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Spatial applications of topological data analysis: Cities, snowflakes, random structures, and spiders
spinning under the influence
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Spatial networks are ubiquitous in social, geographical, physical, and biological applications. To understand
the large-scale structure of networks, it is important to develop methods that allow one to directly probe the
effects of space on structure and dynamics. Historically, algebraic topology has provided one framework for
rigorously and quantitatively describing the global structure of a space, and recent advances in topological data
analysis have given scholars a new lens for analyzing network data. In this paper, we study a variety of spatial
networks—including both synthetic and natural ones—using topological methods that we developed recently
for analyzing spatial systems. We demonstrate that our methods are able to capture meaningful quantities, with
specifics that depend on context, in spatial networks and thereby provide useful insights into the structure of
those networks. We illustrate these ideas with examples of synthetic networks and dynamics on them, street
networks in cities, snowflakes, and webs that were spun by spiders under the influence of various psychotropic
substances.
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I. INTRODUCTION

Many complex systems have a natural embedding in a low-
dimensional space or are otherwise influenced by space, and it
is often insightful to study such spatial complex systems using
the formalism of networks [1,2]. In a spatial network, the
location of nodes and edges in space can heavily inform both
the structure of the network and the behavior of dynamical
processes on it. Indeed, obtaining a meaningful understanding
of power grids [3–5], granular systems [6], rabbit warrens [7],
and many other systems is impossible without considering
the physical relationships between nodes in a network. For
example, when studying traffic patterns on a transportation
network, it is important to include information both about the
physical distances between points and about the locations and
directions of paths between heavily trafficked areas [8].

There are a variety of perspectives for studying spatial
networks [1,9]. Many important ideas in such studies hail
from quantitative geography [10,11]. In the 1970s, geogra-
phers were already studying the role of space in the formation
of networks and in the activities of individuals and goods in
geographical networks. As data have become richer and more
readily available, it has become possible to use increasingly
intricate computational methods in the study of spatial net-
works, and a variety of complex-systems approaches have
contributed greatly to the literature on spatial networks [1].
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Researchers have also proposed various random models for
spatial networks, and studying them yields baseline examples
to compare to empirical networks [12–15]. There have also
been investigations of the effects of certain spatial network
properties on the behaviors of several well-known dynamical
processes, including the Ising model [16], coupled oscillators
[17], and random walks [18].

Although there is much existing work on the properties of
spatial networks (e.g., degree distributions, shortest paths, and
so on), there are relatively few network tools that leverage
“global” structure in the traditional topological sense of the
word. Current tools for studying global network structure
tend to rely on aggregating local information in some way
to paint a global picture of a network. By contrast, methods
for understanding the global structure of a topological space
rely intrinsically on information about the entire space. To
illustrate the difference, consider a sphere. If we sample a
neighborhood of any point on a sphere, we obtain a surface
with the same properties as a plane. If we consider a collection
of a sphere’s neighborhoods (which each resemble a plane)
and stitch them together, we are able to obtain a lot of
information about the sphere, but we are unable to describe the
void in the center of the sphere. (For example, a stereographic
projection of a sphere covers the sphere’s entire surface, but
it fails to capture the void.) To fully understand the structure
of a sphere, we must consider the entire sphere at once. Over
the last few decades, algebraic topology has been very useful
for characterizing the global structure of mathematical spaces
[19,20] through its use of mathematical tools that consider
spaces as global objects. By reframing spatial networks using
the language of topological spaces, we can leverage existing
topological tools to better understand their structures. For a
case study with voting data, see our recent paper [21].

Homology groups, which were defined originally in alge-
braic topology and have been applied insightfully to a broad
range of mathematical topics, provide one way to distinguish
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between mathematical spaces based on their numbers and
types of “holes” [19]. Moreover, the extension of homology to
so-called “persistent homology” (PH) allows one to quantify
holes in data in a meaningful way and has made it possible
to apply homological ideas to a wide variety of empirical
data sets [22,23]. PH is helpful for characterizing the “shape”
of data, and the myriad applications of it include studies
of protein structure [24–27], DNA structure [28], neuronal
morphologies [29], computer vision [30], diurnal cycles in
hurricanes [31], chaotic dynamics in differential equations
[32], spatial percolation problems [33], and many others. Ad-
ditionally, combining machine-learning approaches with PH
has also been very useful for several classification problems
[34–37].

Because it is so natural to apply PH to the study of the
shape of data, many successful applications of it have been to
spatial networks. One particular area of interest has been the
study of granular materials, because PH is able to effectively
capture geometric properties of granular substances [6,38,39].
In addition to analyzing geometric information, PH methods
are also able to describe multiscale spatial relationships. Many
biological applications to proteins and DNA rely on the ability
of PH to illuminate features at multiple scales, as multiscale
structures and compositions of these molecules are extremely
important to their function. PH has also been applied to
larger-scale biological systems, including leaf-venation pat-
terns [40], aggregation models [41], human migration [42],
networks of blood vessels [43], and the effects of psychoactive
substances on brain activity [44]. The recent review article
[45] includes an extensive discussion of applications of PH
to networks.

One confounding factor in the use of PH to study spatial
networks is that although PH is able to capture information
across scales, traditional distance-based PH constructions can
have difficulty with applications in which differences in scale
may not be meaningful. For example, in most applications to
human geographical data, differences in population densities
between urban and rural areas can dominate analyses that
employ traditional PH constructions, and they thereby miss
signals that do not rely on such variation in density. In a
recent paper [21], we examined the shape of voting patterns
in the state of California and observed that traditional meth-
ods for computing PH are more likely to capture disparities
in population density than to detect the presence of inter-
esting voting patterns. To address this issue, we developed
two PH constructions—one based on network adjacency and
one based on the physical geometry of a map—that were
successful at capturing these voting patterns. For a recent
analysis of the difficulty of interpreting signal and noise in
PH results, see Ref. [46]. For approaches other than PH
for analyzing maps while accounting for density variation,
see Refs. [47,48].

In the present paper, we apply our PH constructions from
[21] to a variety of spatial complex systems to demonstrate
the usefulness of these constructions in many domains. We
show that our methods are well-suited to capturing interest-
ing structural properties of spatial networks and can thereby
yield fascinating insights into such networks, especially with
respect to their global structure. Our examples include several
synthetic graph models and dynamics on them, city street

networks (which we compare both within a city and across
different cities), snowflakes, and webs that were spun by spi-
ders under the influence of various psychotropic substances.

Our paper proceeds as follows. In Sec. II, we give technical
background on PH and on our particular constructions. In
Sec. III, we discuss our results from computing the PH of
(1) Watts threshold model (WTM) dynamics on several well-
known examples of synthetic networks and (2) networks that
we construct from a variety of empirical data sets from diverse
applications. We conclude in Sec. IV. A public repository
of the code that we use for our computations is available at
Ref. [49].

II. METHODS

A. Computing persistent homology

We now give a brief introduction to PH and tools for com-
puting it. See Refs. [22,50,51] for more details. We begin by
defining k-simplices and simplicial complexes. A k-simplex is
a k-dimensional polytope that is a convex hull of k + 1 nodes.
A face of a k-simplex is any subset (of dimension smaller
than k) of the k-simplex that is itself a simplex. A simplicial
complex K is a set of simplices that satisfies the following
requirements: (1) if σ ∈ K is a k-simplex, then every face of
σ is in K and (2) if σ and τ are simplices in K , then σ ∩ τ is
a face of both σ and τ .

Given a data set X , we construct a sequence X1 ⊆ X2 ⊆
· · · ⊆ Xl of simplicial complexes of some fixed maximum
dimension. We call the sequence {Xi} a “filtered simplicial
complex” (or simply a “filtration”), and we call each Xi a
“subcomplex” of the filtered simplicial complex. We equip
each relation Xi ⊆ Xi+1 with an inclusion map. The filtered
simplicial complex, along with its inclusion maps and the
chain and boundary maps of each subcomplex, constitutes a
“persistence complex.” The inclusion maps Xi ↪→ Xj induce
maps fi, j : Hm(Xi ) → Hm(Xj ) between homology groups. The
map fi, j allows us to track an element of Hm(Xi ) (the mth
homology group of the subcomplex Xi) to an element of
Hm(Xj ). The mth homologies of the persistence complex are
given by the pair

(
{Hm(Xi )}1�i�l ,

{
fi, j

}
1�i� j�l

)
, (1)

and we call them the “mth persistent homology” of X . We
refer to the collection of all mth persistent homologies as the
“persistent homology” (PH) of X .

Consider a generator x ∈ Hm(Xi ) for some m and i. If x
is not in the image of fi−1,i, we say that x is “born” at time i.
Correspondingly, if x ∈ Hm(Xi ) and fi,i+1(x) = 0 ∈ Hm(Xi+1),
we say that x “dies” at time i + 1. If for every j � l , we
have that fi, j (x) �= 0, then we say that x never dies, and we
assign a death time of ∞ to the element (i.e., generator) x.
For each element x of the PH of X , there is a birth time bx

and a death time dx, and the collection of intervals {[bx, dx )}
is the “barcode” of X . Generators with longer associated half-
open intervals [bx, dx ) are more persistent. It is traditional to
construe more-persistent intervals as indicators of a signal and
less-persistent intervals as indicators of noise, although recent
work (see, e.g., [21,52]) indicates that it is not always possible
to interpret persistence in this way.
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FIG. 1. We illustrate an adjacency construction of persistent ho-
mology (PH) on (a) a planar graph, whose nodes we color according
to a function value from yellow to dark blue. At each filtration step
[see panels (b)–(e)], we add all nodes with a given range of function
values. We also add any edges between these new nodes, as well as
any edges between these new nodes and existing nodes, and we fill
in any triangles that form. Only cycles of length three form triangles,
so the graph in panel (a) yields five infinite-length features in H1 [as
one can see from the five holes that remain in panel (e)].

The collection of features in each Hm(Xi ) describes the
topological properties of the filtration {Xi}. Intuitively, each
feature in Hm corresponds to some m-dimensional void. In
H0, features are connected components; in H1, features are
loops. By considering the PHs of {Xi}, we can examine
how the connectedness of {Xi} changes for each step (i.e.,
each Xi) of the filtration in each dimension. For example, a
short-persistence feature in H0 is a connected component that
appears and combines quickly with another component. PH
records all features and their persistences, allowing us to take
a global view of topological changes in each filtration step of
{Xi}.

In the present paper, we use the software package GUDHI

[53,54] to compute PH of the filtered simplicial complex {Xi}.
We construct {Xi} from X using two different constructions,
which we developed recently in a paper on voting data [21].

B. Adjacency construction of PH

We now describe a way to construct a filtered simplicial
complex based on network adjacencies. Consider a network
in the form of a graph (V, E ), with numerical data f (v)
associated with each node v. For a given filtration step Xi, let
the 0-simplices of Xi be given by v ∈ V such that f (v) � ε for
some value ε. For any edge (u, v) ∈ E , if u ∈ Xi and v ∈ Xi,
we add (u, v) to Xi. Finally, to Xi, we add all triangles (u, v,w)
such that (u, v), (v,w), and (u,w) are in Xi. We repeat this
process for Xi+1, but now we use a larger value of ε. By
construction, each Xi ⊆ Xi+1, and we have a valid filtered
simplicial complex. See Fig. 1 for an illustration of such a
filtered simplicial complex.

This adjacency construction tracks topological changes in
a network as it grows. The homology group Hm(X0) char-
acterizes the topology of the first filtration step of a filtered
simplicial complex. As one adds more nodes, edges, and
faces to the simplicial complex, its topology changes and is
recorded in Hm(Xi ). By choosing f carefully, we can control
which subset of a network exists in the first filtration step, and
we can also control how the network expands. For example,
in Ref. [21], by attaching voting data to a network of precincts
of a county, we used this adjacency construction to examine
how the topology of the county changes as one expands the
range of voting preferences of the precincts that one includes.

FIG. 2. Illustration of level-set dynamics. Starting from (a) an
initial black-and-white image, we apply level-set evolution (2) for
several steps to obtain the image in (b) and then the one in (c). In
these images, the white space in the center of the image shrinks until
eventually it is completely covered by the expanding black surface.

In some of our applications in the present paper, we use
an alternative adjacency construction in which we associate
data g(u, v) to each edge (u, v), instead of to the nodes. This
construction differs from the one above only in that we define
the function f̃ (v) = min{u:(u,v)∈E} g(u, v). We then proceed
with the above adjacency construction, but we substitute f̃ for
f . We recently introduced our main adjacency construction in
Ref. [21], and we introduce this adaptation of it to edge-based
data in the present work.

C. Level-set construction of PH

The other PH construction that we use (again see Ref. [21]
for details) involves describing data as a manifold, rather than
as a graph. Let M denote a two-dimensional (2D) manifold,
such as data in an image format. We consider the boundary �

of M and construct a sequence

M0 ⊆ M1 ⊆ · · · ⊆ Mn

of manifolds (where M0 is an approximation of M). At each
time t , we evolve the boundary �t of Mt outward according to
the level-set equation. (See Ref. [55] for a thorough exposition
of the level-set equation and level-set dynamics.) Specifically,
for a manifold M that is embedded in R2, we define a function
φ(�x, t ) : R2 × R → R, where φ(�x, t ) is the signed distance
function from �x to �t at time t . We propagate �t outward at
velocity v using the level-set equation

∂φ

∂t
= v|∇φ| (2)

until all homological features have died. Because this evo-
lution gives a signed distance function at each time t , we
take Mt to be the set of points �x such that φ(�x, t ) > 0. (This
corresponds to points that are surrounded by the boundary �t .)
We show an example of this evolution in Fig. 2. Throughout
the present paper, we use v = 1. Different values of v cause
the level set to evolve faster (if v > 1) or slower (if v < 1),
resulting in a different number of time steps (and hence a
different number of filtration steps) in our evolution. How-
ever, we obtain the same homological features, although with
different birth times and death times. If v is sufficiently large,
it is possible for all of the features to have the same birth and
death time, such that no features occur after the first filtration
step. When v = 0, there is no evolution.

By imposing {Mi} over a triangular grid of points, as
described in Ref. [21], we obtain a corresponding simplicial
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FIG. 3. Illustration of a level-set adjacency construction of PH.
In (a), we show a synthetic image that we use as an initial manifold
for level-set evolution. In (b)–(d), we show various filtration steps
of the filtered simplicial complex that we generate by performing a
level-set evolution on the image in panel (a). Panel (b) shows the
simplicial complex that we obtain by overlaying the image in panel
(a) on a triangular grid. In panels (c) and (d), we add new nodes,
edges, and triangles to the image as it evolves outward. Darker colors
indicate simplices that enter the filtration at a later time.

complex Xi for each Mi. In Fig. 3, we illustrate this sim-
plicial complex. We construct this level-set complex using a
polygon whose points we choose uniformly at random from
[0, 1] × [0, 1] as an initial synthetic image. Because the level-
set equation (2) evolves outward, we automatically satisfy
that condition that Xi ⊆ Xi+1, so {Xi} is a filtered simplicial
complex. Our implementation of the level-set method works
with any black-and-white image (or any image that one can
describe as a piecewise-constant function h : R2 → {0, 1}).
We expect our level-set approach to capture information about
H0 and H1 for any such image. The level-set approach also
captures geometric information, which can be useful for some
applications; however, this may make it difficult to capture in-
formation about holes that are visually irregular. Throughout
the present paper, we compare images that have roughly the
same resolutions, where we take the image resolution from
raw image data. Because image size should primarily affect
the computation time of our level-set approach—but not the
order in which features appear and disappear as an image
evolves—we expect that it is possible to adapt our level-set
construction for comparing images of different resolutions.
Possible approaches for such an adaptation include normal-
izing image sizes or adjusting the resolution of the triangular
grid that one uses for each image.

III. APPLICATIONS

We now discuss applications of PH to both synthetic net-
works and empirical spatial networks from a diverse variety
of applications.

A. Synthetic networks

In this subsection, we discuss applications of our adjacency
PH construction to a dynamical process on synthetic networks
in which space plays an important role. For each network
(V, E ), we run the WTM [56] on it. Given a graph, we select
a fraction ρ0 = 0.05 of its nodes uniformly at random to be
“infected” at time 0. At each time (which is discrete), we com-
pute the fraction of each node’s neighbors that are infected.
We then synchronously update the states of the nodes [57]. If
the fraction of a node’s neighbors that are infected meets or
exceeds a threshold (in our case, the threshold is 
 = 0.18
for all nodes), the node becomes infected (if it is not already
infected). Once a node is infected, it stays infected forever. We
take this implementation of the WTM to be the generator of
a function f :V → N [58], where f (v) is the time at which
node v becomes infected. We say that infected nodes are in
the set I , and we use the term “infection network” for the
associated induced subgraph. If v never becomes infected,
we set f (V ) = maxv∈I f (v) + 1, so that we eventually add all
nodes to a filtered simplicial complex. The resulting filtered
simplicial complex consists of the subgraphs that are gener-
ated by I at each time. See Refs. [59–61] for studies of the
WTM on spatial networks.

We use the parameter values ρ0 = 0.05 and 
 = 0.18
throughout this section. We expect changes in ρ and 
 to
affect the birth times and death times of features in a filtered
simplicial complex. Using a different value of ρ0 entails
considering a different fraction of initially infected notes. A
larger value of ρ0 yields a larger simplicial complex at the
first filtration step, and smaller value of ρ0 yields a smaller
simplicial complex. Using a larger value of 
 results in fewer
nodes becoming infected at each time, and it thus takes more
filtration steps before the simplicial complex stops growing.
Because our underlying graph is the same for any choice of
values of ρ and 
 , we do not expect changes in the homology
of the last filtration step, unless ρ or 
 are sufficiently small
such that some nodes in a graph never become infected.
However, one can certainly obtain a different PH for different
values of ρ or 
 , as nodes and edges can join the filtered
simplicial complex at different times and (more importantly)
in different orders.

We examine topological changes in the infection networks
of three different types of synthetic networks (see Fig. 4).
We first examine random geometric graphics (RGGs) [62].
For each instance of an RGG, we pick 100 nodes uniformly
at random from the unit square. If the Euclidean distance
between two nodes is less than or equal to 0.1, we add an edge
between them [see Fig. 4(a)]. Our second type of synthetic
network is a square lattice with 100 nodes. We arrange the
100 nodes in a 10 × 10 grid on the unit square, and we then
connect the nodes along the grid lines [see Fig. 4(b)]. Our third
type of synthetic network is a Watts–Strogatz (WS) small-
world network [63,64]. We begin with a ring of 100 nodes, and
we then connect each node to its k = 2 nearest neighbors on
each side. We then rewire each edge uniformly at random with
a probability of p = 0.1 using the implementation of the WS
model in NETWORKX [65]. In this version of the WS model,
one removes each rewired edge (u, v) before replacing it with
a new edge (u,w). We show an example of a WS graph in
Fig. 4(c).

033426-4



SPATIAL APPLICATIONS OF TOPOLOGICAL DATA … PHYSICAL REVIEW RESEARCH 2, 033426 (2020)

FIG. 4. An instance of each of our synthetic networks with
Watts threshold model (WTM) dynamics on it. The corresponding
persistence diagrams (PDs) are in Figs. 5, 6, and 7. We color the
nodes based on the time that they become infected. The three types
of synthetic networks are (a) a random geometric graph, (b) a square
lattice network, and (c) a Watts–Strogatz small-world network.

For each type of synthetic network, we consider 100 in-
stances, which we generate using NETWORKX. For the RGG
and WS networks, each instance is a different graph; the
square lattice network is deterministic. For all three types of
networks, each instance has a different initial set of infected
nodes. We show visualizations of each of these types of
networks (with WTM dynamics on it) in Fig. 4.

Our adjacency construction for the WTM on a network
begins by selecting the initially infected nodes and the edges
between them to create an infection network. As an infection
spreads, we add more nodes and edges to the infection net-
work until eventually we have added all nodes and edges to
it. (In the last filtration step, we add any remaining uninfected
nodes and their associated edges.)

We show the results of our PH computations using persis-
tence diagrams (PDs). By examining the PHs of the RGGs
(see Fig. 5), we see for our parameter values that an infection
network tends to have several connected components, result-
ing in a large number of features in H0. However, because of
the spreading behavior of the WTM, new nodes can become
infected only via their infected neighbors. Features in H0

record connected components of a graph, so newly infected
nodes join existing connected components. Therefore, such
features can only be born at time 0 or in the last step, which
is when we add all remaining uninfected nodes to our filtered
simplicial complex. By contrast, features in H1 are relatively
rare, as most cycles that occur in an RGG are filled because of
the uniform probability distribution of the node locations.

For a square lattice network (see Fig. 6 for a PD of an
instance of the WTM on such a network), we first note that
there is only a single infinite-length feature in H0, as the final
infection network necessarily consists of a single connected
component. Consequently, H0 consists of a set of features that
are born at time 0 and eventually merge (and therefore die),
resulting in a single infinite-length feature. Additionally, there
are a constant number (81, to be precise) of features in H1,
because when we construct a simplicial complex, every grid
cell of the lattice is a feature in H1 at the last filtration step.
(For this network and other planar networks, we use the word
“cell” to refer to the spaces that are surrounded by edges.)
However, these features can be born at a variety of times,

FIG. 5. The PD of an instance of the WTM on an RGG. We plot
each feature as a point on the PD, for which the horizontal coordinate
represents the birth time and the vertical coordinate represents the
death time. We plot features with infinite persistence (i.e., features
that do not die within the range of filtration parameters that we use
for our PH computation) on a horizontal line at the top of the PD.
We plot features in H0 (which indicates the connected components)
as pink circles, and we plot features in H1 (which indicates the one-
dimensional holes) as dark-blue squares.

as the filtration does not include every lattice cell until every
node of the graph has entered the filtration.

In Fig. 7, we see that a WS small-world network also
eventually has an infection network that consists of a single
connected component. However, the WS networks consis-
tently have more features in H1 than the RGG networks,
because the former’s (nongeometric) shortcut edges usually
result in splitting an existing cycle (and hence a feature in H1)
into two cycles.

We summarize our observations about the various synthetic
networks in Table I, in which we give the means and standard
deviations of the number of features during the temporal
evolution of the WTM on each type of synthetic graph. We
count the features that appear at any time (i.e., we count
the total number of features that are born) during the WTM
dynamics.

FIG. 6. The PD of an instance of the WTM on a square lattice
network.
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FIG. 7. The PD of an instance of the WTM on a WS network.

B. Street networks in cities

The field of urban analytics has grown rapidly in the last
several years [1,11,66], Increasingly powerful computational
tools have allowed researchers to characterize cities in terms
of their street networks [67], and a variety of approaches
from network analysis have been applied to the study of
city street networks [8,68–73]. In the present subsection, we
use city street networks as base manifolds in our level-set
construction, and we thereby characterize cities based on
their PHs. We use these PHs to compare morphologies both
within a single city and across a variety of cities. We obtain
each of our city street networks with the software package
OSMNX [74] using latitude–longitude coordinates and a 1 km
× 1 km square that is centered at specified coordinates. In
each example, we indicate how we choose these coordinates.

The first filtration step of a filtered simplicial complex that
results from our PH construction consists only of the streets
in a network. As we increase the filtration time, we slowly
add city blocks to the complex, and the topology changes as
those blocks are filled in. More regular city blocks are more
likely to be filled in without creating any new homological
features, and larger blocks take longer to be filled in. Our
construction is thereby able to capture information about the
size and regularity of city blocks. The existence of dead ends
tends to lead to the “pinching” of blocks into multiple ho-
mological features—as dead ends expand, they lengthen and
eventually meet with nearby streets, cutting through blocks in
the process—so our approach also yields information about
dead ends.

TABLE I. Means and standard deviations of the numbers of
features in H0 and H1 during the temporal evolution of the WTM
across all instantiations of each type of synthetic graph that we
consider. We conduct 100 simulations for each network model, and
we count the features that appear at any time during the WTM
dynamics.

Mean (H0) STD (H0) Mean (H1) STD (H1)

RGG 23.16 3.1897 1.2 1
Square lattice 4.56 0.5886 81 0
WS 8.29 2.0214 26.95 5.2314

FIG. 8. Sampled street networks from (a) Pudong New Area and
(b) the Zhabei district in Shanghai. (We generated both maps using
OSMNX [74].)

1. Comparing different regions of the same city

We sample 169 points from the city of Shanghai using
a SHAPEFILE of Shanghai’s administrative-district boundaries
that we downloaded from ARCGIS [75]. From the SHAPEFILE,
we obtain a bounding box for each point. We sample uni-
formly within this bounding box, discarding points that do not
lie within the polygonal district geometry that is defined in
the SHAPEFILE. We stop sampling when we reach the desired
number of points. In total, we sample 10 points from each
administrative district, and we also include nine historical
landmarks with coordinates from Google Maps [76]. In Fig. 8,
we show maps and their associated PDs for two examples.

After computing PH (which we summarize as a PD) for
each map, we compute the bottleneck distance between each
pair of maps. The bottleneck distance is a distance function
that is defined on the space of PDs. It gives the shortest
distance d for which there exists a perfect matching between
the points of two PDs (along with all diagonal points), such
that any pair of matched points are at most a distance d
from each other, where we use the supremum norm in R2

to compute the distance between points. Once we have pair-
wise bottleneck distances between PDs, we perform average-
linkage hierarchical clustering into three clusters. (We chose
to have three clusters after looking at the dendrogram that
resulted from hierarchical clustering.) We can replace the
bottleneck distance with a different distance function (such as
a Wasserstein distance [77]) on PDs or cluster our PDs using
a different clustering algorithm. We do not discuss the impact
that such choices may have on our results, although we note
in passing that we performed k-medoids clustering [78] for
our case study of Shanghai and obtained qualitatively similar
results.

In Fig. 9, we show the sampled points (which we color ac-
cording to their cluster assignment). We observe that the three
clusters consist largely of historical areas (“City center”),
concession-era areas (“Transition areas”), and modern areas
(“New construction”). In Fig. 10, we show administrative
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FIG. 9. Sampled points in Shanghai. We color these points ac-
cording to their cluster assignment from average-linking hierarchical
clustering of areas of Shanghai into three clusters.

districts along with the years that they were developed. We
partition them based on the percentage of the sample points
that are in each cluster.

2. Comparing street networks from different cities

We continue our analysis of cities by characterizing and
comparing the structures of street networks of 306 cities
across the globe. We downloaded latitude and longitude co-
ordinates from SimpleMaps [79] and selected all cities with a
population of at least 1.5 million people. Given these latitude
and longitude coordinates, we use OSMNX [74] to obtain
street networks. We then compute PH for each city and cluster
their PDs using average-linkage hierarchical clustering with

FIG. 10. Partitioning of administrative districts in Shanghai into
our three clusters. (We order the districts roughly by their year of
development.) Most of the older districts have a larger percentage
of points that are assigned to the “City center” cluster, whereas the
points in the “Transition areas” cluster tend to occur in districts
that included development in the 19th and early 20th centuries.
The “New construction” cluster is the most common assignment for
administrative districts from the 1950s or later.

three clusters. We sometimes refer to a city in a given cluster
as a city of a certain “type.” Our results depend on the specific
latitude and longitude coordinates in our downloaded data
set. Accordingly, our results are influenced by the particular
location of a city’s coordinates, which are the standard ones
in SimpleMaps.

In the following paragraphs, we describe our clusters of
cities. We define “blocks” to be the cells of a planar street
network. Although our level-set construction for computing
PH is not designed explicitly to characterize blocks, we take
advantage of the fact that our level-set construction takes the
set of streets as its initial manifold. As the streets expand
outward according to the level-set equation (2), they fill in
the blocks. Larger blocks take longer to fill in, and blocks
fill in more evenly when they are closer to circular in shape.
Roughly, we characterize block sizes based on the death times
of features in H1: “small” sizes correspond to early death
times (specifically, less than 10), “medium” sizes correspond
to death times between 10 and 15, and “large” sizes corre-
spond to late death times (specifically, more than 15). We
also designate blocks as “regular” (when they are close to a
regular convex polygon) or “irregular” (for blocks that do not
resemble a rectangle or some other regular convex polygon).
If a block is very irregular, then as its streets expand (in the
level-set evolution), it is possible that narrow parts of the block
will shrink and close off, such that the block separates into
smaller blocks. We refer to this phenomenon as “pinching.”
Our three main clusters are dominated by (1) gridlike cities,
(2) cities with gridlike patches that are interspersed with
larger, nongridlike blocks, and (3) cities that have a large
number of nongridlike structures (specifically, dead ends or
large holes) that interrupt other structures. We use the term
“interrupted grid” to describe cities that either (1) are mostly
gridlike, but with some patches that are not gridlike, or (2)
consist of patches of disparate grids that are stitched together
(with other features between them).

Our first major cluster has 99 cities and is dominated by
cities with small, gridlike blocks. All regions of the world
have some cities of this type, but North America has the
largest percentage (relative to all of the cities that we sample
from that continent) of these gridlike cities and Europe has the
smallest percentage of them. The block sizes in this cluster
tend to be small or of medium size, resulting in filtrations
whose maximum filtration value tends to be small in com-
parison to cities in the other two clusters. In the PDs, we
also observe that the distributions of the death times of the
features in H1 tend to be close to uniform and tend to occur
over a small range of filtration steps. Such distributions occur
because these gridlike cities tend to have even distributions of
block sizes, even though they include some areas with slightly
smaller and/or slightly larger grid sizes. They do not have
large blocks, so they do not have features in H1 with late death
times. In Fig. 11, we show an example of a city in cluster one.

Our second major cluster has cities with patches of grids
that are interspersed with structures that are not gridlike. This
cluster, with 149 cities, is the largest of our three clusters.
The PDs in this cluster tend to have larger maximum death
times than the PDs of the cities in our first cluster. In the
PDs, gridlike blocks yield collections of features in H1 with
early death times; and the larger, nongridlike structures yield
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FIG. 11. Cities in our first major cluster have gridlike street
layouts. One example of a city in this cluster is Los Angeles. We
show its street network in the top row and its associated PD in the
bottom row.

features in H1 with late death times. The nongridlike areas
in these cities tend to have fairly regular shapes, resulting in
a relatively small number of features in H1 with late birth
times. Such late-birth-time features usually correspond to the
pinching of blocks, which can occur either via dead ends or
via shape irregularities. By examining the dendrogram from
our hierarchical clustering, we see that we can separate the
second cluster into two subclusters. We show examples of
cities in the two subclusters in Fig. 12. The first of these
subclusters consists mostly of cities that have large patches
of gridlike structure, with a small number of large blocks that
interrupt the grids. The PDs of the cities in this subcluster
tend to have a large number of features in H1 with early death
times, and they tend to have only a small number of isolated
features in H1 with late death times. The second subcluster of
our second major cluster consists mostly of cities with small
patches of grids that are mixed with large irregular blocks.
The PDs of the cities in this subcluster tend to have a larger
number of features in H1 with late death times than is the case
for the cities in the other subcluster of cluster two.

Our third major cluster, with 58 cities, consists of cities
with a large number of nongridlike structures. In particular,
many of these cities include a large number of dead ends,
rectangular blocks that are not arranged in a grid, or both. We
observe streets that do not continue through particular blocks

FIG. 12. Cities in our second major cluster have patches of
gridlike structure that are mixed with large blocks. Examples of cities
in this cluster are (a) Aleppo and (b) Barcelona. We show their street
networks in the top row and their associated PDs in the bottom row.
Aleppo illustrates the idea of having holes in a large grid and is an
example of a city in the first subcluster of cluster two. Barcelona,
which is in the second subcluster, is an example of a city with small
patches of gridlike structure.

(e.g., there is a street, it is obstructed, but then it continues
after the obstruction), which leads to a mixture of block sizes
even in areas of a city that tend to have regular blocks. We
refer to these situations as “obstructions.” In comparison to
the other two clusters, the PDs of the cities in this cluster
have a larger number of features in H1 with medium death
times (specifically, in the range 10–15), and many of these
features are close to the diagonal. This is common when large
blocks are pinched into several regions, as the smaller regions
are born at the pinching time, rather than near the beginning
of the filtration. Therefore, they do not survive long enough
to have a late death time. By examining the dendrogram
from our hierarchical clustering, we see two clear subclusters.
However, one of these subclusters consists of only two cities
(Beirut and Nanyang). The PDs of both of these cities are
dominated by two features in H1 with late death times, and
they also have notable features in H1 with medium death
times. In Fig. 13, we show examples of cities in cluster three.

We color our cities according to their major cluster and
show them on a world map in Fig. 14. In Fig. 15, we
show the breakdown of cities from each continent into the
various clusters. We calculate PH for only four major cities
in Oceania, so we cannot draw strong conclusions from the
cluster assignments of those cities. Among the other regions,
we observe that North America has the largest proportion of
cities with gridlike street layouts and the smallest proportion
of cities with nongridlike layouts. By contrast, Europe has
the smallest proportion of cities with gridlike street layouts.
This is consistent with the common perception that North
American cities are much more gridlike than European cities.
In all regions, we also observe that a large fraction of the cities
are interrupted grids. Additionally, we observe that South
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FIG. 13. Cities in our third major cluster include (a) Nanyang
and (b) London. We show their street networks in the top row
and their associated PDs in the bottom row. Cities in our third
major cluster have features like dead ends, irregular blocks, and
obstructions. This leads to a large range of block sizes and hence to
features in H1 that have medium death times. (Such features are rare
in the other two major clusters.) In this figure, we see that Nanyang
has several streets with obstructions and that London has dead ends
and a broad distribution of block sizes.

America, Africa, and Asia have similar distributions of city
types.

Interestingly, from the map in Fig. 14, South America,
Asia, and Africa appear to have areas that are dominated by
particular major clusters. We observe nongridlike cities in the
northern part of South America, whereas we see gridlike cities

along its east coast. In Africa, most of the nongridlike cities
occur along the western coastline. In Asia, most of the gridlike
and nongridlike cities occur in East Asia, whereas Southeast
Asia is dominated by interrupted grids. Across the map, there
appears to be a potential equatorial band of nongridlike cities.
We do not have an explanation for these patterns, but they are
fascinating and seem worthy of future research efforts.

3. Comparison of our classification of cities to that of Louf and
Barthelemy [81]

We compare our results to the city classification of Louf
and Barthelemy [81], who associated each city with a con-
ditional probability distribution that captures the areas and
shapes of its blocks. We choose their classification as a point
of comparison because they studied a wide range of cities and
(like us) codified cities from a block-based perspective. They
used the word “fingerprint” as a monicker for their block-
based representation of cities. In our method, we codify cities
according to their PHs, which we generate using the level-set
construction of Sec. II C. Both the approach of Ref. [81] and
our approach capture information that is based on city blocks,
although our PH representation differs substantially from the
fingerprints of Ref. [81].

Louf and Barthelemy clustered cities into four groups,
whereas we have chosen to cluster our cities into three groups.
In Ref. [81], European and North American cities largely
inhabit the same cluster (group three in Ref. [81]), but they
appear in distinct subclusters, demonstrating that there is a
substantive difference between cities in the two regions. Our
method finds that North America has the largest proportion of
cities with gridlike streets among all of the regions and that
Europe has the smallest proportion of such cities.

FIG. 14. Cities colored by their cluster assignments from average-linkage hierarchical clustering of cities into three clusters. (The
SHAPEFILE of the world map is from Ref. [80].)
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FIG. 15. Continents partitioned based on the percentage of cities
in our three major clusters.

In contrast to the above situation, Africa, Asia, and South
America have a fairly balanced composition of city types,
with a potential equatorial band of nongridlike cities. Louf
and Barthelemy observed several clusters (groups one, two,
and four in Ref. [81]) that occur predominantly in Africa,
Asia and Oceania (which they combined into one entity), and
South America. Notably, none of our clusters are as dominant
as group three (which was described as having heterogeneous
block sizes and shapes) of Ref. [81], although we do observe
that our cluster of cities with interrupted grids (such cities are
characterized in part by their heterogeneous block sizes) is
also our largest cluster.

Now that we have compared our results to those of
Ref. [81], we briefly compare and contrast the types of infor-
mation that the two methods capture. Recall that our level-set
construction for PH generates filtered simplicial complexes
that first consist of streets and then expand outward to absorb
the blocks between them. The PH of such a filtered simplicial
complex thereby gives a low-dimensional representation of
the original image of a city street network. Because irregularly
shaped blocks are absorbed into the surrounding streets at
a different rate than regular blocks, we capture information
about the regularity of each block. Louf and Barthelemy’s
method also uses information about the regularity of block
shape. See Eq. (3.2) in Ref. [81] for a precise mathematical
statement of how they measured the regularity of blocks. It is
related to a subset of so-called “compactness measures” [82]
(which are used in the study of gerrymandering [83,84]) that
compare the area of a shape to the area of the circle in which
the shape is inscribed.

Because the original image of a city street network includes
information about the spatial relationships between blocks,
the PH that results from our approach also encodes some of
this information. By contrast, Louf and Barthelemy’s finger-
prints do not encode information about the spatial relation-
ships of blocks to each other. Additionally, our method cap-
tures information from dead ends, which Louf and Barthelemy
discarded.

Overall, although both our approach and that of Ref. [81]
use a block-based representation to characterize cities, there
are subtle differences in the way that the two approaches
encode block information. Nevertheless, the commonality of
a block-based perspective results in some similarities. For
example, the clusters that result from the two approaches seem
to be based heavily on block size and regularity. However, our

FIG. 16. Dendrogram from clustering the snowflakes in Fig. 20.

approach appears to prioritize spatial relationships between
different clusters of blocks (specifically, whether blocks are
arranged in a grid); such information is not captured in the
approach of Ref. [81]. Consequently, the two approaches
capture different city morphologies, and we expect them to be
useful as complementary techniques for studying structures in
spatial complex systems.

C. Snowflakes

As a second application that uses empirical data, we
consider snowflake crystals [85]. We start with 12 different
images (from [85]) of snowflakes with different crystalline
structures. (See Fig. 20 in the appendix.) Using the GNU Im-
age Manipulation Program [86], we threshold these grayscale
images (using a thresholding setting of 205) to create black-
and-white images. From the black-and-white images, we
compute level-set complexes and PHs, and we then perform
average-linkage hierarchical clustering on the PDs to produce
the dendrogram in Fig. 16.

The images of snowflakes consist of edges (the black lines
in our images) and cells (the white spaces that are bounded
by the edges). The edges of a snowflake intersect at nodes
to form a network. We refer to the outermost extremes that
extend from the center of a snowflake as its “points.” The
12 snowflakes have fairly regular crystalline structures, so our
computation of PH predominantly records information about
the distribution of cell sizes in a snowflake. The inherent
hexagonal nature of snowflakes and the regularity of their
crystalline structures largely overwhelms our ability to use
PH to glean information about their spatial relationships and
irregularities. Constructing a simplicial complex that is better
suited to capturing information about images with a large
number of regular structures may yield better results.

Examining the clusters (see Fig. 16) reveals that snowflake
A and snowflake B each reside in their own cluster and that
the remaining snowflakes split into two clusters. Snowflake
A’s PD [see Fig. 17(a)] is dominated by a feature in H1 with an
early birth and a late death. (See the blue square in the top-left
corner of the diagram.) This arises from the large feature that
is formed by the bold ring near the center of the snowflake.
None of the other snowflakes have a bold central ring. More
generally, we observe few features in the PD of snowflake
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FIG. 17. Snowflakes can have a variety of crystalline structures, as we illustrate with (a) snowflake A, (b) snowflake B, and (c) snowflake
D. We show the snowflake structures in the top row and their associated PDs in the bottom row. We show the structures of our full set of
snowflakes in Fig. 20. (The images in the top row are from Ref. [85].)

A. By contrast, snowflake B’s features are largely close to
the diagonal [see Fig. 17(b)] because the initial manifold of
the snowflake does not have large holes. Notably, we do not
observe any points in the top-left region of its PD. The cell
sizes in snowflake B are smaller than those in most of the other
snowflakes, and even its central ring structure includes a large
number of small holes. The remaining snowflakes either have
more large holes than snowflake B, or they do not have a bold
central ring like the one in snowflake A. We also note that the

FIG. 18. Classification of webs that were spun by spiders under
the influence of various psychotropic substances.

PD of snowflake B is much closer than that of snowflake A to
those of the other snowflakes.

D. Spiderwebs

Our final application is to the topology of spiderwebs.
In 1948, Peter Witt began research on the effects of drugs
on spiders to test whether garden spiders would shift their
web-building hours if drugs were administered to them. Witt
found that drugs affect the sizes and shapes of the webs that
are produced by spiders [87]. He also found that higher doses
of most drugs (e.g., 100 μg per spider, as opposed to 10 μg
per spider) tend to lead to larger changes in the shapes of
webs, including yielding more irregular webs. Witt eventu-
ally published more than 100 papers and several books on
spiderwebs and the behavior of spiders. For more information
on his experiments with psychotropic substances and spiders,
see his 1971 review article [88]. In a 1995 technical briefing
[89], NASA (which was inspired by Witt’s research) proposed
that spiders that are exposed to more toxic substances produce
webs that are more deformed (in comparison to a web that
is spun by a drug-free spider) than spiders that are exposed
to less toxic substances. Additionally, using techniques from
statistical crystallography, they concluded that spiders fail to
complete more sides of their webs when they are under the
influence of more toxic substances.

In our case study of PH in spiderwebs, we use five images
from the NASA technical briefing [89] and two images from
Witt [88] of webs that were spun by spiders under the influ-
ence of a variety of psychotropic substances, threshold these
grayscale images to turn them into black-and-white images
(using a thresholding setting of 205 in the GNU Image Manip-
ulation Program), apply our level-set construction to compute
PH, and perform average-linkage hierarchical clustering to
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FIG. 19. Webs that were spun by a drug-free spider and spiders that were under the influence of various psychotropic substances, with
the associated PD displayed beneath each web. We compare the webs of (a) a drug-free spider with webs that were spun by spiders under
the influence of (b) chloral hydrate, (c) marijuana, (d) speed, (e) caffeine, (f) peyote, and (g) LSD. [The images for panels (a)–(e) are from
Ref. [89], and the images for panels (f) and (g) are from Ref. [88].]

yield the dendrogram in Fig. 18. We show the images of the
spiderwebs and their associated PDs in Fig. 19.

Our classification places the drug-free spider into its own
cluster. The spiderweb of the drug-free spider is character-
ized by a clear central hole, threads that radiate outward at
approximately even intervals, and completed rings of threads
that surround the center. We place the webs that were spun
by spiders under the influence of marijuana, peyote, and
LSD into the same cluster. In these webs, there is a clearly
identifiable center, and most of the radial threads are evenly
spaced, straight, and radiate outward directly from the center.
However, for the webs in this cluster, rings of threads are
either difficult to see or are incomplete. The final cluster
consists of webs that were spun by spiders under the influence

of chloral hydrate, caffeine, and speed. In the caffeinated
spider’s web, one cannot even clearly identify a center [90].
One can locate a center in the webs of the spiders that were
under the influence of speed or chloral hydrate (a sedative that
is used in sleeping pills), but many of the radial threads do not
join the center and some of the radial threads are not straight.
Almost no complete rings of thread are visible in any of the
three webs in this cluster.

IV. CONCLUSIONS

It is important to exploit spatial information in the study
of spatial complex systems. By using methods for comput-
ing persistent homology that take spatial information into
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FIG. 20. The full set of 12 snowflake images that we examined in Sec. III C. We label these snowflakes using the panel labels from this
figure. We show snowflake A in panel (a), snowflake B in panel (b), and so on. (These images are from Ref. [85].)

account, we presented several applications of topological data
analysis to spatial networks. We showed that topological
methods are capable of characterizing network structures and
detecting structural differences in images of various spatial
systems. We also demonstrated, using both synthetic exam-
ples and networks from empirical data, that such methods
are able to provide insights into large-scale network struc-
tures that complement those from traditional techniques of
network analysis. As an extended case study, we examined
the morphology of street networks in cities, and we used
spatial topological data analysis to compare and contrast (1)
different regions of the same city and (2) different cities. We
hope that our examples help illustrate some ways in which
topological methods, especially ones that directly incorporate
spatial information in their formulation, can be useful for the
analysis of spatial complex systems.
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APPENDIX: ADDITIONAL SNOWFLAKE IMAGES

In Fig. 20, we show the images of all 12 snowflakes that
we examined.
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Synthetic networks. In Sec. III A of our paper, the image in Fig. 5 is not the one that we intended. We show the correct
image in Fig. 1 of this erratum. The image in Fig. 5 in the paper is an example that uses the same dynamical process and family
of networks, but it is for an instantiation of the process with ρ = 0.1. The correct version of Fig. 5 is from a simulation with
ρ = 0.05 and corresponds to the example that we showed in Fig. 4(a).

Additionally, in Fig. 4, the specific numerical values that are next to the color bar apply only to panel (c). The qualitative
meaning of the colors applies to all panels.

Finally, we clarify the following sentence about Watts–Strogatz (WS) networks: “In Fig. 7, we see that a WS small-world
network also eventually has an infection network that consists of a single connected component.” This sentence describes a true
feature of our simulation, but the words “we see” imply that one can necessarily see this in the plot without ambiguity, and that
is not the case.

Clarification of our procedure for clustering persistence diagrams (PDs). In our hierarchical clustering of PDs, we calculate
pairwise distances between PDs of H1 features only. This is the default choice in the software package GUDHI.

FIG. 1. The persistence diagram (PD) of an instance of the Watts threshold model on a random geometric graph. This figure corrects Fig. 5
of our paper.
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