 23 266 588 10689
Tehama 46 0 4261 -- -- 0 241 0 5007
Trinity 25 25 243 -- -- 12 60 5485 10344
Tulare 250 13096 -- -- 921 235 1032 2242 7763
Tuolomne 68 18 10605 -- -- 6 334 3380 3997
Yolo 129 49597 486 -- -- 559 70 5089 4597
Yuba 46 5 3422 -- -- 3 199 1909 8521
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Table 3 Computation times of selected county--candidate pairs, where we show the fastest method for
each example in bold. We show computation times for building filtered simplicial complexes
in the ``Complex"" columns and sums of the computation times for producing the H0 and
H1 barcodes in the ``PH"" columns. We include results for several large counties (i.e., ones
with many precincts) to show that our methods are substantially faster than computing
VR complexes. For small counties, such as Imperial and Tulare, the improvement in
computation time is less noticeable. Computing level-set complexes is not substantially
faster for small counties than for large counties, as the number of simplices in a level-set
complex is based on the resolution of the geographical map, rather than on the number of
precincts.

County
VR Alpha Adjacency Level-set

Complex PH Complex PH Complex PH Complex PH

El Dorado (T) 182.361 s 0.783 s -- -- 0.090 s 0.008 s 5.623 s 0.011 s
Imperial (C) 20.680 s 0.154 s -- -- 0.0137 s 0.009 s 9.29 s 0.007 s
Los Angeles (C) -- -- 15.479 s 0.065 s 39.264 s 0.069 s 9.963 s 0.045 s
Merced (C) 488.823 s 0.669 s -- -- 0.0217 s 0.009 s 6.677 s 0.025 s
Napa (C) 654.803 s 0.980 s -- -- 0.048 s 0.010 s 8.309 s 0.042 s
San Bernardino (C) -- -- 1.765 s 0.032 s 0.691 s 0.030 s 4.385 s 0.019 s
Tulare (T) -- -- 0.0515 s 0.016 s 0.129 s 0.015 s 5.180 s 0.006 s

to compare the speed of each method for both large and small counties. For a complete
table of all computation times for building simplicial complexes, see Appendix D.
From Table 3, we see that our constructions of the adjacency and level-set complexes
are significantly faster than the construction of VR complexes, even for relatively small
counties like El Dorado (which has only 196 precincts). This is especially striking in
light of the fact that we have not optimized our implementations of our new methods
to make them as fast as possible. For the level-set complexes, it is possible to make the
computations much faster using existing implementations of level-set dynamics [20].
One can also leverage the wealth of research on level-set methods to evolve between
manifolds in other ways, potentially leading to further methodological developments.

We also see that our computations are only slightly slower than or have similar
computation times to those for the construction of alpha complexes. These speed
gains are due largely to the significantly smaller number of simplices that we need for
our new constructions of filtered simplicial complexes. In 2D geospatial applications,
the number of simplices is smaller than for other applications because of constraints
from our starting geographical maps. In other applications, one does not typically
benefit from such a built-in limitation in numbers. (For example, networks in general
do not satisfy the property that the degrees of the vertices are roughly constant for
any total number of vertices [33].) However, the analysis of other spatial systems
(e.g., granular materials, transportation networks, and various examples in biology)
will also benefit from these ideas.

4.2. Barcodes and Feature Maps. In this section, we illustrate the differences
between the results of the various methods for constructing filtered simplicial com-
plexes. We generate two types of visualizations for our PH results. The first takes the
form of barcodes (for both H0 and H1), where we display each feature as a bar whose
length corresponds to its persistence. The second is a map visualization (see Figure 8
for examples), where we mark the location of each feature that we find by computing
PH by drawing a cycle that passes through all of its generators. We call this visual-
ization a ``feature map,"" and we use the term ``generator precincts"" for the generators
of a homological feature (see Figure 8). These generators are not necessarily unique,
and we select our generators by using a standard PH algorithm (specifically, by using

D
ow

nl
oa

de
d 

02
/0

4/
21

 to
 1

31
.1

79
.1

58
.4

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

84 MICHELLE FENG AND MASON A. PORTER

the row-reduced boundary matrix) [54]. Although the nonuniqueness of generators
is a potential concern, in our study, any set of generators results in some group of
precincts that surround a voting island. We color each cycle according to the political
party of the associated candidate. For example, if we find a blue hole in a sea of red,
we draw a red cycle. To help illustrate the various interpretations of persistence, we
highlight ``long-persistence"" features in H1. Specifically, if an element x \in H1 has the
persistence interval [birth(x),death(x)), we compute

(4.1) l = death(x) - birth(x) .

If l \geq int(0.75maxy\in H1 [death(y) - birth(y)]) (where the floor function int(z) denotes
the integer part of z), we consider x to be a long-persistence feature. We color long-
persistence features in dark red or dark blue, depending on the political party of the
candidate, and we color other features in lighter shades of red or blue. We also color
long-persistence features with darker bars in the barcodes. We discuss results for two
counties in this section, and we give additional examples in Appendix C.

4.2.1. Example 1: Red Precincts in Tulare County. We compare the barcodes
and feature maps that we obtain by computing the PHs of the alpha, adjacency, and
level-set complexes that we generate from red precincts (i.e., those with a majority
who voted for Donald Trump) in Tulare County (see Figure 9). Tulare County is rel-
atively small, with only 250 precincts. The county is predominantly rural, although it
has a few small urban areas toward its western side. Tulare is a strongly Republican
county, and only a very small proportion of its precincts voted blue (i.e., for Hillary
Clinton) in the 2016 election. In the voting map of Tulare in Figure 9, we observe
several islands of blue voters that we hope to be able to detect using PH. To detect
these blue islands, we consider the topological structure of the simplicial complexes
that we construct using the voting map of red precincts; we seek to find holes in these
complexes. In Figure 10, we show the results of the three different constructions.

For the alpha complex, the H1 barcodes indicate that most features do not have
long persistence. The loops that surround the blue holes are light red, indicating that
they are not long-persistence features. The single long-persistence feature corresponds
to a loop in the northwest part of the voting map; it connects three precincts whose
union is disconnected, and it does not surround any blue areas. It thus exhibits both
the scaling and the contiguity problems that we discussed in section 3.4. The spacing
between these three precincts is such that the pairwise distances between them are
similar, but these distances are larger than the precincts themselves, causing them to
form a loop even though none of them is adjacent to any of the other precincts on the
map. Because this loop corresponds to the only long-persistence bar in the barcode,
it is difficult to use persistence to distinguish fake loops like this one from real loops
in the western region of the map. Overall, the alpha complex does detect some voting
islands, but it misses a few of them that are located slightly southeast of the central
area; it also detects many features that are not real.

In contrast to our observations with the alpha complex, generator precincts in the
adjacency complex mostly form contiguous loops. Because of our construction, edges
cannot occur between the centroids of precincts that are not adjacent to each other.
However, the resulting feature map does have a few generator precincts that appear
to be disconnected from their neighboring generator precincts, largely because the
precincts themselves have complicated shapes. For example, some of the precincts
are not simply connected and others have multiple connected components. Some
work in mathematical gerrymandering has focused on tackling some of these issues by
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PERSISTENT HOMOLOGY OF GEOSPATIAL DATA 85

Fig. 9 Tulare County, which we color based on voting results in the 2016 presidental election. Red
precincts have a majority who voted for Trump, and blue precincts have a majority who voted
for Clinton. Darker colors indicate stronger majorities.

quantifying the idea that electoral districts ought to be ``compact"" [5, 15]. However,
for the most part, the generator precincts surround blue and light red holes in the
voting map. Additionally, there are fewer bars in the H1 barcode in the adjacency
complex than in the alpha complex, and more of the bars in the adjacency complex
correspond to long-persistence features. The longest bar corresponds to the large hole
in the map's center that includes both blue and light red precincts. Although these
light red precincts do eventually join the filtered simplicial complex, the blue precincts
in the center ensure that this hole never closes. Keeping in mind that the generators of
a feature are not necessarily unique, the particular algorithm that we use to compute
PH selects the group of darker red precincts that surround that light red area. We
also observe several small light red holes (which correspond to the bars in the barcode
that are born early) and several blue holes (which correspond predominantly to the
bars in the barcode that are born late). The adjacency complex is able to locate most
of the blue areas of the voting map,7 and it has little noise. All of the aforementioned
long-persistence features are genuine features, and we therefore see that we do a better
job of distinguishing signal from noise for Tulare County with the adjacency complex
than with the alpha complex.

Finally, we examine the barcodes and feature map in the level-set complex that
we construct using the red precincts of Tulare County. The H1 barcode has several
features---some that have long persistence and some that do not---that start at time
0, and there is also one feature that starts at a much later step of the filtration. The
bars that start at time 0 correspond to some of the holes in the western area of the
voting map. We detect only six of these holes, as some of them occur on size scales
that are too small for us to capture in our level-set complex because of our choice of

7The exceptions are a few areas near the edges of the county. There is no hope of detecting
several of these as holes, because they lie on the county's borders and thus cannot be surrounded.
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86 MICHELLE FENG AND MASON A. PORTER

(a) Alpha complex

(b) Adjacency complex

(c) Level-set complex

Fig. 10 Barcodes and feature maps for red precincts in Tulare County. We mark long-persistence
features using darker loops with thicker widths. In the barcode of an adjacency complex, a
bar that extends to  - 5.0 indicates a feature that lives past 0.0. In a level-set complex, the
bars that correspond to loops start at T = 0.0.

grid resolution in its construction. We also observe that the persistence of a bar is
positively correlated with the size of its associated hole. The single long-persistence
feature corresponds to the largest blue hole. Overall, the level-set complex captures
most of the blue areas in the voting map and avoids most of the noise, although it
does fail to detect some of the smaller regions.
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PERSISTENT HOMOLOGY OF GEOSPATIAL DATA 87

Fig. 11 Imperial County, which we color based on presidential voting. Red precincts have a majority
who voted for Trump, and blue precincts have a majority who voted for Clinton. Darker
colors indicate stronger majorities.

4.2.2. Example 2: Blue Precincts in Imperial County. We now construct VR,
adjacency, and level-set complexes using Imperial County's blue precincts, which we
show in the map in Figure 11. We show the barcodes and feature maps of these
simplical complexes in Figure 12. For visualizations of the various simplicial complexes
that we built from Imperial County's red precincts, see Figures 2--4 and 7 in section 3.
In contrast to Tulare County, it is not immediately evident where there may be holes
in the voting map of Imperial County. There do seem to be a few very small red
precincts that are surrounded by blue precincts, so we hope to be able to capture
some of those. Overall, however, we expect to observe relatively few features.

Examining the results from the various constructions, we observe that the VR
complex picks up some noise and that only one of the features appears to surround
a hole. Instead of finding voting islands, it finds several areas in which the blue
precincts are tightly clustered, but they do not seem to surround any red precincts.
Furthermore, all of the features have similar persistences and they are all categorized
as long-persistence features. Because so many of the precincts in Imperial County
are small, it is unsurprising that all of the features have similar persistences, so it is
difficult to distinguish signal from noise. Moreover, as we will see, our findings from
the adjacency complex and the level-set complex imply that the VR complex is not
picking up any real holes in the voting map.

The adjacency complex picks up one long-persistence feature and two other fea-
tures. On inspection, these appear to be small white or light blue holes that are
surrounded by darker blue districts. All three of the holes appear to be around either
white precincts or red precincts, and the single long-persistence feature is generated
by relatively dark blue precincts. The long-persistence feature also seems to be the
only feature that corresponds to a feature from the VR construction.

In contrast to the adjacency and VR complexes, which include very few features,
the level-set complex picks up a large number of 1D features, but none of them starts
at time 0. This occurs because the separate connected components eventually combine
as the level set evolves to yield a larger number of holes than the number that exist
in the voting map. This illustrates one of the problems with level-set complexes:
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88 MICHELLE FENG AND MASON A. PORTER

(a) VR complex

(b) Adjacency complex

(c) Level-set complex

Fig. 12 Barcodes and feature maps for blue precincts in Imperial County. The VR complex results
in several false ``features""; the adjacency complex detects two white holes and one red hole;
and the level-set complex does not detect any holes, because there do not exist sufficiently
large white or red holes.

as time passes, a level-set complex tends to become progressively more connected,
which can create some false features when the simplicial complex starts with many
connected components. However, if one considers only those features that exist at
time 0, one can distinguish between genuine and false features. Most of the counties
have relatively homogeneous voting patterns, with small voting islands, so few of the
California counties yield these false features in practice. Additionally, including only
features that begin at time 0 results in reasonable feature maps.
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4.3. Comparison of Our Results to “Ground Truth.” We conclude our analysis
with some discussion of the accuracy with which we are able to use long-persistence
features to identify genuine voting patterns in the California counties. In Table 4, we
show the proportion of long-persistence features that indicate an actual hole, as de-
termined by human eyes. We highlight the most successful method for each county in
bold. We see that our adjacency and level-set constructions outperform the VR and al-
pha constructions. This indicates that our methods are less likely than the traditional
distance-based approaches to detect noise as significant features in these examples.

5. Conclusions. Analyzing persistent homology in geospatial data can often lead
to results that are difficult to interpret because of the heterogeneity of distance scales
in such data. A particularly difficult aspect of barcodes is that bars with similar
lengths may represent either signal or noise, in stark contrast to the conventional
wisdom that the features that persist the longest also carry the most meaningful in-
formation about a data set. The difficulty in identifying interesting features from a
barcode can make PH a challenging tool to apply effectively, even in applications in
which topological holes seem like something that is appropriate to compute to gain in-
sights into a problem. Therefore, it is extremely important to further explore the issue
of signal versus noise in PH, especially for multiscale problems. In the present paper,
we introduced two new methods for constructing a filtered simplicial complex that
approximates a geographical map and we discussed the effects that different types of
complexes have on the resulting PH. Our constructions attempt to address the difficul-
ties of applying topological data analysis (TDA) to data that is not well-represented
by traditional point clouds. In our application to voting data, our adjacency com-
plex allowed us to incorporate data about relationships other than distance between
points, while preserving the embedding of geographical maps in space and avoiding
the need to make specific choices of distance transformations for different counties.
Our level-set complex allowed us to compute, in a way that is inexpensive relative
to other PH computations, complexes that are very similar in intuition to traditional
VR complexes without having to start from a point cloud.

Both the adjacency and level-set complexes do a better job than traditional
distance-based complexes of encoding information about the contiguity of voting
maps, thereby making it possible to interpret differences in the distance scales of
features. An adjacency complex does this by ignoring distance entirely in its con-
struction. In a level-set complex, the persistence of the features that we detect en-
codes the distance scales of those features, but with fewer concerns than in VR or
alpha complexes about noise due to precinct sizes. Consequently, the barcodes of the
adjacency and level-set complexes are more interpretable than those of traditional PH
constructions for our geospatial data, allowing us to better understand the topology
of voting patterns in counties from the barcodes alone. In future work, it is worth con-
sidering adjustments to our constructions that improve their ability to detect voting
islands. For example, one may wish to apply a scaling based on voting preference (as
in our adjacency construction) to a geographical map instead of to precinct vertices
to obtain a sublevel-set filtration. Such an approach may help leverage the voting-
strength interpretation of our adjacency construction while also enjoying the easily
interpretable visual contiguity of our level-set construction.

Although we have tailored our methods to yield improvements for the particular
problem of detecting voting patterns from shapefile data, one can use an adjacency
construction on data sets with a network structure and the level-set construction
is appropriate for any type of 2D manifold data (and one can extend it to higher
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90 MICHELLE FENG AND MASON A. PORTER

Table 4 Proportion of long-persistence features that identify a real voting-map feature in our sim-
plicial complexes. For each county, we show the value from the method(s) with the largest
proportion in bold. In general, both our adjacency construction and our level-set construc-
tion perform very well, whereas we obtain mixed results with the VR and alpha complexes.
A``--"" symbol signifies either that we do not compute the associated simplicial complex or
that there are no features.

County
VR Alpha Adjacency Level-set

C T C T C T C T

Alameda -- 0.00 1.00 -- 1.00 -- 1.00 --
Alpine -- -- -- -- -- -- -- --
Amador -- 1.00 -- -- -- -- -- --
Calaveras -- 1.00 -- -- -- -- -- 1.00
Colusa -- 1.00 -- -- -- -- -- 1.00
Contra Costa -- 0.00 0.00 -- 1.00 -- 1.00 1.00
Del Norte -- 0.00 -- -- -- 1.00 -- 0.00
El Dorado 0.00 1.00 -- -- 1.00 1.00 -- 1.00
Fresno -- -- 0.00 0.00 0.67 0.00 -- 1.00
Glenn -- 0.00 -- -- -- 0.00 -- 1.00
Humboldt 0.00 0.00 -- -- 0.50 -- 1.00 1.00
Imperial 0.20 1.00 -- -- 1.00 1.00 -- 1.00
Inyo -- 0.00 -- -- -- 1.00 -- --
Kern -- -- 0.00 1.00 1.00 1.00 -- 1.00
Kings 0.00 0.00 -- -- 1.00 0.67 -- 0.87
Lake 1.00 0.00 -- -- -- -- 1.00 --
Lassen -- 1.00 -- -- -- -- 1.00 1.00
Los Angeles -- -- 0.00 0.00 -- -- 1.00 --
Madera 1.00 1.00 -- -- 1.00 1.00 -- 1.00
Marin -- -- 1.00 -- 1.00 -- 1.00 --
Mariposa -- 1.00 -- -- -- -- -- --
Mendocino -- 0.00 1.00 -- 1.00 -- 1.00 --
Merced 0.11 1.00 -- -- 0.50 1.00 -- 1.00
Modoc -- 0.00 -- -- -- -- -- --
Mono 0.00 -- -- -- -- -- -- --
Monterey -- 0.00 0.00 -- 1.00 0.00 1.00 1.00
Napa 0.25 0.00 -- -- 1.00 -- 0.75 --
Nevada 0.00 1.00 -- -- 1.00 1.00 1.00 1.00
Orange -- -- 0.00 0.00 0.00 0.50 1.00 1.00
Placer 0.50 -- -- 0.00 -- 1.00 1.00 1.00
Plumas -- 1.00 -- -- -- 1.00 -- 1.00
Riverside -- -- 0.00 0.33 1.00 1.00 1.00 1.00
Sacramento -- -- 0.00 0.00 0.00 1.00 1.00 1.00
San Benito 1.00 0.00 -- -- 1.00 -- -- 1.00
San Bernardino -- -- 0.00 0.00 -- 0.75 -- 1.00
San Diego -- -- 0.00 1.00 1.00 1.00 1.00 1.00
San Francisco -- -- 0.00 -- 1.00 -- 1.00 --
San Joaquin -- -- 0.00 0.00 0.75 1.00 1.00 1.00
San Luis Obispo 0.00 0.14 -- -- 1.00 1.00 -- 1.00
San Mateo -- -- 1.00 -- 1.00 -- 1.00 --
Santa Barbara -- 1.00 0.00 -- 0.67 1.00 -- 1.00
Santa Cruz -- -- 1.00 -- 0.00 -- 1.00 --
Shasta -- 0.00 -- -- -- 1.00 -- --
Sierra -- -- -- -- -- -- -- --
Solano 0.00 0.00 -- -- 1.00 1.00 1.00 1.00
Sonoma -- 0.00 0.00 -- 1.00 -- 1.00 --
Stanislaus 0.00 0.00 -- -- 1.00 1.00 -- 1.00
Sutter -- 0.00 -- -- -- 1.00 -- 1.00
Tehama -- 0.00 -- -- -- 1.00 -- --
Trinity -- 0.00 -- -- -- 0.00 1.00 1.00
Tulare 0.00 -- -- 0.00 -- 1.00 -- 1.00
Tuolomne -- 0.00 -- 0.00 -- 1.00 -- 1.00
Yolo 0.00 -- -- -- 1.00 1.00 0.00 0.00
Yuba -- 0.00 -- -- -- 1.00 -- 1.00
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dimensions with some programming adjustments, although computations take longer).
More generally, given the ubiquity of 2D spatial data, the insights that we highlighted
in our application to voting data are relevant for a broad range of problems in the
study of transportation networks, spatial demography, granular materials, biological
structures, and many other topics.

Appendix A. Simplicial Homology. In this appendix, we discuss the formalism
of simplicial homology, which we discussed at an intuitive level in the main text.
There are many different homology theories in algebraic topology. We give context
for our particular choice of simplicial homology. For an explanation of the differences
between simplicial homology and other common homology theories, see [23].

We begin by defining some of the basic building blocks of simplicial homology.

Definition A.1. A k-simplex is a k-dimensional polytope that is the convex hull
of its k + 1 vertices.

Definition A.2. An orientation of a k-simplex is an ordering of the vertices,
which we write as (v0, . . . , vk), with the rule that two orderings define the same ori-
entation if and only if they differ by an even permutation.

Definition A.3. An m-face is the convex hull of a subset of cardinality m+1 of
a k-simplex, with m < k and the orientation preserved. A face refers to an m-face of
any dimension m.

Definition A.4. A simplex A is a coface of a simplex B if B is a face of A.

Definition A.5. A simplicial complex S is a set of simplices that satisfies the
following conditions:

1. every face of a simplex in S is also in S;
2. the intersection of any two simplices \sigma 1, \sigma 2 \in S is a face of both \sigma 1 and \sigma 2.

Our definition of simplicial complex makes no use of orientation. However, in
our discussion of simplicial homology, we will see that orientation of simplices is very
important.

Definition A.6. Let S be a simplicial complex. A simplicial k-chain is a finite
formal sum

N\sum 
i=1

ci\sigma i ,

where \sigma i is an oriented k-simplex and each ci \in F for some field F .

We denote the group of k-chains on S by Ck. (With a consistent choice of orien-
tation, we can also consider this as the free Abelian group on the basis of k-simplices
in S.)

Definition A.7. Let \sigma = (v0, . . . , vk) be an oriented k-simplex. The boundary
operator

\delta k : Ck \rightarrow Ck - 1

is the homomorphism defined by

\delta k(\sigma ) =

k\sum 
i=0

( - 1)i(v0, . . . , \^vi, . . . , vk) ,

where (v0, . . . , \^vi, . . . , vk) is the oriented (k - 1)-simplex that we obtain by deleting the
ith vertex of \sigma .

Elements of Zk = ker \delta k are called cycles, and elements of Bk = im \delta k+1 are
called boundaries.
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One can show by direct computation that \delta 2 = 0, so the groups (Ck, \delta k) form a
chain complex. See [23] for a discussion of chain complexes.

Definition A.8. The kth homology group Hk of S over F is the quotient group

Hk(S;F ) = Zk/Bk .

Note thatHk(S;F ) is nontrivial precisely when there are k-cycles on the simplicial
complex S that are not boundaries; this occurs when there are k-dimensional holes.
For example, a cycle between three points gives a 1-cycle,8 and it is also a boundary
precisely when the triangle with vertices at those three points is in the simplicial
complex S.

In our application (and in many applications of TDA), we compute homology
groups over the field \BbbF 2. Crucially, 1 =  - 1 \in \BbbF 2, so we do not need to consider the
orientation of our simplicial complexes.

The final definition that we introduce is that of a simplicial map.

Definition A.9. Let S and T be simplicial complexes. A simplicial map f : S \rightarrow 
T is a function from the vertex set of S to the vertex set of T that preserves simplices.

A simplicial map f : S \rightarrow T also induces a homomorphism f\ast : Hk(S) \rightarrow Hk(T )
for each nonnegative integer k. The homomorphism f\ast is associated with a chain map
from the k-chain complex of S to the k-chain complex of T . This chain map is

(v0, . . . , vk) \mapsto \rightarrow (f(v0), . . . , f(vk)) ,

where (f(v0), . . . , f(vk)) = 0 if two or more of f(v0), . . . , f(vk) are not distinct.
This construction gives a functor from simplicial complexes to Abelian groups;

this is essential to the theory of PH that we discussed in section 2.2.

Appendix B. Algorithms and Implementations. In this appendix, we discuss
the algorithms that we developed to construct our simplicial complexes. All implemen-
tations that we discuss in this section are available at https://github.com/mhcfeng/
precinct. For the computation of VR and alpha complexes, we use built-in functional-
ity of the software package Gudhi [31]. For the adjacency and level-set constructions,
we implement (in Python) the incremental VR algorithm that is described in [53].
This algorithm adds one vertex at a time to a simplicial complex, and it then checks
all possible cofaces of that vertex; it adds them if all other vertices of a coface are
already part of the simplicial complex. To use this algorithm, we need to do some
preprocessing, which we discuss in the next two subsections.

B.1. Adjacency Complex. The incremental VR algorithm that we use requires
the following items as input: a list of vertices, a list of neighbors for each vertex, and
some method of ordering the vertices to determine whether or not a neighbor is a
``lower neighbor"" (i.e., a neighbor that appears prior to the vertex in the ordering).
Specifically, the ordering of the vertices must respect the entry times of those vertices.
To determine the neighboring precincts for each precinct, we wrote code in QGIS that
checks for queen adjacency. (Recall from the main text that two precincts are queen
adjacent if they touch each other at any point, including corners.)

We then sort precincts by strength of preference for a particular candidate, as
the precincts enter a filtered simplicial complex in order from strongest preference to
weakest preference. Once we set this ordering, we compare a precinct to its neighbors
to determine whether its neighbors are already in the simplicial complex. It is then
straightforward to apply the incremental VR algorithm.

8This notion of ``cycle"" is different from the one in network analysis [33].
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B.2. Level-Set Complex. Constructing a level-set complex requires several steps.
First, we rasterize our shapefiles to obtain geographical maps in image format of all
precincts in a county that voted for the same candidate. We denote this image data
by X, and we constrain these images to have dimension no greater than 250\times 250. We
then define a function \phi (X, 0), where \phi (x, 0) gives the distance from a point x \in \BbbR 2

to the boundary, such that the boundary is the 0-level set of \phi (X, 0). We then im-
plement a level-set method with motion according to normal forces [34] to generate
the evolved geographical map \phi (X,T ) at each time T . To convert \phi to a simplicial
complex S, we implement Algorithm B.1, which takes the following items as input:
\phi (X,T ), a list V of vertices that are already in the simplicial complex S, a list \~t of
entry times for all vertices that are already in S, and the current time T .

Algorithm B.1 Generate ordered vertices from \phi .

Given \phi , V , \~t, T
V \prime = \{ v : v /\in V ; \phi (v, T ) < 0 ; row(v) = 0 (mod 5) , col(v) = 0 (mod 5)\} 
for v \in V \prime do
V = V

\bigcup 
\{ v\} 

\~t(v) = T
end for
return V , \~t

As vertices, we use only pixels that are in rows and columns that are multiples
of 5 (see Algorithm B.1). This prevents us from having more than 50\times 50 potential
vertices, which would significantly increase computation time. It also reduces the
amount of noise in the barcodes, because holes must be sufficiently large in diameter
for us to detect them. Once we have a list of vertices and their entry times, we
generate 1-simplices using Algorithm B.2.

Algorithm B.2 Generate level-set adjacencies.

Given V , height h of image, width w of image
for v \in V do
Set N(v) to the set of six possible neighbors of v. (These are the four cardi-
nal neighbors, along with the northwest and southeast diagonal neighbors. We
limit ourselves to six neighbors because this yields a convenient triangulation and
connecting to all eight neighbors would result in nonplanarity.)
N(v) = N(v)

\bigcap 
V

end for
return N

Once we have generated the 1-simplices, we use the entry times \~t from Algo-
rithm B.1 to determine whether or not a neighbor of a given vertex is a lower neighbor
in the incremental VR algorithm.

Appendix C. Additional Examples. In Figures 13 and 14, we show barcodes
and feature maps for Napa County and Los Angeles County. These examples further
illustrate some of the problems with barcode interpretability that we discussed in
section 3.4.D
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(a) VR complex

(b) Adjacency complex

(c) Level-set complex

Fig. 13 Barcodes and feature maps for blue precincts in Napa County. There are several long-
persistence bars in the H1 barcode of the VR complex. Some of these correspond to real holes
in the densely populated areas in the southern region of the county, but others correspond
to contiguous blue regions without holes, making it difficult to distinguish signal from noise.
By contrast, the H1 barcode of the adjacency complex has three long-persistence features,
all of which correspond to light blue or white holes. Similarly, the H1 barcode of the level-
set complex has four features that start at time 0 and correspond to visible white or red
holes. There is a red hole in the eastern part of the county that is detected by the alpha
and level-set complexes, but not by the adjacency complex. This is due to the shape of
the blue precinct, which wraps partially around a red precinct such that it covers precisely
enough grid points in the level-set complex to register as a hole, despite not actually fully
surrounding the red precinct. In practice, this occurs rarely in our voting data, but it does
give an example of a potential problem with the level-set complex.
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(a) Alpha complex

(b) Adjacency complex

(c) Level-set complex

Fig. 14 Barcodes and feature maps for blue precincts in Los Angeles County. We again observe
many featues that do not have long persistence in the H1 barcode of the alpha complex.
This arises from the fact that the southern part of the county has a much higher population
density than the northern part. There is also a single long-persistence feature; its generators
are adjacent to red precincts that are not surrounded by blue precincts. The large number
of precincts in this county makes it difficult to interpret many of the cycles in the highly
populated precincts by eye. The alpha complex includes several cycles that traverse red
swaths of the county that do not appear to be holes, whereas this does not occur in either
the adjacency complex or the level-set complex.

Appendix D. Complete Table of Computation Times of Simplicial Com-
plexes. In Table 5, we give the computation times for the constructions of all com-
puted simplicial complexes.

D
ow

nl
oa

de
d 

02
/0

4/
21

 to
 1

31
.1

79
.1

58
.4

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

96 MICHELLE FENG AND MASON A. PORTER

Table 5 Computation times for the constructions of our simplicial complexes. (We give results to
three significant digits, so values with fewer visible digits have the appropriate number of
0s appended to them.)

County
VR Alpha Adjacency Level-set

C T C T C T C T

Alameda -- 0.191 s 0.742 s -- 1.62 s 0.0019 s 4.97 s 4.76 s

Alpine 0.00169 s 0.015 s -- -- 0.00174 s 0.000727 s 12.3 s 15.5 s

Amador 0.000706 s 0.0323 s -- -- 0.00281 s 0.00591 s 5.18 s 5.24 s

Calaveras 0.00117 s 0.0172 s -- -- 0.000872 s 0.00248 s 9.66 s 7.41 s

Colusa 0.00097 s 0.00251 s -- -- 0.00184 s 0.00175 s 4.96 s 6.31 s

Contra Costa -- 0.593 s 0.468 s -- 0.619 s 0.0033 s 4.81 s 5.12 s

Del Norte 0.0011 s 0.0187 s -- -- 0.00265 s 0.0039 s 13.1 s 10.6 s

El Dorado 0.302 s 182 s -- -- 0.00363 s 0.0905 s 5.46 s 5.62 s

Fresno -- -- 0.143 s 0.0952 s 0.123 s 0.102 s 7.73 s 8.54 s

Glenn 0.00116 s 0.0433 s -- -- 0.000836 s 0.00421 s 5.45 s 5.3 s

Humboldt 43.7 s 0.0214 s -- -- 0.0309 s 0.00644 s 10.1 s 10.6 s

Imperial 20.7 s 0.756 s -- -- 0.0137 s 0.00291 s 9.29 s 6.2 s

Inyo 0.00102 s 0.00329 s -- -- 0.00112 s 0.00215 s 7.32 s 8.02 s

Kern -- -- 0.0737 s 0.221 s 0.109 s 0.388 s 3.34 s 4.26 s

Kings 0.93 s 108 s -- -- 0.104 s 0.0847 s 10.5 s 17.4 s

Lake 0.131 s 0.0264 s -- -- 0.00672 s 0.00407 s 10.7 s 11.7 s

Lassen 0.00195 s 0.81 s 0.000417 s 0.0234 s 0.00343 s 0.0108 s 10.9 s 11.9 s

Los Angeles -- -- 15.5 s 0.133 s 39.3 s 0.0602 s 9.96 s 12.9 s

Madera 0.0344 s 0.13 s -- -- 0.0046 s 0.00399 s 5.24 s 6.03 s

Marin -- 0.00196 s 0.0705 s -- 0.063 s 0.000784 s 8.46 s 7.56 s

Mariposa 0.0012 s 0.0155 s -- -- 0.00323 s 0.00215 s 5.32 s 5.62 s

Mendocino -- 0.0317 s 0.0857 s -- 0.0571 s 0.00148 s 10.3 s 9.52 s

Merced 489 s 59.4 s -- -- 0.0217 s 0.0154 s 6.68 s 7.18 s

Modoc 1.91\times 10 - 6 s 0.0112 s -- -- 2.15\times 10 - 6 s 0.00271 s 3.81 s 4.37 s

Mono 0.00116 s 0.00194 s -- -- 0.00152 s 0.000919 s 5.8 s 5.78 s

Monterey -- 4.23 s 0.272 s -- 0.0766 s 0.00302 s 5.49 s 5.6 s

Napa 655 s 0.00569 s -- -- 0.0478 s 0.00115 s 8.31 s 8.47 s

Nevada 0.168 s 0.134 s -- -- 0.00751 s 0.00543 s 3.24 s 3.11 s

Orange -- -- 0.844 s 0.693 s 1.1 s 0.613 s 8.1 s 8.47 s

Placer 0.736 s -- -- 0.184 s 0.0172 s 0.553 s 3.1 s 3.35 s

Plumas 0.00138 s 0.0269 s -- -- 0.00109 s 0.00401 s 4.65 s 5.52 s

Riverside -- -- 0.263 s 0.422 s 0.483 s 0.554 s 2.21 s 1.99 s

Sacramento -- -- 0.516 s 0.0841 s 12.3 s 0.606 s 8.48 s 9.5 s

San Benito 0.1 s 0.00899 s -- -- 0.00662 s 0.00339 s 6.14 s 6.79 s

San Bernardino -- -- 1.77 s 0.833 s 0.691 s 0.476 s 4.39 s 5.25 s

San Diego -- -- 1.63 s 0.492 s 3.13 s 0.416 s 6.11 s 6.87 s

San Francisco -- 0 s 0.353 s -- 0.707 s 1.19\times 10 - 6 s 5.99 s 5.13 s

San Joaquin -- -- 0.0857 s 0.0487 s 0.108 s 0.052 s 8.22 s 13.2 s

San Luis Obispo 14.4 s 4.45 s -- -- 0.016 s 0.0115 s 3.61 s 3.88 s

San Mateo -- 0.00359 s 0.266 s -- 0.45 s 0.00442 s 8.28 s 5.84 s

Santa Barbara -- 3.35 s 0.0551 s -- 0.0612 s 0.0101 s 6.35 s 7.36 s

Santa Cruz -- 0.0017 s 0.0625 s -- 0.207 s 0.00239 s 5.7 s 10.4 s

Shasta 0.00118 s 120 s -- -- 0.00526 s 0.0426 s 3.9 s 4.47 s

Sierra 0.00342 s 0.00752 s -- -- 0.0046 s 0.00311 s 2.86 s 3.3 s

Solano 401 s 3.59 s -- -- 0.0438 s 0.013 s 6.24 s 5.86 s

Sonoma -- 0.0299 s 0.25 s -- 0.516 s 0.0175 s 6.26 s 5.46 s

Stanislaus 46.1 s 52.1 s -- -- 0.0173 s 0.0325 s 8.25 s 9.41 s

Sutter 0.00187 s 0.244 s -- -- 0.00494 s 0.0193 s 8.75 s 9.79 s

Tehama 1.91\times 10 - 6 s 0.372 s -- -- 3.1\times 10 - 6 s 0.0601 s 2.32 s 2.78 s

Trinity 0.000981 s 0.0038 s -- -- 0.00276 s 0.0225 s 8.44 s 8.86 s

Tulare 3.57 s -- -- 0.0515 s 0.0562 s 0.129 s 4.81 s 5.18 s

Tuolomne 0.000928 s 2.15 s -- -- 0.00328 s 0.0117 s 4.76 s 4.5 s

Yolo 51.4 s 0.0142 s -- -- 0.0635 s 0.00449 s 5.92 s 6.1 s

Yuba 0.00109 s 0.266 s -- -- 0.00988 s 0.0096 s 7.97 s 8.72 s
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