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Adapting InfoMap to Absorbing Random Walks Using
Absorption-Scaled Graphs\ast 
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Abstract. InfoMap is a popular approach to detect densely connected ``communities"" of nodes in networks. To
detect such communities, InfoMap uses random walks and ideas from information theory. Motivated
by the dynamics of disease spread on networks, whose nodes can have heterogeneous disease-removal
rates, we adapt InfoMap to absorbing random walks. To do this, we use absorption-scaled graphs
(in which edge weights are scaled according to absorption rates) and Markov time sweeping. One
of our adaptations of InfoMap converges to the standard version of InfoMap in the limit in which
the node-absorption rates approach 0. We demonstrate that the community structure that one ob-
tains using our adaptations of InfoMap can differ markedly from the community structure that one
detects using methods that do not account for node-absorption rates. We also illustrate that the
community structure that is induced by heterogeneous absorption rates can have important impli-
cations for susceptible--infected--recovered (SIR) dynamics on ring-lattice networks. For example, in
some situations, the outbreak duration is maximized when a moderate number of nodes have large
node-absorption rates.
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1. Introduction. Random walks are one of the most fundamental dynamical processes,
and many studies have used random walks on networks (i.e., graphs) to gain insights into
network structure and how it affects dynamical processes [25]. Much research has focused on
standard random walks, in which the distribution of the occupation probabilities of a network's
nodes converges to a stationary distribution with all positive entries in the limit of infinitely
long walks. It is important to understand the relationship between network structure and
different types of random walks. In the present paper, we consider absorbing random walks,
in which the probability to reach an ``absorbing state"" converges to 1 as the length of a walk
becomes infinite. We examine dynamical processes that involve absorbing random walks, for
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which there is a nonzero rate (the so-called ``absorption rate"") of transitioning to an absorbing
state from each node of a graph.

Absorbing random walks have been used to develop centrality measures [14], other methods
to rank the nodes of a network [46], transduction algorithms (which one can use to infer
the labels of the nodes of a graph from the labels of a subset of the nodes) [7], and more.
For example, Jaydeep et al. [7] proposed a transduction algorithm that uses the number of
visits before absorption of an absorbing random walk as a measure of affinity between the
nodes of a graph. Absorbing random walks also arise naturally in many modeling contexts,
including population dynamics [11], the spread of infectious diseases on networks [21], and the
propagation of content in online social networks [3]. In the setting of population dynamics,
consider a collection of habitat patches that are connected through some mobility network.
In this context, a random walk corresponds to an individual moving between patches and
absorption corresponds to death [1, 10, 11]. Similar situations occur in contagion processes,
where one can model the transfer of a pathogen between sites as a random walk and pathogen
clearance (e.g., recovery from infection) as absorption. This interpretation of pathogen transfer
underlies the next-generation-matrix approach [44] to calculate the basic reproduction number
\scrR 0, which is a staple quantity of mathematical epidemiology that indicates the expected
number of secondary infections that arise when a single infected individual enters a population
of susceptible individuals [5].

In the present paper, we examine absorbing random walks on graphs in which different
nodes can have different absorption rates, inducing an ``effective"" network structure that is
reflected only partially by the edge weights of a network. Many notions of network community
structure arise from the analysis of random walks [12, 25], and we expect different types of
random walks to yield different community structures [17, 18]. A ``community"" in a network
is a tightly knit set of nodes that is connected sparsely to other tightly knit sets of nodes
[12, 33]. Communities are a common feature of many real-world networks, and community
structure influences dynamical processes such as the spread of infectious diseases [42] and
online content [15, 45]. For example, community structure can affect the size and duration of
a disease outbreak [38]. There is intense interest in understanding how community structure
and node characteristics combine to influence contagions on networks [24, 34, 37].

We develop community-detection algorithms that account for node-absorption rates. We
adapt the widely used community-detection algorithm InfoMap [35, 36, 41] to absorbing ran-
dom walks and thereby account for heterogeneous node-absorption rates in the detected com-
munities. In our adaptations, we apply InfoMap to absorption-scaled graphs, which account
for absorption by scaling the edge weights of a network [16]. These absorption-scaled graphs
are related to their associated absorbing random walks by a generalized inverse (the so-called
``absorption inverse"") and a fundamental matrix [16]. We use absorption inverses and results
from [16] to study the absorption-scaled graphs that are associated with our adaptations of
InfoMap.

Community structure can greatly influence disease dynamics on networks [26, 30]. Salath\'e
and Jones [38] illustrated that changes in community structure are correlated with changes
in disease quantities for susceptible--infected--recovered (SIR) dynamics on a network. One
of their findings is that outbreak duration can achieve a maximum at moderate modularity
values. Inspired by Salath\'e and Jones [38], we use our adaptations of InfoMap to study
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ADAPTING INFOMAP TO ABSORBING RANDOM WALKS 2559

an example contagion process that illustrates how absorption in disease dynamics affects
community structure, which in turn affects disease spread. We investigate the association
between disease quantities, such as the final outbreak size and outbreak duration, and changes
in effective community structure that are induced by node-absorption rates.

Our paper proceeds as follows. In section 2, we present the original InfoMap algorithm
and the Markov time-sweeping technique that we use in our adaptations of InfoMap. In
section 3, we apply InfoMap to absorption-scaled graphs. In section 4, we introduce a
map function L(a) for absorbing random walks. We relate this new map function to our
adaptations of InfoMap. In section 5, we discuss toy examples that illustrate how hetero-
geneous node-absorption rates can shape the communities that are detected by our adap-
tations of InfoMap. In section 6, we examine effective community structure and SIR dis-
ease dynamics on a synthetic network. In section 7, we summarize and discuss our key
conclusions. In Appendix A, we present the proofs of three key propositions from sec-
tion 4. Our code is available at https://gitlab.com/esteban vargas bernal/extending-infomap-
to-absorbing-random-walks.

2. Background on InfoMap. We now present background material on InfoMap and an
adaptation of it to continuous-time Markov chains using Markov time sweeping [39]. We
summarize our notation in Table 1.

2.1. The map function and the standard InfoMap algorithm. In this subsection, we
define an objective function, which is called the ``map function,"" that the InfoMap algorithm
seeks to minimize [4, 35, 36, 41].

Definition 1 (map function). Let P = (pij)i,j\in \{ 1,...,n\} be a stochastic matrix, and let \pi =
(\pi 1, . . . , \pi n)

\mathrm{T} be a probability distribution. For a partition M = \{ M1, . . . ,Mm\} of the set of
nodes of a network, we define the probability of a transition out of community Mi with an initial
state from the distribution \pi by qi\curvearrowright :=

\sum 
j\in Mi,k /\in Mi

\pi jpkj and the probability of a transition
into community Mi with an initial state from the distribution \pi by qi\curvearrowleft :=

\sum 
k\in Mi,j /\in Mi

\pi jpkj.
The probability of a transition into a community that is different than the community of an
initial state from the distribution \pi is q\curvearrowleft :=

\sum 
i\in \{ 1,...,m\} qi\curvearrowleft . The optimal mean encoding

length that is associated with the probabilities of transitions into a different community is the
entropy1 \scrH (\scrQ ), where the distribution \scrQ is

\scrQ := (q1\curvearrowleft /q\curvearrowleft , . . . , qm\curvearrowleft /q\curvearrowleft )\mathrm{T} .

The optimal mean encoding length that is associated with the probabilities of transitions out
of community Mi is the entropy \scrH (\scrP i), where the probability distribution \scrP i is

\scrP i :=
\bigl( 
qi\curvearrowright /pi\circlearrowright , \pi k1

/pi\circlearrowright , . . . , \pi kni
/pi\circlearrowright 

\bigr) \mathrm{T}
,

1The entropy of a distribution with positive probabilities p1, . . . , pr is \scrH (\{ p1, . . . , pr\} ) := - \sum 
i pi log2(pi).
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Table 1
Summary of our notation.

noitpircseDnoisserpxElobmyS

G Directed, weighted graph

A Adjacency matrix of a directed, weighted graph

W Diagonal matrix of out-degrees

L W −A Unnormalized graph Laplacian matrix

P AW−1 Transition-probability matrix of the Markov chain
that is associated with A

M {M1, . . . ,Mm} Partition of a graph into communities

Mi {k1, . . . , kni} Community that consists of nodes k1, . . . , kni

π (π1, . . . , πn)T Probability distribution on the set of nodes for the
map function

qi j∈Mi,k/∈Mi
πjpkj Probability of a transition out of community Mi

qi k∈Mi,j /∈Mi
πjpkj Probability of a transition into community Mi

q i∈{1,...,m} qi Probability of a transition into a different community

pi qi + j∈Mi
πj

Normalization factor for the probability
distribution Pi

Q (q1 /q , . . . , qm /q )T
Probability distribution for the map function that
is associated with transitions into a different
community

Pi qi /pi , πk
1/pi , . . . , πk

ni /pi
T Probability distribution for the map function that

is associated with transitions out of community Mi

H H(P),H(Q noitubirtsidafoyportnE)

L(M,P,π) q H(Q) + m
i=1 p

i H(Pi) Map function

H
Diagonal matrix with nonnegative entries on its
diagonal

d Generic absorption-rate vector

δ Node-absorption-rate vector

Dδ diag{δ} Diagonal matrix of node-absorption rates

ds(Dδ,H) (ds)i = hiwi + δi
Scaled rate vector, which is given by
the diagonal of the matrix HW +Dδ

G̃(Dδ,H
detaicossasitahthpargdelacs-noitprosbA

)
with the pair (G,ds(Dδ,H))

L̃(Dδ,H) (W −A)(HW +Dδ)
−1 Unnormalized graph Laplacian matrix of an

absorption-scaled graph

u
Vector in KerL with nonnegative entries
that satisfy n

i=1 ui = 1

Pe(Dδ,H) e−tL̃(Dδ,H) Transition-probability matrix of a Markov
chain on an absorption-scaled graph

Pl(Dδ,H) I − tL̃(Dδ,H)
Markov chain on an absorption-scaled graph

Ã
A 0

δT 0
Adjacency matrix of a graph with an absorbing state

P̃ Transition-probability matrix that is induced by Ã

Q A(W +Dδ)
−1 Submatrix of the transition-probability matrix P̃

for transitions between nonabsorbing states

Linearized transition-probability matrix of a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ADAPTING INFOMAP TO ABSORBING RANDOM WALKS 2561

Table 1
(continued)

noitpircseDnoisserpxElobmyS

N (I −Q)−1 Fundamental matrix of a discrete-time
absorbing Markov chain

t NT yrtneehT
1

ti of t is the expected number of transitions
before absorption when the initial state is i

N̂ ND−1

t

Normalized fundamental matrix of a discrete-time

absorbing Markov chain

Pδ Pl(Dδ, I, foesaclaicepS)1 Pl(Dδ,H) with H = I and t= 1

π
(a)
δ N̂π0

The quantity (π
(a)
δ )i is the probability that node i is

the last node before absorption if the initial distribution
is π0

L(a)(M,A, δ,π0) L( )M,Pδ, π
(a)
δ

Map function for a Markov chain with an absorbing
state

where Mi = \{ k1, . . . , kni
\} (with k1 < \cdot \cdot \cdot < kni

) and pi\circlearrowright := qi\curvearrowright +
\sum 

j\in Mi
\pi j is a normalization

factor. For the partition M , the map function that is associated with P and \pi is

L(M,P,\pi ) := q\curvearrowleft \scrH (\scrQ ) +

m\sum 
i=1

pi\circlearrowright \scrH (\scrP i) .(1)

Definition 2 (standard map function). Let P be a regular matrix (i.e., some positive integer
power of P has only positive entries), and let \pi be its corresponding stationary distribution.
We use the shorthand L(M,P ) to denote L(M,P,\pi ), and we refer to L(M,P ) as a standard
map function.

The standard map function (see [36]) at a partition of a node set is based on entropies
that are associated with codes that describe three types of transitions: (1) transitions into
a different community, (2) transitions that end in a given community, and (3) transitions
that start in a given community and then leave it. The quantity \scrH (\scrQ ) in (1) is the entropy
of a distribution \scrQ that is associated with transitions into a different community, and the
\scrH (\scrP i) terms in (1) are entropies of the distributions \scrP i that are associated with transitions
that either end in community Mi or start in Mi and then leave it. One can interpret these
entropies as optimal mean encoding lengths (see Definition 1) in the sense of Shannon's source-
coding theorem [6]. Shannon's source-coding theorem states the following: if X is a random
variable with finitely many states and p is a probability mass function with entropy \scrH (p),
then the mean length of a code that describes the states of X cannot be smaller than \scrH (p).
Additionally, as the size of the set of states of X becomes infinite, one can approach the lower
bound arbitrarily closely. Therefore, we refer to \scrH (p) as the ``optimal mean encoding length""
(see Theorem 6 in [40]), and we regard the map function as a weighted sum of optimal mean
encoding lengths for one-step transitions between and within communities.

Let A = (aij)i,j\in \{ 1,...,n\} be the adjacency matrix of a directed and weighted graph with
node set \{ 1, . . . , n\} . The adjacency-matrix element aij encodes the weight of the edge from
node j to node i, and aij = 0 implies that there is no edge from j to i. The map function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2562 E. VARGAS BERNAL, M. A. PORTER, AND J. H. TIEN

L(M) in the following definition corresponds to the case in which the Markov chain that is
induced by A is regular.2

Definition 3 (map function associated with an adjacency matrix A). Let A be an adjacency
matrix such that AW - 1 is regular, where W := diag\{ \omega 1, . . . , \omega n\} and \omega j :=

\sum 
i aij \not = 0 for

j \in \{ 1, . . . , n\} is the (weighted) out-degree of node j. The map function L(M) that is associated
with A is

L(M) :=L(M,AW - 1) .

The map function L(M) measures the strength of the community structure of a partition
M = \{ M1, . . . ,Mm\} of the set of nodes. Intuitively, if the term q\curvearrowleft \scrH (\scrQ ) in (1) is small, then
the connections between communities are sparse. If the terms pi\circlearrowright \scrH (\scrP i) are small, then there
are dense intracommunity connections [36, 39]. Therefore, we expect that minimizing L(M)
yields a partition with dense connections within communities and sparse connections between
communities. The standard InfoMap algorithm attempts to minimize L(M) using a greedy
approach [9] that is reminiscent of the Leiden algorithm [43].

2.2. Markov time sweeping. In this subsection, we present Markov time sweeping for
a version of the map function that includes a resolution parameter for community detection
[39]. This resolution parameter, which amounts to a ``Markov time"" (which we will explain
shortly), allows us to tune the sizes of the communities that we obtain using InfoMap.

The map function (1) is associated with one-step transitions of a random walk. Schaub
et al. [39] incorporated Markov time sweeping3 into InfoMap to tune the time scales of tran-
sitions by encoding transitions with steps of any length t > 0. We think of the Markov chain
that is determined by TJ := AW - 1 (with AW - 1 specified as in Definition 3) as having time
steps of size 1. Markov time sweeping uses the transition-probability matrix of a continuous-
time Markov chain in which the time step is t instead of 1. We refer to the time t as a ``Markov
time."" Markov times t < 1 yield an encoding by the map function at a smaller transition time
than t= 1. This, in turn, tends to yield small communities. By contrast, Markov times t > 1
yield an encoding at a larger transition time than t = 1, so the encoding is able to capture
transitions of a random walker that take more than one step. One thereby tends to obtain
large communities. See [20] for further discussion of encodings and Markov times.

As discussed in [20], for t < 1, one can also consider the linearization

e - t(I - TJ) \approx I  - t(I  - TJ) = (1 - t)I + tTJ(2)

as an input of InfoMap (where I denotes the identity matrix). The matrix (1  - t)I + tTJ

has diagonal elements that are all equal to 1 - t if we assume that aii = 0 for i \in \{ 1, . . . , n\} .
These diagonal elements correspond to self-edges with weight 1 - t. If we use the standard
map function with the transition-probability matrix (1 - t)I + tTJ instead of TJ , we recover
the map function in Definition 3 by setting t= 1.

3. Markov time sweeping and adaptations of InfoMap to absorbing random walks. In
this section, we present the adaptations of InfoMap that we use to explore how absorption

2A Markov chain is regular if its associated transition-probability matrix is regular.
3Markov time sweeping had been used previously in contexts other than InfoMap [8, 23].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ADAPTING INFOMAP TO ABSORBING RANDOM WALKS 2563

Figure 1. Consider an absorbing random walk on the depicted four-node network, and suppose that the
absorption rate of node 2 is much larger than the absorption rates of the other nodes. Detecting communities
via modularity maximization or the standard InfoMap algorithm produces a partition of the network into a
single community that includes all nodes. However, the flow of an absorbing random walk is trapped in either
the set \{ 1\} (in dark blue) or the set \{ 3,4\} (in light blue). Consequently, a partition that separates node 1 from
nodes 3 and 4 better captures the dynamics of an absorbing random walk than a partition of the network into a
single community.

in a dynamical process can affect community structure. To illustrate the implicit impact of
absorption on community structure, consider an absorbing random walk on an undirected and
unweighted line network with four nodes (see Figure 1). We represent an absorbing state of
an absorbing random walk on a graph as a node4 with out-degree 0. For a given node, we
refer to the sum of the weights of the edges between the node and the absorbing states as the
``absorption rate"" of the node. Suppose that the absorption rate of node 2 in Figure 1 is much
larger than the absorption rates of the other nodes. The large absorption rate of node 2 is a
barrier to the absorbing random walk, as transitions from nodes in the set \{ 3,4\} to nodes in
the set \{ 1\} (and vice versa) are unlikely. The local dynamics (specifically, the absorption at
the nodes) induces a partition of the node set that we can interpret as an effective community
structure of the network. This type of effective community structure can be rather different
from the community structure that one detects based on network structure alone.

We now introduce adaptations of InfoMap that account for the absorption rates of the
nodes of a network. Our approach uses absorption-scaled graphs (see Figure 2), which arise
naturally in the context of absorbing random walks [16].

Definition 4 (absorption-scaled graph). Let G be a directed and weighted graph with ad-
jacency matrix A = (aij)i,j\in \{ 1,...,n\} , where aij encodes the weight of the edge from node j to

node i. Let \vec{}d = (d1, . . . , dn)
\mathrm{T} be a vector (which we call an ``absorption-rate vector"") with

positive entries that we call the ``absorption rates."" We define the absorption-scaled graph
that is associated with the pair (G, \vec{}d) as the graph \~G with adjacency matrix \~A := AD - 1,
where D := diag\{ d1, . . . , dn\} .

We now define some important mathematical objects that we use in our adaptations of
InfoMap.

Definition 5 (node-absorption rates). Let A = (aij)i,j\in \{ 1,...,n\} be the adjacency matrix of

a graph G. Let \vec{}\delta = (\delta 1, . . . , \delta n)
\mathrm{T} be a vector with positive entries, where \delta i is the node-

4Throughout our paper, our figures do not show the nodes for the absorbing states in absorbing random
walks. Our figures only show nodes that are associated with transient (i.e., nonabsorbing) states of the corre-
sponding absorbing random walks.
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2564 E. VARGAS BERNAL, M. A. PORTER, AND J. H. TIEN

(a) (G, �d) (b) G̃

Figure 2. An absorption-scaled graph. (a) A graph G with absorption-rate vector \vec{}d. The pink node has a
large absorption rate. (b) The associated absorption-scaled graph \~G, where the arrow length is proportional to
the corresponding edge weight.

absorption rate of node i and is specified independently from the matrix A. We refer to the
vector \vec{}\delta as the node-absorption-rate vector. Let D\delta := diag\{ \vec{}\delta \} and consider a diagonal matrix
H =diag\{ h1, . . . , hn\} , where hi \geq 0. The scaled rate vector \vec{}d\mathrm{s}(D\delta ,H) is given by the diagonal
of HW +D\delta .

The node-absorption-rate vector \vec{}\delta in Definition 5 does not depend on the adjacency matrix
A, whereas the scaled rate vector \vec{}d\mathrm{s}(D\delta ,H) depends on the out-degrees \omega i through H. In
particular, \vec{}\delta = \vec{}d\mathrm{s}(D\delta ,\bfzero ) when H = \bfzero (where \bfzero denotes the matrix of zeros). We use the
notation \vec{}d for a generic absorption-rate vector; it is not necessarily a node-absorption-rate
vector or a scaled rate vector.

Our adaptations of InfoMap use Markov time sweeping (see section 2.2) on absorption-
scaled graphs. Consider a directed and weighted graph G with adjacency matrix A and
node-absorption-rate vector \vec{}\delta = (\delta 1, . . . , \delta n)

\mathrm{T}. We consider a family of absorption-scaled
graphs with absorption-rate vectors that are equal to scaled rate vectors \vec{}d\mathrm{s}(D\delta ,H), where
H =diag\{ h1, . . . , hn\} and hi \geq 0.

Let \~G(D\delta ,H) denote the absorption-scaled graph that is associated with (G, \vec{}d\mathrm{s}(D\delta ,H)).
The unnormalized graph Laplacian matrix of \~G(D\delta ,H) is

\~\scrL (D\delta ,H) := (W  - A)(HW +D\delta )
 - 1 .(3)

For any Markov time t > 0, the transition-probability matrix that is associated with the
infinitesimal generator  - \~\scrL (D\delta ,H) is

Pe(D\delta ,H, t) := e - t \~\scrL (D\delta ,H) .(4)

For a Markov time t, the linearization of Pe(D\delta ,H, t) is

Pl(D\delta ,H, t) := I  - t \~\scrL (D\delta ,H) =
\bigl( 
I  - tW (HW +D\delta )

 - 1
\bigr) 
+ tA(HW +D\delta )

 - 1 .(5)

For this linearization, we require that 0< t< 1/maxi\{ \omega i/(hi\omega i+\delta i)\} to ensure that Pl(D\delta ,H, t)
is a transition-probability matrix.

We use the matrix H in Definition 5 because this matrix allows us to tune the relative
importances of the edge weights and the node-absorption rates on the communities that we
detect using our adaptations of InfoMap. In Algorithms 1a and 1b, we summarize our adapta-
tions of InfoMap to absorbing random walks. In these adaptations of InfoMap, we introduce a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

0/
24

 to
 1

69
.2

32
.2

42
.1

59
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



ADAPTING INFOMAP TO ABSORBING RANDOM WALKS 2565

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfone \bfa . InfoMap for absorbing random walks with a linear input.

Input: An adjacency matrix A= (aij)i,j\in \{ 1,...,n\} of a directed and weighted graph, a node-

absorption-rate vector \vec{}\delta = (\delta 1, . . . , \delta n)
\mathrm{T} with strictly positive entries, and a diagonal

matrix H with nonnegative entries.

Output: A partition M of the set of nodes that minimizes L(M,Pl(D\delta ,H, t)) for a Markov
time t.

1: Construct the unnormalized graph Laplacian matrix \~\scrL (D\delta ,H) = (W  - A)(HW +D\delta )
 - 1

for the absorption-scaled graph \~G(D\delta ,H).

2: Choose a Markov time such that

0< t< 1/max
i

\{ \omega i/(hi\omega i + \delta i)\} .(6)

3: Apply the standard InfoMap algorithm to minimize L (M,Pl(D\delta ,H, t)).

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfone \bfb . InfoMap for absorbing random walks with an exponential input.

Input: An adjacency matrix A= (aij)i,j\in \{ 1,...,n\} of a directed and weighted graph, a node-

absorption-rate vector \vec{}\delta = (\delta 1, . . . , \delta n)
\mathrm{T} with positive entries, and a diagonal matrix H

with nonnegative entries.

Output: A partition M of the set of nodes that minimizes L(M,Pe(D\delta ,H, t)) for a Markov
time t.

1: Construct the unnormalized graph Laplacian matrix \~\scrL (D\delta ,H) = (W  - A)(HW +D\delta )
 - 1

for the absorption-scaled graph \~G(D\delta ,H).

2: Choose any Markov time t > 0.

3: Apply the standard InfoMap algorithm to minimize L (M,Pe(D\delta ,H, t)).

family of associated absorption-scaled graphs and then apply Markov time sweeping to these
absorption-scaled graphs. To illustrate how the node-absorption rates impact the communi-
ties that we detect, consider the matrix Pl in Algorithm 1a. In the expression for Pl(D\delta ,H, t)
in (5), the term

I  - tW (HW +D\delta )
 - 1 =diag

\biggl\{ 
1 - t\omega i

hi\omega i + \delta i

\biggr\} 
creates self-edges that are positively correlated with the node-absorption rates \delta i. This correla-
tion reflects the idea that a random walk gets stuck longer in nodes with larger node-absorption
rates.

If we let D\delta = \delta \ast I and \omega i \geq 1 (with i \in \{ 1, . . . , n\} ) and set hi = \delta \ast (\omega i  - 1)/\omega i and t = \delta \ast ,
then Pl(\delta \ast I,H, \delta \ast ) =AW - 1. We thereby recover the input of the standard InfoMap algorithm
when all of the absorption rates are the same. By letting H = hI and t= h, we obtain
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2566 E. VARGAS BERNAL, M. A. PORTER, AND J. H. TIEN

lim
\| \vec{}\delta \| \rightarrow 0

Pl(D\delta , hI,h) = lim
\| \vec{}\delta \| \rightarrow 0

(I  - hW (hW +D\delta )
 - 1) + hA(hW +D\delta )

 - 1 =AW - 1 ,(7)

which again recovers the input of the standard InfoMap algorithm.

4. A map function \bfitL (\bfita ) for Markov chains with an absorbing state.

4.1. A map function for an absorbing random walk. It is natural to ask if one can
interpret map functions that are associated with our adaptations of InfoMap in terms of
corresponding Markov chains with an absorbing state. We take a step towards answering this
question by defining a map function L(a) for Markov chains with an absorbing state. The
main results of this subsection are that (1) the map function L(a) is the map function that is
associated with our adaptation of InfoMap in Algorithm 1a with H = I and that (2) the map
function L(a) converges to the standard map function as the absorption rates approach 0.

4.1.1. Construction of a map function for an absorbing random walk. We assume that
the Markov chain that is associated with the adjacency matrix A is regular, and we add
an absorbing state (i.e., a new node with out-degree 0) and node-absorption rates \delta 1, . . . , \delta n,
which are the transition rates from states that are associated with A to the absorbing state.
The adjacency matrix for the absorbing Markov chain is

\~A=

\biggl( 
A \vec{}0
\vec{}\delta \mathrm{T} 0

\biggr) 
,

where \vec{}\delta = (\delta 1, . . . , \delta n)
\mathrm{T}. From \~A, we obtain the transition-probability matrix

\~P =

\biggl( 
Q \vec{}0
\vec{}r\mathrm{T} 1

\biggr) 
,(8)

where the transition probabilities to absorption are the entries of \vec{}r= (\delta 1/(\omega 1+\delta 1), . . . , \delta n/(\omega n+
\delta n))

\mathrm{T}, with \omega j =
\sum 

i aij (for j \in \{ 1, . . . , n\} ), and the transition probabilities between nonab-

sorbing states are the entries of Q=A(W +D\delta )
 - 1, where D\delta =diag\{ \vec{}\delta \} and W =diag\{ \omega 1, . . . ,

\omega n\} . The Markov chain with transition-probability matrix \~P is the absorbing Markov chain
that is associated with A and \delta 1, . . . , \delta n.

By Definition 1, we know that if P is a regular transition-probability matrix and \pi is a
probability mass function, then L(M,P,\pi ) depends only on M , P , and \pi . We write L(M,P,\pi )
as L(M,P ) if \pi is the unique stationary distribution of P . The quantity L(M,P,\pi ) is a
weighted sum of optimal mean encoding lengths for one-step transitions (with probabilities in
P and initial distribution \pi ) between and within communities. We define a map function L(a)

for the absorbing random walk that is associated with (8) by L(M,P\delta , \pi 
(a)
\delta ) for an appropriate

distribution \pi 
(a)
\delta (see section 4.1.1.1) and an appropriate transition-probability matrix P\delta (see

section 4.1.1.2).

4.1.1.1. The distribution \pi 
(a)
\delta . We define a distribution \pi 

(a)
\delta that has the desirable prop-

erty of recovering the stationary distribution \pi of a Markov chain without absorption when
the absorption rates approach 0. (This Markov chain has the transition-probability matrix
AW - 1.) That is,

lim
\| \vec{}\delta \| \rightarrow 0

\pi 
(a)
\delta = \pi .(9)
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ADAPTING INFOMAP TO ABSORBING RANDOM WALKS 2567

Let N = (I  - Q) - 1 =
\sum \infty 

k=0Q
k. The entry nij of N gives the expected number of visits to

node i that start from node j. The matrix N is the fundamental matrix of the corresponding
absorbing Markov chain [19]. In particular, N is the fundamental matrix of the absorbing
Markov chain with transition-probability matrix \~P . Consider the normalized fundamental
matrix

\^N =ND - 1
\vec{}t

,(10)

where \vec{}t = N \mathrm{T}\vec{}1 = (t1, . . . , tn)
\mathrm{T}, with \vec{}1 := (1, . . . ,1)\mathrm{T}, is the vector whose entries give the

expected numbers of steps before absorption starting from each nonabsorbing state. For each
node pair (i, j), the entry nij/tj of \^N gives the probability that node i is the last node before
absorption if we start at node j. This probability depends on the node-absorption rates.
Given an initial distribution \pi 0, we obtain the distribution

\pi 
(a)
\delta = \^N\pi 0 .(11)

The following proposition states that (9) holds.

Proposition 1. Suppose that the Markov chain with transition-probability matrix AW - 1 is
regular. Let \vec{}\delta be a node-absorption-rate vector in which all entries are strictly positive, and
let D\delta := diag\{ \vec{}\delta \} . Let N = (I  - A(W +D\delta )

 - 1) - 1 be the fundamental matrix of the absorbing
Markov chain that is associated with A and \delta 1, . . . , \delta n. Additionally, let D\vec{}t be the diagonal
matrix with the column sums of N in its diagonal. Finally, let \pi be the stationary-distribution
vector that is associated with AW - 1.

It then follows that

lim
\| \vec{}\delta \| \rightarrow 0

ND\vec{}t - 1 = \pi \vec{}1\mathrm{T} .

Proof. Consider the vector 1-norm \| \vec{}b\| 1 =
\sum 

i | bi| and its induced matrix norm \| B\| 1 =
maxj

\sum 
i | bij | . Fix \epsilon > 0. Because limn\rightarrow \infty (AW - 1)n = \pi \vec{}1\mathrm{T}, it follows that there is a positive

integer N1 such that

\| (AW - 1)n  - \pi \vec{}1\mathrm{T}\| 1 < \epsilon for n\geq N1 .(12)

In particular,

(AW - 1)N1 = \pi \vec{}1\mathrm{T} +\Lambda ,(13)

where \| \Lambda \| 1 < \epsilon . Let Q := A(W +D\delta )
 - 1. Because \| Q\ell \| 1 \leq \| Q\| \ell 1 \leq \| AW - 1\| \ell 1 = 1 (where \ell is

a nonnegative integer) and ti \rightarrow \infty as \| \vec{}\delta \| 1 \rightarrow 0, it follows that

lim
\| \vec{}\delta \| 

1
\rightarrow 0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
\ell <N1

Q\ell D - 1
\vec{}t

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1

= 0 .(14)

Additionally, lim\| \vec{}\delta \| 1\rightarrow 0
QN1 = (AW - 1)N1 . Therefore, there is a constant \eta 0 > 0 such that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 

\ell <N1

Q\ell D - 1
\vec{}t

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1

< \epsilon and QN1 = (AW - 1)N1 +\Delta (15)
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2568 E. VARGAS BERNAL, M. A. PORTER, AND J. H. TIEN

whenever 0< \| \vec{}\delta \| 1 < \eta 0, where \| \Delta \| 1 < \epsilon . Let \Delta \prime := \Lambda +\Delta . Using (13) and (15), we obtain\sum 
\ell \geq N1

Q\ell D - 1
\vec{}t

=QN1

\sum 
\ell \geq 0

Q\ell D - 1
\vec{}t

=QN1ND - 1
\vec{}t

= (\pi \vec{}1\mathrm{T} +\Delta \prime )ND - 1
\vec{}t

= \pi \vec{}1\mathrm{T}ND - 1
\vec{}t

+\Delta \prime ND - 1
\vec{}t

= \pi \vec{}t\mathrm{T}D - 1
\vec{}t

+\Delta \prime ND - 1
\vec{}t

= \pi \vec{}1\mathrm{T} +\Delta \prime ND - 1
\vec{}t

,(16)

where \| \Delta \prime ND - 1
\vec{}t

\| 1 \leq \| \Delta \prime \| 1\| ND - 1
\vec{}t

\| 1 < 2\epsilon . From (15) and (16), it follows for 0 < \| \vec{}\delta \| 1 < \eta 0
that

\| ND - 1
\vec{}t

 - \pi \vec{}1\mathrm{T}\| 1 \leq \| 
\sum 
\ell <N1

Q\ell D - 1
\vec{}t

\| 1 + \| \Delta \prime ND - 1
\vec{}t

\| 1 < 3\epsilon .

4.1.1.2. The transition-probability matrix P\delta . Let P\delta denote the linearization (5) with H = I
and t= 1. That is,

P\delta := Pl(D\delta , I,1) = (I  - W (W +D\delta )
 - 1) +A(W +D\delta )

 - 1 =D\vec{}r +Q,(17)

where D\vec{}r =diag\{ \vec{}r\} with \vec{}r as in (8). Our choice of P\delta is motivated by the property

lim
\| \vec{}\delta \| \rightarrow 0

P\delta = P =AW - 1 .(18)

From (18), we recover the transition-probability matrix of the regular Markov chain that is
induced by A in the limit in which there is no absorption. The diagonal entries of P\delta correspond
to the one-step absorption probabilities \delta i/(\omega i + \delta i) in the absorbing Markov chain that is
associated with the transition-probability matrix \~P (see (8)). The following proposition states
that the times to self-transitions (i.e., transitions from nodes to themselves) of the Markov
chain that is associated with P\delta equal the times to absorption in the absorbing Markov chain
that is associated with \~P .

Proposition 2. Let \{ Xn\} n\in \BbbN be the Markov chain with transition-probability matrix P\delta =

Pl(D\delta , I,1) with entries p
(1)
ij (with i, j \in \{ 1, . . . , n\} ). Define the random variable

Tj :=min\{ n :Xn =Xn - 1 and X0 = j\} .(19)

Let \theta j = \BbbE (Tj) be the expected time to the first self-transition, and let \vec{}\theta = (\theta 1, . . . , \theta n)
\mathrm{T}. If

N = (I  - Q) - 1 is the fundamental matrix of the absorbing Markov chain that is associated
with A and \delta 1, . . . , \delta n, it follows that

\vec{}\theta \mathrm{T} =\vec{}1\mathrm{T}N .(20)
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ADAPTING INFOMAP TO ABSORBING RANDOM WALKS 2569

Proof. From the law of total expectation,

\theta j =
\sum 
i \not =j

(\BbbE (Ti) + 1)p
(1)
ij + p

(1)
jj =

\sum 
i \not =j

\theta ip
(1)
ij + 1 .(21)

Let (P\delta )\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g} denote the diagonal matrix with the same diagonal as P\delta . We write (21) as

\vec{}\theta \mathrm{T}[I  - (P\delta  - (P\delta )\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g})] =\vec{}1\mathrm{T} .(22)

Because P\delta =D\vec{}r +Q, it follows from (22) that Q= P\delta  - (P\delta )\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g} and \vec{}\theta \mathrm{T} =\vec{}1\mathrm{T}N .

We now define a map function for the absorbing random walk that is associated with A
and \delta 1, . . . , \delta n.

Definition 6 (map function for an absorbing random walk). Let A be the adjacency matrix
that is associated with an absorbing random walk, and let \vec{}\delta be the walk's node-absorption-rate
vector. Let M be a partition of the node set that is associated with A, and let \pi 0 be an initial
probability distribution. We define the map function L(a)(M,A,\vec{}\delta ,\pi 0) := L(M,P\delta , \^N\pi 0) with
P\delta in (17) and \^N in (10).

As an instructive example, we calculate the map function L(a) for all possible partitions
M of the three-node network with node set \{ 1,2,3\} and adjacency matrix

A=

\left(  0 1 1
0 0 0
1 1 0

\right)  .(23)

Intuitively, if the node-absorption rate of node 2 is larger than the node-absorption rates of
nodes 1 and 3, then node 2 is in a different community than nodes 1 and 3 in the effective
community structure. We want to check whether or not the partition with the minimum value
of L(a) captures this intuition.

Let \vec{}\delta = (\delta 1, \delta 2, \delta 3)
\mathrm{T} be a node-absorption-rate vector. We fix \delta 1 = \delta 3 = 0.1 and vary

\delta 2 in the interval [0.1,10]. In Figure 3, we show the values of L(a)(M,A,\vec{}\delta ,\pi 0) for all five
possible partitions M of the set \{ 1,2,3\} of nodes, where A is specified in (23) and \pi 0 is the
uniform distribution on \{ 1,2,3\} . We always attain the minimum value of L(a)(M,A,\vec{}\delta ,\pi 0)
for the partition \{ \{ 2\} ,\{ 1,3\} \} , so we obtain this partition if we select the optimal encoding
L(a)(M,A,\vec{}\delta ,\pi 0). Because \delta 2 > \delta 1 and \delta 2 > \delta 3, this result is consistent with the intuition that
\{ \{ 2\} ,\{ 1,3\} \} is the effective community structure.

4.1.2. Main results for the map function \bfitL (\bfita ). In this subsubsection, we present two
key results for the map function L(a).

Our first key result is that the standard map function L(M,P\delta ), where P\delta is defined in
(17), equals the map function L(a)(M,A,\vec{}\delta ,\pi 0) for an appropriate distribution \pi 0.

Proposition 3. Suppose that P\delta = Pl(D\delta , I,1) = (I  - W (W + D\delta )
 - 1) + A(W + D\delta )

 - 1 =

D\vec{}r +Q. Let \pi 
(na)
\delta be the stationary distribution of P\delta , and let \pi 0 :=D\vec{}tD\vec{}r\pi 

(na)
\delta = (\pi 

(na)
\delta ,i ti\delta i/

(\omega i + \delta i))i. We have that

L(M,P\delta ) =L(a)(M,A,\vec{}\delta ,\pi 0) .(24)
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Figure 3. The map function L(a)(M,A,\vec{}\delta ,\pi 0) for all five possible partitionsM of the three-node network with

adjacency matrix (23). The node-absorption-rate vector is \vec{}\delta = (\delta 1, \delta 2, \delta 3)
\mathrm{T}, with \delta 1 = \delta 3 = 0.1 and 0.1\leq \delta 2 \leq 10.

The initial probability distribution is \pi 0 = (1/3,1/3,1/3)\mathrm{T}.

Proof. Because \pi 
(na)
\delta is the stationary distribution of P\delta , it follows that (D\vec{}r +Q)\pi 

(na)
\delta =

\pi 
(na)
\delta , which implies that

\pi 
(na)
\delta = \^ND\vec{}tD\vec{}r\pi 

(na)
\delta = \^N\pi 0 .(25)

Because the entries of \pi 
(na)
\delta sum to 1 and the columns of \^N each sum to 1, we know that \pi 0

is a probability distribution. Therefore, for this choice of \pi 0, it follows that

L(M,P\delta ) =L(M,P\delta , \pi 
(na)
\delta ) =L(M,P\delta , \^N\pi 0) =L(a)(M,A,\vec{}\delta ,\pi 0) ,(26)

where L(M,P\delta ) is the standard map function with the input P\delta and L(a)(M,A,\vec{}\delta ,\pi 0) is the
map function in Definition 6.

Remark. The ``na"" in the superscript of \pi 
(na)
\delta stands for ``nonabsorbing."" The probabil-

ity distribution \pi 
(na)
\delta is the stationary distribution of the nonabsorbing Markov chain with

transition-probability matrix P\delta .

Our second key result in the present subsubsection is that

L(a)(M,A,\vec{}\delta ,\pi 0)\rightarrow L(M,P ) as \| \vec{}\delta \| \rightarrow 0(27)

for any \pi 0. This result follows from lim\| \vec{}\delta \| \rightarrow 0
\pi 
(a)
\delta = \pi (see Proposition 1) and lim\| \delta \| \rightarrow 0P\delta =

P = AW - 1. Therefore, the map function L(a)(M,A,\vec{}\delta ,\pi 0) that is associated with the ab-
sorbing random walk converges to the map function L(M,P ) that is associated with the
(nonabsorbing) Markov chain in the limit \| \vec{}\delta \| \rightarrow 0.

4.2. Relating \~\bfitG (\bfitD \bfitdelta , \bfitI ) to \~\bfitG (\bfitD \bfitdelta ,\bfzero ). Our adaptations of InfoMap to absorbing random
walks involve a family of absorption-scaled graphs \~G(D\delta ,H), where H is a scaling matrix that
controls the relative importances of edge weights and node-absorption rates to community
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ADAPTING INFOMAP TO ABSORBING RANDOM WALKS 2571

detection. The choice H = \bfzero corresponds to an absorption-scaled graph with an absorption-
rate vector whose entries are the node-absorption rates. As discussed in [16], the absorption-
scaled graph \~G(D\delta ,H) with H = \bfzero is related to the fundamental matrix of the continuous-
time absorbing random walk that is associated with A and \vec{}\delta . This relationship arises through
the absorption inverse, which is a particular generalized inverse of the unnormalized graph
Laplacian matrix. Our results in section 4.1 indicate that H = I is also a distinguished choice.

It is natural to ask how the absorption-scaled graphs \~G(D\delta ,\bfzero ) and \~G(D\delta , I) are related.
In this subsection, we find relationships between the Markov chains that are associated with
the graph Laplacian matrices \~\scrL (D\delta ,\bfzero ) and \~\scrL (D\delta , I) through their associated fundamental
matrices and absorption inverses. We describe these relationships, which are the main results
of this subsection, in Propositions 4, 8, and 9. These results also yield connections between
\~G(D\delta ,\bfzero ), \~G(D\delta , I), and the fundamental matrix (\scrL +D\delta )

 - 1 through Propositions 5 and 6.
We first look at the fundamental matrices of the discrete-time Markov chains that are

associated with \~\scrL (D\delta ,\bfzero ) and \~\scrL (D\delta , I). Definition 7 describes the fundamental matrix of a
regular Markov chain.

Definition 7 (fundamental matrix). Let P be a regular transition-probability matrix, and let
\vec{}p be its corresponding stationary distribution. The fundamental matrix Z of the Markov chain
that is associated with P is

Z = (I  - P + \vec{}p\vec{}1\mathrm{T}) - 1 .(28)

The entries of the matrix Z  - \vec{}p\vec{}1T approximate the differences between the expected
numbers of visits of the Markov chain that is associated with P and the expected numbers of
visits of the Markov chain that is associated with \vec{}p\vec{}1\mathrm{T}. See section 4.3 of [19].

The following proposition gives a relationship between the fundamental matrices of the
discrete-time Markov chains that are associated with the graph Laplacian matrices \~\scrL (D\delta ,\bfzero )
and \~\scrL (D\delta , I). We prove this proposition in Appendix A.

Proposition 4. Let P0 = AW - 1 be the transition-probability matrix of the discrete-time
Markov chain that is associated with \~\scrL (D\delta ,\bfzero ), and let P1 = (A + D\delta )(W + D\delta )

 - 1 be the
transition-probability matrix of the discrete-time Markov chain that is associated with \~\scrL (D\delta , I).
Let \pi and \pi \prime be the stationary distributions that are associated with P0 and P1, respectively.
Let Zi be the fundamental matrix that is associated with Pi (with i \in \{ 1,2\} ). Let U :=
(1/(\vec{}\delta \mathrm{T}\vec{}u))\vec{}u\vec{}1\mathrm{T} and \alpha := \vec{}\delta \mathrm{T}\vec{}u/(\vec{}w\mathrm{T}\vec{}u+ \vec{}\delta \mathrm{T}\vec{}u), where \vec{}u = (u1, . . . , un)

\mathrm{T} is a vector in the kernel
Ker (W  - A) with positive entries ui such that

\sum n
i=1 ui = 1. We have that

Z1 =W - 1(W +D\delta )

\Biggl[ 
Z0 + \alpha (1 - \alpha )\pi \vec{}1\mathrm{T}  - \alpha 

\Biggl( 
Z0D\delta U +W

\vec{}u\vec{}\delta \mathrm{T}

\vec{}\delta \mathrm{T}\vec{}u
W - 1Z0(I  - \alpha D\delta U)

\Biggr) \Biggr] 
.(29)

Remark. The expression in square brackets in the right-hand side of (29) is a (general-
ized) fundamental matrix that is associated with P0 [19].

We now seek a connection between the unnormalized graph Laplacian matrices \~\scrL (D\delta ,\bfzero )
and \~\scrL (D\delta , I) through absorption inverses. In Definition 8, we describe the absorption in-
verse [16] of an unnormalized graph Laplacian matrix and absorption-rate vector \vec{}d.
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2572 E. VARGAS BERNAL, M. A. PORTER, AND J. H. TIEN

Definition 8 (absorption inverse). Let \^\scrL be the unnormalized graph Laplacian matrix of a
strongly connected graph, and let \vec{}d be an absorption-rate vector. Let D := diag\{ \vec{}d\} , N1,0 :=

\{ \vec{}x \in \BbbR n :D\vec{}x \in Range \^\scrL \} , and R1,0 := \{ D\vec{}x : \vec{}x \in Ker \^\scrL \} . An absorption inverse \^\scrL \vec{}d of \^\scrL with

respect to \vec{}d is defined by the following properties:

\^\scrL \vec{}d \^\scrL \vec{}y= \vec{}y for \vec{}y \in N1,0 ,

\^\scrL \vec{}d\vec{}y=\vec{}0 for \vec{}y \in R1,0 .(30)

The absorption inverse of a graph exists and is unique if the graph is strongly connected
and the absorption rates are all positive. (See Theorem 2 in [16].) As described in [16], the
absorption inverse of a graph is closely related to the group inverse of an associated matrix.

Definition 9 (group inverse). Let X be a square matrix such that rank(X) = rank(X2). The
group inverse of X is the unique matrix X\# that satisfies

XX\#X =X ,

X\#XX\# =X\# ,

XX\# =X\#X .(31)

Proposition 5 ([16], Proposition 2). Let \^\scrL be the unnormalized graph Laplacian matrix of
a strongly connected graph, let \vec{}d be an absorption-rate vector, and let D = diag\{ \vec{}d\} . The
following relationship holds: \Bigl( 

\^\scrL D - 1
\Bigr) \#

=D \^\scrL \vec{}d .

The absorption inverse \^\scrL \vec{}d is related both to the fundamental matrix ( \^\scrL +D) - 1 of the
continuous-time absorbing Markov chain that is associated with \^\scrL and d1, . . . , dn and to the
fundamental matrix of the associated discrete-time Markov chain. Propositions 6 and 7 give
two such relationships. See [16] for the proofs of these propositions. We use these prior results
to establish relationships between \~G(D\delta ,\bfzero ) and \~G(D\delta , I). We give these relationships in
Propositions 8 and 9.

Proposition 6 ([16], Proposition 4). Let \^\scrL \vec{}d be the absorption inverse of \^\scrL with respect to
\vec{}d. Let \vec{}u be a vector in Ker \^\scrL with positive entries ui such that

\sum 
i ui = 1. Additionally, let

D := diag\{ \vec{}d\} and U := (1/\^\delta )\vec{}u\vec{}1\mathrm{T}, where \^d=
\sum 

i(uidi). The following relationship holds:

( \^\scrL +D) - 1 =U + (I + \^\scrL \vec{}dD) - 1 \^\scrL \vec{}d .(32)

If \vec{}d = \vec{}\delta and \^\scrL = \scrL = W  - A, then Propositions 5 and 6 relate the graph Laplacian
matrix \~\scrL (D\delta ,\bfzero ) = \scrL D - 1

\delta that has the associated absorption-scaled graph \~G(D\delta ,\bfzero ) to the
continuous-time absorbing Markov chain that is associated with \scrL = W  - A and \delta 1, . . . , \delta n.

We suppose that the spectral radius \rho (\scrL \vec{}\delta D\delta ) satisfies \rho (\scrL \vec{}\delta D\delta ) < 1 and insert the series

expansion (I +\scrL \vec{}\delta D\delta )
 - 1 =

\sum \infty 
\ell =0( - \scrL \vec{}\delta D\delta )

\ell into (32) to obtain

(\scrL +D\delta )
 - 1 =U +\scrL \vec{}\delta +

\infty \sum 
\ell =1

( - \scrL \vec{}\delta D\delta )
\ell \scrL \vec{}\delta .(33)
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ADAPTING INFOMAP TO ABSORBING RANDOM WALKS 2573

For \epsilon := \| \scrL \vec{}\delta D\delta \| 1 \ll 1, it follows from (33) that

\scrL \vec{}\delta = (\scrL +D\delta )
 - 1  - (1/\^\delta )u\vec{}1\mathrm{T} +\scrO (\epsilon ) .(34)

This approximation indicates that when \epsilon \ll 1, the entries of \scrL \vec{}\delta approximate the differences in
the expected times to absorption between the continuous-time absorbing Markov chain that is
associated with \scrL and \delta 1, . . . , \delta n and the Markov chain without absorption that is associated
with (1/\^\delta )u\vec{}1\mathrm{T}.

To compute the absorption inverse, we use the following proposition.

Proposition 7 ([16], Lemma 3 and Theorem 3). Let \vec{}d be an absorption-rate vector, and
let \vec{}u \in Ker \^\scrL = Ker (W  - A). Additionally, let \vec{}w := W\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}, \pi := W\vec{}u/(\vec{}w\mathrm{T}\vec{}u), D := diag\{ \vec{}d\} ,
U := (1/(\vec{}d\mathrm{T}\vec{}u))\vec{}u\vec{}1\mathrm{T}, and Z :=W - 1Z0, where Z0 =

\Bigl( 
I  - AW - 1 + \pi \vec{}1\mathrm{T}

\Bigr)  - 1
is the fundamental

matrix that is associated with AW - 1. We have that

\^\scrL \vec{}d = (I  - UD)Z(I  - DU) .(35)

The following proposition relates the absorption inverse \scrL \vec{}\delta (which is associated with
\~G(D\delta ,\bfzero )) to an absorption inverse of \~\scrL (D\delta , I) (which is associated with \~G(D\delta , I)). We prove
this proposition in Appendix A.

Proposition 8. Let \~\scrL 1 := \~\scrL (D\delta , I) = (W  - A)(W +D\delta )
 - 1, and let \vec{}d1 be the diagonal of

D\delta (W+D\delta )
 - 1. Additionally, let U := \vec{}u\vec{}1\mathrm{T}/(\vec{}\delta \mathrm{T}\vec{}u), U1 := (W+D\delta )U , and D1 :=D\delta (W+D\delta )

 - 1.
We have that

\~\scrL \vec{}d1

1 = (W +D\delta )\scrL 
\vec{}\delta (36)

and

(\scrL +D\delta )
 - 1 = (W +D\delta )

 - 1

\biggl( 
U1 + (I + \~\scrL \vec{}d1

1 D1)
 - 1 \~\scrL 1

\vec{}d1

\biggr) 
.(37)

Let \vec{}d\prime := \vec{}d\mathrm{s}(D\delta , I) be the absorption-rate vector that is associated with H = I. The

following proposition relates the absorption inverse \scrL \vec{}\delta (which is associated with \~G(D\delta ,\bfzero )) to

the absorption inverse \scrL \vec{}d\prime 
(which is associated with \~G(D\delta , I)). We prove this proposition in

Appendix A.

Proposition 9. Let \vec{}d\prime := \vec{}d\mathrm{s}(D\delta , I) = \vec{}w + \vec{}\delta = (\omega 1 + \delta 1, . . . , \omega n + \delta n)
\mathrm{T} be the scaled rate

vector that is associated with the absorption-scaled graph \~G(D\delta , I). With \scrL = W  - A, \alpha :=

\vec{}\delta \mathrm{T}\vec{}u/(\vec{}w\mathrm{T}\vec{}u+\vec{}\delta \mathrm{T}\vec{}u), \pi =W\vec{}u/(\vec{}w\mathrm{T}\vec{}u), Z0 =
\Bigl( 
I  - AW - 1 + \pi \vec{}1\mathrm{T}

\Bigr)  - 1
, and Z\ast =W - 1

\Bigl( 
Z0  - \pi \vec{}1\mathrm{T}

\Bigr) 
,

it follows that

\scrL \vec{}d\prime 
= \alpha 2\scrL \vec{}\delta + \alpha (1 - \alpha )

\Bigl( 
\scrL \vec{}\delta \scrL Z\ast +Z\ast \scrL \scrL 

\vec{}\delta 
\Bigr) 
+ (1 - \alpha )2Z\ast .(38)

Because Z0 is the fundamental matrix of the regular Markov chain with transition-
probability matrix AW - 1, the entries of Z\ast = W - 1(Z0  - \pi \vec{}1\mathrm{T}) measure the differences in
the expected numbers of visits between the Markov chain that is associated with AW - 1 and
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2574 E. VARGAS BERNAL, M. A. PORTER, AND J. H. TIEN

the Markov chain that is associated with \pi \vec{}1\mathrm{T}. Therefore, if \| D\delta \| 1/\| \scrL \| 1 \ll 1, then the matrix

Z\ast is the analogue of \scrL \vec{}\delta . From (38), we see that \scrL \vec{}d\prime 
is a linear combination of terms that

include \scrL \vec{}\delta and Z\ast , where the coefficients depend on \alpha = \vec{}\delta \mathrm{T}\vec{}u/(\vec{}w\mathrm{T}\vec{}u + \vec{}\delta \mathrm{T}\vec{}u). Additionally,

\alpha \approx 1 implies that \scrL \vec{}d\prime \approx \scrL \vec{}\delta and \alpha \approx 0 implies that \scrL \vec{}d\prime \approx Z\ast .

5. Examples. In this section, we apply Algorithms 1a and 1b to three small networks.

5.1. A three-node network. We consider the three-node network (see Figure 4) with
adjacency matrix A in (23) and node-absorption-rate vector \vec{}\delta = (\delta 1, \delta 2, \delta 3)

\mathrm{T}.
Consider the absorption-scaled graph \~G(D\delta ,H) with H = \bfzero and Algorithm 1a with in-

put Pl(D\delta ,\bfzero , t) for a fixed Markov time t. In Figure 5, we show the values of L(M) =
L(M,Pl(D\delta ,\bfzero ,1/20)) for all five possible partitions M of the three nodes, where we fix
\delta 1 = \delta 3 = 0.1 and vary \delta 2 in the interval [0.1,1]. When all of the absorption rates are
equal (i.e., when \delta 2 = 0.1), we see that L(M) is minimized by the partitions M = \{ \{ 2\} ,\{ 1,3\} \} 
and M = \{ \{ 1,2,3\} \} . (See the dashed orange curve.) However, when \delta 2 > 0.1, the partition
M = \{ \{ 2\} ,\{ 1,3\} \} produces a smaller value of the map function (see the solid blue curve); this
partition is the output of Algorithm 1a.

Figure 4. An example three-node network. The node-absorption rate of node 2 is greater than or equal to
the node-absorption rates of nodes 1 and 3.

0 0.2 0.4 0.6 0.8 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Figure 5. The values of L(M,Pl(D\delta ,\bfzero ,1/20)) for all five possible partitions M of the three-node network
in Figure 4 with \delta 1 = \delta 3 = 0.1 and Markov time t= 1/20.
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ADAPTING INFOMAP TO ABSORBING RANDOM WALKS 2575

(a) An example network with four planted cliques (b) The partition M∗

(c) The partition M∗∗

Figure 6. An example network with four planted cliques and two partitions of its set of nodes. In (a), the
node-absorption rates of the large nodes are \delta i = 7 and the node-absorption rates of the small nodes are \delta i = 1.
The edge weights are all equal to 1. In (b) and (c), each color indicates a different community. The partition
M\ast in (b) is the four-clique planted partition, which arises from the network structure (i.e., the network topology
and the edge weights). The partition M\ast \ast in (c) arises from a combination of the network structure and the
node-absorption rates.

5.2. A four-clique network. Consider a network that consists of four planted cliques (see
Figure 6(a)) that each have four nodes. Additionally, suppose that all of the edge weights are 1.
The node-absorption rates of the nodes in the cliques C1 := \{ 1,2,3,4\} and C3 := \{ 9,10,11,12\} 
are \delta i = 7 (with i \in C1 \cup C3), and the node-absorption rates of the nodes in the cliques
C2 := \{ 5,6,7,8\} and C4 := \{ 13,14,15,16\} are \delta i = 1 (with i\in C2 \cup C4).

Consider the node-absorption-rate vector \vec{}\delta = (\delta 1, . . . , \delta 16)
\mathrm{T} and the absorption-scaled

graphs \~G(D\delta ,\bfzero ) and \~G(D\delta , (3/2)I). We use Algorithm 1a with inputs Pl(D\delta ,\bfzero , t) and Pl(D\delta ,
(3/2)I, t) and Algorithm 1b with inputs Pe(D\delta ,\bfzero , t) and Pe(D\delta , (3/2)I, t) for different Markov
times t. Intuitively, the network structure (i.e., the network topology and the edge weights)
on its own favors the partition M\ast := \{ C1,C2,C3,C4\} in Figure 6(b). However, the larger ab-
sorption rates in the cliques C1 and C3 lead to the partition M\ast \ast := \{ \{ 1\} ,\{ 2\} ,\{ 3\} ,\{ 4\} ,C2,\{ 9\} ,
\{ 10\} ,\{ 11\} ,\{ 12\} ,C4\} in Figure 6(c).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

0/
24

 to
 1

69
.2

32
.2

42
.1

59
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



2576 E. VARGAS BERNAL, M. A. PORTER, AND J. H. TIEN

0.00 0.05 0.10 0.15 0.20 0.25
t

10

11

12

13

14

15

16

Nu
m

be
r o

f c
om

m
un

iti
es

(a) Input Pl(D\delta ,\bfzero , t)
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(b) Input Pe(D\delta ,\bfzero , t)
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(c) Input Pl(D\delta , (3/2)I, t)
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(d) Input Pe(D\delta , (3/2)I, t)

Figure 7. The numbers of communities in the partitions that we obtain using Algorithms 1a (see (a) and
(c)) and 1b (see (b) and (d)) with four different inputs. The partitions that consist of four communities are
the same as the partition M\ast in Figure 6(b), and the partitions that consist of ten communities are the same
as the partition M\ast \ast in Figure 6(c).

Algorithms 1a and 1b with H = \bfzero yield the partition M\ast for a smaller range of Markov
times than Algorithms 1a and 1b with H = (3/2)I. Algorithm 1a with the input Pl(D\delta ,\bfzero , t)
does not produce the partition M\ast for any Markov time t that satisfies (6) (see Figure 7(a)),
whereas Algorithm 1a with the input Pl(D\delta , (3/2)I, t) produces the partition M\ast when 1.47\lessapprox 
t \lessapprox 1.75 (see Figure 7(c)). Algorithm 1b with the input Pe(D\delta ,\bfzero , t) produces M\ast when
1.28 \lessapprox t \lessapprox 2.67 (see Figure 7(b)), whereas Algorithm 1b with the input Pe(D\delta , (3/2)I, t)
produces M\ast when 2.01 \lessapprox t \lessapprox 13.73 (see Figure 7(d)). These results are consistent with the
fact that the choice H = (3/2)I gives more importance to the edge weights than the choice
H = \bfzero .

5.3. A square-lattice network with four different node-absorption rates. We consider
a square-lattice network with 36 nodes (see Figure 8). We divide the set of nodes into four
sublattices (with labels B1, B2, B3, and B4), which we illustrate using nodes of different sizes
in Figure 8. We endow the nodes in sublattice B1 with a node-absorption rate of 0.2, the
nodes in sublattice B2 with a node-absorption rate of 0.7, the nodes in sublattice B3 with a
node-absorption rate of 1.2, and the nodes in sublattice B4 with a node-absorption rate of 1.7.

We first look at the community structure that we obtain using Algorithm 1a with the
input Pl(D\delta ,\bfzero , t) for a Markov time t that satisfies (6). In Figure 9(a), we see that we obtain
a partition with 28 communities when t\gtrapprox 0.0345. In this partition, B1 is a community and all
other communities consist of individual nodes (see Figure 9(a,c)). By contrast, Algorithm 1b

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ADAPTING INFOMAP TO ABSORBING RANDOM WALKS 2577

Figure 8. A square-lattice network with nodes that have node-absorption rates in the set \{ 0.2,0.7,1.2,1.7\} .

produces different communities than Algorithm 1a for sufficiently large Markov times t. For
example, Algorithm 1b with the input Pe(D\delta , I,5.25) produces the partition \{ B1,B2,B3,B4\} 
(see Figure 9(b,d)).

6. Effective community structure and SIR dynamics on networks with ring-lattice com-
munities. Inspired by an example of Salath\'e and Jones [38] about the impact of community
structure on disease spread, we explore the impact of the effective community structure of a
contact network on the outbreak duration, final outbreak size (i.e., the total number of indi-
viduals that experience an infection), and outbreak peak of a disease in simulations of an SIR
model of disease spread on the network. See [22, 30] for an introduction to disease dynamics
on networks.

6.1. An example of Salath\'e and Jones [38]. Salath\'e and Jones [38] explored the effect of
differences in community structure on the outbreak duration, final outbreak size, and outbreak
peak in simulations of an SIR model on networks. In our work, we consider a modified version
of one of the examples in [38]. Salath\'e and Jones rewired edges to consider networks with
different community structures, and they thereby examined how community structure impacts
various aspects of disease outbreaks. Inspired by their exploration, we examine different node-
absorption rates (instead of rewiring edges) to consider different community structures, and
we simulate disease dynamics on the resulting networks. One of the findings of Salath\'e and
Jones is that outbreak duration depends nonmonotonically on how modular the network is.
We examine whether or not there is a similar relationship between outbreak duration and
the community structure that we detect with one of our adaptations of InfoMap (specifically,
using Algorithm 1b with H = \bfzero ).

We begin by describing the example of Salath\'e and Jones. Each stage s of their example
consists of a network G\mathrm{W}\mathrm{S}

s and SIR simulations on that network. In stage s = 1, Salath\'e
and Jones [38] considered a network G\mathrm{W}\mathrm{S}

1 consisting of Watts--Strogatz (WS) small-world [32]
``planted communities"" that are connected to each other by ``community bridges"" through
edges that are assigned uniformly at random from all possible node pairs. The set of nodes

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) Input Pl(Dδ, , t) (b) Input Pe(Dδ, I, t)

(c) Resulting partition for Pl(Dδ, , 0.04)

(d) Resulting partition for Pe(Dδ, I, 5.25)

Figure 9. (a,b) The numbers of communities in the partitions that we obtain using (a) Algorithm 1a with
the input Pl(D\delta ,\bfzero , t) and (b) Algorithm 1b with the input Pe(D\delta , I, t). In (c) and (d), we show the partitions
that we obtain using Algorithm 1a with the input Pl(D\delta ,\bfzero ,0.04) and Algorithm 1b with the input Pe(D\delta , I,5.25),
respectively. The colors in panels (c) and (d) indicate community assignments.

is the same in all stages, but Salath\'e and Jones rewired the edges in each stage. In stage
s+ 1, Salath\'e and Jones rewired one community bridge of G\mathrm{W}\mathrm{S}

s (which is known from stage
s) into one edge within a planted community in the following manner. First, they selected a
community bridge \{ i1, i2\} uniformly at random from all of the community bridges of G\mathrm{W}\mathrm{S}

s .
They then selected a node i\ell uniformly at random from \{ i1, i2\} and selected a node i3 \not = i\ell 
uniformly at random from the planted community with node i\ell . Finally, they obtained the set
of edges of G\mathrm{W}\mathrm{S}

s+1 by removing \{ i1, i2\} from the union of the edge \{ i\ell , i3\} and the set of edges of
G\mathrm{W}\mathrm{S}

s . At each stage s, they simulated an SIR process on G\mathrm{W}\mathrm{S}
s and recorded the means of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ADAPTING INFOMAP TO ABSORBING RANDOM WALKS 2579

Table 2
Transitions in the numbers of nodes in each compartment in the examined SIR model.

\bfT \bfr \bfa \bfn \bfs \bfi \bft \bfi \bfo \bfn \bfR \bfa \bft \bfe 

| S| \rightarrow | S|  - 1, | I| \rightarrow | I| + 1, | R| \rightarrow | R| \beta | SI| 
| S| \rightarrow | S| , | I| \rightarrow | I|  - 1, | R| \rightarrow | R| + 1 \gamma | I| 

outbreak durations, final outbreak sizes, and outbreak peaks. In all stages, they considered
the same time-independent transmission and recovery intensities in their SIR simulations.

We also describe the stochastic SIR model that Salath\'e and Jones employed in [38]. We
simulate this SIR model on networks using a Gillespie algorithm [2, 13, 22]. Each node is
in the susceptible state (i.e., compartment) S, the infected state I, or the recovered state R.
If a susceptible node has k infected neighbors, then the time that it remains susceptible is
exponentially distributed with transmission intensity5 \beta k. With this distribution, the mean
time that a node is susceptible is 1/(\beta k). The time that an infected node remains infected
is exponentially distributed with recovery intensity \gamma , which yields a mean time of 1/\gamma . Let
| S| denote the number of susceptible nodes, | I| denote the number of infected nodes, and | R| 
denote the number of recovered nodes. Additionally, | SI| denotes the number of neighboring
node pairs in which one node is susceptible and the other node is infected. This SIR model is
a continuous-time Markov chain with two possible events: (1) one susceptible node is infected
at a rate \beta | SI| or (2) one infected node recovers at a rate \gamma | I| . Two events cannot occur
simultaneously. In Table 2, we show the transitions in the numbers of nodes in each state for
the two possible events.

In each stage s, Salath\'e and Jones computed the modularity value [29] of their partition of
the network G\mathrm{W}\mathrm{S}

s . They observed that these modularity values increase with s. This reflects a
sparsification of the edges between the planted communities due to the edge-rewiring process.

6.2. Increasing node-absorption rates of bridging nodes instead of removing commu-
nity bridges.

6.2.1. Ring-lattice graphs as planted communities. We study an example that plays
a similar role to the example of Salath\'e and Jones [38]. In our example, setting the node-
absorption rates of bridging nodes to larger values than the node-absorption rates of other
nodes is analogous to removing community bridges. Unlike in the example of Salath\'e and
Jones, our example uses the same network in each stage; we change the node-absorption rates
of specific bridging nodes instead of rewiring community bridges. Because the network is the
same in all stages, maximizing modularity or using the standard InfoMap algorithm cannot
reveal how effective community structure changes as we change the node-absorption rates,
which represent the recovery intensities of a disease. However, our adaptations of InfoMap
are designed for such situations. The values that we obtain for the associated map function
play the role of the modularity values in [38]. They reflect an effective sparsification between
planted communities due to increasing the node-absorption rates of some bridging nodes. This
effective sparsification between communities, which entails a corresponding increased isolation
of communities from each other, is analogous to the more literal sparsification in [38].

5Our use of the word ``intensity"" follows the terminology in [2].
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2580 E. VARGAS BERNAL, M. A. PORTER, AND J. H. TIEN

We use Algorithm 2 to generate the network G\mathrm{R}\mathrm{L} (which is inspired by the example in
[38] that we described in section 6.1) on which we simulate an SIR process. (See Figure 10(a)
for an example of a subgraph of a network that we generate using Algorithm 2.) We generate
a network G\mathrm{R}\mathrm{L} using Algorithm 2 with N\mathrm{W}\mathrm{S} = 20 directed (with bidirectional edges) and
unweighted ring-lattice subgraphs G1, . . . ,G20 (the planted communities) of size n\mathrm{W}\mathrm{S} = 12
(i.e., with 12 nodes each) that are connected by community bridges (which we place between
node pairs that we choose uniformly at random from all possible pairs with nodes in distinct
planted communities). Each node of G\mathrm{R}\mathrm{L} has k\mathrm{W}\mathrm{S} = 6 neighbors in its planted community. We
choose a small size for the ring-lattice graphs to visualize the effective community structure of
one of the 20 ring-lattice subgraphs (see Figure 12(c,d)). Each of these ring-lattice subgraphs is
a one-dimensional lattice with periodic boundary conditions and additional local connections,
which we specify in Algorithm 2. In the context of the analogy with the example in [38],
each ring-lattice subgraph in our example is a directed WS network in which all edges are
bidirectional (i.e., each edge is reciprocated) and the edge-rewiring probability is 0 [27]. We use
an edge-rewiring probability of 0 because we seek to examine the effect of changing absorption
rates instead of the effect of rewiring edges (which was explored in [38]). The degree of a node
of a network G\mathrm{R}\mathrm{L} is determined by the random variable k\mathrm{W}\mathrm{S} +N\mathrm{b}\mathrm{r}\mathrm{i}\mathrm{d}\mathrm{g}\mathrm{e}\mathrm{s}, where N\mathrm{b}\mathrm{r}\mathrm{i}\mathrm{d}\mathrm{g}\mathrm{e}\mathrm{s} is the
number of community bridges that are attached to the node. This random variable follows
a binomial distribution with parameters n\mathrm{W}\mathrm{S}(N\mathrm{W}\mathrm{S}  - 1) and 2/(n\mathrm{W}\mathrm{S}(N\mathrm{W}\mathrm{S}  - 1)). The mean
degree of G\mathrm{R}\mathrm{L} is k\mathrm{W}\mathrm{S}+2, and the variance of the degree is 2 [1 - 2/(n\mathrm{W}\mathrm{S}(N\mathrm{W}\mathrm{S}  - 1))]. For the
graph G\mathrm{R}\mathrm{L}, the standard InfoMap algorithm yields the partition that consists of the planted
communities G1, . . . ,GN\mathrm{W}\mathrm{S}

.

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bftwo . Generation of the network G\mathrm{R}\mathrm{L} on which we simulate an SIR process.

Input: Positive integers n\mathrm{W}\mathrm{S} and N\mathrm{W}\mathrm{S}; an even positive integer k\mathrm{W}\mathrm{S}.

Output: An N -node directed and unweighted graph G\mathrm{R}\mathrm{L}, which we partition into N\mathrm{W}\mathrm{S}

ring-lattice subgraphs G1, . . . ,GN\mathrm{W}\mathrm{S}
, which each have size n\mathrm{W}\mathrm{S}. The network G\mathrm{R}\mathrm{L}

has n\mathrm{W}\mathrm{S} \times N\mathrm{W}\mathrm{S} edges between nodes from distinct ring-lattice subgraphs. Each
node of G\mathrm{R}\mathrm{L} has k\mathrm{W}\mathrm{S} neighbors in its corresponding ring-lattice subgraph.

1: Define a ring-lattice subgraph G1 with the set \{ 1, . . . , n\mathrm{W}\mathrm{S}\} of nodes, where the
neighbors of each node i are the nodes i\pm \varpi (mod n\mathrm{W}\mathrm{S}), with \varpi \in \{ 1, . . . , k\mathrm{W}\mathrm{S}/2\} .
The edges of this subgraph are bidirectional. (In other words, if (i1, i2) is an edge of
G1, then so is (i2, i1).)

2: For \varphi \in \{ 2, . . . ,N\mathrm{W}\mathrm{S}\} , define a ring-lattice subgraph G\varphi with the set \{ (\varphi  - 1) \cdot n\mathrm{W}\mathrm{S}

+ 1, . . . ,\varphi \cdot n\mathrm{W}\mathrm{S}\} of nodes, where G\varphi is isomorphic to G1. (The subgraphs G1, . . . ,
GN\mathrm{W}\mathrm{S}

are ``planted communities."")

3: Select n\mathrm{W}\mathrm{S} \times N\mathrm{W}\mathrm{S} pairs \{ i1, i2\} of nodes uniformly at random from all node pairs
that belong to distinct ring-lattice graphs. Add bidirectional edges between the
nodes of each pair. (The pair \{ i1, i2\} is a ``community bridge,"" and the nodes i1 and
i2 are ``bridging nodes."")

4: Set all of the edge weights to 1. (That is, we use an unweighted network.)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

0/
24

 to
 1

69
.2

32
.2

42
.1

59
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



ADAPTING INFOMAP TO ABSORBING RANDOM WALKS 2581

(a) Parameter configuration in stage 1 (b) Parameter configuration in stage 2

Figure 10. Illustration of a subgraph of a network that we generate with Algorithm 2 and two stages of
Algorithm 3 for that network. We show the parameter configurations in stages 1 and 2 of Algorithm 3 for
a network G\mathrm{R}\mathrm{L} from Algorithm 2 with n\mathrm{W}\mathrm{S} = 6, N\mathrm{W}\mathrm{S} = 2, and k\mathrm{W}\mathrm{S} = 4. In this figure, we show only four
community bridges (the blue segments) of the n\mathrm{W}\mathrm{S} \times N\mathrm{W}\mathrm{S} = 12 community bridges of G\mathrm{R}\mathrm{L} between the planted
communities G1 = \{ 1, . . . ,6\} and G2 = \{ 7, . . . ,12\} . (a) In the parameter configuration in stage 1, all 12
nodes have the same node-absorption rate \delta \ast and the same transmission intensity \beta \ast . (b) In the parameter
configuration in stage 2, the bridging nodes 4 and 7 have the same node-absorption rate \delta \ast \ast > \delta \ast and all other
nodes have the node-absorption rate \delta \ast . In this stage, nodes 1 and 10 (which are not neighbors of nodes 4 and
7) have the same transmission intensity \beta \ast \ast >\beta \ast and all other nodes have the transmission intensity \beta \ast .

6.2.2. Durations, final sizes, and peaks of SIR outbreaks. We use Algorithm 3 to run
SIR simulations on the network G\mathrm{R}\mathrm{L} for different node-absorption rates (which correspond
to the recovery intensities) and transmission intensities. We refer to a set of node-absorption
rates \delta 1, . . . , \delta N and transmission intensities \beta 1, . . . , \beta N of the N nodes of G\mathrm{R}\mathrm{L} as a parameter
configuration. In steps 1 and 2 of Algorithm 3, we recursively determine parameter con-
figurations. We refer to each step of this recursive process as a stage. For the parameter
configurations in two consecutive stages of Algorithm 3, increasing the node-absorption rates
of two bridging nodes from \delta \ast to \delta \ast \ast is analogous to removing a community bridge in [38] and
increasing the transmission intensities of other nodes (which we call ``balancing nodes"") from
\beta \ast to \beta \ast \ast is analogous to adding edges within a community in [38]. In Figure 10, we show
example parameter configurations in two stages of Algorithm 3 for a subgraph of a network
that we generate with Algorithm 2.

For each node of G\mathrm{R}\mathrm{L}, the recovery intensity \gamma equals the associated node-absorption
rate \delta . The recovery intensities \gamma \ast and \gamma \ast \ast are \delta \ast and \delta \ast \ast , respectively. We choose the
transmission intensity \beta \ast \ast to compensate for the smaller number of infections due to the
larger node-absorption rates of the chosen bridging nodes. We estimate the decrease in the
basic reproduction number \scrR 0 by calculating \langle k\rangle \beta \ast /\gamma \ast  - \langle k\rangle \beta \ast /\gamma \ast \ast (using an approximation
that is similar to one in [28]), where \langle k\rangle is the mean degree of the bridging nodes. We
compensate for the decrease in infections by choosing \beta \ast \ast such that \langle k\rangle \beta \ast \ast /\gamma \ast = \langle k\rangle \beta \ast /\gamma \ast +
\alpha (\langle k\rangle \beta \ast /\gamma \ast  - \langle k\rangle \beta \ast /\gamma \ast \ast ), which approximates the number of infections that are generated

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Figure 11. The (a) mean outbreak duration, (b) mean final outbreak size, and (c) mean outbreak peak as
a function of the stage number of Algorithm 3 with N\mathrm{S} = 68 stages, a network G\mathrm{R}\mathrm{L} that we generate with
Algorithm 2 (for n\mathrm{W}\mathrm{S} = 12, N\mathrm{W}\mathrm{S} = 20, and k\mathrm{W}\mathrm{S} = 6), and N\mathrm{s}\mathrm{i}\mathrm{m} = 1000 simulations of SIR dynamics (for
parameter configurations with \alpha = 0.1, \delta \ast = 0.2, \delta \ast \ast = 1, \beta \ast = 0.125, and the associated value of \beta \ast \ast that we
obtain using (39)). In (d), we show the map function L(M0) = L(M0, Pe(D

(s)
\delta ,\bfzero , t = 0.025)) for the planted

partition M0 of G\mathrm{R}\mathrm{L} as a function of the stage number of Algorithm 3 with the same inputs as in (a)--(c), where

the node-absorption rates in the diagonal entries of D
(s)
\delta correspond to the parameter configuration in stage s

of Algorithm 3.

by a balancing node when all of its neighbors are susceptible. The quantity \alpha is a tuning
parameter that we use to preserve the value of the basic reproduction number. Solving for
\beta \ast \ast yields

\beta \ast \ast = \beta \ast + \alpha \gamma \ast \beta \ast 

\biggl( 
1

\gamma \ast 
 - 1

\gamma \ast \ast 

\biggr) 
.(39)

We produce parameter configurations in N\mathrm{S} = 68 stages (with \delta \ast = 0.2, \delta \ast \ast = 1, \beta \ast = 0.125,
\alpha = 0.1, and the corresponding value of \beta \ast \ast that we obtain using (39)). For each parameter
configuration, we run N\mathrm{s}\mathrm{i}\mathrm{m} = 1000 simulations of SIR dynamics on G\mathrm{R}\mathrm{L} (see Algorithm 3).
In Figure 11(a)--(c), we show the mean outbreak duration, mean final outbreak size, and
mean outbreak peak for the parameter configuration in each of the 68 stages. The qualitative
behavior of these epidemiological quantities is consistent with the observations in the example
of Salath\'e and Jones [38]. Specifically, the mean final outbreak size and the mean outbreak
peak decrease as we increase the stage number (see Figure 11(b,c)). Additionally, the mean
outbreak duration peaks at intermediate stages (see Figure 11(a)).
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ADAPTING INFOMAP TO ABSORBING RANDOM WALKS 2583

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree . SIR simulations on a network G\mathrm{R}\mathrm{L} (which we generate with Algorithm 2)
for different node-absorption rates (i.e., recovery intensities) and transmission intensities.

Input: A graph G\mathrm{R}\mathrm{L} that is the output of Algorithm 2 with inputs n\mathrm{W}\mathrm{S} (the size of each
planted community), N\mathrm{W}\mathrm{S} (the number of planted communities), and k\mathrm{W}\mathrm{S} (the
number of neighbors of a node within its planted community).6 Node-absorption rates
\delta \ast and \delta \ast \ast , with \delta \ast \ast > \delta \ast . (They correspond to the recovery intensities.) Transmission
intensities \beta \ast and \beta \ast \ast , with \beta \ast \ast >\beta \ast . Positive integers N\mathrm{S} (the number of stages) and
N\mathrm{s}\mathrm{i}\mathrm{m} (the number of SIR simulations).

Output: The means of the outbreak durations, final outbreak sizes, and outbreak peaks of
N\mathrm{s}\mathrm{i}\mathrm{m} SIR simulations for each of the N\mathrm{S} parameter configurations that are defined by
steps 1 and 2 of this algorithm. (A parameter configuration consists of the
node-absorption rates and transmission intensities of the nodes of G\mathrm{R}\mathrm{L}.)

1: Determine the parameter configuration in stage 1: Set the node-absorption rate of each
node of G\mathrm{R}\mathrm{L} to \delta \ast , and set the transmission intensity of each node of G\mathrm{R}\mathrm{L} to \beta \ast .

2: Determine the parameter configuration in stage s+ 1 for s\in \{ 1, . . . ,N\mathrm{S}  - 1\} : Once we
have determined the parameter configuration in stage s, select a community bridge
\{ i1, i2\} of G\mathrm{R}\mathrm{L} uniformly at random from the set of pairs of bridging nodes with
node-absorption rate \delta \ast . Set the node-absorption rates of nodes i1 and i2 to \delta \ast \ast .
Additionally, select a node j\ell uniformly at random from the ring-lattice subgraph that
is associated with i\ell for \ell \in \{ 1,2\} . (We require that j\ell is distinct from i\ell and that it is
not a neighbor of i\ell for \ell \in \{ 1,2\} .) Set the transmission intensities of j1 and j2 to \beta \ast \ast .

3: Run SIR simulations: Run N\mathrm{s}\mathrm{i}\mathrm{m} simulations of the SIR model on the network G\mathrm{R}\mathrm{L}

with transmission intensities \beta \in \{ \beta \ast , \beta \ast \ast \} and recovery intensities \gamma \in \{ \gamma \ast , \gamma \ast \ast \} that
correspond to the parameter configuration in each stage s\in \{ 1, . . . ,N\mathrm{S}\} . The recovery
intensities \gamma \ast and \gamma \ast \ast equal the associated node-absorption rates \delta \ast and \delta \ast \ast . To run
these simulations, we use a Gillespie algorithm [13]. Record the means of the outbreak
durations, the final outbreak sizes, and the outbreak peaks of the simulations.

6Given these parameters, the network G\mathrm{R}\mathrm{L} has n\mathrm{W}\mathrm{S} \times N\mathrm{W}\mathrm{S} bidirectional edges (i.e., community bridges) that connect nodes
from distinct planted communities.

In Figure 11(d), we show the value of the map function L(M0) = L(M0, Pe(D
(s)
\delta ,\bfzero , t =

0.025)) for the partition M0 that consists of the planted communities of G\mathrm{R}\mathrm{L}, where the node-

absorption rates in the diagonal entries of D
(s)
\delta correspond to the parameter configuration in

stage s of Algorithm 3. (We justify the choice of Markov time t= 0.025 in section 6.2.3.) This
map function, which is associated with our adaptation of InfoMap in Algorithm 1b, captures
the effect on community structure of changes in node-absorption rates. The standard map
function cannot capture these effects. In Figure 11(d), we observe that the value of the map
function L(M0) decreases with the stage number. Consequently, we conclude from Figure 11
that the map function L(M0) decreases as one increases the number of bridging nodes with
the large node-absorption rate \delta \ast \ast . (For the parameter configuration in stage s, there are 2s
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2584 E. VARGAS BERNAL, M. A. PORTER, AND J. H. TIEN

bridging nodes with the large node-absorption rate.) This reflects an increased isolation of the
planted communities. The consistent (and almost monotonic) decrease of L(M0) is analogous
to the increase of modularity that Salath\'e and Jones [38] observed for their planted partition
as they removed community bridges.

6.2.3. Effective community structure of a single planted community. The 20 ring-lattice
subgraphs G1, . . . ,G20 of the network G\mathrm{R}\mathrm{L} in section 6.2.1 are isomorphic to each other and
randomly connected according to the procedure in Algorithm 2. We now examine the effective
community structure of one ring-lattice subgraph of G\mathrm{R}\mathrm{L}. We use Algorithm 1b with the
input Pe(D\delta ,\bfzero , t) for the adjacency matrix of G\mathrm{R}\mathrm{L}, Markov times t \in [0.01,0.05], and node-
absorption rates \delta 1, . . . , \delta 240 from the parameter configurations in three stages of Algorithm 3.
We use H = \bfzero as an input of Algorithm 1b because the influence of the absorption on the
effective community structure is particularly noticeable when H = \bfzero (e.g., see Figure 7(b,d)).

We use the parameter configurations from the following three stages of Algorithm 3: the
initial stage (stage 1), the stage with the peak duration (stage 29), and the final stage (stage
68). We then select the planted community G5 (which consists of the nodes with labels 49--60
in Figure 12(c,d)). We choose this planted community because it has a relatively large number
of bridging nodes (these are nodes 50, 53, 54, 56, and 59) and because the node-absorption
rates of these nodes increases from \delta \ast to \delta \ast \ast in one of the three examined stages. Given a
partition M of G\mathrm{R}\mathrm{L}, we refer to a subset of the planted community G5 as a ``subcommunity""
of G5 if it is the intersection between G5 and a community in M .

In Figure 12(a,b), we show the number of communities of G\mathrm{R}\mathrm{L} and number of subcommu-
nities of G5, respectively, as functions of the Markov time t for partitions that we obtain using
Algorithm 1b with the input Pe(D\delta ,\bfzero , t), where the node-absorption rates in the diagonal
entries of D\delta correspond to the parameter configurations in the initial stage (the dash-dotted
green curve), the stage with the peak duration (the solid red curve), and the final stage (the
dashed blue curve). In Figure 12(a,b), we observe that the number of communities of the
network G\mathrm{R}\mathrm{L} (in Figure 12(a)) and the number of subcommunities of the subgraph G5 (in
Figure 12(b)) increase with the stage number.

In Figure 12(c,d), we show the subcommunities of G5 for Markov time t = 0.025. We
select t= 0.025 because the curves in Figure 12(a,b) are either flat near this value or change
relatively little near it. In Figure 12(c), we see that the nodes with the large node-absorption
rate \delta \ast \ast (i.e., nodes 54, 56, and 59) are in different communities but that the disease can flow
through the blue community and enter a different planted community in the peak-duration
stage. For example, the increase in the transmission intensities of some of the nodes that
belong to the same community (e.g., nodes 50, 51, and 53) implies that the disease can still
spread to other planted communities (through the bridging nodes 50 and 53), so the outbreak
lasts longer in this stage than in the initial stage (see Figure 11(a)).

In Figure 12(d), we see that there are more bridging nodes with the large node-absorption
rate \delta \ast \ast in the final stage than in the peak-duration stage. (Specifically, nodes 50 and 53
have the large node-absorption rate in the final stage.) Therefore, the spread of the disease
to other planted communities is less likely in the final stage than in the peak-duration stage.
Specifically, in the final stage (unlike in stage 29), the disease can disappear more easily at
nodes 50 and 53 (which belong to different communities in the final stage) because these
nodes have large node-absorption rates. Therefore, we expect that the outbreak duration,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ADAPTING INFOMAP TO ABSORBING RANDOM WALKS 2585

(a) Total number of communities as a function of
the Markov time t

(b) Number of subcommunities of the planted
community G5 as a function of the Markov time t

(c) Peak-duration stage (t = 0.025), planted
community G5

(d) Final stage (t = 0.025), planted community G5

Figure 12. Comparison of community structures in the initial, peak-duration, and final stages of Algorithm
3 for SIR dynamics on G\mathrm{R}\mathrm{L}. (a) The number of communities in G\mathrm{R}\mathrm{L} that we obtain using Algorithm 1b
with the input Pe(D\delta ,\bfzero , t) for the node-absorption rates from the parameter configurations in three stages of
Algorithm 3. (b) The number of subcommunities in the planted community G5 that we obtain using Algorithm
1b for the node-absorption rates from the parameter configurations in three stages of Algorithm 3. (c,d) The
subcommunities of G5 that we obtain using Algorithm 1b in (c) the peak-duration stage with t= 0.025 and (d)
the final stage with t= 0.025. Each color indicates a subcommunity.
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2586 E. VARGAS BERNAL, M. A. PORTER, AND J. H. TIEN

final outbreak size, and outbreak peak in Figure 11(a)--(c) in the final stage are smaller than
in earlier stages.

7. Conclusions and discussion. We adapted the community-detection algorithm InfoMap
by using absorbing random walks, which are important for a variety of dynamical processes on
networks. Through theoretical analysis and numerical computations of examples with small
networks, we demonstrated that incorporating heterogeneous node-absorption rates leads to
an effective community structure that can differ markedly from conventional notions of com-
munity structure. Through simulations of an SIR compartmental model of disease spread,
we illustrated that such effective community structure can significantly influence dynamical
processes on networks.

In our work, we considered a specific compartmental model on a specific type of random
graph. It is important to examine the relationships between node-absorption rates, effective
community structure, and dynamics in more general settings, including for other random-
graph models and for empirical networks. Some relevant settings include mobility networks
that link spatial locations, with node-absorption rates that reflect variations in habitat qual-
ity; sexual networks, with nodes corresponding to individuals and node-absorption rates that
reflect heterogeneities in treatment rates in different subsets of a population; and propa-
gation of online content, with node-absorption rates that reflect different rates of content
removal.

The community-detection algorithm InfoMap is based on random walks, so it is natural
to adapt it to absorbing random walks. However, there are numerous approaches to commu-
nity detection [12, 33], and it is worthwhile to adapt other approaches, such as modularity
maximization [29] and statistical influence using stochastic block models [31], to account for
node-absorption rates. Absorption-scaled graphs provide a useful way to adapt community-
detection methods (including ones that are not based on random walks) to account for hetero-
geneous node-absorption rates. Community structure depends not only on network structure
but also on network dynamics (see, e.g., [17]), and it is important to use a variety of per-
spectives to examine the ``effective community structure"" that is associated with different
dynamical processes.

Appendix A. We now prove Propositions 4, 8, and 9 from section 4.2. We start with
Proposition 4.

Proposition 4. Let P0 = AW - 1 be the transition-probability matrix of the discrete-time
Markov chain that is associated with \~\scrL (D\delta ,\bfzero ), and let P1 = (A + D\delta )(W + D\delta )

 - 1 be the
transition-probability matrix of the discrete-time Markov chain that is associated with \~\scrL (D\delta , I).
Let \pi and \pi \prime be the stationary distributions that are associated with P0 and P1, respectively.
Let Zi be the fundamental matrix that is associated with Pi (with i \in \{ 1,2\} ). Let U :=
(1/(\vec{}\delta \mathrm{T}\vec{}u))\vec{}u\vec{}1\mathrm{T} and \alpha := \vec{}\delta \mathrm{T}\vec{}u/(\vec{}w\mathrm{T}\vec{}u+ \vec{}\delta \mathrm{T}\vec{}u), where \vec{}u = (u1, . . . , un)

\mathrm{T} is a vector in the kernel
Ker (W  - A) with positive entries ui such that

\sum n
i=1 ui = 1. We have that

Z1 =W - 1(W +D\delta )

\Biggl[ 
Z0 + \alpha (1 - \alpha )\pi \vec{}1\mathrm{T}  - \alpha 

\Biggl( 
Z0D\delta U +W

\vec{}u\vec{}\delta \mathrm{T}

\vec{}\delta \mathrm{T}\vec{}u
W - 1Z0(I  - \alpha D\delta U)

\Biggr) \Biggr] 
.(29)
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Proof. Let \vec{}u be a column vector in Ker (W  - A) whose entries ui are all positive and sum
to 1. It follows that \pi =W\vec{}u/(\vec{}w\mathrm{T}\vec{}u), \pi \prime = (W +D\delta )\vec{}u/(\vec{}w

\mathrm{T}\vec{}u+ \vec{}\delta \mathrm{T}\vec{}u), and

\pi \prime = (1 - \alpha )\pi + \alpha 
D\delta \vec{}u

\vec{}\delta \mathrm{T}\vec{}u
.(40)

Additionally,

Z1 =
\Bigl( 
I  - P1 + \pi \prime \vec{}1\mathrm{T}

\Bigr)  - 1
,

which we can write as

Z1 =W - 1(W +D\delta )

\biggl[ 
I  - P0 + \pi \vec{}1\mathrm{T}  - \alpha \pi \vec{}1\mathrm{T} + \alpha 

D\delta \vec{}u

\vec{}\delta \mathrm{T}\vec{}u
\vec{}1\mathrm{T} +

\biggl( 
(1 - \alpha )\pi + \alpha 

D\delta \vec{}u

\vec{}\delta \mathrm{T}\vec{}u

\biggr) 
\vec{}1\mathrm{T}D\delta W

 - 1

\biggr]  - 1

.

(41)

We now use the Sherman--Morrison formula to compute the inverse in (41). The Sherman--
Morrison formula states that if F is a nonsingular matrix and \vec{}v1 and \vec{}v2 are column vectors
such that 1 + \vec{}v\mathrm{T}

2 F - 1\vec{}v1 \not = 0, then\bigl( 
F + \vec{}v1\vec{}v

\mathrm{T}
2

\bigr)  - 1
= F - 1  - F - 1\vec{}v1\vec{}v

\mathrm{T}
2 F - 1

1 + \vec{}v\mathrm{T}
2 F - 1\vec{}v1

.(42)

Define

F0 := I  - P0 + \pi \vec{}1\mathrm{T} ,

F1 := I  - P0 + \pi \vec{}1\mathrm{T}  - \alpha \pi \vec{}1\mathrm{T} ,

F2 := I  - P0 + \pi \vec{}1\mathrm{T}  - \alpha \pi \vec{}1\mathrm{T} + \alpha 
D\delta \vec{}u

\vec{}\delta \mathrm{T}\vec{}u
\vec{}1\mathrm{T} ,

F3 := I  - P0 + \pi \vec{}1\mathrm{T}  - \alpha \pi \vec{}1\mathrm{T} + \alpha 
D\delta \vec{}u

\vec{}\delta \mathrm{T}\vec{}u
\vec{}1\mathrm{T} +

\biggl( 
(1 - \alpha )\pi + \alpha 

D\delta \vec{}u

\vec{}\delta \mathrm{T}\vec{}u

\biggr) 
\vec{}1\mathrm{T}D\delta W

 - 1 .(43)

Additionally, recall that the fundamental matrix Z of a regular Markov chain with stationary
distribution \vec{}p satisfies

Z\vec{}p= \vec{}p and \vec{}1\mathrm{T}Z =\vec{}1\mathrm{T} .(44)

Using (42) and (44), we obtain

F - 1
1 =

\Bigl( 
F0  - \alpha \pi \vec{}1\mathrm{T}

\Bigr)  - 1
=Z0 +

\alpha 

1 - \alpha 
\pi \vec{}1\mathrm{T} ,

F - 1
2 =

\biggl( 
F1 + \alpha 

D\delta \vec{}u

\vec{}\delta \mathrm{T}\vec{}u
\vec{}1\mathrm{T}

\biggr)  - 1

=Z0 + \alpha \pi \vec{}1\mathrm{T}  - \alpha Z0D\delta U ,

F - 1
3 =

\biggl( 
F2 +

\biggl( 
(1 - \alpha )\pi + \alpha 

D\delta \vec{}u

\vec{}\delta \mathrm{T}\vec{}u

\biggr) 
\vec{}1\mathrm{T}D\delta W

 - 1

\biggr)  - 1

=Z0 + \alpha (1 - \alpha )\pi \vec{}1\mathrm{T}  - \alpha 

\Biggl[ 
Z0D\delta U +W

\vec{}u\vec{}\delta \mathrm{T}

\vec{}\delta \mathrm{T}\vec{}u
W - 1Z0(I  - \alpha D\delta U)

\Biggr] 
.(45)

From (41), it follows that Z1 =W - 1(W +D\delta )F
 - 1
3 . Combining this relation with (45) yields

(29).

We now prove Proposition 8.
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2588 E. VARGAS BERNAL, M. A. PORTER, AND J. H. TIEN

Proposition 8. Let \~\scrL 1 := \~\scrL (D\delta , I) = (W  - A)(W +D\delta )
 - 1, and let \vec{}d1 be the diagonal of

D\delta (W+D\delta )
 - 1. Additionally, let U := \vec{}u\vec{}1\mathrm{T}/(\vec{}\delta \mathrm{T}\vec{}u), U1 := (W+D\delta )U , and D1 :=D\delta (W+D\delta )

 - 1.
We have that

\~\scrL \vec{}d1

1 = (W +D\delta )\scrL 
\vec{}\delta (36)

and

(\scrL +D\delta )
 - 1 = (W +D\delta )

 - 1

\biggl( 
U1 + (I + \~\scrL \vec{}d1

1 D1)
 - 1 \~\scrL 1

\vec{}d1

\biggr) 
.(37)

Proof. The adjacency matrix A1 = P1 = (A+D\delta )(W+D\delta ) has the associated unnormalized
graph Laplacian matrix \~\scrL 1 = (W  - A)(W +D\delta )

 - 1.
From Proposition 4, it follows that

Z1 =W - 1(W +D\delta )[Z0 + \alpha R] ,(46)

where

R= (1 - \alpha )\pi \vec{}1\mathrm{T}  - Z0D\delta U  - WUD\delta W
 - 1Z0(I  - \alpha D\delta U) .

Proposition 7 then implies that

\~\scrL \vec{}d1

1 = (I  - U1D1)Z1(I  - D1U1) .(47)

Additionally,

I  - U1D1 = (W +D\delta )(I  - UD\delta )(W +D\delta )
 - 1 ,

I  - D1U1 = I  - UD\delta .(48)

Substituting (48) into (47) yields

\~\scrL \vec{}d1

1 = (W +D\delta )\scrL 
\vec{}\delta + \alpha (W +D\delta )(I  - UD\delta )W

 - 1R(I  - D\delta U) .(49)

Using the relations \pi \vec{}1\mathrm{T}(I - D\delta U) = \bfzero , D\delta U(I - D\delta U) = \bfzero , and (I - \alpha D\delta U)(I - D\delta U) = I - D\delta U
yields R(I - D\delta U) = - WUD\delta W

 - 1Z0(I - D\delta U). We then use the fact that (I - UD\delta )UD\delta = \bfzero 
to obtain

(I  - UD\delta )W
 - 1R(I  - D\delta U) = \bfzero .(50)

Substituting (50) into the right-hand side of (49) yields (36).
We express the fundamental matrix (\scrL +D\delta )

 - 1 as

(\scrL +D\delta )
 - 1 = (W +D\delta )

 - 1
\bigl( 
(W  - A)(W +D\delta )

 - 1 +D\delta (W +D\delta )
 - 1
\bigr)  - 1

= (W +D\delta )( \~\scrL 1 +D1)
 - 1 .(51)

By Proposition 6 and (36), we have

( \~\scrL 1 +D1)
 - 1 =U1 + (I + \~\scrL \vec{}d1

1 D1)
 - 1 \~\scrL 1

\vec{}d1
.(52)

Equations (51) and (52) then yield (37).

We now prove Proposition 9.
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Proposition 9. Let \vec{}d\prime := \vec{}d\mathrm{s}(D\delta , I) = \vec{}w + \vec{}\delta = (\omega 1 + \delta 1, . . . , \omega n + \delta n)
\mathrm{T} be the scaled rate

vector that is associated with the absorption-scaled graph \~G(D\delta , I). With \scrL = W  - A, \alpha :=
\vec{}\delta \mathrm{T}\vec{}u/(\vec{}w\mathrm{T}\vec{}u+\vec{}\delta \mathrm{T}\vec{}u), \pi =W\vec{}u/(\vec{}w\mathrm{T}\vec{}u), Z0 = (I  - AW - 1+\pi \vec{}1\mathrm{T}) - 1, and Z\ast =W - 1(Z0 - \pi \vec{}1\mathrm{T}), it
follows that

\scrL \vec{}d\prime 
= \alpha 2\scrL \vec{}\delta + \alpha (1 - \alpha )

\Bigl( 
\scrL \vec{}\delta \scrL Z\ast +Z\ast \scrL \scrL 

\vec{}\delta 
\Bigr) 
+ (1 - \alpha )2Z\ast .(38)

Proof. By Proposition 7, we have

\scrL \vec{}d\prime 
=

\Biggl( 
I  - \vec{}u\vec{}1\mathrm{T}

\vec{}w\mathrm{T}\vec{}u+ \vec{}\delta \mathrm{T}\vec{}u
(W +D\delta )

\Biggr) 
W - 1Z0

\biggl( 
I  - 1

\vec{}w\mathrm{T}\vec{}u+ \vec{}\delta \mathrm{T}\vec{}u
(W +D\delta )\vec{}u\vec{}1

\mathrm{T}

\biggr) 
.(53)

Furthermore,

I  - \vec{}u\vec{}1\mathrm{T}

\vec{}w\mathrm{T}\vec{}u+ \vec{}\delta \mathrm{T}\vec{}u
(W +D\delta ) = \alpha 

\Biggl( 
I  - \vec{}u\vec{}1\mathrm{T}

\delta \mathrm{T}\vec{}u
D\delta 

\Biggr) 
+ (1 - \alpha )W - 1(I  - \pi \vec{}1\mathrm{T})W ,

I  - 1

\vec{}w\mathrm{T}\vec{}u+ \vec{}\delta \mathrm{T}\vec{}u
(W +D\delta )\vec{}u\vec{}1

\mathrm{T} = \alpha 

\Biggl( 
I  - D\delta 

\vec{}u\vec{}1\mathrm{T}

\delta \mathrm{T}\vec{}u

\Biggr) 
+ (1 - \alpha )(I  - \pi \vec{}1\mathrm{T}) .(54)

Substituting (54) into (53) yields

\scrL \vec{}d\prime 
= \alpha 2

\Biggl( 
I  - \vec{}u\vec{}1\mathrm{T}

\delta \mathrm{T}\vec{}u
D\delta 

\Biggr) 
W - 1Z0

\Biggl( 
I  - D\delta 

\vec{}u\vec{}1\mathrm{T}

\delta \mathrm{T}\vec{}u

\Biggr) 
+ \alpha (1 - \alpha )

\Biggl( 
I  - \vec{}u\vec{}1\mathrm{T}

\delta \mathrm{T}\vec{}u
D\delta 

\Biggr) 
W - 1Z0(I  - \pi \vec{}1\mathrm{T})

(55)

+ \alpha (1 - \alpha )W - 1(I - \pi \vec{}1\mathrm{T})WW - 1Z0

\Biggl( 
I - D\delta 

\vec{}u\vec{}1\mathrm{T}

\delta \mathrm{T}\vec{}u

\Biggr) 
+ (1 - \alpha )2W - 1(I - \pi \vec{}1\mathrm{T})WW - 1Z0(I - \pi \vec{}1\mathrm{T}) .

By Proposition 6, the first term of the right-hand side of (55) is \alpha 2\scrL \vec{}\delta . Note that \pi is the
stationary distribution of the Markov chain with transition-probability matrix P0. Addition-
ally, Z0 is the fundamental matrix of this Markov chain. Therefore, using (44), it follows that
W - 1Z0(I - \pi \vec{}1\mathrm{T}) =W - 1(I - \pi \vec{}1\mathrm{T})Z0 =W - 1(Z0 - \pi \vec{}1\mathrm{T}) =Z\ast and W - 1(I - \pi \vec{}1\mathrm{T})Z0(I - \pi \vec{}1\mathrm{T}) =
W - 1(Z0  - \pi \vec{}1\mathrm{T}) =Z\ast . Consequently, from (55), we obtain

\scrL \vec{}d\prime 
= \alpha 2\scrL \vec{}\delta + \alpha (1 - \alpha )

\Biggl[ 
(I  - \vec{}u\vec{}1\mathrm{T}

\delta \mathrm{T}\vec{}u
D\delta )Z\ast +Z\ast 

\Biggl( 
I  - D\delta 

\vec{}u\vec{}1\mathrm{T}

\delta \mathrm{T}\vec{}u

\Biggr) \Biggr] 
+ (1 - \alpha )2Z\ast .(56)

Additionally, \scrL \vec{}\delta \scrL = I  - \vec{}u\vec{}1\mathrm{T}

\delta \mathrm{T}\vec{}uD\delta and \scrL \scrL \vec{}\delta = I  - D\delta 
\vec{}u\vec{}1\mathrm{T}

\delta \mathrm{T}\vec{}u (see Theorem 1 and Lemma 1 in [16]),
so (38) follows from (56).
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Data and code availability. Our code is available at https://gitlab.com/esteban vargas
bernal/extending-infomap-to-absorbing-random-walks.
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